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Abstract. We propose a framework for manipulating in a efficient way
terms and formulæ in classical logic modulo theories. Qed was initially de-
signed for the generation of proof obligations of a weakest-precondition
engine for C programs inside the Frama-C framework, but it has been
implemented as an independent library. Key features of Qed include on-
the-fly strong normalization with various theories and maximal sharing of
terms in memory. Qed is also equipped with an extensible simplification
engine. We illustrate the power of our framework by the implementation
of non-trivial simplifications inside the Wp plug-in of Frama-C. These
optimizations have been used to prove industrial, critical embedded soft-
wares.

1 Introduction

In the context of formal verification of critical softwares, the recent fantastic im-
provement of automated theorem provers and SMT solvers[1] opens new routes.
Inside the Frama-C [2] platform, we have developed the Wp plug-in to implement
an efficient weakest precondition calculus to formally prove a C program against
its specification. The specification is written in terms of the “ANSI-C Specifi-
cation Language” (ACSL) [3], which is a first-order logic system with dedicated
constructs to express C properties such as pointer validity and floating point
operations.

The Wp plug-in actually compile C and ACSL constructs into an internal logic
representation that is finally exported to SMT solvers and other theorem provers.
Thus, we need an internal system to represent and manipulate first-order logical
formulæ. This is exactly what Qed has been designed for.

Designing such a library is not difficult in itself. Some datatype is needed
for expressing terms and properties, combined with pretty-printing facilities to
export them into several languages. This is what we implemented in our early
prototypes.

However, experimental results shown that a formula can not be naively build
then translated and finally sent to an external back-end prover. We actually
observed limitations of such a naive approach on real life examples from critical
embedded software:



– SMT solvers are quite efficient, but they are sensitive to the amount of hy-
potheses they receive. Having a proof for A → B does not mean you will
have a proof for A ∧A′ → B.

– The generated formulæ are huge and deep. Without extra precautions, you
often face an exponential blow-up when dumping them to disk.

– On the contrary, few transformations of the generated formulæ reduce their
size and complexity in a dramatic way.

These reasons drive us in the direction of designing a dedicated system for
representing and simplifying formulæ in an efficient way. We use classical tech-
niques inspired by preprocessing optimizations found in various SMT solvers.
However, in practice, it is not possible to rely on external preprocessors. One
reason is that not all SMT solvers are equipped with such techniques. But most
importantly, without on-the-fly preprocessing, the generation of proof obligations
simply doesn’t terminate in practice.

Moreover, applying these preprocessing facilities on-the-fly allows for non-
trivial optimizations during the weakest precondition calculus [4], by pruning
out useless branches for instance. Moreover, it allows for domain specific pre-
processing : we designed Qed to be equipped with an extensible simplification
engine, and we made it available to the end-user of Wp [5, §2.3.10].

This paper is first (§ 2) a tour and a formal presentation of the Qed frame-
work, as a pure first-order logic system equipped with built-in theories for equal-
ity, arithmetic, arrays, records and unspecified functions. Second (§ 3), we illus-
trate how Qed improves in a very significant way the results of Wp plug-in inside
Frama-C. We finally conclude with future research directions.

2 The Qed Engine

Our logical framework allows for defining and manipulating formulæ in first-
order classical logic modulo theories. The key concept that drives the design
of Qed is to implement only fast and non-local simplifications. This is of course
incomplete, but more complex resolution techniques are left for back-end solvers.

The framework actually consists in three parts: a formally defined algebra
of term normal forms, a collection of smart constructors to build terms, and an
extensible simplification engine. The three components are tiedly coupled with
each others.

The framework is implemented as an OCaml library, with additional features
for exporting Qed formulæ to foreign systems, like Coq [6], Alt-Ergo [7] and Why-
3 [8]. The efficiency of the framework relies (although not only) on a compact
representation of terms into memory. Especially, hash-consing [9] is used to
maximize memory sharing of equal terms. Hence, we benefit from constant-
time equality and hashing over terms. Moreover, hash-consing allows for the
identification of each term by an unique integer. This can be used to implement
sets and maps of terms based on Patricia-trees [10], which provides the end-user
of Qed with O(n) unions, intersections and merges instead of the usual O(n log n)
ones.



We do not present the implementation details in this article. The code is freely
available under open source license together with the Frama-C distribution.1

In this paper, we present formally the three coupled components of the Qed
framework and how they work with each others. We first introduce the internal
representation of formulæ, the term algebra. Then, we define the smart construc-
tors for building terms, with the associated normalization algorithms. Finally,
we present the extensible simplification engine.

2.1 Terms Algebra

The internal representation of terms consists in an inductive datatype quotiented
by normalization invariants. The Qed smart constructors are then especially
designed to enforce those invariants.

The datatype of terms (a ∈ L) is presented in Figure 1. It is parametrized
by datatypes for the symbols identifying variable names (x ∈ X ), record’s field
names (f ∈ Fd) and user-defined or unspecified functions (f ∈ F). The notation
a stands for finite lists of terms, that is, a = a1, . . . , an for some n ≥ 0.

a∈L ::=

Equality Quantifiers Functions
| a = a | a 6= a | x | ∀x.a | ∃x.a | f(a)

Logic

| true | false Booleans
| ∧a | ∨ a Conjunction, Disjunction
| ∧a→ a Implication
| ¬a Negation
| a ? a : a If-then-else

Arithmetic

| k ∈ Z | q ∈ Q Constants
| a ≤ a | a < a Inequalities
| k.a | Σ a | Π a Factors, Sums & Products

Arrays & Records

| a[a] Access
| a[a 7→ a] Updates
| a.f Field Access
| {f 7→ a ; . . .} Records

Fig. 1. Qed Terms Algebra

1 From http://frama-c.com/download/frama-c-Fluorine-20130601.tar.gz, Qed sources
are provided in the self-contained sub-directory src/wp/qed.



In the flow of the text, we would write Qed formulæ within quotes, like
« a ≤ b », to distinguish the terms from their semantics. For instance, we must
read 0 < x as the usual math property that x is positive, and « 0 < x» as a term
in L where variable «x » is compared to zero. Conversely, we denote by [[ a ]] the
semantics in usual mathematics of formulæ « a».

We assume all symbols to be equipped with total orders such that there is
an induced total order a � b. The constant-time structural equality a ≡ b on
terms is provided by hash-consing. To summarize our notations:

« a » Term in L [[ a ]] Semantics of a ∈ L
a � b Total order a ≡ b Structural (and physical) equality

The strict order a ≺ b defined by (a � b∧a 6≡ b) is also used. For maintaining
the normalization invariants of terms, we introduce ac(a) and ac∗(a) to denote
non-empty sorted lists with or without repetitions:

ac(a1 . . . an) ⇔ 0 < n ∧ ∀i, j ∈ 1..n, i < j ⇒ ai ≺ aj
ac∗(a1 . . . an) ⇔ 0 < n ∧ ∀i, j ∈ 1..n, i < j ⇒ ai � aj

We now investigate the various normal forms of a ∈ L and the associated
invariants.

Equality. Terms « a = b » and « a 6= b » are quotiented by a ≺ b and [[ a ]] 6= [[ b ]]
when the built-in theories of Qed applies. For instance, « 1 = 2» is not a Qed
normal term.

Quantifiers. Terms « ∀x.a » and «∃x.a » can only be formed if x appears free
in a. Structural equality (≡) in L is not quotiented by α-conversion. This is a
choice we made because in practice such equalities are rare and α-conversion can
be costly [11]. For instance, using De-Bruijn indices requires lambda liftings [12]
which are not local transformations.

Logic. Boolean connectives are n-ary operators quotiented with ac∗ arguments.
Moreover, there are never two-arguments a and b of logical connectives such that
we can decide [[ a ]]⇔ ¬[[ b ]] with Qed. Moreover, there is no duplication of boolean
term operators and logical connectives for properties as usual in first-order logic.
Rather, we use a two-sorted typing system to recover this distinction when it is
required, for instance, to send a Qed formula to a SMT-solver.

Arithmetic. We choose n-ary sums and products operators quotiented by ac
arguments. Linear forms are maximally flattened and factorized. For instance, it
is not possible to have formula « 1− x ≤ x− y », but we would have « y < 2.x »
instead (provided x and y are integers). These operators apply to both integer
and real values, which case can be disambiguated by typing when necessary.

Arrays. The theory of functional arrays [13] is built-in in Qed. Access-updates
are reduced whenever equality can be decided with Qed. Hence, «m[a 7→ v][b] »
is reduced into «m[b] » or « v » whenever [[ a = b ]] can be decided.



Records. The theory of records is built-in in Qed. We do not choose to represent
field-update terms, since they can always be represented by extensive recon-
struction of the record. This choice makes the computation of normal forms for
records more local.

Unspecified Functions. We decided to never inline a definition of a function sym-
bol f ∈ F . Although, this can be done using the extensible simplification engine.
However, function symbols f ∈ F can be attributed with algebraic properties,
such as injectivity, commutativity, associativity, neutral elements and such. This
leads to many normalizations and simplifications that will be discussed with the
associated smart constructors.

2.2 Smart Constructors and Normalizations

To build formulæ with the Qed framework, one must use the provided smart
constructors listed in Figure 2. Thus, it is not possible to forge arbitrary terms
a ∈ L that would violate the expected invariants. Moreover, since all the sim-
plifications in the framework are local, we always obtain fully normalized terms
on-the-fly.

Equality

eq : a, a→ a
neq : a, a→ a

Variables

var : x→ a
forall : x, a→ a
exists : x, a→ a

Functions

call : f, a→ a

Arithmetic

int : Z→ a
real : Q→ a
add : a, a→ a
sub : a, a→ a

times : Z, a→ a
mul : a, a→ a
leq : a, a→ a

lt : a, a→ a

Arrays

get : a, a→ a
set : a, a, a→ a

Logic

true : a
false : a
not : a→ a
and : a, a→ a

or : a, a→ a
imply : a, a→ a
equiv : a, a→ a

ite : a, a, a→ a

Records

field : a, f→ a
record : (fi, ai)i → a

Fig. 2. Qed Smart Constructors (API)

In this section, we investigate the normalizations computed by the smart
constructors of Qed framework. We first discuss boolean normalizations and
arithmetic ones. Then, functions, arrays and records will be discussed in turn.
Each theory T will define smart constructors eqT and neqT for equalities, which
will be finally merged together into the smart constructor for equality on the
entire algebra L.



Logic. The normalization of logical connectives is based on list of literals packed
with their negation, like (a,¬a). Equipped with a suitable order, such a rep-
resentation allows for fast detection of a and ¬a among arguments of logical
connectives. This leads to frequent calls to the smart constructor not(a) and, in
the OCaml implementation, we use a cache to amortize this cost.

We use recursive definitions to extract list of literals from terms. But thanks
to invariants in the term algebra, it is always limited at 2-depth recursive calls.
We also use an exception (denoted by ⊥Absorbing) to handle absorbing elements.
This leads to the following flattening accumulative functions (in Haskell flavor):

lit∨ « ∨ a » l = fold lit∨ a l
lit∨ « true » l = ⊥Absorbing

lit∨ « false » l = l
lit∨ a l = (a, not a) : l

lit∧ « ∧ a » l = fold lit∧ a l
lit∧ « false » l = ⊥Absorbing

lit∧ « true » l = l
lit∧ a l = (a, not a) : l

For instance, given the formula a = and(b, not c), we obtain the list of and-
literals lit∧ a [ ] = [b, not b ; not c, not(not c)]. Remark here that the double
negation will be simplified on-the-fly by the not smart-constructor.

These lists of literals are then sorted in order for a and (¬a) to appear side
by side. For this purpose, we use a tricky relation (Rid) based on the hash-consed
unique identifiers of terms computed during hash-consing:

(a, a′) Rid (b, b
′) ⇔ min(aid, a

′
id) ≤ min(bid, b

′
id)

The relation Rid is clearly a total order on pairs of terms. Thus we can sort
list of literals with it. Moreover, we have (a, b) Rid (b, a) for all terms a and b,
such that pairs (a,¬a) and (¬a, a) are equal modulo Rid. Thus, opposite literals
will be placed side-by-side in the sorted list.

Reducing lists of literals is surprisingly the same algorithm for conjunctions
and disjunctions. The normalizations are based on the fact that, for any boolean
property ϕ, both (ϕ ∨ ¬ϕ) and (ϕ ∧ ¬ϕ) simplify to their associated absorbing
elements, respectively true and false. The dual normalization uses the simplifica-
tion of both (ϕ∨ϕ) and (ϕ∧ϕ) into ϕ. For this purpose, we define weak versions
of (a⇔ b) and (a⇔ ¬b), respectively defined as follows:

eqvlit (a, a
′) (b, b′) = (a ≡ b)

neqlit (a, a
′) (b, b′) = (a ≡ b′) ∨ (a′ ≡ b)

Then, provided [[ a′ ]] = ¬[[ a ]] and [[ b′ ]] = ¬[[ b ]] (which is the case for literals),
the two following properties hold:

eqvlit (a, a
′) (b, b′) ⇒ [[ a ]]⇔ [[ b ]]

neqlit (a, a
′) (b, b′) ⇒ [[ a ]]⇔ ¬[[ b ]]

The reduction of both conjunction and disjunction of literals is then implemented
by one single function group, as follows:

group ϕ : ψ : l | eqvlit ϕ ψ = group (ψ : l)
group ϕ : ψ : l | neqlit ϕ ψ = ⊥Absorbant

group ϕ : l = ϕ : group l
group [ ] = [ ]



Putting every ingredient together, we define the smart constructors and and
or in terms of a generic function connective⊗,1,0 for connective ⊗ with neutral 1
and absorbing element 0:

and = connective∧,true,false or = connective∨,false,true

The generic function connective⊗,1,0 is in turn defined by flattening, sorting and
grouping the ⊗-literals as follows:

connective⊗,1,0(a, b) =
try let p = group ◦ sort Rid (lit⊗ a (lit⊗ b [ ])) in

if p = [ ] then 1 else
let a = sort (�) ◦map fst p in «⊗ a »

with ⊥Absorbing → 0

The smart constructor for implication is more direct. Recall that the normal
form of implication is « ∧a→ a ». We only need to filter out the list of hypothe-
ses on the left of (→) against the conclusion and its negation. Below are two
examples of the reduction rules implemented for the imply smart constructor:

imply « ∧ a » b | (∃i, ai ≡ b) = « true »
imply « ∧ a » b = « ∧ [aj |aj 6≡ not b]→ b »

Equivalence is the same than equality in the boolean theory. The contribution
of boolean theory to equality smart constructors is defined below:

eqB « true » a = a eqB « false » a = not a
eqB a b | (a ≡ not b) = « false »

Finally, we define the smart constructor for negation recursively with all the
other connectives. We do not present all the rules here by lack of place. Let us
just mention the transformation of not (a 6= b) into (a = b), not (a ≤ b) into
(b < a), among many other similar or dual patterns.

Arithmetic. The normalization of arithmetic terms relies on computing with
linear forms of terms:

linear(a) = c+

n∑
i=1

ki.ai with c, ki ∈ Z

Maximal linear forms of terms are easy to compute in an efficient way with
lists of monoms (k, a), in the same spirit than for logical connectives. For linear
complexity, we use an accumulative variant of linear, denoted by lin, such that:

lin k a L = k. linear(a) + L

Conversely, it is easy to inject linear forms into well-formed terms as follows:

injΣ

(
c+

n∑
i=1

ki.ai

)
= «Σ s » where

{
s0 = « c »
si = « k.ai », i ∈ 1..n



With list implementation, injΣ relies on sorting and compacting the list of
monoms to obtain a normalized linear form. Smart constructors for arithmetic
are then straightforward definitions:

add(a, b) = injΣ(lin 1 a (lin 1 b []))
sub(a, b) = injΣ(lin 1 a (lin -1 b [ ]))

times(k, a) = injΣ(lin k a)

Comparisons, including equalities and inequalities, are also performed with
linear forms using a generic comparison function cmpR for relation R:

leq = cmp≤ lt = cmp< eqA = cmp= neqA = cmp 6=

For the definition of this generic comparison function, we first introduce
a dispatching function that takes a linear form L and separate positive from
negative factors:

dispatch

(
c+

n∑
i=1

ki.ai

)
=

(
c⊕ +

n∑
i=1

k⊕i .ai , c
	 +

n∑
i=1

k	i .ai

)

where c⊕ = max(c, 0) and c	 = max(−c, 0). Then, we lift any arithmetic com-
parison R to linear forms with:

liftR(L
⊕, L	) = «L⊕ R L	 » where typically L⊕, L	 = dispatch(L)

When linear forms are reduced to constants c and c′, we compute the boolean
result of (cRc′) and turn it into « true » or « false ». We also introduce few ad-
ditional simplifications when both L⊕ and L	 are in Z (rather than in R) in
order to catch off-by-one comparisons ; typically 1 + a < b reduces to a ≤ b.

Finally, the generic comparison operator cmpR is defined by:

cmpR(a, b) = liftR ◦ dispatch ◦ injΣ(lin 1 a (lin -1 b [ ]))

Product are conducted in a similar, although simpler way. The simplification
is here based on generalized products rather than linear forms:

product(a) = k.

n∏
i=1

ai and, conversely: injΠ

(
k.

n∏
i=1

ai

)
= « k.Π a »

Their implementation with lists are straightforward. We introduce an accumu-
lative variant of product, named prod such that:

prod a (k, l) = k. product(a)× l

Finally, the smart constructor for multiplication is:

mul(a, b) = injΠ ◦ sort (�) (prod a (prod b [ ]))



Arrays and Records The theories for arrays and records are similar and we
present them together. For arrays, we need to decide whether two indices a and
b are equal. Qed is not able to decide equality in all case, so we rely on a weak
decision instead, ie. a sound but incomplete approximation of [[ a = b ]]. Let us
define:

a =true b ⇔ eq(a, b) ≡ « true »
a =false b ⇔ eq(a, b) ≡ « false »

The simplifications rules used by the smart constructors for arrays are then:

get « a[b 7→ c] » b′ | (b =true b
′) = c

get « a[b 7→ c] » b′ | (b =false b
′) = get a b′

set « a[b 7→ c] » b′ c′ | (b =true b
′) = « a[b 7→ c′] »

Records are more complete since we can always decide for field equality.
But there is no mystery in them. We omit here the details of the normalization
algorithms.

There is no special equalities for arrays. For records, we rely on the fact that
two records are equal if and only they have equal field entries. More precisely,
given r = (fi, ai)i∈1..n and r′ = (f′j , a

′
j)j∈1..m, we introduce:

eqFd « {r} » « {r′} »
= « false » when n 6= m ∨ ∃k, fk 6= f′k
= and( e ) otherwise, where ∀k, ek = eq(ai, a

′
i)

Function Properties We enrich the standard theory of unspecified functions
by attributing function symbols f ∈ F with algebraic properties. The structural
equality (≡) over terms a ∈ L implements directly the general equality for
unspecified functions. We enrich it with additional equalities when f is injective
and when it is a constructor of an abstract datatype.

Sometimes, the function f is just the n-ary notation for some unspecified
operator (�), that is, f(x) = x1� . . .�xn. In this case, f can be attributed with
groupoid properties like associativity and such.

The available properties, for operators, injections and constructors, are listed
in Figure 3. Each function can be attributed with zero, one or several properties,
although you can not mix operator properties with non-operator ones.

Smart constructors for functions take into account those properties in two
ways. Groupoid properties are used to flatten the list of arguments (associativ-
ity), to sort them with respect to (�) (commutativity) and to filter out absorbing
and neutral elements, whenever each case applies. The other properties are used
to simplify equalities between terms « f(a) » and « f ′(a′) ». Implementation is
based on list manipulations similar to linear forms and logical connectives.

Equalities. The built-in theories of Qed define specific smart constructors for
equality, that we need to merge into a single one. Moreover, equality as an
equivalence relation also requires general normalizations to be applied. This is



Properties for unspecified function f :
injective: f(x) = f(y) ⇔ ∀i, xi = yi
constructor: f(x) = g(y) ⇔ f = g ∧ ∀i, xi = yi

Properties for unspecified operator f(x) = x1 � . . .� xn:
commutative: x� y = y � x
associative: x� (y � z) = (x� y)� z
neutral(e): e� x = x� e = x
absorbant(e): e� x = x� e = e
inversible: x� y = x� z ⇔ y = z ⇔ y � x = z � x

Fig. 3. Properties for unspecified functions

performed by smart constructor eqE which simplifies equal terms modulo (≡)
and ensures that in « a = b », we get (a ≺ b).

Combining equalities from all theories is achieved by applying each specific
smart constructors in a staged way. Starting with the smart constructor of theory
T , if eqT (a, b) = « a′ = b′ », we pass the residual equality through the next theory
eqT ′(a′, b′), and so on.

In this process, several optimizations are performed to avoid unnecessary calls
to dedicated smart constructors. The global stack is: first, use pure equality eE ;
then, solve arithmetic with eqA or solve boolean equalities with eqB; finally,
depending on which theory applies, use eqFd for records or eqF for functions.

2.3 Extensible Simplifier

One of the non-common features of Qed framework is its ability to be extended
with user-supplied simplification routines. We have designed three possible entry
points for additional normalizations, based on unspecified functions f ∈ F :

– when applying a function « f(a) » ;
– for simplifying equalities « a = f(a) » and « f(a) = a » ;
– or inequalities « a ≤ f(a)» and « f(a) ≤ a ».

Restricting these entry points to terms with a function symbol f at head is a
design choice. It reduces the cost of finding routine, try to run them, and fallback
to default implementation. In a similar way, we allow only one simplification
routine per function symbol f and entry point. If several routines are desired,
packing them with priorities and other features is left to the end-user of the
framework, while keeping Qed simple and robust.

Regarding the implementation, calls to user-supplied simplification routines
are staged after the default normalization routines and before hash-consing
is performed. Although user-supplied simplification routines can be arbitrary
OCaml code, there are some design rules to consider. We investigate them in
turn.



Result. Simplification routines build terms using only the Qed smart construc-
tors. A partial simplification routine may raise an exception ⊥Default to interrupt
the simplification and makes Qed fallback to the default smart-constructor.

Recursion. To avoid infinite loops, Qed enforces a fallback to default smart con-
structors after a given depth of recursion with the same routine (2 in practice).
This is consistent with the local complexity of all normalizers in the framework.

Decisions. Whenever a simplification needs to decide between several cases, it
is recommended to build a Qed term instead, and decide upon its normalized
form. For instance, to decide whether a sub-term a is positive, simply build the
term leq « 0» a and compare its normal form « true » and « false ». This allows
for several simplification routines to cooperate with each others.

Example. For instance, assume the symbol fabs is specified to compute the ab-
solute value of real and integral numbers. One may implement the following
routine for simplifying fabs expressions:

callabs a = match (leq « 0 » a) with
| « true » → a
| « false »→ times « - 1 » a
| _ → ⊥Default

To simplify notations, let us introduce abs(a) = call(fabs, [a]). This makes
abs(« - 1 ») to simplify into « 1 » as expected. If we now add a routine for sim-
plifying comparisons with symbols fabs:

leqabs « 0 » « fabs(a) » = true
leqabs « fabs(a) » « 0 » = eq a « 0 »
leqabs a b = ⊥Default

Then we get the simplification of abs(abs(a)) into abs(a) for free by mutual
interaction of the two simplification routines.

3 Experimental Results

In this section, we illustrate how Qed has been used to successfully empower the
efficiency of the Wp plug-in of Frama-C. Recall from the introduction that Wp
computes weakest preconditions on C programs annotated by ACSL contracts.
The primary outcome of Wp is proof obligations, that are first-order logic for-
mulæ. If one succeed in proving all those formulæ, then weakest precondition
calculus entails that the C program is correct with respect to its specification.

The introduction of Qed as the internal implementation for building and
managing the proof obligations has leverage the efficiency of Wp in many ways.
First, it allows up to implement effectively a linear [14] weakest precondition cal-
culus with on-the-fly maximal memory sharing. On programs with a lot of paths



in the control flow graph, like successive conditionals, this is absolutely neces-
sary to avoid an exponential growth of proof obligations. Second, surprisingly,
normalizations makes “not-so-few” proof obligations to simplifies into « true ».
Hence, Qed became our primary back-end solver in practice.

A
B
C
D

Goals Alt-Ergo Coq
13 13 -
35 14 17
54 24 30
Memory out

Goals Qed Alt-Ergo
11 11 -
22 18 3
25 25 -
172 116 56

Case Study Without Qed After Qed

Fig. 4. Impact of Qed on Wp

An experiment conducted before and after the introduction of Qed is depicted
in Figure 4. It depicts four simple case studies, that are small C routines from
industrial embedded systems, and our attempts to discharge the generated proof
obligations (goals). The figures show that introduction of Qed actually avoid
exponential growth and demonstrate its capability to discharge proofs. Without
Qed, hardly 50% of the goals must be discharged by hand with the Coq proof
assistant. For case-study named ‘D’, Wp is not even capable of generating the
proof obligations. Introducing Qed solves most of these issues, however one proof
obligation is still not discharged in the ‘B’ case study.

We then conducted a much larger experiment on a full bench of real industrial
codes from avionics and energy industries. These case studies can not be disclosed
here because of industrial agreements. The bench consists of 15 case studies,
cumulating 60,000 lines of code and specifications which generates up to 10,000
proof obligations to be discharged. Of course, on such a large-scale experiment,
we encountered non-generated goals and non-discharged ones. This can be the
consequence of bugs, inefficiencies and over-complicated goals.

The results of the experiment on different variants of Wp and Qed are de-
picted in Figure 5. The graphics shows the number of proof obligations actually
generated, and those discharged by Qed and Alt-Ergo. The graphics also pro-
vides the number of goals where Alt-Ergo has been interrupted, and those where
it returns without deciding the validity of the proof obligation.

The various versions we experimented with this bench illustrate the benefit
from non-trivial optimizations implemented in Wp thanks to the Qed framework:

wp. The base version of Wp with Qed (beginning of the experiment).
var. Transformation of equalities introduced by Wp into substitutions.
cst. Addition of simplification routines for machine-integer computations.
let. Correction of an inefficiency issue with in-memory sharing.
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Fig. 5. Impact of Wp optimizations based on Qed

lit. Propagation of literals by substitutions.
cut. Pruning proof obligations by eliminating irrelevant chunks of code.

As illustrated by the results over the bench, each version improves the re-
sults in several ways. The number of generated proof obligations is lower when
different control-flow paths can be merged thanks to simplifications during the
weakest precondition calculus. On the other hand, inefficiency bugs may prevent
Wp from generating proof obligations, leaving part of the specifications unproved.
More goals are discharged by Qed after each optimization we introduced. And
sometimes, residual goals are more efficiently discharged by Alt-Ergo, meaning
that Qed has simplified them.

We now investigate in more details the experimented optimizations, and how
they take benefit from the Qed framework.

Turning Equalities into Substitutions (var) During linear weakest precondition
calculus, the side effects of the program are transformed into a kind of static
single assignment form. This generates a huge number of intermediate variables,
each receiving a small expression. This leads to many (x = e) hypotheses in
the formulæ to prove. But, formula ∀x, x = e → ϕ can be transformed into
ϕ[x := e] by substitution (provided x does not appear free in e). This is a well
known transformation named variable elimination. But from the Qed point of
view, this introduces many opportunities to perform aggressive normalization.
For instance, ∀x, x = 4→ 0 ≤ x does not simplifies locally in Qed, but simplifies
into true after substitution.

Simplification Routines (cst) To model the semantics of C machine integers, the
Wp introduces unspecified symbols with suitable properties in order for SMT



solvers to reason with. However, in many cases, these symbols are fed with
constant integer values. Hence, we can compute on-the-fly the resulting values.
For instance, when converting constants from one integer type into another.
Together with variable elimination, this makes significant improvements.

Exploiting Memory Sharing (let) When exporting a formula to an external
solver, Qed takes benefit from the maximal sharing of equal sub-terms into mem-
ory. For instance, term « f(a, a) » where a is a shared sub-term, is rendered by
introducing a let-binding: « let x = a in f(x, x) ». In early versions of Qed, there
was an inefficiency bug in finding good candidates for let-binding introduction.
This bug was responsible for combinatorial explosions during the export of proof
obligations. This is an illustration of how maximal sharing is important in prac-
tice.

Propagation of Literals (lit) Generalizing variable elimination, formula (e =
c) → ϕ may sometimes be transformed into ϕ[e := c]. This is of particular
interest when c is much simpler than e, say, a constant. Of course, recognizing a
sub-expression e in ϕ can be costly. But with maximal in-memory sharing and
hash-consing, this becomes feasible in reasonable time.

A special instance is the propagation of hypotheses: in formula l → ϕ, we
substitute l by true and not(l) by false in ϕ.

Moreover, we also propagate consequences inequalities: a < b also propagates
a ≤ b and a 6= b. Finally, we also detect both a ≤ b and b ≤ a and turn them
into a = b. This combines well with the normalization of inequalities performed
by Qed, since this makes variants of the same literal to be equal and substituted.
For instance, it is often the case that at the end of a loop, the loop counter will
be replaced with its final value, which introduces more opportunities for further
variable eliminations.

However, in ψ → l → ϕ, we only propagate l from left-to-right, in ϕ only,
because propagation in both directions is exponential.

Pruning Contradictory Branches (cut) A typical program has many condition-
als statements to detect error cases that shortcuts normal computations. When
proving a property of such a program, we generally have a specification such
as “unless an error condition is raised, some property ϕ holds.” This leads to
formulæ with the following form:

(d ? ψ+ : ψ−)→ (e→ ϕ)

There are two opportunities for simplifications in this formula. First, we can
put e in head of the goal, such that forward propagation of literals described
above has a chance to filter out non relevant cases. Then, we may investigate
whether (e ∧ d ∧ ψ+) or (e ∧ ¬d ∧ ψ−) leads to a contradiction by simplification
with Qed. Whenever it is the case, the corresponding branch can be removed.

This is effective in practice, as shown by our experiments. However, it must
be pointed out that this only occurs because Qed performs many normalizations
in the background.



4 Conclusion

Our primary objective was to statically prove program properties with SMT
solvers. For this purpose, we generate first-order logic formulæ relying on several
domain specific theories. Naive approaches lead to generating huge formulæ that
are tremendously difficult for SMT solvers to discharge. We have tackled this
problem by introducing the Qed framework, an efficient library for managing
formulæ modulo built-in and domain specific theories. This provides us with
a mean of simplifying on-the-fly the generation of the formulæ to prove. Our
rationale is that simplifications that are fast and local should be done in the
early stage of the process, while only the difficult residual goals are sent to
state-of-the art SMT solvers for deep exploration. Future research includes the
simplification of terms by abstract interpretation and the usage of Qed in other
tool chains.
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