
HAL Id: cea-01807039
https://cea.hal.science/cea-01807039

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Industrial Prototype of Trusted Energy Performance
Contracts using Blockchain Technologies

Önder Gürcan, Marc Agenis-Nevers, Yves-Marie Batany, Mohamed Elmtiri,
François Le Fevre, Sara Tucci-Piergiovanni

To cite this version:
Önder Gürcan, Marc Agenis-Nevers, Yves-Marie Batany, Mohamed Elmtiri, François Le Fevre, et
al.. An Industrial Prototype of Trusted Energy Performance Contracts using Blockchain Technolo-
gies. 16th IEEE Internatonal Conference on Smart City (SmartCity-2018), Jun 2018, Exeter, United
Kingdom. �cea-01807039�

https://cea.hal.science/cea-01807039
https://hal.archives-ouvertes.fr


An Industrial Prototype of Trusted Energy Performance Contracts
using Blockchain Technologies

Önder Gürcan† and Marc Agenis-Nevers‡ and Yves-Marie Batany‡

and Mohamed Elmtiri‡ and François Le Fevre† and Sara Tucci-Piergiovanni†

Abstract— Energy conservation measurements in buildings
are more and more popular as they benefit from an intelligent
contractual framework called Energy Performance Contracts
(EPC), where energy savings are measured as the difference
between a predictive baseline model and the actual consump-
tion. While modern predictive models make use of large
amounts of data from external sources and increasingly complex
algorithms, these two aspects make their use difficult in practice
because they need mutual understanding and transparency,
requiring the involvement of a third-party for auditing. In this
sense, we designed and developed a prototype that overcomes
these issues by storing the predictive models and the data in
an immutable blockchained data structure using the Ethereum
framework. To the best of our knowledge, this is the first
working prototype using the blockchain technology applied to
EPCs. This paper presents and discusses the technical solutions
and best-practice guidelines adopted in this prototype.

I. INTRODUCTION

In an always more constrained environment (rising en-
ergy cost, intensification of the environmental regulations,
reduction of the margins) building owners are seeking to
reduce building energy consumption and the related costs.
To meet the customer needs, Energy Services Companies
(ESCO) provide to clients Energy Performance Contracts
(EPC), which can be defined as contracts under which energy
savings are provided, verified and monitored during the
whole term of the contract1. More in detail, the ESCO,
also called service provider, designs and implements so-
called Energy Conservation Measures (ECMs) (for instance
window replacement with modern insulation, lighting, etc.)
and guarantees a given level of energy savings over the
period of the agreement.

Energy savings secure the financial revenue that is used
to fund the cost of improvements and services incurred at
the service provider side. Note that financial savings are in
general shared between the two parties from the start. Once
the costs have been repaid, the client should be able to keep
the full savings generated from the ECMs. The duration of
the savings guarantee will typically last until the project costs
have been covered. In case of a failure in provisioning the

†Ö. Gürcan, F. Le Fevre and S. Tucci-Piergiovanni are with CEA,
LIST, the Laboratory for Trustworthy, Smart, Self-Organizing Information
Systems, 91191 Palaiseau, France name.surname at cea.fr

‡M. Agenis-Nevers, Y.-M. Batany and M. Elmtiri are with Veolia
Research and Innovation (VERI), Centre de Recherche de Limay, 78520
Limay, France name.surname at veolia.com

1M&V Guidelines: Measurement and Verification for Performance-Based
Contracts Version 4.0, November 2015, https://www.energy.gov/
sites/prod/files/2016/01/f28/mv_guide_4_0.pdf, last ac-
cess on 25/05/2018.

contractually-agreed energy savings, financial penalties are
applied to the service provider which reduces the contract
revenue. For customers, EPC has become an approach to
retrofit sites (buildings or industrial) with energy savings
and energy generation improvements, and to reduce carbon
emissions.

Since energy savings cannot be directly measured, a so-
called measurement and verification (M&V) procedure2 is
at the cornerstone of an EPC. The M&V procedure is the
process of using measurement to determine reliably the ac-
tual savings created within a facility. Concretely, the energy
saving is computed as the difference between a predictive
baseline model and post-installation real energy consumption
over the period of use. A poor basis for M&V procedure
can create problems such as an unfair allocation of perfor-
mance risk as well as savings calculations being unclear or
taken for an inappropriate baseline. M&V procedure can be
complex since different factors, such as weather or building
occupancy, need to be taken into account during the lifetime
of the contract.

The International Performance Measurement and Verifica-
tion Protocol (IPMVP) has been developed over many years
to provide guidance and expected standards for an M&V
procedure3. IPMVP covers the way variables (explanatory or
static) are included in the baseline predictive model and how
adjustments must be made (e.g., if building occupancy rises).
This protocol is used by many EPC projects as the basis for
M&V procedure and it is important that clients understand
the proposed M&V approach before committing to such
contracts. In particular, the need for understandability when it
comes to baseline modeling and data sourcing often leads the
client to favor the use of simple predictive models. However,
more complex models using a wider set of data increase
prediction quality and hence decrease the commitment risk.

We illustrate some problems that can arise in the opera-
tional context:

• the weather provider might retroactively modify the data
used for the baseline,

• the client might modify the building set-points or equip-
ment without notifying the ESCO,

• the prediction values from a complex model might vary
depending on the version used.

2International Performance Measurement and Verification Protocol (IP-
MVP), 1997, https://www.nrel.gov/docs/fy02osti/31505.
pdf, last access on 25/05/2018.

3International Performance Measurement and Verification Protocol (IP-
MVP) Vol I. Efficiency Valuation Organization, 2007.



Energy agencies have developed software to allow the
computation of M&V models in a more controlled envi-
ronment [1] but they do not solve the other trust issues.
In this context, the present work evaluates the relevance
of blockchain technologies to overcome the aforementioned
limitations and to gain client trust even in presence of so-
phisticated, and then not immediately understandable, M&V
procedures. If effective, blockchain-enabled EPC can lead to
massive adoption of EPCs and widespread energy savings.

Blockchain technologies indeed provide an incorruptible
digital ledger that can be programmed to record any kind of
data and calculations (e.g., measurement of real effects, op-
erating conditions, reference situation) in a multi-stakeholder
environment (e.g., operator, project owner, users). More
specifically, blockchains guarantee that the recorded data is
immutable, thanks to cryptographic techniques, and highly
replicated thanks to distributed consensus protocols [2],
storage or trusted third parties.

This technology could be useful for operating EPC without
the need of a trusted third party such as a government
agency or independent consultants. A prototype dedicated
to this application has been developed to evaluate whether
the blockchain technology is able to provide the required
level of trust between the client and Veolia as part of energy
performance contracts commitment during the following
M&V phases:

• qualification of the data,
• automatic calculations of the savings,
• verification of commitments.

The use of the blockchain occurs once a baseline model
has been established and fit on historical data. We designed
the blockchain so that the prediction step and all related
calculations would happen inside it. Since the predictive
model was developed with the R software4, it is important
to note that it is not possible to execute the R script directly
in the blockchain, and we developed the equivalent code of
the R script based on the blockchain smart contract layer.

A. Contributions

This article is an experience report presenting the de-
sign and development of a blockchain-enabled EPC pro-
totype. The development methodology followed a classical
approach, even though features and limitations specific to
the target blockchain technology influenced the design of the
solution. Interestingly, due to performance issues, the design
has to be refined in a set of very small software modules,
called smart contracts in the blockchain jargon. Moreover, we
faced immediately the issue of having a flow of data coming
from outside the chain. While the blockchain guarantees data
immutability, data veracity is not guaranteed, i.e. a false
data coming from outside can be in principle stored in the
blockchain; redundancy and voting mechanisms have been
put in place to solve this issue. Another important, more

4R is an open source project of statistical language. https://cran.
r-project.org/. Last access on 23/03/2018.

technological aspect, is about the non-availability of very ba-
sic libraries to treat calculation of predictive models. Finally,
we spot the need of having an innovative approach for smart
contracts management, that is not only able to translate the
contractual terms and agreements into smart contract codes,
but also able to flexibly accommodate amendments to the
terms of use.

B. Organization

Section II presents in more details energy performance
contracts. Section III specifies how smart contracts can be
used for a blockchained EPC. Section IV describes the devel-
oped prototype application from analysis to test. Section V
discusses and concludes the paper.

II. ENERGY PERFORMANCE CONTRACTS

Energy performance contracts (EPCs) aim at improving
the energy efficiency of a set of facilities. The energy
consumption of a facility is denoted as E[t] where t is the
discrete time. An EPC involves the client and the an energy
service company (contractor). Before the contractualization
at time t0, a predictive model (or baseline) of energy con-
sumption is constructed based on a historical set of data.
The predictive model is denoted F and it explicitly gives a
relation between the energy consumption E[t] and a set of
explanatory variables X[t] ∈ RN such that

Eb[t] = F(X[t]). (1)

Temperature or humidity are often used as explanatory
variables. During contractualization, the energy savings are
computed for a period T as

S[t] =

t∑
t−T

Eb[t]− E[t] (2)

and are shared between both parties. Figure 1 shows the time-
line of an EPC with our notations. After contractualization,
the savings belong to the client. The savings are generally
computed on a basis of one month and financial transactions
occurs once a year. As a result, predictive models are
generally monthly computed. It is easy to see why the choice
of the predictive model is of crucial matter: the savings are
computed from this estimation and errors on the predictive
model will be directly reverberated on the savings.

The way to model energy savings while following the
M&V methodology has been described for more than twenty
years [3], [4]. The literature related to statistical models for
buildings consumption prediction suggests a very wide range
of models F with no limitation: generalized linear models
[5], machine learning, time-dependent models [6], Bayesian
models [7], Gaussian processes [8], etc. However, in the
restrictive contractual context of EPCs, only a subset of these
statistical techniques are used - almost exclusively linear
models with all their variants: polynomial and segmented
models, multivariate and even robust regressions; the time
stamps encountered are mostly monthly, hourly and daily [9].



Fig. 1. The time line of an energy performance contract. The moment of
contractualization is denoted t0.

Fig. 2. Model complexity versus client acceptance diagram. The green
vertical arrows symbolize the expected impact of the blockchain. Note: the
blue dashed curve assumes that the complexity does not yet reach a point
where the model over-fits the data. If so, the accuracy would go down.

While implementing such models, the problem of gaining
the client’s trust arises. Though the IPMVP framework men-
tions no restriction on the model type, and EVO (Efficiency
Valuation Organization) experts suggest that there is no
reason a priori to put non-linear forms aside, the need
for understandability or interoperability becomes merely a
matter of trust: the question arise whether the client will
accept a black-box model that cannot be reproduced on an
Excel sheet or not [10]. Figure 2 shows empirically how
client trust and acceptance evolves with model complexity. In
the field, most EPCs still rely today on 1-variable OLS linear
models (Figure 2a), leaving a huge room for complexity
improvement (Figure 2b or c) before over-fitting. Figure 2
shows empirically how trust evolves with model complexity.

III. BLOCKCHAINS AND SMART CONTRACTS

To tackle the problems given in subsection II, we intro-
duce Trusted Energy Performance Contracts (TEPCs), i.e.
storing and managing the predictive models and the data
used using the blockchain technology, since it guarantees
the immutability of the information once written on it. The
blockchain will substitute for a trusted third-party, a role that
is usually played by expert consultants who help the client
validate contractual models.

The blockchain technology is first proposed by the Bitcoin
protocol [2]. A blockchain system is a network of nodes
in which each node keeps a replication of an immutable
append-only ledger of transactions [11]. The transactions are
issued by nodes called users to exchange information, e.g.,
to exchange bitcoins in the Bitcoin protocol. The copy of all
issued valid transactions are stored locally in the same order
in a local ledger by all nodes (replication). The reliability
of the replication process is ensured by special nodes called
miners that collectively build the ledger as a chain of blocks
that are interconnected by cryptographic links. This ensures
that once the information has been appended, it will no
longer be modified by anyone in the future.

Smart contracts are contracts (or any kind of program) that
are converted to deterministic computer code and, stored and
replicated on blockchain systems [12]. They are executed
exactly in the way by each node in the blockchain system.
In other words, the function call requests to them are ordered
(thank to the consensus mechanism) and then executed in the
same order, sequentially, one request at a time, at all nodes
(this is also called active replication [13]).

Developing TEPCs as smart contracts is not trivial and
requires a new framework including four major phases:

1) Definition of TEPC. In this phase, all stakeholders
agree on the baseline (predictive model), usage con-
ditions (e.g., frequency of feeding data), the price of
the energy and the data qualification process.

2) Programming the corresponding smart contracts. The
conditions agreed on the first phase are hard-coded
inside the smart contracts, which makes them un-
changeable from outside.

3) Deployment into the blockchain system. In this phase,
a unique address for each stakeholder is generated
and hard-coded inside the smart contracts, to allow
controlled access to the smart contracts. Then the smart
contracts are deployed to the blockchain and their
corresponding unique addresses are generated.

4) Execution inside the blockchain. In this phase, the
smart contracts are executed only if they are called
through their addresses.

If at any time, the stakeholders want modifications of
the smart contracts, a new smart contractualization process
should be started from scratch.

IV. THE PROTOTYPE FOR TRUSTED EPCS

The aim of this prototype is to develop a trusted energy
performance contract (TEPC) that use a multivariate linear
predictive model (Figure 2b) for an entire building located
in a part of the world where consumption mainly consists of
air cooling loads.

The architecturally significant requirements of this proto-
type are captured using the FURPS+ system for classifying
requirements [14]: the functional requirements are identified
in Section IV-A, the reliability requirements are identified
in Section IV-B and the implementation requirements are
identified in Section IV-C. Based on these requirements, an
architectural design is then made in Section IV-D. Lastly,



Section IV-E presents the implementation details of the
prototype and Section IV-F presents how the prototype is
tested using some real data and the results obtained.

A. Functional Requirements

Functional requirements represent what the main product
shall do. To determine the functional requirements of the
prototype, two main uses cases are identified.

1) The Daily Prediction Scenario: In this scenario, the
authorized sources Client, Veolia and Meteo France provide
their climate information (temperature, humidity and pres-
sure) to the prototype every hour. At the end of the day
(exactly at 23:59), the authorized source electricity meter
of Client provides a single daily energy consumption value
and the authorized sources sensors in the Client building
provide occupancy and air conditioning temp. Immediately
after, the prototype first makes a daily qualification process:
for each hour, a qualified hourly sample is computed using
the data at hand and is then added to the list of qualified
samples. When the whole calculation for that day is finished,
the prototype calculates a daily saving value by applying a
bivariate linear model based on temperature and humidity,
where temperature is processed to represent a cooling degree
day (sum of hourly temperature exceeding 27°C) [15]. The
prediction model, fitted with R, gets its coefficients hard-
coded into simple mathematical equations. The saving value
is then accumulated to the monthly saving. At the end of the
month, the prototype computes the monthly savings as the
difference between predicted and actual consumption.

2) The Audit Scenario: In this scenario, an authorized
user (i.e. Client, Veolia or Meteo France) consults the past
information (the log stored in the blockchain) for auditing
purposes. Different types of auditing requests are possible,
such as audit the prediction of the consumption for 12:00 on
21/03/2018. The results include the climatic data provided by
the sources for the prediction of daily saving, the qualified
climate values together with their degrees of reliability and
the authorized sources that provided them (see Figure 4).

B. Reliability Requirements

Blockchains guarantee that ”once the data has been reg-
istered, it will no longer be modified by anyone”, (im-
mutability). However, they do not guarantee the ”veracity”
of the registered information. As a result, dedicated data
qualification processes shall be defined. They shall then be
contracted with the client and hard-coded as smart contracts.

One qualification process, which is called filtering, shall
check the boundary values for any given data. For example,
temperature values shall be between -30°C and 60°C, humid-
ity values shall be between 0% and 100%, pressure values
shall be between 850 bar and 1060 bar and consumption
values shall be higher than or equal to 0 kW. If, for any
reason, a value out of these boundaries is provided, it shall
be changed to the closest boundary value. For instance, if a
temperature value of -40°C is provided, it should be changed
as -30°C and stored as such.

For the data that are provided by multiple sources, the
qualification process shall use a voting mechanism that is
based on the level of confidence of each authorized source
to decide the qualified value and its reliability level.

C. Implementation Requirements

Implementation requirements specify or constrain the cod-
ing or construction of a system. An implementation the
prototype requires the following: an underlying blockchain
technology that has built-in smart contract support and fast-
prototyping feature. To this end, the Ethereum blockchain
platform5 is chosen. In the following, Ethereum is first
described, then the limitations of this choice are discussed.

1) The Ethereum Blockchain Platform: Ethereum is a
blockchain platform that runs smart contracts. Smart con-
tracts run on every computer in the Ethereum network and
they can read/write data, do expensive computations like
using cryptographic primitives, make calls (send messages)
to other contracts, etc. Consequently, there is mechanism
called gas to limit the resources used by each contract.
So-called gas is used for measuring the cost of the smart
contract operations, and each gas unit consumed by a trans-
action (function call) must be paid for in Ether, based on
a gas/Ether price which changes dynamically. This price is
deducted from the Ethereum account sending the transaction.
Transactions also have a gas limit parameter that is an upper
bound on how much gas the transaction can consume, and is
used as a safe-guard against programming errors that could
deplete an account’s funds.

Smart contracts in Ethereum are written in the Solidity
language6. Solidity smart contracts are similar to classes in
other programming languages: they have states and func-
tions. There are two types of functions that can appear in a
smart contract:

• Read-only functions: functions that do not do any state
changes. They only read state, perform computations,
and return values. As these functions can be resolved
locally by each node, they cost no gas.

• Transactional functions: functions that do a state change
in the contract or move funds. As these changes need
to be reflected in the blockchain, transactional function
execution requires sending a transaction to the network
and spending gas.

After smarts contracts are developed, the next issue is to
choose the right Ethereum network for deployment. From the
deployment point of view, there are three types of networks
available for Ethereum applications: the public network (i.e.
Main Network), public test networks (e.g., Morden, Rinkeby)
and private networks. The Main Network is where the
production applications are deployed and is accessible by
anybody. Test networks are where the test applications that

5Ethereum Foundation. Ethereum’s white paper. https://github.
com/ethereum/wiki/wiki/White-Paper, 2014. Last access on
20/03/2018.

6Ethereum Foundation. The solidity contract-oriented programming lan-
guage. https://github.com/ethereum/solidity. Last access on
20/03/2018.



do not have confidential data/algorithms are deployed and
is accessible by anybody. Private networks enable to create
one or more Ethereum nodes that are only accessible to
people with permissions. Private networks are convenient
for testing purposes or cases involving highly sensitive data,
which is the case of our prototype (confidentiality of the
daily prediction algorithm and all hourly samples). A private
network was therefore chosen for the present application.

2) Technical Difficulties: There are three main types of
technical obstacles when implementing a R-based predictive
model as a Solidity smart contract.

• Lack of floating-point number support: Solidity does
not support floating point numbers7. For example, the
operation 1.9 ∗ 2 truncates the result to 2 and the
operation −1.9/2 truncates the result to 0. To tackle
this limitation, the units of the values can be changed
to small enough unit (e.g., from kW to watts) to produce
the results of desired precision.

• Lack of standard math libraries: Solidity lacks the stan-
dard mathematical libraries needed for implementing
predictive R models as smart contracts, especially the
ones about array and matrix operations. Thus, necessary
operations shall be implemented as Solidity functions.

• Memory limitations: Solidity smart contracts have cer-
tain memory limitations. As a result, the original
monthly predictive R model shall be transformed into
a daily predictive model since it is not possible to keep
one month hourly climate data inside a smart contract.

Another important limitation of Ethereum, and all other
existing blockchain technologies, is the accuracy of the time.
In blockchain systems, it is only possible to access to the time
information by using the time-stamps of blocks. However,
this information is not totally reliable and can be easily
manipulated over short periods by an attacker. Moreover,
smart contract functions can only be activated from an
external call, i.e. timers cannot be implemented in smart
contracts for triggering specific functions at specific times.
Therefore the time-stamp information of blocks needs to be
supplemented with some other strategy in the case of high-
value/risk applications, such as in our prototype where to
issue invoices to the clients the calculations should be made
at precise times, i.e. the end of the day and the end of the
month.

Based on the requirements identified in Section IV-A,
Section IV-B and Section IV-C, the next section describes
the architectural design of the prototype.

D. Design

This section describes the architectural design of the
prototype as a functional architecture (Figure 3). A func-
tional architecture is an architectural model from a usage
perspective which is composed of the modules (blocks) that

7Neither Solidity nor other smart contract languages support floating-
point numbers. This is because the result of floating-point calculations
depend on the used algorithms and/or the CPU architectures [16], and such
a case is not supported in active replication [13].

represent each software entities and flows that represent the
interactions between these entities.

The functional system architecture of the prototype is com-
posed of the following modules (Figure 3): the blockchain
(the red block), the smart contracts (the blue blocks), the
authorized sources (yellow blocks), the auditor (the grey
block) and the user interface (the green block).

1) The Blockchain: The underlying blockchain network
is a private Ethereum blockchain network. It is composed of
the following: an immutable ledger Blockchain, the smarts
contracts Data Qualifier, Predictor, Aggregator

and Validator, and 7 predefined wallets (account0,
account1, ... account6), one for the miner and six for
the authorized sources, with sufficient balances. When the
Ethereum network is initialized, first a miner that is using
account0 (i.e. coinbase) is activated. This makes the miner
create blocks for Blockchain. After that, the smart contracts
are deployed to Blockchain. Since the dedicated wallets
(account addresses) for each authorized source are hard-
coded in these smart contracts, once the smart contracts are
deployed, it is not possible change the information about
the authorized sources in the blockchain. This approach
increases the confidence to the prototype.

2) Authorized Sources: The authorized sources are the
sources that are authorized to provide data to the system.
Each authorized source can only provide the data expected
from them. There are six authorized sources in the system:

• Client Meter is an electricity meter that provides the
actual daily consumption of the client (in terms of kW).

• Client module provides hourly samples gathered by
the sensors installed in the client’s building.

• Meteo France module provides hourly samples gath-
ered by the agreed third-party like Meteo France.

• Veolia is a software entity that provides hourly sam-
ples gathered by the external contractor Veolia.

• Time Oracle is a software entity that provides precise
time information to the blockchain such as the end of
the day or the end of the month. It is added to the design
to tackle with the correct time information problem
described in Section IV-C.2.

• Client Building represents the sensors installed in
the client’s building and provides occupancy and air
conditioning temperature data (static data).

3) Smart Contracts: Due to the limitations mentioned in
Section IV-C, a trusted EPC is represented as four smart
contracts in the system: Data Qualifier, Predictor,
Aggregator and Validator.

• Data Qualifier: The aim of this smart contract is
threefold: (1) to store information about authorized
sources, (2) to qualify the data coming from authorized
sources as described in Section IV-B and (3) to start
the daily prediction process. (1) is fulfilled by hard-
coding the authorized sources inside the contract code
and (2) is fulfilled by providing dedicated transactional
functions for filtering and voting. The voting algorithm
works as follows: Client, Veolia and Meteo France



Fig. 3. The functional system architecture represented as a SysML block diagram. All data coming to contracts are logged in Blockchain.

have predefined weights (3, 3, and 4 respectively)
that represent their degrees of reliability. The voting
algorithm first groups the closest inputs coming from
two authorized sources together. Then it selects the
group that has the highest weight. Lastly, it calculates
the weighted average of the selected group as the
qualified value and calculates the sum of the weights
as the reliability value. Note that the choice of weights
distribution makes the neutral source prevail unless it is
contradicted by the two others. (3), on the other hand,
is triggered by the time oracle at the end of the day
(23:59) and fulfilled by passing all the qualified hourly
values, i.e. qualified daily sample, to Predictor for
prediction calculation.

• Predictor: The aim of this smart contract is to predict
the daily saving using the qualified daily sample for a
given date. When a qualified daily sample is handled to
Predictor, the daily saving is calculated by using the
statistical model separately fitted with R. The output
of this daily saving calculation is then passed to the
Aggregator smart contract.

• Aggregator: The aim of this smart contract is to
aggregate savings from daily into monthly time stamp.
When a daily saving is added, it increments the total
saving by the amount of the current date. Eventually,
when the Time Oracle declares the end of the month,
the contract calculates the monthly saving in kW and
translates it into a financial flow.

• Validator: The aim of this smart contract is to vali-
date static variables of the client building.

4) Auditor: To query Blockchain for audition purposes
as described in Section IV-A.2, a software module called
Auditor is used. The authorized users make their audition
queries through this module and then the retrieved informa-
tion is shown to the corresponding authorized user through
a user interface.

5) User Interface: To provide a human machine inter-
face between the authorized users and the prototype, two
user interface modules are used: Web Application and
Block Explorer. Web Application user Auditor to
query Blockchain and display the corresponding results.
Since the audited information is stored in Blockchain, it
shows all results together with their corresponding block
numbers. The authorized users may then check the details
of each information by using these block numbers through
Block Explorer.

E. Implementation

The implementation is done using the following technolo-
gies: the blockchain by using Ethereum8, the smart contracts
by using Solidity, the authorized sources and the auditor by

8Ethereum is the first and leading blockchain framework that allows users
to develop, run and use smart contracts.



Fig. 4. The screen-shots that belong to three different windows of Web Application: (a) Qualified Daily Climate Values as List, (b) Hourly
Samples, and (c) Qualified Daily Climate Values as diagram.

using web3j9, and the UI by JHipster10 and REST11.
Since there is no standard library for mathematical oper-

ations, especially for array operations, in Solidity, all nec-
essary mathematical function have been implemented from
scratch. Concretely the following functions are implemented:

• pmax(int p, int[] v): returns the maxOf(p,

v[i]) for each element i of a given array v.
• expArray(int[] v): returns the exponential of each

value in a given array v.
• expScalar(int s): returns the result of the exponen-

tial function of the form es.
• power(int a, int b): returns the result of the

power function of the form ab.
• factorial(): returns the factorial of a given scalar.
• xScalar(int[] v, int s) functions: used for

adding to, subtracting from, multiplying with or
dividing by a given vector v and given scalar value s.

• xArray(int[] v, int[] y): returns the addition,
subtraction, multiplication or division of two given
arrays with the same size.

• sum(int[] v): returns the sum of the all elements in
an int array.

• mean(int[] v): returns the mean of the values of a
given integer array.

9web3j is a highly modular, reactive, type safe Java and Android library
for working with Smart Contracts and integrating with clients (nodes) on
the Ethereum network. This allows working with the Ethereum blockchain,
without an extra overhead of having to write an integration code for the
platform. https://web3j.io/. Last access on 21/03/2018.

10JHipster is a fully Open Source, widely used application generator for
easily creating high-quality Spring Boot + Angular projects. https://
www.jhipster.tech/. Last access on 21/03/2018.

11REST (Representational State Transfer) is an architectural style for de-
signing distributed systems. https://spring.io/understanding/
REST. Last access on 21/03/2018.

• max(int[] v): returns the greatest value of a given
integer array.

• maxOf(int a, int b): returns the max value of two
given scalar values.

To tackle with the floating-point number support limita-
tion, the original predictive R model is be transformed into
an integer-based model. To do so, a multiplicative factor is
used and dedicated functions are developed in R to simulate
arithmetic operators that discard the fractional part of both
the input and the output. The deviation from the true monthly
savings value is +1.3% or -0.0006% with a multiplicative
factor of 103 or 106 respectively.

F. Test
The developed prototype is tested by using a full set of

5 days data (from 01/11/2015 to 05/11/2015), i.e. climate
values provided by each authorized source. These values are
partly real (energy consumption and meteo france weather
data) and partly simulated (the two other weather sources
were artificially altered to show a situation of divergence
and test the reliability procedure).

Figure 4 shows the results of the conducted test12. Figure
4a and Figure 4c show the same qualified climate values
stored in Blockchain with different views. Each qualified
climate value has an associated color that represents its
degree of reliability: the red color means the reliability is
4, the orange color means the reliability is 6, the yellow
color means the reliability is 7 and the green color means
the reliability is 10, when all actors agree on the climate
values.

Figure 4b shows the climate values for specific dates
and times (i.e., hourly sample) provided by each authorized

12Due to the space limitations, the windows are shown in one single
figure.



source together with their block numbers and is used to
further analyze the qualified data shown in Figure 4a and 4c.
For example, the details of the first line of (a) can be seen as
the three first lines of Figure 4b. From any windows shown
in Figure 4, upon clicking on block numbers or authorized
source names, it is possible to open Block Explorer to
manually verify the blockchained data.

V. DISCUSSIONS AND CONCLUSIONS

In this study, an energy performance contract (EPC) that
use a multivariate linear predictive model empowered by
blockchain technologies has been developed with the aim
of improving the trust between the client and the service
provider. Ultimately, such a system could allow the use
of more complex predictive models. To the best of our
knowledge, this is the first working EPC prototype using
blockchain technology performing the following value-added
services:

• the invoicing service based on (1) the data flow in
the monitoring phase and the associated qualification
method and (2) the baseline model used for prediction.

• the audit service that supports querying the blockchain
about the invoicing process.

This working prototype shows the feasibility of the ap-
proach, however, several limitations must be still addressed.
Memory and decimal limitations make it hard, for now, to
implement a machine learning model as a smart contract,
even if the fitting part is kept outside the Blockchain.
Some machine learning models render a couple of simple
prediction rules or equations [10] (such as decision trees, reg-
ularized regression, generalized linear regression) and can be
regarded as ”Ethereum-compatible”, but the majority depend
on large matrices or heavy computations [17]: SVM, en-
semble methods (boosting, randomForest), neural networks,
KNN. The issue of how to implement a numerically complex
predictive model, making them more ”trustworthy” to a client
(Figure 2c), has not yet been addressed.

As future work, we will explore the following axes:
• Evaluating alternative blockchain technologies, as Hy-

perledger Fabric13 and Monad/Tendermint14 that enjoy
a different execution mechanism for smart contracts.

• Possibility to treat the code as a ”data” to be stored
in the blockchain and execute calculations outside the
blockchain. Inputs and outputs (and some potential in-
termediate checkpoints) are stored in the blockchain. It
would be possible with this mechanism to reconstruct at
any time the execution trace of the off-chain calculation.

Another important subject is the life-cycle management
of smart contracts when the real contracts between the client
and the service provider are supposed to evolve. Up-to-now
smart contracts are intended to freeze in a piece of code
conditions and terms, which are then secured and nobody can
change (since the contract code is secured by the blockchain

13https://www.hyperledger.org/projects/fabric. Last
access on 23/03/2018.

14https://tendermint.com/. Last access on 23/03/2018.

once deployed). When an amendment to a given contract
is made, terms and conditions get obsolete and a new smart
contract should replace the old one, that is the old one should
be deactivated. Methods for deactivation while guaranteeing
security (no malicious manipulation of terms and contracts
and no access to obsolete versions) will be studied.

The last point is about the concrete deployment that should
be pursued. The prototype is today running in a private
small-scale network for demonstration purposes only. A real
experimentation must be conducted as next step and the
choice of a private or public network must be done before
commercialization. This choice is indeed also related to
confidentiality issues, revenues models and the possibility of
creating a community of users, i.e. both clients and service
providers in the energy domain. As a conclusion, even if
there is still a long way to go before actual commercializa-
tion, our experience reported in this paper highlights some
exciting R&D issues that must to be addressed in the next
future to make blockchain technology industrial-ready.

REFERENCES

[1] D. J. Taasevigen, S. Katipamula, and W. Koran, “Interval data analysis
with the energy charting and metrics tool (ecam),” tech. rep., Pacific
Northwest National Laboratory (PNNL), Richland, WA (US), 2011.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2018.
https://bitcoin.org/bitcoin.pdf.

[3] T. A. Reddy, N. F. Saman, D. E. Claridge, J. S. Haberl, W. D.
Turner, and A. T. Chalifoux, “Baselining methodology for facility-
level monthly energy use-part 1: Theoretical aspects,” in ASHRAE
transactions, ASHRAE, 1997.

[4] O. Akinsooto, D. De Canha, and J. Pretorius, “Energy savings re-
porting and uncertainty in measurement & verification,” in Power
Engineering Conference (AUPEC), 2014 Australasian Universities,
pp. 1–5, IEEE, 2014.

[5] P. N. Price, “Methods for analyzing electric load shape and its
variability,” tech. rep., LBNL/CEC, 2010.

[6] D. Ruch, J. Kissock, and T. Reddy, “Prediction uncertainty of linear
building energy use models with autocorrelated residuals,” Journal of
solar energy engineering, vol. 121, no. 1, pp. 63–68, 1999.

[7] B. Yan, A Bayesian approach for predicting building cooling and
heating consumption and applications in fault detection. University
of Pennsylvania, 2013.

[8] M. C. Burkhart, Y. Heo, and V. M. Zavala, “Measurement and
verification of building systems under uncertain data: A gaussian
process modeling approach,” Energy and Buildings, vol. 75, pp. 189–
198, 2014.

[9] T. Reddy, J. Kissock, S. Katipamula, D. Ruch, and D. Claridge, “An
overview of measured energy retrofit savings methodologies developed
in the texas loanstar program,” 1994.

[10] C. Molnar, “Interpretable machine learning. a guide for making black
box models explainable..” https://christophm.github.io/
interpretable-ml-book/. Accessed: 2018-03-22.

[11] Ö. Gürcan, A. Del Pozzo, and S. Tucci-Piergiovanni, “On the bitcoin
limitations to deliver fairness to users,” in On the Move to Meaningful
Internet Systems. OTM 2017 Conferences (H. Panetto, C. Debruyne,
W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna, and R. Meers-
man, eds.), (Cham), pp. 589–606, Springer Int. Publishing, 2017.

[12] N. Szabo, “Smart contracts: Formalizing and securing relationships on
public networks,” First Monday, vol. 2, September 1997.

[13] B. Charron-Bost, F. Pedone, and A. Schiper, eds., Replication: Theory
and Practice. Berlin, Heidelberg: Springer-Verlag, 2010.

[14] R. B. Grady, Practical Software Metrics for Project Management and
Process Improvement. NJ, USA: Prentice-Hall, Inc., 1992.

[15] R. Bonhomme, “Bases and limits to using degree. dayunits,” European
journal of agronomy, vol. 13, no. 1, pp. 1–10, 2000.

[16] D. Monniaux, “The pitfalls of verifying floating-point computations,”
ACM Trans. Program. Lang. Syst., vol. 30, pp. 12:1–12:41, May 2008.

[17] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, vol. 1. Springer series in statistics New York, 2001.


