
HAL Id: cea-01808981
https://cea.hal.science/cea-01808981

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frama-C: A software analysis perspective
Florent Kirchner, Nikolai Kosmatov, Virgile Prévosto, Julien Signoles, Boris

Yakobowski

To cite this version:
Florent Kirchner, Nikolai Kosmatov, Virgile Prévosto, Julien Signoles, Boris Yakobowski. Frama-
C: A software analysis perspective. Formal Aspects of Computing, 2015, 27 (3), pp.573 - 609.
�10.1007/s00165-014-0326-7�. �cea-01808981�

https://cea.hal.science/cea-01808981
https://hal.archives-ouvertes.fr

DOI 10.1007/s00165-014-0326-7
BCS © 2015
Formal Aspects of Computing (2015) 27: 573–609

Formal Aspects
of Computing

Frama-C: A software analysis perspective
Florent Kirchner1, Nikolai Kosmatov1, Virgile Prevosto1,
Julien Signoles1, Boris Yakobowski1
1 CEA, LIST, Software Reliability Laboratory, F-91191 Gif-sur-Yvette, France

Abstract. Frama-C is a source code analysis platform that aims at conducting verification of industrial-size C
programs. It provides its users with a collection of plug-ins that perform static analysis, deductive verification, and
testing, for safety- and security-critical software. Collaborative verification across cooperating plug-ins is enabled
by their integration on top of a shared kernel and datastructures, and their compliance to a common specification
language. This foundational article presents a consolidated view of the platform, its main and composite analyses,
and some of its industrial achievements.

Keywords: Formal verification, Static analysis, Dynamic analysis, C

1. Introduction

Thepast 40 years have seenmuchof the groundworkof formal software analysis being laid. Several angles and the-
oretical avenues have been explored, from deductive reasoning to abstract interpretation to program transforma-
tion to concolic testing.Whilemuch remains to be done froman academic standpoint, someof themajor advances
in these fields are already being successfully implemented [CCF+05, Mat, DMS+09, RSB+99, WMMR05]—and
met with growing industrial interest. The ensuing push for mainstream dissemination of software analysis tech-
niques has raised several challenges.

Scaling is predictably important from the point of view of adoptability. Handling large problems is a prerequi-
site for the industrial diffusion of software analysis and verification techniques. Scaling also requires better
understanding of how language idioms (e.g. pointers, unions, or dynamic memory allocation) influence the
underlying architecture of large software developments. Overall, achieving scalability in the design of software
analyzers for a wide range of software patterns remains a difficult question.

Interoperability enables the design of elaborate program analyses. Recent work on the interplay between program
analyses and transformations [DJP10], the complementarity of forward and backward analyses [BHV11], or
the precision gain afforded when combining static and dynamic approaches [BNR+10] has demonstrated the
value of interconnected approaches. Yet running multiple source code analyses and synthesizing their results
in a coherent fashion requires carefully thought-out mechanisms.

This work was partly supported by ANR projects U3CAT and Veridyc, FUI9 project Hi-Lite, and FP7 project STANCE. An earlier version
of this work was presented at the conference SEFM 2012.

With Patrick Baudin, François Bobot, Richard Bonichon, Bernard Botella, Omar Chebaro, Loı̈c Correnson, Pascal Cuoq, Zaynah Dargaye,
Philippe Herrmann, Matthieu Lemerre, Claude Marché, Benjamin Monate, Yannick Moy, Anne Pacalet, Armand Puccetti, Muriel Roger,
Nicolas Stouls and Nicky Williams.
Correspondence and offprint requests to: B. Yakobowski, E-mail: boris.yakobowski@cea.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-014-0326-7&domain=pdf

574 F. Kirchner et al.

Table 1.Main Frama-C analyzers

Plug-in Short description Section

Value abstract interpretation based value analysis 4
WP deductive verification 5
PathCrawler concolic test generation 6
E-ACSL runtime assertion checking 7
Aoraı̈ temporal specification 8
Mthread analysis of concurrent code 9
Inout function inputs and outputs 10.1
From functional dependencies 10.1
PDG program dependency graph 10.1
Scope data dependencies 10.1
Slicing dependency-based program slicing 10.1
Sante combined static/dynamic analysis 10.2

Soundness is a strong differentiator for formal approaches. By using tools that over-approximate all program
behaviors, users are assured that none of the errors they are looking for remain undetected. This guarantee
stands in stark contrast with the bug-finding capabilities of heuristic analyzers, and is paramount in the
evaluation of critical software. But the design and implementation costs of such high-integrity solutions are
hard to expend.

The Frama-C software analysis platform provides a collection of scalable, interoperable, and sound software
analyses for the industrial analysis of ISO C99 source code. The platform is based on a common kernel, which
hosts analyzers as collaborating plug-ins and uses the ACSL formal specification language as a lingua franca.
Frama-C includes plug-ins based on abstract interpretation, deductive verification, and dynamic analysis; and
a series of derived plug-ins which build elaborate analyses upon the former. In addition, the extensibility of the
overall platform, and its open-source licensing, have fostered the development of an ecosystem of independent
third-party plug-ins. The Frama-C plug-ins presented in this paper are listed in Table 1.

This article is intended as a foundational reference to the kernel (Sect. 3) and Frama-C’s main analyses.
Sections 4, 5, and 9 present static program verification plug-ins, based on abstract interpretation and deductive
verification. Plug-ins using dynamic analysis are described in Sects. 6 and 7. Frama-C’s temporal specifications
verification plug-in is depicted in Sect. 8. Finally, Sect. 10 outlines various plug-ins that combine the results of
previously introduced analyzers.

2. Related work

Combining analysis techniques (in particular static and dynamic ones) is a quite recent but not new idea [EMN12].
However, there are very few frameworks that aim at being easily extended and at tightly integrating various pro-
gramanalysis techniques arounda common logic language suchasACSL.Notably, theClangStaticAnalyzer [Cla]
is built on top of the Clang/LLVM architecture to check various issues in C, C++ or Objective-C code. As with
many LLVM-related projects, it is meant to be extensible so that users can add specific checks. However, its scope
ismuchmore limited thanFrama-C. Indeed, itsmain aim is to issuemeaningful warnings during compilationwith
Clang, not to provide an exhaustive verification of the absence of runtime error or of the functional properties
of the program.

Frama-C: A software analysis perspective 575

Considering other programming languages, Spark2014 [CKM12, DEL+14, KCC+14] is a subset
of Ada which comes with a specification language and allows the user to mix deductive verification and test-
ing: some functions may be tested while some others may be proved. However this framework does not provide
any extensible mechanism to add new custom analyzers. Why and its successor Why3 [Fil03, FP13] propose
another approach by offering a language dedicated to deductive verification using Hoare logic. This can then be
used as an intermediate language for program verification by translating original code intoWhy, sharing the same
back-end for several programming languages. This is in particular used by Spark2014, the Jessie plug-in [MM12]
of Frama-C and the Krakatoa [FM07] platform to prove Ada, C and Java programs respectively. Why andWhy3
specifically target deductive verification though, and are not aimed at providing support for other analysis tech-
niques. This is also the case for the Boogie intermediate language [BCD+06] that is used as back-end for verifying
programs written in Spec#, C, Dafny or Chalice.

When it comes to verification, Rushby’s evidential tool bus [Rus05, CHOS13] offers an interesting approach
to let different tools collaborate for a given verification task. It is based on a client/server architecture, where each
server indicates which tasks it can handle, while clients make verification requests that have to be decomposed in
elementary tasks using various strategies. Communication is based onDatalog predicates. The evidential tool bus
is a very generic framework and can thus accommodate a very broad set of tools. On the other hand, the bus in
itself does not know anything about the C language. Hence, it cannot provide directly the same level of coupling
that is offered by Frama-C (although this could be achieved by defining an appropriate library of predicates).
On the other hand, Frama-C could very well be integrated in an evidential tool bus that would be used to verify
larger systems composed of other parts than simply C code.

Very few tools tackle the goal of formally verifying a programby combining different techniques in a consistent
way.Heintze et al. [HJV00] proposes a framework by equational reasoning to combine an abstract interpreterwith
a deductive verification tool to enhance verification of user assertions. As Frama-C, it does not depend on specific
analyzers and is correctmodulo analyzer’s correctness.However, instead of focusing onmerging analyzer’s results,
it implements a new analyzer which operates on the results of the analyzers which it is based on. More recently,
the Eve verification environment for Eiffel programs combines a deductive verification tool and a testing tool in
order to make software verification practical and usable [TFNM11]. Eve reports the separated results obtained
from this tool. Since tools which Eve is based upon are not supposed to be correct, Eve computes a so-called
correctness score for each property. This score is a metrics indicating a level of confidence in its correctness. That
is quite different from our approach where we suppose that analyzers are correct but can use other properties as
hypotheses to build a proof.

In many cases, combined verification tools were developed starting from separate analyzers that were not
specifically designed for collaboration with each other. Daikon [EPG+07] uses dynamic analysis to detect likely
invariants. Check’n’Crash [SC07] applies first static analysis that reports alarms using intra-procedural weakest-
precondition computation, then random test generation tries to confirm the bugs. DSD Crasher [SC07] applies
Daikon [EPG+07] to infer likely invariants by dynamic analysis before the static analysis step of Check’n’Crash
to reduce the rate of false alarms.

In the implementation of Check’n’Crash and DSD Crasher, the authors use independent open-source tools:
ESC/Java [CK04] (developedbyCompaqSystemsResearchCenter) for static analysis, JCrasher [CS04] (developed
by Georgia Institute of Technology) for dynamic analysis and Daikon [EPG+07] (developed by MIT Computer
Science and Artificial Intelligence Lab) to detect likely invariants. They adapt each tool in order to communicate
with the others. Moreover, enhancements of some components are necessary (like providing JML annotations to
Daikon components) as described by the authors in [CS06].

Synergy [GHK+06] and BLAST [BHJM07] combine testing and partition refinement for property checking.
The algorithm DASH [BNR+10], initially called Synergy, is implemented in the Yogi tool [GdHN+08]. Yogi uses
independent tools SLAM and DART for static and dynamic analysis respectively, both developed by Microsoft.

Easy tool integration is an important advantage of the Frama-C plug-in architecture, where analyses can
communicate via well-defined interfaces. Developers do not even need to modify the combined tool if one of the
components is modified or upgraded (unless the interface is modified).

Other individual software analysis tools related to separate Frama-C analyzers are also cited in the following
sections.

576 F. Kirchner et al.

Message Printer Property Status

Journal Parameter Project . . .

Visitor

Plug-ins Analyzer 1 Analyzer 2 Analyzer 3 . . .

Plug-ins Database

Kernel Services

(Modified) CIL C + ACSL AST

Fig. 1. Frama-C’s functional view

3. The platform kernel

3.1. Architecture

The Frama-C platform is written in OCaml [LDF+13], a functional language whose features are very interesting
for implementing program analyzers [CSB+09]. Figure 1 shows a functional view of theFrama-C plug-in-oriented
architecture (á la Eclipse) whose kernel is based on a modified version of CIL [NMRW02]. CIL is a front-end
for C that parses ISO C99 programs into a normalized representation. For instance, loop constructs (for,
while, do ...while) are given a single normalized form, normalized expressions have no side-effects, etc.
Frama-C extends CIL to support dedicated source code annotations expressed in ACSL (see Sect. 3.2). This
modified CIL front-end produces the C + ACSL abstract syntax tree (AST), an abstract view of the program
shared among all analyzers. This AST takes into account machine-dependent parameters (size of integral types,
endianness, etc.) which can easily be modified by the end-user.

In addition to the AST, the kernel provides several general services for helping plug-in development [SCP13]
and providing convenient features to Frama-C’s end-user.

• Messages, source code and annotations are uniformly displayed.
• Parameters and command line options are homogeneously handled.
• A journal of user actions can be synthesized and replayed afterwards, a useful feature in debugging and
qualification contexts [Sig14].

• A safe serialization mechanism [CDS11] allows the user to save results of analyses and reload them later.
• Projects, presented in Sect. 3.3, isolate unrelated program representations, and guarantee the integrity of
analyses.

• Consistency mechanisms control the collaboration between analyzers (Sect. 3.4).
• A visitor mechanism, partly inherited from CIL, facilitates crawling through the AST and writing code trans-
formation plug-ins.

Analyzers are developed as separate plug-ins on top of the kernel. Plug-ins are dynamically linked against
the kernel to offer new analyses, or to modify existing ones. Any plug-in can register new services in a plug-in
database stored in the kernel, thereby making these services available to all plug-ins.

Frama-C: A software analysis perspective 577

1 /*@ requires \valid(a) && \valid(b);

2 requires \separated(a,b);

3 assigns *a, *b;

4 ensures *a == \at(*b,Pre) && *b == \at(*a,Pre);

5 */

6 void swap(int* a, int* b);

Fig. 2. Example of ACSL specification

1 /*@ behavior not_null:

2 assumes a!=\null && b!= \null;

3 requires \valid(a) && \valid(b);

4 requires \separated(a,b);

5 assigns *a, *b;

6 ensures *a == \at(*b,Pre) && *b == \at(*a,Pre);

7

8 behavior null:

9 assumes a == \null || b == \null;

10 assigns \nothing;

11

12 complete behaviors;

13 disjoint behaviors;

14 */

15 void swap_or_null(int* a, int* b);

Fig. 3. Example of ACSL behavior

3.2. ACSL

Functional properties of C programs can be expressed within Frama-C as ACSL annotations [BFH+13]. ACSL,
the ANSI/ISO C Specification Language, is a formal specification language inspired by Java’s JML [BCC+05],
both being based on the notion of function contract introduced by Eiffel [Mey97]. In its most basic form, the
specification (or contract) of a function states the pre-conditions it requires from its caller and the post-
conditions it ensures when returning. Among these post-conditions, one kind of clause plays a particular
role by saying which memory locations the function assigns, i.e. which locations might have a different value
between the pre- and the post-state. Conversely, any memory location not mentioned in this clause is supposed
to be left unmodified by the function.

Annotations are written in first-order logic, and it is possible to define custom functions and predicates for use
in annotations together with ACSL built-ins. Indeed, ACSL features its own functions and predicates to describe
memory states. However, it does not introduce any notion beyond the C standard, leaving each plug-in free to
perform its own abstractions over the concrete memory layout.

For instance, Fig. 2 provides a formal ACSL specification for a swap function. Informally, swap is supposed
to exchange the content of two (valid) pointer cells given as argument.

The first pre-condition states that the two arguments must be valid int pointers, i.e. that dereferencing a
or b will not produce a run-time error. In addition, the second pre-condition asks that the two locations do not
overlap. \valid and \separated are two built-in ACSL predicates.

The assigns clause states that only the locations pointed to by a and bmight be modified by a call to swap;
any other memory location is untouched. Finally, the post-condition says that at the end of the function, *a
contains the value that was in *b in the pre-state, and vice versa.

578 F. Kirchner et al.

1 int a[10];

2 /*@ loop invariant 0 <= i <= 10;

3 loop invariant \forall integer j; 0 <= j < i ==> a[j] == j;

4 loop assigns i, a[0 .. i-1];

5 */

6 for (int i = 0; i < 10; i++) a[i] = i;

Fig. 4. Example of loop annotated with ACSL invariants

Function contracts can also be structured into behaviors. In addition to the clauses described above,
a behavior can be guarded by assumes clauses, which specify under which conditions the behavior is
activated. This provides a convenient way to distinguish various cases under which the function can be called.
Behaviors do not need to be either complete (at least one behavior is active for any given call) or disjoint
(there is at most one behavior active for a given call), but this can be stipulated with the appropriate clauses in
order to check that the specification is correct in this respect. As an example, Fig. 3 presents the specification of a
function swap_or_null similar to swap except that it will attempt to swap contents only when both pointers
are non-null. This corresponds to the behavior not_null, in which case the function expects to have valid
(in C a non-null pointer is not necessarily valid) and separated pointers and will act as above. On the other hand,
in the null case, the function does nothing: at least one pointer is null, so the values cannot be swapped. We are
always in exactly one of these two cases, so null and not_null are clearly complete and disjoint.

In addition to function specifications, ACSL offers the possibility of writing annotations in the code,
in the form of assertions, properties that must be true at a given point, or loop invariants, properties that
are true for each loop step. More precisely, a loop invariant is associated to a for, while, or do ... while
loop. It must hold when arriving at the loop entry for the first time, and must be preserved by a loop step. That
is, if we enter the loop body in a state that verifies the invariant, then the invariant must hold at the end of the
block—except if we exit from the block through goto, break or continue. With these two properties, we can
then prove by induction that the invariant is true for any number of loop steps (including 0). As with assigns
clauses in function contracts, loop assigns clauses are a particular case of invariant that state which memory
locations might have been modified since the beginning of the loop (implicitly stating that all other locations are
not modified by the loop). Loop invariants are required for deductive verification (see Sect. 5).

As an example, Fig. 4 presents a simple for loop initializing the elements of an array, together with its
associated invariants. The first invariant specifies the bounds of the index of the loop. Note that the invariant
uses i<=10, while the test in the code is i<10. Indeed, the invariant must be preserved by any step of the loop,
including the last one, in which i is equal to 10 at the end of the step.

The second invariant states that the i-1 first cells of the array have been initialized. It is true before entering
the loop, as there is no j such that 0<=j<0, so the implication is trivially true. Then, if we suppose that the
invariant holds at the beginning of a loop step, the step will initialize cell i and increment i, so that the invariant
is still true af the end of the step.

Similarly, the loop assigns clause indicates that the loop has potentially modified i and the first i-1
cells of the array. Namely, this is true when entering the loop (nothing has been modified), and if we suppose that
only i and the beginning of the array has been assigned, the next loop step also assigns i and the ith cell, again
making the invariant true at the end of the step.

Loop invariants are not concerned with termination. Instead, termination can be ensured through the special
clauseloop variant. It requires an integer expression that strictly decreases duringa loop step,while remaining
positive each time the loop enters a new iteration. When both these conditions are met, we know that the loop
can only be taken a finite number of times. An example of variant for the loop in Fig. 4 would be the following:

loop variant 10 - i;

Each plug-in can provide a validity status to any ACSL property and/or generate ACSL annotations. This
lets ACSL annotations play an important role in the communication between plug-ins, as explained in Sect. 3.4.

Frama-C: A software analysis perspective 579

3.3. Projects

Frama-C allows a user to work on several programs in parallel thanks to the notion of project. A project
consistently stores a program with all its required information, including results computed by analyzers and
their parameters. Several projects may coexist in memory at the same time. A non-interference theorem guaran-
tees project partitioning [Sig09]: any modification on a value of a project P does not impact a value of another
project P ′.

Such a feature is of particular interest when a program transformer such as E-ACSL (Sect. 7), Aoraı̈ (Sect. 8),
or Slicing (Sect. 10.1) is used. The result of the transformation is a fresh AST that coexists with the original one,
making backtracking and comparisons easy. This is illustrated in Sect. 10.2. Another use of projects is to process
the same program in different ways—for instance with different analysis parameters.

3.4. Collaborations across analyzers

In Frama-C, analyzers can interoperate in two different ways: either sequentially, by chaining analysis results to
perform complex operations; or in parallel, by combining partial analysis results into a full program verification.
The former consists in using the results of an analyzer as input to another one thanks to the plug-in database
stored by the Frama-C kernel. Refer to Sect. 10.1 for an illustration of a sequential analysis.

The parallel collaboration of analyzers consists in verifying a program by heterogeneous means. ACSL is
used to this end as a collaborative language: plug-ins generate program annotations, which are then validated by
other plug-ins. Partial results coming from various plug-ins are integrated by the kernel to provide a consolidated
status of the validity of all ACSL properties. For instance, when the Value plug-in (Sect. 4) is unable to ensure the
validity of a pointer p, it emits an unprovedACSL annotationassert \valid(p).ACSL’s blocking semantics
states that an execution trace leading to an invalid property stops its execution (see [GGJK08, HMM12, CS12]).
Thus, Value can assume that p is valid from this program point onwards, since the execution can only continue
if the assert is valid. The WP plug-in (Sect. 5) may later be used to prove this hypothesis, or it can be checked
at runtime by leveraging the E-ACSL plug-in (Sect. 7). The kernel automatically computes the validity status of
each program property from the information provided by all analyzers and ensures the correctness of the entire
verification process. For that, plug-ins can set the local validity status of an ACSL property, together with its set
of dependencies. Those dependencies can be:

• other ACSL properties that are assumed to be true;
• the reachability of a statement;
• some parameters of the plug-in that set a hypothesis over the memory state of the program.

With this information, the kernel can then compute a consolidated validity status for each ACSL property. [CS12]
presents the algorithm that is used for that purpose. Its main correctness property can be stated as: “if the
consolidated status of a property is computed as valid [resp. invalid] by the kernel, then the property is valid [resp.
invalid] with respect to ACSL semantics”. This algorithm is also complete: “if a property is proven valid [resp.
invalid] by at least one analyzer, then its computed consolidated status is valid [resp. invalid] as soon as one other
analyzer does not prove the contrary, in which case the special status ‘inconsistent’ is computed.1”

4. Abstract interpretation

The Value plug-in [CYP13], (short for Value Analysis) is a forward dataflow analysis based on the principles of
abstract interpretation [CC77], which performs whole-program analyses. For each instruction of the program, the
information inferred by the plug-in are twofold:

1. A flag indicating the possibility that the execution of the instruction may fail at runtime—or at least invoke
an undefined behavior. In this case, an alarm (see Sect. 4.2) is emitted, to warn the user that the program may
be incorrect.

2. For each memory location, an over-approximation of the values it may contain. All the executions of the
instruction that are possible starting from the function chosen as the entry-point of the analysis are taken
into account.

1 If all the analyzers and axioms are correct, and all the implicit hypotheses which the analyzers are based on (about the memory model,
etc.) are verified, inconsistency can not happen.

580 F. Kirchner et al.

1 int S=0;

2

3 int T[20];

4

5 int main(void) {

6 int i;

7 int *p = &T[0];

8 for (i = 0; i < 20; i++) {

9 S = S + i;

10 *p = S;

11 p++;

12 Frama_C_show_each_loop(S,i,p);

13 }

14 return S;

15 }

Fig. 5. Example of program analyzed with Value

Abstract interpretation links a concrete semantics, typically the set of all possible executions of a program, in
all possible execution environments, to a more coarse-grained, abstract one. Any transformation in the concrete
semantics must have an abstract counterpart that captures all possible outcomes of the concrete operation.
This ensures that the abstract semantics is a sound approximation of the runtime behavior of the program, and
guarantees the correctness of the information inferred by Value.

Value, and abstract interpreters in general, proceed by symbolic execution of the program, translating all
operations into the abstract semantics. When several execution paths are possible, e.g. when analyzing an if
statement, the abstract interpreter explores all branches, and takes the union of the results at the point where
those branches join together (e.g. after the if statement).

Special care must be taken for loops, as this process is not guaranteed to terminate—except for very simple ab-
stract domains, that usually cannot give any useful result on real programs. In abstract interpretation, termination
of looping constructs is ensured by widening operations. Here, instead of simply taking the union of the previous
results and the abstract state resulting from the current loop step, the interpreter uses an over-approximation (a
wider state) of this union. This operation is designed so that it can only be called a finite number of times before
reaching the widest abstract value �. (The value � usually indicates that we do not know anything about the
possible concrete states of the program, but abstract interpreters typically widen only the parts of their state that
change from one iteration to the next, resulting in a controlled loss of precision.) This property of the widening
operation ensures that the analysis will only go through the loop a finite number of times. The number of steps
the operator can take before returning the most imprecise abstract value acts as a balance between the precision
of the analysis and the time it takes to complete. In Value, the number of steps of analysis that may take place
without any widening step is parameterized by the -wlevel option, and intermediate widening bounds can be
added by the user. However, those two mechanisms are mostly superseded by the propagation of unjoined states
(see Sect. 4.3).

Function calls are handled by Value essentially through a symbolic inlining of the body of the function. This
ensures that the analysis is fully context-sensitive, and permits maximal precision. The downside of this approach
is a potentially high analysis time. If needed, the user can abstract overly complex functions by an ACSL contract,
verifiedbyhandor dischargedwith another analysis. In this case, the bodyof the function is skippedbyValue. This
also allows the analysis of recursive function, that cannot be handled through body inlining without endangering
the termination of the analysis. Namely, Value currently rejects programs with recursive calls (that are seldom
encountered in embedded code anyway).

We illustrate an analysiswith the programpresented inFig. 5.Value is launchedusing the following command-
line:

frama-c -val value_example.c

Frama-C: A software analysis perspective 581

[value] Values of globals at initialization

S IN {0}

T[0..19] IN {0}

[value] Called Frama_C_show_each_loop({0},{0},{{ &T + {4} }})

[value] Called Frama_C_show_each_loop({0; 1},{0; 1},{{ &T + {4; 8} }})

...

[value] Called Frama_C_show_each_loop([0..60],[0..19],

{{ &T + {4; 8; 12; 16; 20; 24; 28; 32} }})

[value] Called Frama_C_show_each_loop([0..79], [0..19], {{ &T + [4..36],0%4 }})

[value] Called Frama_C_show_each_loop([0..146], [0..19], {{ &T + [4..80],0%4 }})

value_example.c:10:[kernel] warning: out of bounds write. assert \valid(p);

[value] Called Frama_C_show_each_loop([0..165], [0..19], {{ &T + [4..80],0%4 }})

...

[value] Called Frama_C_show_each_loop([0..32805], [0..19], {{ &T + [4..80],0%4 }})

value_example.c:9:[kernel] warning: signed overflow. assert S+i <= 2147483647;

[value] Called Frama_C_show_each_loop([0..2147483647],[0..19],

{{ &T + [4..80],0%4 }})

[value] Recording results for main

[value] done for function main

[value] ====== VALUES COMPUTED ======

[value] Values at end of function main:

S IN [0..2147483647]

T[0..19] IN [0..2147483647]

i IN {20}

p IN {{ &T + [0..80],0%4 }}

Fig. 6. Output of Value on the example

The program stores the sum of the integers from 0 to i in the ith cell of T. In addition, we use the built-
in Frama_C_show_each_ to output the abstract values computed for its arguments each time the analysis
reaches the call. The relevant parts of the output are shown in Fig. 6. As will be described in Sect. 4.1, Value
abstracts integers with sets when there are few elements, and intervals otherwise. Pointers are modelled as pairs of
a base address and an (integer) offset, computed in bytes. We use the default architecture proposed by Frama-C,
namely x86-32, so that an int is 4 bytes long.

In the initial state, as mandated by the C standard, all global variables are initialized to 0. It is also possible
to use the -lib-entry when the starting point of the analysis is not the main function of the program. In that
case a custom, generic analysis context is generated, in which globals are not assumed to be 0-initialized.

In the first step of the loop, both S and i are still at 0, while p points at the first cell of T. The second step
shows the union of the results seen so far at this program point. After some further steps, we start seeing the
results of the widening operator: as S is always increasing, Value widen its contents, resulting in an interval with
a quickly increasing upper bound. On the other hand, i is always known to be between 0 and 19, thanks to the
test for exiting the loop. Value is also able to compute an upper bound for p, using a mechanism that will be
explained in Sect. 4.2. Note that an additional piece of information is inferred automatically: the offset of p is
always equal to 0 modulo 4, i.e. we are reading well-aligned ints.

The bound found for p is not sufficient to ensure that we can always read safely from p. Similarly, Value
cannot show that we can add S and i without overflow (signed overflow is undefined by the C standard and thus
treated as a potential error by Value). Conversely, the fact that the S+i computation cannot overflow is used to
show that S and the elements of T are necessarily positive.

582 F. Kirchner et al.

As it cannot guarantee that the corresponding operations are correct, the analyzer emits two alarms for the
potential invalid read and signed overflow, according to themechanismdescribed in Sect. 4.2. In fact, these alarms
are an example of false alarms, that are only due the over-approximations made by the analyzer, but cannot occur
on any concrete execution. Reducing the number of false alarms (without missing real issues) is of course the goal
of any correct abstract interpreter. Section 4.3 will show how it is possible to increase the precision of Value, at
the expense of the computation time, to make these alarms disappear.

4.1. Abstract domains

The domains currently used by Value to represent the abstract semantics of values and of the whole memory are
described below.

Integer computations. Small sets of integers are represented as sets, whereas large sets are represented as intervals
with congruence information [Gra91]. For instance, x ∈ [3..255], 3% 4means that x is such that 3 ≤ x ≤ 255 and
x ≡ 3mod 4. Another example is the offset for the pointer p of Fig. 5, which is guaranteed to be 32-bits aligned
starting from &T[0], and less than 40.

Floating-point computations. The results of floating-point computations are represented as IEEE 754 [IEE08]
double-precision finite intervals. Operations on single-precision floats are stored as doubles, but are rounded
as necessary. Obtaining infinities or NaN as results of floating-point computations is treated as an undesirable
error. By default, Value considers that floating-points computations are handled in the same way on the target
architecture than on the machine where the analysis takes place, with the same rounding mode, which is not
supposed to be changed by the program itself. It is however possible to compute results that take into account all
possible rounding modes, as well as the most common hardware deviations from IEEE 754 standard, such as the
use of 80-bits registers for storing intermediate results on IA32 processors, or the fmadd instruction on PowerPC.

Pointers. To verify that invalid (e.g. out-of-bounds) array/pointer accesses cannot occur in the target program,
Value assumes (and verifies) that the program does not purposely use buffer overflows to access neighboring
variables [ISO07, §6.5.6:8]. The abstract representation of pointers reflects this assumption: addresses are seen as
offsets with respect to symbolic base addresses, and have no relationwith actual locations in virtual memory space
during execution. In particular, it is impossible tomove fromone base address to another using pointer arithmetic.
Offsets are plain integers, and are represented by the corresponding abstract domain. Base addresses can be

• the address of a local or global variable,
• the address of a function formal parameter,
• the address of a string constant,
• the special NULL base, which is used to encode absolute addresses.

The fact that NULL is a base address implies that an absolute numerical address is considered by Value to be
separated from any memory location belonging to another variable of the program. In addition, Value considers
that, by default, absolute numerical addresses (that are pervasive in embedded code) are invalid. If needed, the
user must explicitly indicate which range of absolute addresses can be accessed by the program, using option
-absolute-valid-range.

The base addresses above are sufficient for programs that do not perform dynamic memory allocation.
malloc requires a special treatment. The simplest possibility is to consider a special array on which all calls to
malloc return distinct offsets. However, if some precision is lost on the indexes of the malloc’ed blocks, Value
will start joining values over separated blocks. More precise implementations allow to consider separate arrays
for each call site of malloc, or even for each single call, at the expense of the computation time of the analysis.
In the latter, most precise case, termination is not even guaranteed anymore when a call to malloc occurs in a
loop, as we keep adding new base addresses to the state. Various implementations of malloc are implemented
in Value and can be chosen by the user depending on the precision needed and the time that one is willing to
allow for the analysis to complete.

Addresses are represented as maps from base addresses to integers, the latter representing the possible offsets
from the base. This is slightly more precise than the traditional abstraction in which an address is seen as the
pair of (1) the possible bases, and (2) the possible offsets for all the bases. Hence, Value can represent precisely a
pointer that could be either null, equal to the address of a variable x, or equal to the addresses of the cells 3 to
10 of an array T of 16 bits integers. Expressed using Value’s concrete syntax, in which offsets mean a number of
bytes, this pointer is represented as {{ NULL; &x; &T+[4..18],0%2 }}. During the analysis, the abstract

Frama-C: A software analysis perspective 583

value for a given pointer often contains at most two bases (NULL and another variable). However, the increase
of precision compared to a representation such as <{NULL; &x; &T}, [0..18],0%2}> is important to the
plug-ins that reuse Value results (Sect. 10.1).

Indeterminate values. The content of some memory locations is deemed indeterminate by the C standard. Exam-
ples include uninitialized local variables, struct padding, and dereferencing pointers to variables outside of their
scope [ISO07, § 6.2.4:2]. Having indeterminate contents inmemory is not an error, but accessing an indeterminate
memory location is. To detect those, the values used to represent the contents of memory locations are taken
not directly from the abstract domain used for the values of an expression, but from the lattice product of this
domain with two two-valued domains, one for initializedness and the other for danglingness.

Of course, the abstract transfer functions take into account the scopes of variables. A pointer containing the
address of a local variable is automatically transformed into a dangling indeterminate value when the analyzer
leaves the block in which the variable is declared. A naive implementation of this operation is linear in the side
of the abstract state, which is unacceptably costly. Since exiting a block occurs very frequently, the interpreter
keeps track of all the variables that may contain the address of a local variable or a formal parameter; only those
variables need to be checked when exiting the corresponding scope.

Memory. The abstractmemory statemaps each base address to a representation of a chunk of linearmemory, of a
size that is defined by the type of the base address. Each chunk itself maps consecutive ranges of bits to values. The
memory representation is untyped: astruct swith two scalar fields is not seen as twodistinct variables. Instead,
depending on the code that filled the contents of the struct, the corresponding memory chunk will contain
one range (if s is uninitialized or is initialized to the same value everywhere), two (the standard case), or more
than two ranges (if the struct’s fields are written byte after byte). This representation makes straightforward
the handling of unions and heterogeneous pointer conversions during abstract interpretation.

The first example of Fig. 7 shows three functions filling the contents of the struct mentioned above. For
each case, we give below the abstract representation of the memory chunk corresponding to s. We assume an
analysis in which sizeof(int)=4, on a little-endian processor.

1 struct s_t {

2 int v1;

3 int v2;

4 };

5

6 struct s_t s;

7

8 void f1(int c) {

9 s.v1 = 1;

10 s.v2 = c;

11 }

12

13 void f2() {

14 s.v1 = s.v2 = 5;

15 }

16

17 void f3() {

18 s.v1 = 12;

19 s.v2 = 0x01020304;

20 *((char*)&s+4) = 0x08;

21 //@ assert s.v2 == 0x01020308;

22 }

1 union u_t {

2 int* p;

3 char v;

4 };

5

6 union u_t u;

7 int x[2], y;

8

9 void f(int c) {

10 if (c) {

11 u.v = c % 64;

12 } else {

13 u.p = &x[0];

14 }

15 y = 3;

16 [...]

17 if (...) {

18 *u.p = 1;

19 //@ assert y == 3;

20 }

21 }

Fig. 7. Example programs for memory abstraction

584 F. Kirchner et al.

f1 :
{

[0..31] �→ {1}
[32..63] �→ [.. − ..]

f2 :
{

[0..63] �→ {5} repeated each 32 bits

f3 :

{
[0..31] �→ {12}

[32..39] �→ {8}
[40..63] �→ {0x01020304} size 32 bits, bits 8 to 31

The function f1 yields the simplest result. Two ranges, 32 bits long each, are present. They correspond to each
field of the type struct s_t. The first field is mapped to the abstract value corresponding to the singleton
{1}. The second is mapped to an integer interval on which no precise information is known. Notice that we
do not store the information [-2147483648..2147483647], which would also have been correct (assuming
the int type is signed). It is simpler to store the degenerate information [..-..], which will be transparently
converted to [-2147483648..2147483647] or [0..4294967295] when s.v1 is read through an l-value
of type int or unsigned int respectively. The representation [..-..] is more compact, and is easier to
share when multiple successive fields have the same value, as explained just below.

Perhaps surprisingly, after the execution of function f2, the abstract memory state for s does not contain two
bindings, but a single one. This binding encompasses the entire range of bits 0..63, which are mapped to the
32 bits value {5}. Here, the size of the bound value 32 is kept by the memory abstract domain, not by the value
one. As a result, since 32 bits are too short to cover the entire range 0..63, the value is implicitly considered as
repeating itself until all 64 bits are filled (here, twice). This representation is particularly economical for arrays,
which often contain the same abstract value for all cells. Furthermore, the initial state of the analysis is also very
compact, as all global variables that do not have an explicit initializer are represented by a single interval mapped
to the singleton value {0}.

Function f3 is the most involved example. The operation at line 20 overwrites a part of the value written at
line 19, which is automatically handled by the memory abstraction domain. Since bits 32 to 39 are completely
overwritten, the entire range is mapped to the value {8} (which has implicitly size 8 bits, as this is the width of
the range). Things are more complex for the range 40–63. One solution would be to ask the value abstraction
for a new value that corresponds to the bits 8–31 of the abstract value {0x01020304}. However, this results in
an unrecoverable loss of precision if the abstract value contained pointer addresses, as explained in the section
below. Instead, the memory layer itself handles the fact that this range of bits contains only parts of the value
{0x01020304}, by indicating that only the bits 8 to 31 of the value are used. Notice that this choice does not
result in a loss of precision when the value of s.v2 is read later on. The memory and value abstract domain
cooperate to “stitch” together the two ranges of bits into an abstract value. In this example, this results into
{0x01020308}, and Value is able to prove the assertion at line 21.

It may seem strange to use the bit as the base unit to index ranges, as the byte is the smallest addressable
unit in C. However, bit-based accesses are needed to handle bit-fields [ISO07, §6.2.6.1:4] with a memory layout
compatible with the one used by standard compilers. The C standard itself does not specify bit-fields layout,
but then again, no more than any kind of data. Aligning all bit-fields on a byte frontier would result in binary
representations that violate too many assumptions made by low-level code. But Value users are in fact rarely
exposed to bit-based ranges, as memory states are shown to the user through pretty-printers that use the type
information available. At the end of functionsf1,f2 andf3 respectively, the contents ofs are shown as displayed
below.

f1: s.v1 IN {1}
.v2 IN [--..--]

f2: s{.v1; .v2} IN {5}

f3: s.v1 IN {12}
.v2[bits 0 to 7] IN {8}
.v2[bits 8 to 31]# IN {16909060} %32, bits 8 to 31

Since there exists at least amemory abstraction for each reachable statement of the program, the data structure
used to represent these states must be very efficient in order to scale to programs of several hundreds of thousands
of line of codes, as in [CHK+12]. In particular, it must share common parts of the states across statements as
much as possible, and allows an efficient merge of two states as well as testing the inclusion of a state in another

Frama-C: A software analysis perspective 585

one. This sharing is obtained through hash-consing, a well-known technique in functional programming (see
e.g [Fil00]). The representation of abstract memory states is described in [BC11]. Sharing common sub-states
through hash-consing also required some improvement to OCaml’s standard implementation of weak pointers
and weak hash tables [CD08]. In addition, this sharing must be preserved across serialization and deserialization
when saving Frama-C internal state on disk and then reading from such a state to perform further analyses.
Finally sharing must be built on-the-fly when deserializing, and not after having deserialized the entire state. This
also required some customization of OCaml’s unmarshalling functions [CDS11].

Degenerate pointers. One of the key design choices of Value is to support low-level C code,2 that manipulates
memory in a potentially type-unsafe way. Typical patterns include accessing the byte-level representation of the
memory, potentially on pointer values. But even for code that respects the C standard strict aliasing rule [ISO07,
§6.5/7], the imprecisions inherent to static analysis cause the apparition of abstract values that contain some bits
of a pointer address. In the second example of Fig. 7, joining the memory states after both branches of the if
results in a value quite complex to represent for u.v: “either the first 8 bits of &x[0] (that furthermore depend
on the endianness), or the numeric interval [0..63]”. The memory abstraction presented above is able to represent
the result of joining &x[0]with an integer value of size sizeof(int*), but not with something strictly smaller.
As a consequence, there is no available value in the value and memory abstractions presented yet to represent the
field u.v—or the three subsequent bytes—after the join.

This example also shows that it is not possible to abort the analysis as soon as a pointer value cannot
be represented precisely. Otherwise, too many defined programs would be rejected. Making u.v equal to �
would also be too coarse, as writing through u.p would cause the loss of any information about the memory
state. Instead, we add to the abstraction a family of new values representing “some bits of the addresses of
certain variables”. In our example, inside u.v, only the address of x may be present, and Value represents it
as {{ garbled mix of &{x} }}. Garbled mix embodies controlled degeneration: although quite a bit of
precision has been lost, we know that u.v and u.p can only contain bits of the address of x—in particular, no
bits of &y. Thus, if the programwas defined in the first place,3 u.pwould have contained something derived from
&x, and the operation *u.p = 1 does not modify y. Hence, the assertion at line 19 does hold. On the other
hand, after the operation at line 18, the entire block for x contains the abstract value [..-..] representing the
entire numerical range, as we cannot be sure that we are writing at &x[0] or at another offset from &x[0].Value
also signals that u.p may be completely invalid, for example if it contained &x[4].

4.2. Alarms

Each time a statement is analyzed, any operation that can lead to an undefined behavior (e.g. division by zero, out-
of-bounds access, etc.) is checked, typically by verifying the range of the involved expression—the denominator
of the division, the index of the array access, etc.

When the abstract semantics guarantees that no undesirable value can occur, one obtains a static guarantee
that the operation always executes safely. Otherwise, Value reports the possible error by an alarm, expressed as
an ACSL assertion. As such, those alarms can afterwards be read and checked by other Frama-C plug-ins, such
as WP (see Sect. 5). For instance, Fig. 6 contain two typical examples of alarms. First, we have a potential invalid
dereference, that lead to the ACSL assertion \valid(p). Then, we find a potential arithmetic overflow, that
leads to the constraint that S+i<=MAX_INT.

Each alarm may signal a real error if the operation fails at runtime on at least one execution, or a false alarm,
caused by the difference in precision between the concrete and abstract semantics.More precise state propagation
for the abstract semantics typically results in fewer false alarms, but lengthens analysis time.

Upon emitting an alarm, the analyzer reduces the propagated state accordingly, and proceeds onwards.
Reducing the state means taking into account—when this is possible for the abstract domain—the fact that the
predicate corresponding to the alarm does hold.Value is able to evaluate and to reduce its state based on a limited
subset of ACSL properties. Of course, this subset includes all the alarm predicates that are emitted by Value itself.
User-written annotations can also be used to propagate reduced states, thus improving precision and speed (see
Sect. 4.3). The exact supported range of predicates increases at each new release of Frama-C.

2 With the restriction that the program does not manually manipulate the function stack.
3 As explained in the paragraph “Pointers” above, the C standard forbids the use of pointer arithmetic to address one memory block starting
from a pointer to another block, and a defined program must verify this property.

586 F. Kirchner et al.

In the example of Fig. 5, the alarm \valid(p) generated for the access to *p at line 10 is used to restrict the
value of p to the range {{ &T + [0..76] }}, which contains all the valid offsets inside T. This is sufficient
to show that the range {{ &T + [4..80],0%4 }} is indeed a fixpoint for the first instruction of the loop.4

4.3. Propagation of unjoined states

Value’s domains are non-relational: although they store the possible values for all the variables of the program,
no information is stored regarding e.g. the sum or the equality of two variables. Typically, for the example of
Fig. 5, no information is kept about the difference between p and i. Each time we enter the loop, this difference
is constant and equal to &T[0]. This information would be useful to prove that the memory access *p at line 10
remains within bounds, as the equality p == T+i combined with i<20 is sufficient to prove that p does not
goes past the bounds of T.

To remedy the absence of such relational information, Value instead allows the independent propagation of
multiple distinct states per statement. This alleviates for a large part the need for relational domains, by implicitly
encoding relations in the disjunction of abstract states.

Typically, by choosing to propagate k distinct states, the user can ensure that simple loops with less than k
iterations are entirely unrolled. The bound k can be adjusted on a per-function basis if required. As an example,
we can go back at the example of Fig. 5 and use the following command, -slevel being the option that sets
the value of k.

frama-c -val -slevel 20 value_example.c

Results are shown in Fig. 8. Since we are not mixing the results of each loop step in a single state,
Frama_C_show_each always display precise values, and the values of the cells ofT at the endof the computation
are also singletons. Moreover, the (false) alarms emitted because of the over-approximations have disappeared:
p is known to always point to a valid cell of T, and S+i is at most 190, so that there is no overflow.

Successive conditionals are also handled more precisely: the abstract states remain separate after the two
branches of the conditional have been analyzed. In addition, it is also possible to force a separation of states
by writing ACSL assertions in a disjunctive form. If k is large enough, Value will then attempt to reduce the
current state according to each part of the disjunction, and will continue the analysis with the separate states.
For instance, consider the following program.

1 int x,y;
2

3 void main (int c) {
4 if (c) { x = 10; } else { x = 33; }
5 if (!c) { x++; } else { x--; }
6

7 if (c<=0) { y = 42; } else { y = 36; }
8 if (c>0) { y++; } else { y--; }
9 }

Without using separate states, Value concludes that the possible values for x and y are {9; 11; 32; 34} and
{35; 37; 41; 43} respectively. Indeed, there is no relation between the value of c and the values of x and y
after the first and third if.

With -slevel 2, y is known to be either 37 or 41. Indeed after the third if, we have two states. one in
which c<=0 and y==42, and one where c>0 and y==36. Each state can only take one branch of the fourth
if, so that there is only two possible results for y. On the other hand, x still has three possible values, namely
{9; 11; 34}. The issue is that in the then branch of the first if, c can be anything but 0, but this information
is not representable as an interval (it is the union of two disjoint intervals). Thus, in the state where x is equal
to 10, we do not know anything about c, and both branches of the second if have to be explored in that case.
To overcome this issue, we can force Value to split its state beforehand, by adding the following ACSL assertion
before the first if.

//@ assert c<=0 || c>0;

4 The upper bound &T + 80 is automatically tried by the widening heuristics, which explains why the analysis converges on this value.

Frama-C: A software analysis perspective 587

...

[value] Called Frama_C_show_each_loop({0},{0},{{ &T + {4} }})

[value] Called Frama_C_show_each_loop({1},{1},{{ &T + {8} }})

[value] Called Frama_C_show_each_loop({3},{2},{{ &T + {12} }})

[value] Called Frama_C_show_each_loop({6},{3},{{ &T + {16} }})

[value] Called Frama_C_show_each_loop({10},{4},{{ &T + {20} }})

...

[value] Called Frama_C_show_each_loop({190}, {19}, {{ &T + {80} }})

[value] ====== VALUES COMPUTED ======

[value] Values at end of function main:

S IN {190}

T[0] IN {0}

[1] IN {1}

[2] IN {3}

[3] IN {6}

[...]

[18] IN {171}

[19] IN {190}

i IN {20}

p IN {{ &T + {80} }}

Fig. 8. Output of Value with multiple states per statement

This assertion is of course marked as valid by Value, ensuring that we have not introduced any additional
hypothesis on the program. This time, with -slevel 3, we have two states before the first if, one where c<=0,
and one where c>0. Each state is propagated separately, and this time since 0 is a bound of the interval for c, it
can be removed from the possible values in the then branch, leading to three possible states after the first if:

• c<0 and x==10
• c>0 and x==10
• c==0 and x==33

For each of these cases, only one branch of the second if can be activated, leading to the result that x can only
be either 9 or 34.

Such ACSL disjunctions can play an important role in improving the precision of Value. In particular,
decomposing floating-points interval can have a major impact on the approximation of the computations, as
smaller intervals allows for tighter bounds of the rounding that is made for each operation. In [PL10] shows
how it is possible to automatically generate such disjunctions to obtain an appropriate precision when analyzing
programs that perform floating-point computations.

From a theoretical standpoint, Value’s approach of propagating distinct states is reminiscent of the trace-
partitioning abstraction [MR05], with two important differences. First, the trace information is not represented
within Value’s abstract domains: states are kept separate only when they are different, and two branches of e.g.
an if instruction that would lead to the same abstract state would result in the propagation of a single state.
Although this precludes using information from the trace domain (which is not available), this may also ensure
a faster convergence when different traces actually lead to identical abstract states. Second, trace partitioning
requires heuristics or user-provided annotations to specify where multiple states should be propagated: on which
if, for how many loop iterations, etc. Value’s approach does not offer the same granularity, but is conversely
easier to implement.

588 F. Kirchner et al.

Finally, efficient propagation of distinct states requires very efficient datastructures, to alleviate the cost
of computing the transfer functions multiple times on the same statement. Within Value, the datastructures
representing the abstract semantics have been heavily optimized for speed and reduced memory footprint [BC11,
CD08].

5. Deductive verification

The WP plug-in is named after theWeakest Precondition calculus, a technique used to prove program properties
initiated by Hoare [Hoa69], Floyd [Flo67] andDijkstra [Dij68]. Recent tools implement this technique efficiently,
for instance Boogie [Lei08] and Why/Why 3 [Fil03, FP13]. Jessie [MM12], a Frama-C plug-in developed at
INRIA, also implements this technique for C by compiling programs into the Why language. Frama-C’s WP
plug-in is a novel implementation of a Weakest Precondition calculus for generating verification conditions (VC)
for C programs with ACSL annotations. It differs from other implementations in two respects. First, WP focuses
on parameterizationwith respect to thememorymodel. Second, it aims at being fully integrated into theFrama-C
platform, and to ease collaboration with the other verification plug-ins (especially Value) as outlined in Sect. 3.4.

The choice of a memory model is a key ingredient of Hoare logic-based VC generators that target C programs
(ormore generally a languagewithmemory references). Aweakest precondition calculus operates over a language
that only manipulates plain variables. In order to account for pointers, memory accesses (both for reading and
writing) must be represented in the underlying logic. The simplest representation uses a single functional array for
the whole memory. However, this has a drawback: any update to the array (the representation of an assignment
*p=v) has a potential impact on the whole memory—any variable might have been modified. In practice, proof
obligations generated that way quickly become intractable. Thus, various refinements have been proposed, in
particular by Bornat [Bor00], building upon earlier work by Burstall [Bur72]. The idea of such memory models
is to use distinct arrays to represent parts of the memory known to be separated, e.g. distinct fields of the same
structure in the “component-as-array trick” of Burstall and Bornat. In this setting, an update to one of the arrays
will not affect the properties of the others, leading to more manageable VC.

However, abstract memory models sometimes restrict the functions that can be analyzed. Indeed, a given
model can only be used to verify code that does not create aliases between pointers that are considered a priori
separated by the model. In particular, Burstall-Bornat models that rely on static type information to partition
the memory are not able to cope with programs that use pointer casts or some form of union types.

In order to generate simpler VCwhen possible while still being able to verify low-level programs, WP provides
different memory models that the user can choose for each ACSL property. The current version offers two main
models:

• The most abstract model, Hoare, roughly corresponds to Caveat’s model [RSB+99]. This model only uses
logical variables in its translation. Thus it can only be used over functions that do not explicitly assign pointers
or take the address of a variable, but provides compact VC.

• The default model is Typed. In this model, the memory state is represented by three distinct arrays, for
integers, floating-point and addresses. Each array is indexed by addresses. An address is a pair of a base
address and an offset. This representation allows to handle pointers, and some limited form of pointer casts.

Previous versions of WP provided a runtimemodel, which was very close to the concrete memory model of
the CompCert [LB08] compiler, but it led to too complex proof obligations and was thus not usable in practice.
It has been deprecated in the current version of WP and will be replaced by a newer low-level model Bytes at
some later point.

As a refinement, Typed can be configured to avoid converting assignments into array updates when the code
falls in the subset supported by Hoare. By default, this is done for variables whose address is not taken anywhere
in the program (which are really behaving as “plain” variables). Memory model Typed+raw implements the
“pure” model where all accesses are translated as array accesses. Conversely, model Typed+ref extends the
usage of logic variables to the value of pointers used as “references”, that is pointers that are neither assigned nor
used in pointer arithmetic operations. This way, the overhead of Typedmodel with respect to Hoare is kept to
the places where it is really needed.

Frama-C: A software analysis perspective 589

1 goal swap_post:

2 let a_0 = shift(global(P_a_741), 0) in

3 let a_1 = shift(global(P_b_742), 0) in

4 let a_2 = shift(global(L_tmp_744), 0) in

5 forall Malloc_0 : int farray.

6 forall Mint_0 : (addr,int) farray.

7 forall Mptr_0 : (addr,addr) farray.

8 let a_3 = Mptr_0[a_0] : addr in

9 let x_0 = Mint_0[a_3] : int in

10 let a_4 = Mptr_0[a_1] : addr in

11 let x_1 = Mint_0[a_4] : int in

12 let m_0 =

13 Mint_0[a_2 <- x_0] : (addr,int) farray

14 in

15 let m_1 =

16 m_0[a_3 <- m_0[a_4]] : (addr,int) farray

17 in

18 let x_2 = m_1[a_2] : int in

19 let x_3 = m_1[a_4 <- x_2][a_3] : int in

20 framed(Mptr_0) ->

21 linked(Malloc_0) ->

22 is_sint32(x_0) ->

23 is_sint32(x_1) ->

24 valid_rw(Malloc_0, a_3, 1) ->

25 valid_rw(Malloc_0, a_4, 1) ->

26 separated(a_3, 1, a_4, 1) ->

27 is_sint32(x_2) ->

28 is_sint32(x_3) ->

29 ((x_0 = x_2) and (x_1 = x_3))

Fig. 9. Proof obligation for Typed+raw model

1 goal swap_post:

2 forall Malloc_0 : int farray.

3 forall Mint_0 : (addr,int) farray.

4 forall a_0,b_0 : addr.

5 let x_0 = Mint_0[a_0] : int in

6 let x_1 = Mint_0[b_0] : int in

7 let x_2 =

8 Mint_0[a_0 <- x_1][b_0 <- x_0][a_0] : int

9 in

10 linked(Malloc_0) ->

11 is_sint32(x_0) ->

12 is_sint32(x_1) ->

13 valid_rw(Malloc_0, a_0, 1) ->

14 valid_rw(Malloc_0, b_0, 1) ->

15 separated(a_0, 1, b_0, 1) ->

16 is_sint32(x_2) ->

17 (x_1 = x_2)

Fig. 10. Proof obligation for Typed model

Once a VC has been generated, it must be discharged. First, WP uses an internal tool, Qed, that performs
some trivial simplifications over the obtained formula (inlining of short definition, propagation of equalities,
normalization of terms, etc.), which in some cases are sufficient to prove the VC. Otherwise, the simplified
formula is handed over to external provers. WP natively supports two theorem provers: the automated SMT
solver Alt-ergo [C+], and the Coq proof assistant [Coq11]. Other automated provers can also be used through the
multi-prover backend of Why 3. The advantages of using a dedicated back-end rather than relying completely on
Why 3 are twofold. First, it removes a dependency over an external tool, meaning that for verification of critical
software, there is one component less that needs to be assessed. Second,WP can take advantage of specific features
of Alt-ergo, most notably native support for arrays and records, that occur quite often in typical VC.

As an example of the differences between the various memory models, we can go back to our swap example
of Fig. 2. Given the following implementation, we can try to use WP to check that it satisfies the specification.

1 void swap(int* a, int* b) {
2 int tmp = *a;
3 *a = *b;
4 *b = tmp;
5 }

Using frama-c -wp-model Hoare-wp swap.c leads to an error, as the code contains pointer dereferences.
Of the three Typedmodel variants, Typed+raw produces the longest proof obligation for the ensures clause
(see Fig. 9). Namely, the tmp variable is represented by a cell of the Mint_0 array, as well as the content of *a
and *b. Moreover, a and b themselves are not accessed directly, but through a cell of the Mptr_0 array. All these
accesses leads to a rather complicated formula. With the Typedmodel, whose result is shown in Fig. 10, some of
the complexity has disappeared, as a, b and tmp are represented as logic variables. Furthermore, the definition

590 F. Kirchner et al.

of tmp has been inlined away by Qed, which is then able to prove the first part of the conjunction by propagating
equalities. The resulting proof obligation passed to Alt-ergo is thus much simpler. This is even more the case with
Typed+ref, where accesses to *a and *b, seen as references, are represented by variables. In this setting, Qed
is able to prove the VC all alone, leaving no proof obligation to be given to Alt-ergo. Figure 11 presents the proof
obligation whenmost simplifications performed by Qed are deactivated: we can clearly see that we only deal with
integer variables and that all memory accesses have been eliminated, leading to a very easy formula.

1 goal swap_post:

2 forall ra_a_0,ra_b_0,ta_tmp_0 : bool.

3 forall a_2,a_1,a_0,b_2,b_1,b_0,tmp_0 : int.

4 (ra_a_0 = true) ->

5 (ra_b_0 = true) ->

6 (a_2 = a_0) ->

7 (a_1 = b_0) ->

8 (a_0 = tmp_0) ->

9 (b_2 = tmp_0) ->

10 (b_1 = b_0) ->

11 ((ta_tmp_0 = false)) ->

12 is_sint32(a_2) ->

13 is_sint32(a_1) ->

14 is_sint32(b_2) ->

15 is_sint32(b_1) ->

16 ((a_2 = b_2) and (a_1 = b_1))

Fig. 11. Unsimplified proof obligation for Typed+ref model

(G1) initialize, set precondition, π := ε

(G2) symbolically execute π in f

(G5) compute next π

(G3) generate test t

(G4) execute f on t

finish

ok

ok
fail

failok

no more paths in f

Fig. 12. The PathCrawler test generation method

In contrast to Jessie, that relies on an external tool for VC generation, WP operates entirely within Frama-C.
In particular, WP fills the property status table described in Sect. 3.4 for each annotation on which it is run.
The dependencies of such a status are the annotations taken as hypothesis during the weakest-precondition
calculus, the memory model that has been used, and the theorem prover that ultimately discharged the VC. The
memory model has a direct impact on the validity of the result: an annotation can very well be valid under model
Typed+ref but not under Typed, as the former entails implicit separation hypotheses that are not present
in the latter. In theory, the choice of a theorem prover is not relevant for the correctness of the status, but this
information is important to fully determine a trusted toolchain.

Having WP properly embedded into Frama-C also allows for a fine-grained control over the annotations
one wants to verify with the plug-in. WP provides the necessary interface at all levels (command-line option,
programmaticAPI, andGUI) to verify targeted annotations (e.g. those yet unverified by othermeans inFrama-C,
cf. Sect. 3.4) as well as to generate all the VC related to a C function.

6. Concolic testing

The PathCrawler plug-in operates on a C program p under test and a precondition restricting its inputs, and
generates test cases respecting various test coverage criteria. The all-path criterion requires covering all feasible
program paths of p. Since the exhaustive exploration of all paths is usually impossible for real-life programs,
the k -path criterion restricts exploration to paths with at most k consecutive iterations of each loop. The
PathCrawler [WMMR05, BDH+09] method for test generation is similar to the so-called concolic (concrete+
symbolic) approach and to Dynamic symbolic execution (DSE), implemented by other tools (e.g. DART, CUTE,
PEX, SAGE, KLEE).

PathCrawler starts by: a. constructing an instrumented version of p that will trace the program path exercised
by the execution of a test case, and b. generating the constraints which represent the semantics of each instruction
in p. The next step, illustrated by Fig. 12, is the generation and resolution of constraint systems to produce the test

Frama-C: A software analysis perspective 591

cases for a set of paths� that satisfy the coverage criterion. This is done in theECLiPSeProlog environment [SS11]
and uses Constraint Logic Programming. Given a path prefix π , i.e. a partial program path in p, the main
idea [Kos10] is to solve the constraints corresponding to the symbolic execution of p along π . A constraint
store is maintained during resolution, and aggregates the various constraints encountered during the symbolic
execution of π . The test generation method follows the following steps:

(G1) Create a logical variable for each input. Add constraints for the precondition into the constraint store. Let
the initial path prefix π be empty (i.e. the first test case can be any test case satisfying the precondition).
Continue to Step (G2).

(G2) Symbolically execute the path π : add constraints and update the memory according to the instructions in
π . If some constraint fails, continue to Step (G5). Otherwise, continue to Step (G3).

(G3) Call the constraint solver to generate a test case t , that is, concrete values for the inputs, satisfying the current
constraints. If it fails, go to Step (G5). Otherwise, continue to Step (G4).

(G4) Run a traced execution of the programon the test case t generated in the previous step to obtain the complete
execution path. The complete path must start by π . Continue to Step (G5).

(G5) Compute the next partial path, π , to cover. π is constructed by “taking another branch” in one of the
complete paths already covered by a previous test case. This ensures that all feasible paths are covered (as
long as the constraint solver can find a solution in a reasonable time) and that only the shortest infeasible
prefix of each infeasible path is explored. If there are no more paths to cover, exit. Otherwise, continue to
Step (G2).

PathCrawler uses Colibri, a specialized constraint solving library developed at CEA LIST and shared with
other testing tools such as GATeL [MA00] and OSMOSE [BH11]. Colibri provides a variety of types and con-
straints (including non-linear constraints), primitives for labelling procedures, support for floating point numbers
and efficient constraint resolution. Colibri also offers incremental constraint posting with on-the-fly filtering and
automatic backtracking to a previous constraint state that are important benefits for search-based state explo-
ration tools such as PathCrawler. PathCrawler is currrently limited to programs without function pointers,
recursive functions and recursive data structures. PathCrawler is a proprietary plug-in, also available in the form
of a freely accessible test-case generation web service [Kos].

7. Runtime assertion checking

TheE-ACSL plug-in automatically translates an annotatedCprogram into another program that reports a failure
whenever an annotation is violated at runtime. If no annotation is violated, the behavior of the new program is
exactly the same as that of the original one.

Such a translation brings several benefits. First, it allows the user to monitor the execution of a C code, in
particular to perform what is usually called “runtime assertion checking” [CR06].5 This is the primary goal of
E-ACSL [KS13]. Second, it helps in combining Frama-C and its existing analyzers with other analyzers that
do not natively understand the ACSL specification language. Third, the possibility to detect invalid annotations
during a concrete execution may be very helpful while writing a specification of a given program, e.g. for later
program proving. Finally, an executable specification makes it possible to check at runtime assertions that cannot
be verified statically, and thus to establish a link between monitoring tools and static analysis tools like Value or
WP.

Annotations must be written in the E-ACSL specification language [Sig13, DKS13] which is a large subset
of ACSL. Basically, it only excludes parts of ACSL which are not computable in finite time (unbounded quan-
tifications and sets of values, axioms and lemmas, etc). Figure 13 shows a simple example of translation (for a
32-bit architecture). Each E-ACSL annotation is checked by a call to e_acsl_assert function that reports a
failure and exits the program if the annotation is not satisfied. The precondition and postcondition of function
opposite are checked respectively at lines 11 and 15 of Fig. 13b, while the assertion at line 12 of Fig. 13a leads
to the lines 33–40 of Fig. 13b that we explain below.

5 In our context, “runtime annotation checking” would be a better, more general expression.

592 F. Kirchner et al.

(a)
1 #include "limits.h"

2

3 /*@ requires x > INT_MIN;

4 @ ensures \result == -x; */

5 int opposite(int x);

6

7 int G = 10;

8

9 int main(void) {

10 int x = opposite(G);

11 int *p = &x;

12 /*@ assert *p == -10; */

13 return 0;

14 }

(b)
1 extern int opposite(int x);

2

3 /*@ requires x > -2147483647-1;

4 ensures \result == -\old(x); */

5 int __e_acsl_opposite(int x)

6 {

7 int __e_acsl_at;

8 int __retres;

9 // check precondition

10 __store_block((void *)(& __retres),4U);

11 e_acsl_assert(x > -2147483647 - 1);

12 __e_acsl_at = x;

13 __retres = opposite(x);

14 // check postcondition

15 e_acsl_assert(__retres == -__e_acsl_at);

16 __delete_block((void *)(& __retres));

17 return __retres;

18 }

19

20 int G = 10;

21

22 int main(void)

23 {

24 int *p;

25 int x;

26 // memory monitoring

27 __store_block((void *)(& x),4U);

28 __store_block((void *)(& p),4U);

29 x = __e_acsl_opposite(G);

30 p = & x;

31 /*@ assert *p == -10; */

32 // check assertion

33 {

34 //check pointer dereferencing in assertion

35 int __e_acsl_valid_read;

36 __e_acsl_valid_read =

37 __valid_read((void *)p,sizeof(int));

38 e_acsl_assert(__e_acsl_valid_read);

39 e_acsl_assert(*p == -10);

40 }

41 // clear allocated memory

42 __delete_block((void *)(& x));

43 __delete_block((void *)(& p));

44 return 0;

45 }

Fig. 13. E-ACSL translation: a) initial code versus b) (simplified) instrumented code

annotated C code

code extended with

function duplicates

resulting instrumented code

adding function duplicates

selecting locations to be monitored

main translationtyping of integer terms detecting potential RTE

Fig. 14. E-ACSL translation scheme

Frama-C: A software analysis perspective 593

1 %init: S0;

2 %accept: OK;

3

4 S0: { f {{ N<=0}} () } -> OK

5 | { f{{ N>0 }} ([g(){{\result==0}}]{,N-1}; g(){{\result!=0}}; h()) } -> OK

6 | { f{{ N>0 }} ([g(){{\result==0}}]{N}) } -> OK;

7

8 OK: -> OK;

Fig. 15. Example of Aoraı̈ automaton

The translation scheme, shown in Fig. 14, translates each annotation into instrumented C code which ulti-
mately performs a runtime check. Four specific features have to be pointed out. First, E-ACSL mathematical
integers are represented in the translated code using GMP (GNU multi-precision library [GMP]) integers. This
leads to a more verbose translation that can be avoided in many cases, for instance, when the result of an arith-
metical operation can still be represented by a machine integer (of the same, or a longer C type). In the E-ACSL
plug-in, for each integer, an interval-based type system infers on the fly a standard C integral type (if any) in which
the integer fits. Thanks to this typing mechanism, there is in practice almost no GMP integer in the resulting
code [DKS13] and in particular none in the example of Fig. 13.

Second, a custom Cmemorymonitoring library has been implemented: it allows the user tomonitormemory-
related operations (calls to malloc and free, etc) in order to correctly handle memory-related E-ACSL con-
structs such as \valid. The instrumented code calls the monitoring library primitives to store validity and
initialization information (whenever a memory location is allocated, deallocated and assigned), and to extract
this information when evaluating memory-related E-ACSL constructs. To optimize the performance of the re-
sulting code and avoid monitoring of irrelevant variables, a preliminary backward dataflow analysis has been
implemented to determine a correct over-approximation of the set of memory locations that have to bemonitored
for a given annotated program [KPS13]. In the example of Fig. 13, calls to the library functions store_block
and delete_block record allocation and deallocation of memory locations. The analysis detects that the
monitoring of G is not required.

Third, the instrumented code added by the translation of E-ACSL annotations should not introduce runtime
errors (RTE) itself. E-ACSL prevents runtime errors in the generated code by collaborating with another Frama-
C plug-in called RTE [HS13]. E-ACSL calls RTE on each generated C expression. RTE generates E-ACSL
annotations that prevent runtime errors in the corresponding expression. Then E-ACSL is used again to translate
these additional annotations into C code [DKS13]. The process is guaranteed to terminate since theC expressions
generated from these additional annotations produced by RTE are runtime-error-free. In our example, the access
to *p at line 39 of Fig. 13b (resulting from the direct translation of the assertion by E-ACSL) could potentially
provoke a runtime error. RTE detects this risk, and E-ACSL adds the pointer validity check using a call to the
memory monitoring library __valid_read at line 37.

Fourth, a preliminary translation adds an additional function f ′ for each function f with anE-ACSL contract.
f ′ contains the translation of the precondition, a call to f and the translation of the postcondition. The calls to
f are replaced by calls to f ′ in the instrumented code to ensure that the contract of f is checked each time f is
called. This way, it is possible to ensure runtime contract checking even for undefined (library) functions and to
clearly separate the initial code from the code corresponding to the precondition and the one corresponding to
the postcondition. In the example of Fig. 13, an additional function __e_acsl_opposite is used to check the
contract of the declared-only function opposite each time it is called.

8. Temporal specifications

The Aoraı̈ plug-in [SP11, GS09] plays a particular role among the core Frama-C plug-ins. Indeed, it is one of the
few whose primary aim is to generate ACSL annotations rather than attempting to verify them. Aoraı̈ provides
a way to specify that all possible executions of a program respect a given sequence of events, namely calling and
returning from functions, possibly with constraints on the program’s state at each event. The specification itself
can be given either as a Linear Temporal Logic (LTL [Pnu77]) formula or in the form of an automaton. In the
former case, Aoraı̈ uses ltl2ba [GO01] to obtain an equivalent Büchi automaton. In the latter case, Aoraı̈ accepts
as input an automaton in a custom language, where the transitions can be guarded by the event (call to, or return

594 F. Kirchner et al.

OK

S 0

s t 2

3

s t 3

2

s t 1 1

1

Return(f)

reject

not(Return(f))

s t 6

6

s t 7

Call(g)

not(Call(g))

s t 4

4

Call(g)

not(Call(g))

s t 5

s t 1 2

1 0

1 4

5

not(Return(g)) or resul t != 0s t 8

7

not(Return(g)) or resul t == 0 s t 9

Call(h)

not(Call(h))

s t 1 0

Return(h)

not(Return(h))

Return(f)not(Return(f))

1 2

1 1

1 5

9

8

1 3

Transitions:

1: N > 0 and Call(f); aorai_N_0 <- N

2: N > 0 and Call(f); aorai_N <- N

3: N <= 0 and Call(f)

4: Call(g) and aorai_counter < aorai_N-1 aorai_counter <- aorai_counter + 1

5: \result == 0 and Return(g)

6: Call(g); aorai_counter <- 1

7: \result != 0 and Return(g)

8: Call(g) and aorai_counter_0 < aorai_N_0 aorai_counter_0 <- aorai_counter_0 + 1

9: aorai_N_0 <= aorai_counter_0 and Return(f)

10: result == 0 and Return(g)

11: Call(g); aorai_counter_0 <- 1

12: aorai_N_0 == 0 and Return(f)

13: (not(Return(f)) and not(Call(g))) or

(aorai_N_0 > aorai_counter_0 and not(Call(g))) or

(not(Return(f)) and aorai_counter_0 >= aorai_N_0)

14: not(Return(g)) or result != 0

15: (not(Return(f)) and not(Call(g))) or (aorai_N_0 != 0 and not(Call(g)))

Fig. 16. Example of normalized Aoraı̈ automaton

Frama-C: A software analysis perspective 595

1 /*@ behavior transition_1: assumes aorai_state_S_0 == 1 && condition;

2 ensures aorai_state_S_next == 1; ... */

3 void advance_automaton_call_F(int x);

4

5 /*@ requires aorai_state_S_0 == 1 || aorai_state_S_1 == 1 || ...;

6 requires aorai_state_S_0 == 1 ==> has_possible_transition_S0; ...

7 ensures aorai_state_S_2 == 1 || aorai_state_S_3 == 1 || ...;

8 ensures \old(aorai_state_S_0 == 1) ==> aorai_state_S_2 == 1 || ...; ...

9 ensures aorai_state_S_2 == 1 ==> program_state_when_in_S_2; ... */

10 int F(int x) {

11 advance_automaton_call_F(x);

12 // Body of F

13 aorai_label:

14 /*@ loop invariant aorai_state_I_0 == 1 || aorai_state_I_1 == 1 ...;

15 loop invariant aorai_state_I_2 == 0 && aorai_state_I_3 == 0 ...;

16 loop invariant

17 first_step && \at(aorai_state_S_0,Pre) == 1 ==>

18 aorai_state_I_0 == 1;

19 loop invariant

20 !first_step && \at(aorai_state_S_0,Pre) == 1 ==>

21 aorai_state_I_1 == 1;

22 loop invariant

23 \at(aorai_state_I_0,aorai_label) == 1 && aorai_state_I_1 == 1 ==>

24 aux_variable_invariant_I_1;

25 */

26 while(c) ... ;

27 advance_automaton_return_F(result);

28 return result; }

Fig. 17. Aoraı̈’s instrumentation

from of a given function) under consideration and a propositional formula over the globals of the program and
the formals of the function (in the case of a call event) or the result (in the case of a return event).

Newer versions of the plug-in feature an extended input language, where transitions can be guarded by awhole
sequence of events, possibly including repetitions of sub-sequences. Such automata are translated by Aoraı̈ into
atomic ones, by introducing intermediate states and transitions so that each transition only deals with a single
event. The translation can in addition introduce auxiliary variables, in particular counters that keep track of the
number of times a repeated sub-sequence has been taken. These auxiliary variables are updated when the appro-
priate atomic transition is crossed. In addition, the normalized automaton contains a specificreject state, which
is a sink. Transitions lead to this state from auxiliary states introduced by the normalization when the program
does not follow the corresponding sub-sequence. Indeed, Aoraı̈’s semantics mandates that at each event, for each
currently active state in the automaton, there is at least one transition that can be taken. Thus, if we are exploring
several sub-sequences and discover at some point that one of them is not matched by the current execution, we
cross the transition to the reject state, leaving the other sub-sequences free to complete successfully.

As an example, Fig. 15 presents an automaton specifying three admissible scenarios for calling a function
f. First, if the formal parameter N of f is non-positive, f must return immediately. Otherwise, f is supposed to
call g at most N times, until g returns a non-zero result. Then, f calls h before exiting. Finally, if g returns N
times 0, f itself must return. The resulting automaton expressed with atomic transitions is shown on Fig. 16. The
normalized automaton uses four auxiliary variables:aorai_N andaorai_N_0 are used to recall the value of the
formal parameter N of f throughout the execution, so that this value can be used in the guards of the transitions
corresponding to the second and third cases of the original automaton respectively. Similarly, aorai_counter

596 F. Kirchner et al.

and aorai_counter_0 count in both cases the number of calls to gmade so far. We can also see the reject
state and the transitions leading to it. For instance, st5 has been introduced by the translation of the third case
of the original automaton, where g is supposed to always return 0. Then, if we return from g with a non-0 value
while st5 is active, transition 14 will be taken, putting this branch in the reject state.

Givenanormalized automaton,Aoraı̈generatesACSL specifications for each functionF in theoriginalC code.
This instrumentation, summarized in Fig. 17, consists in twomain parts: two prototypes whose specification rep-
resents the transitions for an atomic event (call or return fromF), and the specificationofF itself.As the automaton
is not always deterministic,Aoraı̈ represents active states by a set of boolean variables (aorai_state_*). These
variables have either value 1 if the automaton is in the given state or 0 if this is not the case. As a refinement, if
the user claims that the input automaton is deterministic, Aoraı̈ will use a single int variable to represent the
state of the automaton at a given program point. This usually leads to much more compact ACSL contracts. In
addition, Aoraı̈ also generates a set of lemmas to ensure that the automaton is truly deterministic. Namely, any
two transitions from the same state of the automaton must then have disjoint guards.

Regardless of how active states are represented, functions advance_automaton_* provide for each state
of the automaton a complete set of behaviors indicating at which conditions they are active or not after the
corresponding event. The post-conditions of these behaviors also take care of setting the value of the auxiliary
variables when a transition with auxiliary variables is crossed.

The specification of F comprises various items. First, at least one state among a given set must be active before
the call. This set is determined by a coarse static analysis made by Aoraı̈ beforehand. This static analysis phase
does not handle indirect calls through function pointers, which is currently the main limitation of the plug-in.
When a reject state exists as described above, the requirement becomes that at least another state beside it
is active. Indeed, if all sub-sequences end up in the reject state, the implementation is not conforming to the
automaton. In addition, as said above, for each active state, at least one transition must be activated by the call
event. The main post-condition is that when the function returns, at least one state is active among those deemed
possible by Aoraı̈’s static analysis. It is refined by additional clauses relating active initial states with active final
states, and the state of the program itself with the active final states. Aoraı̈’s static analysis also keeps track of the
value of auxiliary variables, and if they might be modified by F their possible value at the end of the function is
given as post-conditions. Finally the main function has an additional post-condition stating that at least one of
the acceptance states must be active at the end of the function (Aoraı̈ does not consider infinite programs at the
moment, i.e. it can only check for safety properties and cannot be used for liveness).

Annotation generation is geared towards the use of deductive verification plug-ins such as WP and Jessie for
the verification of the specification. In particular, the refined post-conditions are mainly useful for propagating
information to the callers of F in an Hoare-logic based setting. Aoraı̈ also generates loop invariants for the same
purpose. These loop invariants indicates which states of the automaton can be active at any given loop steps,
and what are the possible values of the auxiliary variables during the execution of the loop. Again, they are
obtained from Aoraı̈’s static analysis. In addition, these invariants are refined according to the active states of
the automaton when entering the function (marked by the Pre label) the active states when entering the loop
for the first time (marked by the generated label aorai_label), and the fact that we are in the first step of the
function or in a further step (indicated by the first_step ghost variable that is initialized to 1 and set to 0
as soon as the loop is entered). These distinctions allows to generate more precise loop invariants. However, it is
still usually necessary to write additional invariants, in particular to glue together these auxiliary variables with
the variables of the original program (for instance an auxiliary counter with the index of a corresponding for
loop). This bias towards WP does not preclude the use of the Value plug-in to validate its specification, as Aoraı̈
attempts to generate annotations that fit in the subset of ACSL that is understood by Value.

If we go back at the example of Fig. 15 over the very simple implementation given in Fig. 18, the resulting
instrumented code is roughly 1,000 lines long, mostly consisting in specifications. More precisely, Aoraı̈ generates
200 post-conditions and 32 pre-conditions, while the loop inf is decoratedwith 39 invariants.As explained before,
some additional loop invariants must be provided by the user in order to bind the auxiliary variables generated
from the automaton to the real variables of the program. Another class of invariants relates the auxiliary states
stemming from the various branches of the automaton. All in all, 11 such invariants are needed. Two requires
of g conveys the same information, as well as five behavior. Figure 19 provides examples of such additional
annotations. The first invariant states that aorai_counter_0 is equal to the main loop counter i as long as
the third branch (represented by st12) of the automaton is active. The second invariant indicates that st12 and
st4 are active at the same time, except for the last step of the loop (since in that case the second branch can only
succeed if the result of g is non-zero, that is when st7 is active), and similarly for st3 and st11 (both active only

Frama-C: A software analysis perspective 597

when entering the loop). Once these additional annotations are in place, WP with Alt-ergo and CVC3 succeeds
in proving the resulting 339 proof obligations (in about 30 s on a fairly standard laptop) generated from the
specification, proving that the implementation is conforming to the initial automaton.

1 int random(void);

2

3 int g(int x)

4 {

5 return random();

6 }

7

8 void h() { return; }

9

10 void f(int N)

11 {

12 int i;

13 int t;

14 i = 0;

15 t = 0;

16 while (i<N && !t) {

17 t = g(i);

18 i ++;

19 }

20 if (t) { h(); }

21 return;

22 }

Fig. 18. Aoraı̈ Implementation example

1 loop invariant

2 1 == st12 ==> aorai_counter_0 == i;

3 loop invariant

4 (1 == st8

5 || (1 == st12 && aorai_counter_0 < aorai_N_0

6 && 1 == st4 && aorai_counter < aorai_N)

7 || 1 == st12 && aorai_counter_0 == aorai_N_0

8 || (1 == st8) || (1 == st3 && 1 == st11));

Fig. 19. Additional invariants for Aoraı̈ instrumentation

9. Mthread

Mthread is a plug-in that is able to handle concurrent code. It reuses Frama-C’s existing abstract-interpretation
based plug-in, Value (Sect. 4), and extends it to obtain an over-approximation of the behavior of multi-threaded
programs.Mthread analyses start by analyzing each thread independently with Value. The threads are discovered
automatically and incrementally starting from the main thread, by monitoring Value’s analysis for calls to thread
creation primitives. By construction, this produces an over-approximation of the sequential behavior of the
threads. However, this is not a correct over-approximation of the concurrent behavior of the program, as the
interactions between the threads are not taken into account. Thus, Mthread confronts the various sequential
approximations, to discover:

1. all the memory locations that are accessed by at least two threads performing read/write or write/write
operations. Those locations are potentially subject to data races.

2. the messages that are sent by explicit message-passing, using primitives such as msgsnd in the POSIX API,
and on which message queue those messages are sent;

3. the mutexes that are locked when the above multi-threaded events occur.

Using this information, Mthread re-analyzes all the threads that read shared memory, or received messages.
This time, the plug-in takes into account the concurrent data that has been emitted during the first analysis of
the threads. Messages sent on a queue q by a thread t are received each time a thread t ′ 	
 t reads on q . Shared
zones are treated in two different ways:

• shared memory that is protected using mutexes in a consistent way is modeled precisely. That is, a value v
written by a thread t is “seen” by all threads t ′ with t ′ 	
 t—provided that v is always protected by a certain
mutex m.

• shared zones that are not protected by mutexes, or that are improperly protected (no mutex, or different
mutexes on different accesses), are marked as volatile. This is the only correct approximation, although it is
imprecise for e.g. lock-free algorithms.

598 F. Kirchner et al.

1 #define N 5

2

3 int end2 = 0;

4 pthread_mutex_t locks[N];

5 pthread_t jobs[N];

6 msgqueue_t queue;

7

8 void aux (int l, int r, int mess) {

9 pthread_mutex_lock(locks+l);

10 pthread_mutex_lock(locks+r);

11 if (random() && mess != 2) {

12 char buf[2];

13 buf[0]=mess;

14 end2 = 1;

15 msgsnd(queue, buf, 2);

16 }

17 pthread_mutex_unlock(locks+r);

18 pthread_mutex_unlock(locks+l);

19 }

20

21 void * job(void * k) {

22 int p = (int) k ;

23 int l = p>0 ? p-1 : N-1 ;

24 int r = p<N-1 ? p+1 : 0 ;

25

26 while(1)

27 aux(l, r, p+1);

28 }

29

30 int main() {

31 int i ;

32 char end[2];

33 end[0]=0;

34

35 for(i=0;i<N;i++)

36 pthread_mutex_init(&locks[i] , NULL);

37

38 queuecreate(&queue, 5);

39

40 //@ loop pragma UNROLL 5;

41 for(i=0;i<N;i++)

42 pthread_create(&jobs[i], NULL, &job, (void *) i);

43

44 while(!(end[0] && __MTHREAD_SYNC(end2)))

45 msgrcv(queue, 2, end);

46

47 return 0;

48 }

Fig. 20. Example for Mthread plug-in

Frama-C: A software analysis perspective 599

If no new data is written or sent during this second analysis, Mthread has obtained an over-approximation
of the concurrent behavior of the program. If this is not the case, the process above is repeated until a fixpoint is
reached. Convergence is ensured because:

• there is only a finite set of possibly shared zones, as Mthread supposes either no dynamic allocation, or
an implementation of malloc that creates finitely many base addresses (for example, by using summary
variables);

• if needed, the contents of emitted messages are over-approximated using the widening operation already
present in the sequential analysis;

• the analysis assumes a finite number of distinct threads, that communicate through a finite number of con-
currency constructs (mutexes, message queues, etc.).

At the end of the analysis, the plug-in emits three outputs:

1. a concurrent control-graph, which is similar to a very aggressive slicing of the program, the slicing criterion
being the functions and instructions that are relevant to the concurrent part of the code;

2. all the memory zones that are shared amongst multiple threads, with detailed information on which functions
access them and their contents;

3. the corresponding mutex information.

Example Anexample illustrating some featuresof Mthread is shown inFig. 20.Roughly, themain function creates
5 different threads that act as the philosophers of the classical dining philosophers concurrency problem [Wik].
Each philosopher takes the mutex on its “left” and on its “right”. Once the mutexes are acquired, 4 of the 5
threads write in the variable end2, and send a message through the first byte of the local buffer buf (the second
byte being left uninitialized). The main thread loops until it receives something non-zero on the message queue
queue and the variable end2 is no longer equal to zero—which is possible only when information flows from
the job threads to the main one.

Figure 21 shows the output of Mthread once the analysis concludes, as well as the information inferred for
the messages sent on queue. The contents sent by each thread are kept separate and precise (lines 1–9). We
have also launched the analysis with an option that keeps the values of improperly protected variables precise.
This is the case for end2, which is not always protected by the same mutex, and that would otherwise have been
transformed into a volatile variable. Using this option requires the user to check that each shared variable is
protected by at least one mutex or a call to the primitive __MTHREAD_SYNC, which is the case here. Since the
plug-in lists all possibly racy accesses to the variable (lines 19–29), it is easy to check that this property is verified.
In this example, all the threads write 1 inside end2 (lines 15–18 and 30–34). The main thread can thus read
{0; 1}, the 0 case corresponding to a scheduling in which the spawn threads have not run far enough before the
main one reaches line 44. For each event, the analysis call-stack is displayed (e.g. line 23). Finally, for each access
to a shared variables, the mutexes that protect the access are listed (lines e.g. 22 and 35–36 for a synthesis); a ‘?’
indicates that the access may not have been protected by this mutex on at least one execution path and access.

Notice that the plug-in is able to handle the creation of multiple threads inside a loop. Here, the loop is
syntactically unrolled using an appropriate directive, but this is not necessary. Unrolling the loop results in a
more precise concurrent control-graph at the end of the analysis (Fig. 22); otherwise, all the threads would have
been printed as created in a loop, without any ordering between them. Finally, all the concurrency constructs used
in the programs—threads, mutexes, messages queues—are inferred by the plug-in automatically, including the
names that are displayed. The user only needs to start the analysis on themain thread. This is done by recognizing,
during the analysis, some primitives such as pthread_create or pthread_mutex_init. Although this
example uses the POSIX API, other APIs are possible. Each one requires only writing some stubs functions that
call Mthread basic primitives for thread or mutex creation, mutex locking, etc..

Precision Theapproach followedbyMthread is soundbyconstruction, as it produces a correct over-approximation
of the behaviors of all the threads of the program. Yet it is also important to remain precise: this prompted the
implementation of two important optimizations.

Context-sensitivity. It is crucial to have a context-sensitive analysis, meaning that a function f called by two
functions g1 and g2 is analyzed separately in the two calling contexts. This is particularly important because
embedded codes often encapsulates calls to concurrency primitives within their own functions, typically to
simplify return codes.

600 F. Kirchner et al.

1 philo.c:45:[mt] Receiving message on &queue, max size 2, stored in &end. Possible values:

2 From thread &jobs[0]: [0] IN {1}

3 [1] IN UNINITIALIZED

4 From thread &jobs[2]: [0] IN {3}

5 [1] IN UNINITIALIZED

6 From thread &jobs[3]: [0] IN {4}

7 [1] IN UNINITIALIZED

8 From thread &jobs[4]: [0] IN {5}

9 [1] IN UNINITIALIZED

10 msgrcv (philo.c:45) <- main (philo.c:30)

11 [...]

12 [mt] ***** Threads computed for iteration 4.

13 [mt] ***** Computing shared variables

14 [mt] _main_ reads end2 IN {0; 1} // philo.c:44

15 [mt] &jobs[0] writes end2 IN {1} // philo.c:14

16 [mt] &jobs[2] writes end2 IN {1} // philo.c:14

17 [mt] &jobs[3] writes end2 IN {1} // philo.c:14

18 [mt] &jobs[4] writes end2 IN {1} // philo.c:14

19 [mt] Possible read/write data races:

20 end2:

21 read by _main_ at philo.c:44, unprotected, // main (philo.c:30)

22 write by &jobs[0] at philo.c:14, protected by &locks[1] &locks[4],

23 // aux (philo.c:27) <- job (philo.c:21)

24 write by &jobs[2] at philo.c:14, protected by &locks[1] &locks[3],

25 // aux (philo.c:27) <- job (philo.c:21)

26 write by &jobs[3] at philo.c:14, protected by &locks[2] &locks[4],

27 // aux (philo.c:27) <- job (philo.c:21)

28 write by &jobs[4] at philo.c:14, protected by &locks[0] &locks[3],

29 // aux (philo.c:27) <- job (philo.c:21)

30 [mt] Write summary for &jobs[0]: end2 IN {1}

31 [mt] Write summary for &jobs[2]: end2 IN {1}

32 [mt] Write summary for &jobs[3]: end2 IN {1}

33 [mt] Write summary for &jobs[4]: end2 IN {1}

34 [mt] Mutexes for concurrent accesses:

35 [end2] write protected by (?)&locks[0] (?)&locks[1] (?)&locks[2] (?)&locks[3]

36 (?)&locks[4], read unprotected

37 [mt] ***** Shared variables computed

38 [mt] ******* Analysis performed, 4 iterations

Fig. 21. Output of Mthread on the example of Fig. 20

Mthread is fully context-sensitive: as soon as a function is reached through two different paths (that is, two
differingValueAnalysis call-stacks), two different analyzes contexts are created byMthread. This is consistent
with what is done by Value, which proceeds by recursive inlining.

“Happened-before” relation. Mthread tries to sequence events, so that if e1 is guaranteed to always occur before
e2, then e2 will not influence the analysis of e1. For now, Mthread takes into account the fact that a thread
has not yet been created, or has been canceled. In the following example, the zone v is detected as being not
shared, as the possibly concurrent access in t0 occurs before t1 has been created.

Frama-C: A software analysis perspective 601

Star t : main

Creat ing queue &queue (s ize 5)

Create thread &jobs[0]
Start thread &jobs[0]

Create thread &jobs[1]
Start thread &jobs[1]

Create thread &jobs[2]
Start thread &jobs[2]

Create thread &jobs[3]
Start thread &jobs[3]

Create thread &jobs[4]
Start thread &jobs[4]

while(1)

if (end[0])

Receiving
m e s s a g e

on &queue,
max s ize 2 ,

stored in &end.

if (end2)
read end2

t h e n

e lse

exi t

t h e n e lse

Start : job

while(1)

Call aux(l,r,p + 1);

r e t u r n

Lock &locks[4]

Lock &locks[1]

if (tmp)

e n d 2 = 1 ;
wr i t e end2

t h e n

Release &locks[1]

e l se

Sending
m e s s a g e

on &queue,
c o n t e n t

[0] IN {1}
[1] IN UNINITIALIZED

Release &locks[4]

Fig. 22. Concurrent control-graphs for threads main and &jobs[0]

t0 :
1 v = 1;
2 a = v; // Only possible value for a: v
3 create(t1);

t1 : 1 v == 2;

In the future,wewill try to enrich this “happened-before” relationwithother sequencingoperations.Condition
variables, such as those used by the function pthread_cond_signal, would be very useful, as they are
often used in concurrent C code to sequence events.

602 F. Kirchner et al.

Similar tools The results of Mthread’s mutex analysis is similar to the one of LockSmith [PFH11], and our
approach is similar to theirs: identifying shared memory, propagating locked mutexes along the control-flow
graph, etc. However, the methods differ significantly. LockSmith uses dedicated analyzes, that are specialized
for this task. This ensures that their analysis is fast. On the contrary, Mthread reuses most of the machinery of
Frama-C’s Value Analysis, which usually gives more precise results, as well as a wealth of other information.

Mthread also share strong similarities with AstreeA [Min12]. Although both analysers have been developed
independently, their approaches are the same. They are built on top of a sequential abstract interpreter (Value
for Mthread, Astree [CCF+05] for AstreeA), and automatically discover the interferences between the various
threads. The sequential analyses are iterated until a fixpoint is reached. The main differences between the two
analyzers stem from the more powerful domains available in Astree, as well as in some refinements. For example,
AstreeA uses priorities in thread scheduling to deduce that one thread cannot be preempted by another, effectively
protecting some shared memory. Conversely, the “happened-before” relation used by Mthread is not present in
AstreeA.

10. Derived analyses

10.1. Distilling value

As explained in Sect. 4, Value automatically computes a per-statement over-approximation of the possible values
for all memory locations. Other plug-ins can then take advantage of this result to provide more specific infor-
mation. We present in this section such derived plug-ins that are included in the Frama-C distribution. In each
case, the analysis is sound. Results from Value are used in particular to evaluate array indexes or resolve pointers,
ensuring that e.g. pointer aliasing are always detected. These derived analyses also rely on the datastructures used
by Value, that have been presented in Sect. 4.

Semantic constant folding. The simplest of the derived plug-ins performs code transformation based on the results
of Value. It replaces each expression that is known to have a single value by this value, resulting in simpler code.
Unlike basic syntactic constant folding, this analysis is semantic. This is particularly effective on code containing
function pointers (that are often equal to a single function), or on functions that are called a single time. In
particular, this plug-in is very useful as a front-end to other analyses. Furthermore, it inherits the precision of
Value, in particular path- and context-sensitivity.

Inputs and outputs. Another plug-in computes for each function f approximations of its inputs and outputs.
More precisely, the Inout plug-in can provide the following information.

• An over-approximation of the operational inputs of f, that is the memory locations that are read by f before
having been written to.

• An under-approximation of the outputs of f, the locations where f is guaranteed to write to.
• An over-approximation of the outputs of f.
• An over-approximation of the imperative inputs of f, that is the memory locations that are read by f.

These sets of locations can be computed call-wise, for each distinct call to f, resulting in more precise results.

Functional dependencies. The From plug-in computes a relation between the outputs and the inputs of a function.
For each possible output x of a function f, the plug-in will give an over-approximation of the sets of locations
whose value at the beginning of the call to f might be used in computing the final value of x. If we go back to
our example of Fig. 5, the result of launching frama-c -deps value_example.c is the following.

[from] Function main:
S FROM S (and SELF)
T[0..19] FROM S (and SELF)
\result FROM S

This means that S and all the cells of T might be written during the execution, and that their value depends on
(the initial value of) S. The SELF keyword indicates that the corresponding value might be left unchanged by

Frama-C: A software analysis perspective 603

the function, corresponding to the hypothetical situation in which the loop body would not have been executed.6

Finally, we see that the value returned by main also depends solely on S.
As with Inout, From can compute separate information for each call to the function f, resulting in more

precise results for the dependencies.

Program dependency graph (PDG). The PDG plug-in produces an intra-procedural graph that expresses the data
and control dependencies between the instructions of a function [FOW87]. Namely, a statement s2 has a data
dependency over a statement s1 when the computation performed in s2 uses a value written in s1. Similarly, if
the execution of s2 depends on the execution of s1 (which is then typically an if statement, or more generally a
statement with more than one successor), then there is a control dependency from s1 upon s2. In addition, PDG
distinguishes two cases of data dependencies: plain data dependency, and address dependency, where the value
written in s1 is used at s2 in the computation of an address that is dereferenced. Recalling again the example in
Fig. 5, the statement *p=S; has dependencies on

• p=&T[0] (address dependency)
• p++ (address dependency)
• S+=i (data dependency)
• while(i<20) (control dependency)

While PDG is rarely requested directly by the user, it is the stepping stone for the various analyses described
below. In addition, itmakes itself heavyuse of theFromplug-in to compute the effects of a function call, illustrating
sequential collaboration of plug-ins (see Sect. 3.4).

Defs. The Scope plug-in provides various information about the dependencies of a memory location l at a given
statement s . More precisely, it can display in the graphical user interface of Frama-C the following points:

• the statements that contribute to defining the value of l at s
• the statements where l has the same value than in s .
• For each statement s ′, the data d that is needed to compute the value of l at s .

This information is very useful when navigating through source code in order to understandwhere a particular
value (in particular a value leading to an alarm) comes from.

Slicing and impact. The Slicing plug-in returns a reduced program (also called a slice of the original program),
equivalent to the original program according to a given slicing criterion [HRB88]. The Impact plug-in computes
the values and statements impacted (directly or transitively) by the side effects of a given statement. In some
sense, it is the dual of the slicing analysis.

Both Slicing and Impact accumulate a set of statements by walking through the PDG until the set is saturated
for a given criterion. For the impact analysis, a statement s ′ is added when the outputs of an already selected
statement s are required to evaluate s ′, or when s is a conditional that affects the execution of s ′. The main
difference between Slicing and Impact is the direction through which PDG edges are followed: forward in the
case of Impact (to select the statements that are impacted by the statements already found), and backward for
Slicing (to select the statements that influenced the statements already selected).

Possible slicing criteria include preserving a given statement, all calls to a function, a given alarm, the truth
value of an ACSL assertion, the return value of a function, etc. The Sparecode plug-in is a special version of the
Slicing plug-in, in which the criterion is to preserve the state of the program at the end of the main function under
analysis. These plug-ins can in particular be used as front-ends to other, more specialized analyses, by removing
parts of the code that are irrelevant to the property of interest.

10.2. Sante

The Sante plug-in (Static ANalysis and TEsting) [CKGJ12, CCK+13] enhances static analysis results by testing.
Given a C program p with a precondition, it detects possible runtime errors (currently divisions by zero and
out-of-bound array accesses) in p and aims to classify them as real bugs or false alarms.

6 Taking this possibility into account is clearly sound, but also results in slightly imprecise results.

604 F. Kirchner et al.

Program p Precondition

Value analysis

p, Alarms

Program slicing

p1 p2 . . . pn

Test generation

Option: all, each,

min, smart

For smart:

try smaller slices

if necessary

Diagnostic

Fig. 23. Overview of the Sante method

The Sante method contains three main steps illustrated in Fig. 23. Sante first calls Value to analyze p and to
generate an alarm for each potentially unsafe statement. Next, Slicing is used to reduce the whole program with
respect to one or several alarms. It produces one or several slices p1, p2, . . . , pn . Then, for each pi , PathCrawler
explores program paths and tries to generate test cases confirming the alarms present in pi . If a test case activating
an alarm is found, the alarm is confirmed and classified as a bug. If all feasible paths were explored for some
slice pi , all unconfirmed alarms in pi are classified safe, i.e. they are in fact false alarms. If PathCrawler was used
with a partial criterion (k -path), or stopped by a timeout before finishing the exploration of all paths of pi , Sante
cannot conclude and the statuses of unconfirmed alarms in pi remain unknown.

The number of slices generated, hence the number of test generation sessions, is influenced by various Sante
options. The all option generates a unique slice p1 including all alarms of p, while the converse option each
generates a slice for each alarm. Options min and smart take advantage of alarm dependencies (as computed by
the dependency analysis) to slice related alarms together. The smart option improves min by iteratively refining
the slices as long as one can hope to classify more alarms running PathCrawler on a smaller slice.

Initial experiments [CKGJ12] on several real-life programs show that Sante can be in average 43% faster than
test generation alone and leaves less unknown alarms. With the optionsmin and smart, the number of remaining
unclassified alarms decreases by 82% with respect to test generation alone, and by 86% with respect to Value
alone.

The Sante plug-in is another good illustration of the benefits of the extensible plug-in oriented architecture
adopted by Frama-C. Indeed,Sante relies on the Frama-C kernel and threemain plug-insValue (Sect. 4),Slicing
(Sect. 10.1) and PathCrawler (Sect. 6) that may use in turn other plug-ins (e.g. Slicing uses PDG that uses Value).
Thanks to the Frama-C design and services provided by the kernel (cf Sect. 3.1), the Sante plug-in does not need
to generate and parse again a C program between Value and Slicing steps, or between Slicing and test generation
steps. The program is parsed only once and its AST remains available for other Frama-C plug-ins. Similarly
value analysis results are re-used by PDG and Slicing without being computed more than once. Moreover, the
opportunity to work on several Frama-C projects in parallel allows an optimized implementation of slicing.
Program slices can be constructed directly in AST form by Slicing and exploited in this form by PathCrawler.

The architecture and collaborative approach of Frama-C make it possible to create powerful combined
verification tools with relatively little effort. While the cumulative size of the tools combined by Sante is several
hundreds of thousands of lines of code, the size of the Sante plug-in is only around 1500 lines of OCaml code.

10.3. Combining analyses

Sante is a quite big plug-in that builds upon existing analyses to provide more accurate results than each analysis
could do alone. As Frama-C makes it easy for plug-ins to collaborate, it is also worthwhile to develop smaller
plug-ins or even OCaml scripts that basically drive the main analysis plug-ins according to a specific usage.

Frama-C: A software analysis perspective 605

An example is given by the yet-unreleased counter-examplesplug-in. It is based onWP, and aims at providing
test cases falsifying a given ACSL annotation when the related proof obligations are not discharged. For that,
it takes advantage of the ability of some provers to give such a counter-example in the logic world. counter-
examples then lifts this result back into the C world. An interesting use-case for the plug-in consists then in using
it on the alarms emitted by Value, in an attempt to discriminate between false alarms and real bugs.

Furthermore, it is easy to combine analyses with anOCaml script for a given verification purpose. The Frama-
C wiki7 gives an example of such a script that mixes constant propagation (Sect. 10.1), Aoraı̈ (Sect. 8) and Value
(Sect. 4) to find a sequence of calls to the API of a Linux driver that leads to an information leak.

11. Conclusion

This article attempts to distill a unified presentation of theFrama-Cplatform froma software analysis perspective.
Frama-C answers the combined introductory challenges of scalability, interoperability, and soundness with a
unique architecture and a robust set of analyzers. Its core set of tools and functionalities— about 150 OCaml
kloc developed over the span of 7 years [CSB+09]—has given rise to a flourishing ecosystem of software analyzers.
In addition to industrial achievements and partnerships, including the birth of a startup,8 a community of users
and developers has grown and strived.

Adoption in the academic world has stemmed from a variety of partnerships. The Jessie plug-in [MM12], de-
veloped at Inria, relies on a separationmemorymodel butwhose internal representation precludes its combination
with other plug-ins. Verimag researchers have implemented a taint analysis [CMP10], producing explicit depen-
dency chains pondered by risk quantifiers.Demay et al. generate securitymonitors based on fine-grained feedback
from theValue plug-in [DTT09], while Assaf et al. generate securitymonitors for verifying non-interference prop-
erties by runtime assertion checking or by static analysis [ASTT13]. Berthomé et al. [BHKL10] propose a source-
code model for verifying physical attacks on smart cards, and use Value to verify it. Bouajjani et al. [BDES11]
automatically synthesize invariants of sequential programs with singly-linked lists. Ayache et al. [AARG12] au-
tomatically infer trustworthy ACSL assertions about the concrete worst-case execution cost of programs from
so-called “cost annotations” generated by a custom C compiler. Jobredeaux et al. [JWF11] present a code gener-
ator that emits ACSL annotations so that its output can be verified by the Jessie plug-in of Frama-C. Finally,
although the variety of objectives a static analyzer can have, and the variety of design choices for a given objective,
make it difficult to benchmark static analyzers, Chatzieleftheriou and Katsaros [CK11] have produced one such
comparison including Frama-C’s Value plug-in.

On the industrial side of software analysis, many companies are evaluating and adopting Frama-C. Delmas et
al. verify the compliance to domain-specific coding standards [DDLS10]; their plug-in is undergoing deployment
and qualification. At the same company, Value is used to verify the control and data flows of a DAL C, 40-
kloc ARINC 653 application [CDDM12]. Pariente and Ledinot [PL10] verify flight control system code using a
combinationof Frama-Cplug-ins, includingValueandSlicing. Their contribution includes a favorable evaluation
of the cost-effectiveness of their adoption compared to traditional verification techniques. Bishop, Bloomfield
and Cyra selected Frama-C “after reviewing around twenty possible code analysis tools” in order to implement a
verification technique combining deductive verification and dynamic analysis [BBC13]. Adelard also developed a
plug-in to analyze concurrent programs [Ade] in a complementary manner to Mthread, that trades off soundness
for simplicity. Frama-C helped find bugs in various open-source components. Such issues have generally been
acknowledged and promptly fixed by the authors, such as for the QuickLZ compression library9 or the PolarSSL
SSL implementation.10 Frama-C was presented at the Static analysis tools exposition (SATE V) organized by
NIST, in the Ockham category dedicated to sound (i.e. correct) analyzers [Bla14]. Finally two ongoing projects
further illustrate the intensity of current industrial analysis efforts with Frama-C:

• Yakobowski et al [CHK+12] use Value in collaboration with WP to check the absence of runtime errors in
a 50 kloc instrumentation and control (I&C) nuclear code. The conclusion of this case study is that “the
selectivity and absolute number of alarms obtained can be [...] compared advantageously to the state of the art
in static analysis”. Furthermore, the use of WP allowed to verify that 9 of the alarms emitted by Value were
indeed false alarms, with only a very limited annotation effort, demonstrating the interest of being able to
combine various analyses in a single tool.

7 http://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:aorai-security.
8 See http://www.trust-in-soft.com.
9 http://www.quicklz.com/changelog.html.
10 https://github.com/polarssl/polarssl/commit/e2f8ff67972a85bfc748b16b7128fee08c4dd4c0.

http://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:aorai-security
http://www.trust-in-soft.com
http://www.quicklz.com/changelog.html
https://github.com/polarssl/polarssl/commit/e2f8ff67972a85bfc748b16b7128fee08c4dd4c0

606 F. Kirchner et al.

• The TrustInSoft startup develops a full fledged industrial version of Frama-C pre-installed with proprietary
extensions designed to facilitate the analysis of complex programs—including multi-threaded code, low-level
code that uses volatile memory locations, or applications that make heavy use of the C standard library.
TrustInSoft also provides formal verification “kits” for open-source software components, and in particular
the PolarSSL library.11

Through all of these successes and over the past few years, Frama-C has demonstrated its adoptability for a
wide variety of purposes within a diverse community of researchers and engineers. The growth of this community,
fostered by a number of active communication channels12 should be interpreted as a testimony to the health of
the software analysis community, and good omens for its future.

References

[AARG12] Ayache N, Amadio R, Régis-Gianas Y (2012) Certifying and reasoning on cost annotations in C programs. In: 17th Interna-
tional workshop on formal methods for industrial critical systems (FMICS 2012)

[Ade] Adelard LLP Simple concurrency analysis plugin for Frama-C. https://bitbucket.org/adelard/simple-concurrency/
[ASTT13] Assaf M, Signoles J, Totel E, Tronel F (2013) Program transformation for non-interference verification on programs with

pointers. In: The 28th IFIP TC-11 international information security and privacy conference (SEC 2013). Springer, Berlin pp
231–244

[BBC13] Bishop P, Bloomfield R, Cyra L (2013) Combining testing and proof to gain high assurance in software: a case study. In:
Proceedings of IEEE international symposium on software reliability engineering (ISSRE)

[BC11] Bonichon R, Cuoq P (2011) A mergeable interval map. Studia Informatica Universalis 9(1):5–37
[BCC+05] Burdy L, Cheon Y, Cok DR, Ernst MD, Kiniry JR, Leavens GT, Leino KRM, Poll E (2005) An overview of JML tools and

applications. Softw Tools Technol Transf 7(3):212–232
[BCD+06] Barnett M, Evan Chang B-Y, DeLine R, Jacobs B, Rustan K, Leino M (2006) Boogie: A modular reusable verifier for object-

oriented programs. In: Proceedings of 4th international symposium on formal methods components and objects (FMCO
2005), volume 4111 of LNCS. Springer, Berlin

[BDES11] Bouajjani A, Dragoi C, Enea C, Sighireanu M (2011) On inter-procedural analysis of programs with lists and data. In: The
32nd ACM SIGPLAN conference on programming language design and implementation (PLDI, 2011), ACM, pp 578–589

[BDH+09] Botella B, Delahaye M, Hong-Tuan-Ha S, Kosmatov N, Mouy P, Roger M, Williams N (2009) Automating structural testing
of C programs: experience with PathCrawler. In: The 4th international workshop on automation of software test (AST 2009),
IEEE Computer Society, pp 70–78

[BFH+13] Baudin P, Filliâtre J-C, Hubert T,Marché C,Monate B,MoyY, Prevosto V (2013) ACSL: ANSI/ISOC specification language,
v1.6, April 2013. http://frama-c.com/acsl.html

[BH11] Bardin S, Herrmann P (2011) OSMOSE: automatic structural testing of executables. Softw Test Verif Reliab 21(1):29–54
[BHJM07] BeyerD,HenzingerTA, JhalaR,MajumdarR (2007)The softwaremodel checkerBlast: applications to software engineering.

Int J Softw Tools Technol Transf 9(5–6):505–525
[BHKL10] Berthomé P, Heydemann K, Kauffmann-Tourkestansky X, Lalande J-F (2010) Attack model for verification of interval

security properties for smart card C codes. In: The 5th ACM SIGPLAN workshop on programming languages and analysis
for security (PLAS 2010), ACM, pp 1–12

[BHV11] Bardin S, Herrmann P, Védrine F (2011) Refinement-based CFG reconstruction from unstructured programs. In: The 12th
international conference on verification, model checking, and abstract interpretation (VMCAI, 2011), volume 6538 of LNCS.
Springer, pp 54–69

[Bla14] Black Paul E (2014) SATE V Ockham sound analysis criteria. http://samate.nist.gov/SATE5Workshop.html
[BNR+10] Beckman NE, Nori AV, Rajamani SK, Simmons RJ, Tetali S, Thakur AV (2010) Proofs from tests. IEEE Trans Softw Eng

36(4):495–508
[Bor00] Bornat R (2000) Proving pointer programs in Hoare logic. In: The 5th international conference on mathematics of program

construction (MPC, 2000), volume 1837 of LNCS. Springer
[Bur72] Burstall RM (1972) Some techniques for proving correctness of programs which alter data structures. Mach Intell 7:23–50
[C+] Conchon S et al The Alt-Ergo automated theorem prover http://alt-ergo.lri.fr.
[CC77] Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or

approximation of fixpoints. In: The 4th symposium on principles of programming languages (POPL, 1977), pp 238–252
[CCF+05] Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2005) The ASTRÉE analyzer. In: The 14th

European symposium on programming (ESOP 2005), part of the joint European conferences on theory and practice of
software (ETAPS, 2005), volume 3444 of LNCS. Springer, Berlin pp 21–30

[CCK+13] Chebaro O, Cuoq P, Kosmatov N, Marre B, Pacalet A, Williams N, Yakobowski B (2013) Behind the scenes in SANTE: a
combination of static and dynamic analyses. Autom Softw Eng. Published online

[CD08] CuoqP,DoligezD (2008)Hashconsing in an incrementally garbage-collected system: a story ofweak pointers and hashconsing
in OCaml 3.10.2.. In: Proceedings of the ACM SigPlan ML workshop, pp 13–22

11 http://trust-in-soft.com/polarssl-verification-kit/.
12 See http://frama-c.com/support.html.

https://bitbucket.org/adelard/simple-concurrency/
http://frama-c.com/acsl.html
http://samate.nist.gov/SATE5Workshop.html
http://alt-ergo.lri.fr
http://trust-in-soft.com/polarssl-verification-kit/
http://frama-c.com/support.html

Frama-C: A software analysis perspective 607

[CDDM12] Cuoq P, Delmas D, Duprat S, Moya Lamiel V (2012) Fan-C, a Frama-C plug-in for data flow verification. In: The embedded
real-time software and systems congress (ERTS2 2012)

[CDS11] Cuoq P, Doligez D, Signoles J (2011) Lightweight typed customizable unmarshaling. In: ACM SIGPLANWorkshop onML.
ACM

[CHK+12] Cuoq P, Hilsenkopf P, Kirchner F, Labbé S, Thuy N, Yakobowski B (2012) Formal verification of software important to safety
using the Frama-C tool suite. In: The 8th international conference on nuclear plant instrumentation and control (NPIC, 2012)

[CHOS13] Cruanes S, Hamon G, Owre S, Shankar N (2013) Tool integration with the evidential tool bus. In: Proceedings of verification,
model-checking and abstract interpretation (VMCAI), volume 7737 of LNCS, pp 275–294

[CK04] CokDavidR,Kiniry JosephR (2004) ESC/Java2: uniting ESC/Java and JML. In: The international workshop on construction
and analysis of safe, secure and interoperable smart devices (CASSIS, 2004), volume 3362 of LNCS. Springer, pp 108–128

[CK11] Chatzieleftheriou G, Katsaros P (2011) Test-driving static analysis tools in search of C code vulnerabilities. In: COMPSAC
workshops. IEEE Computer Society, pp 96–103

[CKGJ12] Chebaro O, Kosmatov N, Giorgetti A, Julliand J (2012) Program slicing enhances a verification technique combining static
and dynamic analysis. In: The ACM symposium on applied computing (SAC, 2012), ACM, pp 1284–1291

[CKM12] Comar C, Kanig J, Moy Y (2012) Integrating formal program verification with testing. In: Proceedings of ERTS, 2012
[Cla] Clang Static Analyzer. http://clang-analyzer.llvm.org/
[CMP10] Ceara D, Mounier L, Potet M-L (2010) Taint dependency sequences: a characterization of insecure execution paths based on

input-sensitive cause sequences. In: The 3rd international conference on software testing, verification and validationworkshops
(ICSTW, 2010), pp 371–380

[Coq11] Coq Development Team (2011) The Coq proof assistant reference manual, v8.3 edition. http://coq.inria.fr/
[CR06] Clarke LA, Rosenblum DS (2006) A historical perspective on runtime assertion checking in software development. ACM

SIGSOFT Softw Eng Notes 31(3):25–37
[CS04] Csallner C, Smaragdakis Y (2004) JCrasher: An automatic robustness tester for Java. Softw—Pract Exp 34(11):1025–1050
[CS06] Csallner C, Smaragdakis Y (2006) Dynamically discovering likely interface invariants. In: The 28th ACM/IEEE international

conference on software engineering (ICSE, 2006), Emerging Results Track, ACM, pp 861–864
[CS12] Correnson L, Signoles J (2012) Combining analyses for C program verification. In: The 17th international workshop on formal

methods for industrial critical systems (FMICS, 2012)
[CSB+09] Cuoq P, Signoles J, Baudin P, Bonichon R, Canet G, Correnson L, Monate B, Prevosto V, Puccetti A (2009) Experience

report: OCaml for an industrial-strength static analysis framework. In: The 14th ACM SIGPLAN international conference
on functional programming (ICFP, 2009), ACM, pp 281–286

[CYP13] Cuoq P, Yakobowski B, Prevosto V (2013) Frama-C’s value analysis plug-in, fluorine-20130601 edition. June, http://frama-c.
com/download/frama-c-value-analysis.pdf

[DDLS10] Delmas D, Duprat S, Moya Lamiel V, Signoles J (2010) Taster, a Frama-C plug-in to encode coding standards. In: The
embedded real-time software and systems congress (ERTS2)

[DEL+14] Dross C, Efstathopoulos P, Lesens D, Mentré D, Moy Y (2014) Rail, space, security: three case studies for spark 2014. In:
Proceedings of ERTS, 2014

[Dij68] Dijkstra EW (1968) A constructive approach to program correctness. BIT Numerical Mathematics, Springer, Berlin
[DJP10] Demange D, Jensen T, Pichardie D (2010) A provably correct stackless intermediate representation for java bytecode. In: The

8th Asian symposium on programming languages and systems (APLAS, 2010), volume 6461 of LNCS. Springer, pp 97–113
[DKS13] Delahaye M, Kosmatov N, Signoles J (2013) Common specification language for static and dynamic analysis of C programs.

In: The 28th annual ACM symposium on applied computing (SAC), ACM, pp 1230–1235
[DMS+09] Dahlweid M, Moskal M, Santen T, Tobies S, Schulte W (2009) VCC: Contract-based modular verification of concurrent C.

In: ICSE Companion, IEEE Computer Society, pp 429–430
[DTT09] Demay J-C, Totel E, Tronel F (2009) SIDAN: a tool dedicated to software instrumentation for detecting attacks on non-

control-data. In: CRiSIS
[EMN12] Elberzhager F, Münch J, Tran Ngoc Nha V (2012) A systematic mapping study on the combination of static and dynamic

quality assurance techniques. Inform Softw Technol 54(1):1–15
[EPG+07] Ernst Michael D, Perkins Jeff H, Guo Philip J (2007) Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen

Xiao. The Daikon system for dynamic detection of likely invariants. Sci Comput Program 69(1–3):35–45
[Fil00] Filliâtre Jean-Christophe (2000) Hash consing in an ML framework. Research Report 1368, LRI, Université Paris Sud
[Fil03] Filliâtre J-C (2003) Why: a multi-language multi-prover verification tool. Research Report 1366, LRI, Université Paris Sud
[Flo67] Floyd RW (1967) Assigning meanings to programs. In: Proceedings of the American Mathematical Society Symposia on

Applied Mathematics, vol 19
[FM07] Filliâtre J-C, Marché C (2007) The why/krakatoa/caduceus platform for deductive program verification. In: CAV, volume

4590 of LNCS. Springer, pp 173–177
[FOW87] Ferrante J, OttensteinK.J,Warren J.D (1987) The programdependence graph and its use in optimization.ACMTrans Program

Lang Syst 9(3):319–349
[FP13] Filliâtre J-C, Paskevich A (2013) Why3—where programs meet provers. In: The 22nd European symposium on programming

(ESOP, 2013), volume 7792 of LNCS. Springer
[GdHN+08] Godefroid P, de Halleux J, Nori Aditya V, Rajamani Sriram K, Schulte W, Tillmann N, Levin Michael Y (2008) Automating

software testing using program analysis. IEEE Softw 25(5):30–37
[GGJK08] Giorgetti A, Groslambert J, Julliand J, Kouchnarenko O (2008) Verification of class liveness properties with Java Modeling

Language. IET Softw 2(6)
[GHK+06] Gulavani Bhargav S,Henzinger ThomasA,KannanY,NoriAdityaV,Rajamani SriramK (2006) SYNERGY: a new algorithm

for property checking. In: The 14th ACM SIGSOFT international symposium on foundations of software engineering (FSE
2006), ACM, pp 117–127

[GMP] Gmp: Gnu multiple precision arithmetic library. http://gmplib.org/

http://clang-analyzer.llvm.org/
http://coq.inria.fr/
http://frama-c.com/download/frama-c-value-analysis.pdf
http://frama-c.com/download/frama-c-value-analysis.pdf
http://gmplib.org/

608 F. Kirchner et al.

[GO01] Gastin P, OddouxD (2001) Fast LTL to Büchi automata translation. In: The 13th international conference on computer aided
verification (CAV, 2001), volume 2102 of LNCS. Springer, pp 53–65

[Gra91] Granger P (1991) Static analysis of linear congruence equalities among variables of a program. In: TAPSOF, volume 493 of
LNCS. Springer, pp 169–192

[GS09] Groslambert J, Stouls N (2009) Vérification de propriétés LTL sur des programmes C par génération d’annotations. In:
Approches Formelles dans l’Assistance au Développement de Logiciels (AFADL 2009), in French

[HJV00] HeintzeN, Jaffar J, VoicuR (2000)A framework for combining analysis and verification. In: The 27th symposiumon principles
of programming languages (POPL 2000)

[HMM12] Herms P, Marché C, Monate B (2012) A certified multi-prover verification condition generator. In: The 4th international
conference on verified software: theories, tools, experiments (VSTTE 2012), volume 7152 of LNCS. Springer, pp 2–17

[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10)
[HRB88] Horwitz S, Reps T, Binkley D (1988) Interprocedural slicing using dependence graphs. In: The ACM SIGPLAN conference

on programming language design and implementation (PLDI 1988), volume 23–7, pp 35–46
[HS13] Herrmann P, Signoles J (2013) Annotation generation: Frama-C’s RTE plug-in, April. http://frama-c.com/download/frama-

c-rte-manual.pdf
[IEE08] IEEEStd 754-2008 (2008) IEEE standard for floating-point arithmetic. Technical report. http://dx.doi.org/10.1109/IEEESTD.

2008.4610935
[ISO07] ISO/IEC JTC1/SC22/WG14 (2007) 9899:TC3: programming languages—C. http://www.open-std.org/jtc1/sc22/wg14/www/

docs/n1256.pdf
[JWF11] Jobredeaux R, Wang Timothy E, Feron Eric M (2011) Autocoding Control Software with Proofs I: annotation translation.

In: Proceedings of the IEEE/AIAA digital avionics systems conference (DASC)
[KCC+14] Johannes K, Rod C, Cyrille C, Jerome G, YannickM, Emyr R (2014) Explicit assumptions—a prenup for marrying static and

dynamic program verification. In: Proceedings of TAP, 2014, To appear
[Kos] Kosmatov N. Online version of PathCrawler. http://pathcrawler-online.com/
[Kos10] KosmatovN (2010) Artificial intelligence applications for improved software engineering development: new prospects, chapter

XI: Constraint-Based Techniques for Software Testing. IGI Global
[KPS13] Kosmatov N, Petiot G, Signoles J (2013) An optimized memory monitoring for runtime assertion checking of C programs.

In: The 4th international conference on runtime verification (RV 2013), volume 8174 of LNCS. Springer, pp 167–182
[KS13] Kosmatov N, Signoles J (2013) A lesson on runtime assertion checking with Frama-C. In: The 4th international conference

on runtime verification (RV, 2013), volume 8174 of LNCS. Springer, pp 386–399
[LB08] Leroy X, Blazy S (2008) Formal verification of a C-like memory model and its uses for verifying program transformations. J

Automa Reason 41(1):1–31
[LDF+13] Leroy X, Doligez D, Frisch A, Garrigue J Rémy Didier, Vouillon Jéróme (2013) The OCaml system release 4.01. INRIA,

2013. http://caml.inria.fr/pub/docs/manual-ocaml-4.01/
[Lei08] Leino KRM (2008) This is Boogie 2. Micros Res
[MA00] Marre B, Arnould A (2000) Test sequences generation from Lustre descriptions: GATeL. In: The 15th IEEE international

conference on automated software engineering (ASE 2000). IEEE Computer Society, pp 229–237
[Mat] MathWorks. Polyspace. http://www.mathworks.com/products/polyspace
[Mey97] Meyer B (1997) Object-oriented software construction. Prentice Hall, New Jersey
[Min12] Miné Antoine (2012) Static analysis of run-time errors in embedded real-time parallel c programs. Log Methods Comput Sci

8(1)
[MM12] Marché C, Moy Y (2012) The Jessie plug-in for deduction verification: In: Frama-C, version 2.30. INRIA, 2012. http://

krakatoa.lri.fr/jessie.pdf .
[MR05] Mauborgne L, Rival X (2005) Trace partitioning in abstract interpretation based static analyzers. In: Sagiv M (ed) European

symposium on programming (ESOP’05), volume 3444 of lecture notes in computer science. Springer, pp 5–20
[NMRW02] Necula GC, Mcpeak S, Rahul SP, Weimer W (2002) CIL: intermediate language and tools for analysis and transformation

of C programs. In: The international conference on compiler construction (CC 2002), volume 2304 of LNCS. Springer, pp
213–228

[PFH11] Pratikakis P, Foster Jeffrey S, Hicks M (2011) Locksmith: practical static race detection for c. ACMTrans Program Lang Syst
33(1):3

[PL10] Pariente D, Ledinot E. Formal verification of industrial C code using Frama-C: a case study. In: FoVeOOS
[Pnu77] Pnueli A (1977) The temporal logic of programs. In: The 18th annual symposium on foundations of computer science (FOCS

1977). IEEE Computer Society, pp 46–57
[RSB+99] Randimbivololona F, Souyris J, Baudin P, Pacalet A, Raguideau J, Schoen D (1999) Applying formal proof techniques to

avionics software: a pragmatic approach. In: The wold congress on formal methods in the development of computing systems
(FM 1999), volume 1709 of LNCS. Springer, pp 1798–1815

[Rus05] Rushby J (2005) An evidential tool bus. In: Formal methods and software engineering, ICFEM, volume 3785 of LNCS
[SC07] Smaragdakis Y, Csallner C (2007) Combining static and dynamic reasoning for bug detection. In: The first international

conference on tests and proofs (TAP 2007), volume 4454 of LNCS. Springer, pp 1–16
[SCP13] Signoles J, Correnson L, Prevosto V (2013) Frama-C plug-in development guide, April. http://frama-c.com/download/plug-

in-developer.pdf
[Sig09] Signoles J (2009) Foncteurs impératifs et composés: la notion de projet dans Frama-C. In: JFLA, volume 7.2 of Studia

Informatica Universalis (in French)
[Sig13] Signoles J (2013) E-ACSL: executable ANSI/ISO C specification language. Version 1.7 http://frama-c.com/download/e-acsl/

e-acsl.pdf
[Sig14] Signoles J (2014) Comment un chameau peut-il écrire un journal? In JFLA (in French)

http://frama-c.com/download/frama-c-rte-manual.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://pathcrawler-online.com/
http://caml.inria.fr/pub/docs/manual-ocaml-4.01/
http://www.mathworks.com/products/polyspace
http://krakatoa.lri.fr/jessie.pdf
http://krakatoa.lri.fr/jessie.pdf
http://frama-c.com/download/plug-in-developer.pdf
http://frama-c.com/download/plug-in-developer.pdf
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl.pdf

Frama-C: A software analysis perspective 609

[SP11] Stouls N, Prevosto V (2011) Aoraı̈ plug-in tutorial, version Nitrogen-20111001, October 2011. http://frama-c.com/download/
frama-c-aorai-manual.pdf

[SS11] Schimpf J, Shen K (2011) ECLiPSe - from LP to CLP. Theory Pract Log Program 12(1–2):127–156
[TFNM11] Tschannen J, Furia CA Nordio M, Meyer B (2011) Usable verification of object-oriented programs by combining static and

dynamic techniques. In: The 9th international conference on software engineering and formal methods (SEFM 2011)
[Wik] Wikipedia. Dining philosophers problem. http://en.wikipedia.org/wiki/Dining_philosophers_problem
[WMMR05] Williams N, Marre B, Mouy P, Roger M (2005) PathCrawler: automatic generation of path tests by combining static and

dynamic analysis. In: The 5th European dependable computing conference on dependable computing (EDCC 2005), volume
3463 of LNCS, Springer, pp 281–292

Received 25 September 2013
Revised 20 June 2014
Accepted 5 August 2014 by George Eleftherakis, Mike Hinchey, and Michael Butler
Published online 9 January 2015

http://frama-c.com/download/frama-c-aorai-manual.pdf
http://frama-c.com/download/frama-c-aorai-manual.pdf
http://en.wikipedia.org/wiki/Dining_philosophers_problem

	Frama-C: A software analysis perspective
	Abstract
	1 Introduction
	2 Related work
	3 The platform kernel
	3.1 Architecture
	3.2 ACSL
	3.3 Projects
	3.4 Collaborations across analyzers

	4 Abstract interpretation
	4.1 Abstract domains
	4.2 Alarms
	4.3 Propagation of unjoined states

	5 Deductive verification
	6 Concolic testing
	7 Runtime assertion checking
	8 Temporal specifications
	9 Mthread
	10 Derived analyses
	10.1 Distilling value
	10.2 Sante
	10.3 Combining analyses

	11 Conclusion
	References

