
HAL Id: cea-01807036
https://cea.hal.science/cea-01807036

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Secure and Trusted-by-Design Smart Contracts
Zaynah Lea Dargaye, Florent Kirchner, Sara Tucci-Piergiovanni, Önder

Gürcan

To cite this version:
Zaynah Lea Dargaye, Florent Kirchner, Sara Tucci-Piergiovanni, Önder Gürcan. Towards Secure
and Trusted-by-Design Smart Contracts. Les vingt-neuvièmes Journées Francophones des Langages
Applicatifs (The 29th Francophone Days of Application Languages - JFLA 2018), Jan 2018, Banyuls-
sur-Mer, France. �cea-01807036�

https://cea.hal.science/cea-01807036
https://hal.archives-ouvertes.fr

Towards Secure and Trusted-by-Design Smart Contracts

Zaynah Dargaye, Önder Gürcan, Florent Kirchner, and Sara Tucci Piergiovanni

CEA, LIST, Point Courrier 174, Gif-sur-Yvette, F-91191 France
lea-zaynah.dargaye@cea.fr, onder.gurcan@cea.fr, florent.kirchner@cea.fr,

sara.tucci@cea.fr

Abstract

Distributed immutable ledgers, or blockchains, allow the secure digitization of eviden-
tial transactions without relying on a trusted third-party. Evidential transactions involve
the exchange of any form of physical evidence, such as money, birth certificate, visas,
tickets, etc. Most of the time, evidential transactions occur in the context of complex pro-
cedures, called evidential protocols, among physical agents. The blockchain provides the
mechanisms to transfer evidence, while smart contracts – programs executing within the
blockchain in a decentralized and replicated fashion – allow encoding evidential protocols
on top of a blockchain.

As a smart contract foregoes trusted third-parties and runs on several machines anony-
mously, it constitutes a highly critical program that has to be secure and trusted-by-design.
While most of the current smart contract languages focus on easy programmability, they
do not directly address the need of guaranteeing trust and accountability, which becomes
a significant issue when evidential protocols are encoded as smart contracts.

1 Introduction

The rise of immutable distributed ledgers, or blockchains, extends the “code is law” vision to
organizations and corporations through the Decentralized Autonomous Organization (DAO)
concept. Indeed, blockchains allow the secure digitization of evidential transactions without
relying on a trusted third-party [21] – where evidential transactions involve the exchange of any
form of physical evidence, such as money, birth certificates, visas, tickets, etc. Most of the time,
evidential transactions occur in the context of complex procedures encoded by specific programs,
called smart contracts, executing within the blockchain in a decentralized and replicated fashion.
A DAO, in particular, is an organization run by smart contracts encoding rules of governance.
For those organizations, promises in terms of independence and savings are great advantages
that smart contracts can enable, through the removal of both the trusted third-party and the
need for repetitious (often manual) execution of contracts.

The smart contract concept thus plays a major role in a DAO. However, there is no official
definition of smart contract: so far, no agreement has been established regarding this concept.
Originally in 1994 in [21], Nick Szabo defined a smart contract as a computerized transaction
protocol that executes the terms of a contract. The general objectives are to satisfy common
contract conditions (such as payment terms, liens, confidentiality, and even enforcement) and
minimize the need for trusted intermediaries. Related economic goals include lowering fraud
loss, arbitration and enforcement costs, and other transaction costs. Nick Szabo believes that
a contractual clause implemented in software and benefiting from cryptographical mechanisms
would make the infringement of contracts very expensive – it is exactly this aspect that makes
the contract “smart”. Nowadays, a smart contract designates any piece of code running in
the blockchain, losing the legal flavor but keeping its immutability properties: once in the
blockchain the smart contract cannot be changed, becoming the “law” for the community using
it.

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

Recently Josh Stark, Head of Operations & Legal at LedgerLabs, in the Ethereum commu-
nity made an attempt to clarify these notions identifying two kinds of smart contracts (see [20]):
smart legal contracts and smart contract codes. So far, most of the attention has focused on
improving and designing smart contract code. Smart contract code languages, such as Solid-
ity for Ethereum, lack both formal foundations and the expressiveness to program smart legal
contracts in a secure way. To make things worse, a large number of vulnerabilities coming from
the execution of the programs in a widely distributed network, i.e., the blockchain network, are
fully exploitable today.

The lack of formalization and verification has already shown its impact: the famous attack
on The DAO [9] was caused by a simple bug in the smart contract. The survey [3] shows that
most attacks in Ethereum were caused by bugs or vulnerabilities of the execution platform
(Ethereum Virtual Machine and blockchain network). Recently, the Tezos ledger has taken
several steps to address these problems, with the use of OCaml for its implementation, and
Michelson, a statically typed functional language for its smart contracts. However, the overall
challenge of smart contract security remains unchanged. We advocate that to tackle this chal-
lenge there is the need (i) of a formal language specifically designed to capture the notion of
trust (accountability, authentication, privacy) for the secure implementation of smart legal con-
tracts in software, (ii) to capture and abstract the subtleties of the execution of smart contracts
in a possible wide distributed environment and (iii) to provide full support for a compilation
chain towards smart contract code language.

In this paper, we focus on the design of the smart legal contract language. We advocate
that such a challenge could be addressed by extending so-called trust management frameworks
to the blockchain. Trust management frameworks are formal frameworks allowing to formal-
ize the specification of evidential protocols and to verify their correct implementation using
a trusted-by-design approach. In particular, this paper presents a Coq implementation of a
Cyberlogic framework that gathers the main features of smart legal contracts. Cyberlogic is
a trust management framework, a first-order logic featuring an authority algebra for specify-
ing protocols and their policies. Therefore, the Coq implementation enables to mechanically
specify and verify Cyberlogic protocols, enabling to provide computable proofs. Moreover, as
the Cyberlogic implementation is a shallow embedded one, a smart legal contract specified in
Cyberlogic can be extracted to an executable language.

The paper is organised as follows: Section 2 presents the state of the art on the specification
of evidential protocols detailing Cyberlogic and its implementation in Coq. Section 3 shows
how to apply Cyberlogic to the design of trustworthy smart contracts. We corroborate our
statement by specifying a smart contract in Cyberlogic and we present its implementation in a
smart contract code. Finally, Section 4 presents our future work.

2 State-of-the-Art: Specifying Evidential Protocols

Evidential protocols by essence are based on trust between entities and particularly third-parties
such as governments, banks or insurances. In an evidential protocol, those kind of entities
exchange specific data, called evidences. A piece of evidence can be an official certificate, a
license or a visa. It constitutes critical data, and is usually stated or claimed by a specific
authority. Although accountability is endorsed by the authority which claims it, an evidence
has to be formally specified as well as any other data in a protocol. Smart contracts have a lot
in common with evidential protocols where a smart contract represents the interaction between
the blockchain and the real world.

In this section, we detail the state-of-the-art of evidential protocols specification. First, we

2

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

present trust management frameworks which allow to specify trust and accountability. Second,
we focus on the Cyberlogic framework which is an extended trust management framework
allowing reasoning and verification. Finally, we detail our Coq implementation of Cyberlogic.

2.1 Trust Management

The underlying concepts of evidential protocols are the accountability of the evidence, its es-
tablishment and its usage. Therefore, the specification of evidential protocols requires being
able to specify trust and accountability, which is the purpose of trust management.

PolicyMaker [7] is a trust management tool which associates to the management of the
security (via public/private keys) a logic of predicates on keys. PolicyMaker is a language
which features the ability to insert logic assertions. These assertions can express that a certain
key permits (authorizes) a certain predicate. However, PolicyMaker does not allow formal
reasoning for constructing a proof that validates the claim of an authority (ie., an abstraction
of the entity that owns the key). The descendant of PolicyMaker is KeyNote [6], an other trust
management framework is Fidelis [23]. This approach tackles the specification of policies in
evidential transactions.

On the other hand, interesting contributions have been done about verification of trust in
evidential protocols. In particular, a first alternative is to use the a posteriori validation of
the authentication [2]. The proof accompanies the data and is verified at the reception by
the authority. It has a cost and adds some work to the authority. [14] describes a delegation
logic which considers the delegation of the authority. This logic permits expressing relation
such as: “A claims P”, “A delegates P to B with a delegation of k depth (a trusted chain of k
authorities)”, “A claims for B about P”.

The Cyberlogic framework inherits the major features of trust management systems. In
addition, Cyberlogic features native constructions to deal with distributed systems.

2.2 Cyberlogic

Cyberlogic [19] is designed for the transition from paper documents to electronic documents.
In particular, Cyberlogic offers a framework for formalization and reasoning on attestation
elements such as visas, certificates etc. . . Cyberlogic is a logic and a distributed program in
which protocols can play several exchanges of attestations. As Cyberlogic features a first order
logic, it allows to reason upon the actions of a Cyberlogic protocol. Cyberlogic also features an
authorities’ algebra allowing it to reason upon trust and accountability.

In addition to the expression of certificates and visas, we believe that the authorities’ algebra
can also be useful in complex systems verification, and whenever trust into an entity takes the
form of a formal verification : acceptance.

This could, for instance, be the case of a development using a black-box library. The library
editor claims that the library has been formally verified. Then, the user can suppose that
each function of this library obeys its specification. In that configuration, Cyberlogic provides
feature to naturally express some hypotheses usually categorized as informal hypotheses, or
working hypotheses. If Spec is the specification of the function f of the library, then the user
can use Cyberlogic to formalize its development. Hence, the specification of f becomes a formal
formula: E B Spec(f). If the editor has used Cyberlogic to formalize the library, then the
library specification can be reused by the user. Finally, if f does not fill its specification and
appears to bug in the development, the user can identify the editor as guilty and accountable.

An interpreter for Cyberlogic protocols and formulas has been developed at SRI Interna-
tional, using the PVS system [17]. Since 2013 at CEA List, thanks to two national projects

3

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

(SystemX MIC and FUI GeoTransMD) a Coq [15] implementation has been developed and
used to verify authenticity properties of distributed protocols in communication systems.

In particular, the authors of [19] state that Cyberlogic is designed to enable evidential pro-
tocols implementation into agent-based frameworks where agents execute Cyberlogic protocols
to carry out specific tasks that require the exchange of authorization and authentication infor-
mation. Nowadays, this definition seems quite similar to blockchain protocols. In particular,
we believe that Cyberlogic provides most of the properties required by a smart legal contract
language.

2.3 Shallow Embedding Implementation of Cyberlogic in Coq

We developed a theorem prover for Cyberlogic as a shallow embedded implementation of Cy-
berlogic in the Coq theorem prover. The shallow embedding implementation allows to inherit
all Gallina expressiveness and to use the standard libraries of Coq. Our implementation benefits
the extraction mechanism as well. Moreover, it allows to focus only on the specific feature of
Cyberlogic: the attestation. An attestation is a logic formula claimed by an authority. The
other Cyberlogic constructors are those of the Coq language itself.

2.3.1 Authority and Attestations

Authorities are the owners of claims. A claim is a property of a data endorsed by an authority.
The authority is accountable for the claimed property. An authority is the abstraction of a
entity such as a person, a bank, a company or an organization, i.e. any actor of the system
who can establish or claim a property. In Cyberlogic, an authority is uniquely identified and
decidable comparable to other authorities.

2.3.2 Different Kinds of Attestations

An authority can claim a property either directly or indirectly. If an authority claims something
directly then it could have established it itself and is accountable for this claim. If an authority
claims something indirectly, it means that another authority transmits her(him) this claim. In
other words, the chain of trust can be traced to find the accountable authority.

In the formalization we name the qualification direct or indirect through the access concept.

Inductive access := | Direct : access | Indirect : access.

There are different kinds of claims (named authority in the Coq development). In addition
to the combination of an authority and an access mode, time can be taken in account in some
claims. As in modal logic, it is possible to claim a fact before, at or after a date. Then, a claim
defines an owner, an access and a timing for a claim.

Inductive authority :=
| Key : Authority → access → authority
| KatT : Authority → access → time → authority
| Kbef : Authority → access → time → authority
| Kaft : Authority → access → time → authority.

2.3.3 Attestations

An attestation is a property which is claimed by a authority.

Variable attestation : authority → Prop → Prop.

4

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

For the sake of clarity, let’s define some notations as similar as possible from those of the
original paper [4].
k | > f k B f k attests directly f
k ∗ | > f k : . f k attests indirectly f
k | >= t f k B=t f k attests directly f at t
k ∗ | >= t f k : .=t f k attests indirectly f at t
k | >< t f k B<t f k attests directly f before t
k ∗ | >< t f k : .<t f k attests indirectly f before t
k | >> t f k B>t f k attests directly f after t

2.3.4 Delegation of Attestation

Cyberlogic authorities’ algebra features a delegation system which appears in the indirect mode.
An indirect claim models that this claim has been obtained by delegation from another author-
ity. The accountable is the originate claimer. D1(A,B, P) says that A claims P and A knows
P from B, B is accountable for P . D2(A,B, P) says that A has been directly delegated by
some other authority (C) to claim P . But C is not accountable for P , B is. D2 is a special
delegation chain of depth 3. A delegation is indexed by the length of the chain of authority
from the original claimer to the authority which actually claims.
Definition Dinf (k k’ : Authority) (A:Prop) := (k’ *|> A)-> (k *|> A).
Definition D1 (k k’ : Authority) (A:Prop):= (k’|>A) → (k *|> A).
Definition D2 (k k’ : Authority) (A:Prop):=
(∀ (k0 : Authority), (k0 |> A) ∧ (k’ |>((k0 |> A)->A))) → (k *|> A).

2.3.5 Time Reasoning in the Cyberlogic

Cyberlogic integrates features of modal logic in the authority algebra. A specific authority is
accountable of time: Kt. Kt establishes the current time by the predicate curr, date in the
past by the predicate has been and in future by the predicate in futur.
Variable hasbeen: time → Prop.
Definition is time (t :time):Prop:= Kt *|> (hasbeen t).
Definition curr (t :time):Prop:= is time t ∧ (∀ (t’ :time), (is time t’) → t’≤ t).
Definition in future (t :time):= Kt *|> ~(hasbeen t).

3 Cyberlogic for Specifying Smart Legal Contracts

Cyberlogic allows reasoning both on (i) actions, thanks to a first-order logic and (ii) on trust
and accountability, thanks to the authority algebra. Being specifically designed for evidential
protocols and benefiting from a implementation in Coq, we advocate that Cyberlogic is, indeed,
a perfect candidate to be at the core of a smart legal contract language. To support our claim, in
this section, we show Cyberlogic at work by specifying the Schengen visa management process
as a Cyberlogic protocol and present the corresponding smart contract code in Solidity1.

1The availability of a formal and proved specification opens the way for a formal compilation chain targeting
the smart contract code; the compilation chain, however, is not in the scope of this paper (see section 4 for a
detailed future work discussion.

5

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:nat scope:x '<=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

3.1 Schengen Visa Management

The Schengen visa management which is described in accordance with the European Commis-
sion, is an evidential protocol where the visa represents an evidence delivered by a country of
the Schengen area. In order to obtain that evidence, it also requires to gather other evidence (in
accordance to the requirements of the visa management process). The visa itself is an evidence
stating that all the requirements are satisfied.

Nowadays, the execution of visa management protocol is time consuming, with latency
experienced for each required evidence, and mostly manual (photocopies, forms, ...). The
digitalisation of the entire protocol through smart legal contracts is indeed a good opportunity
to improve the protocol and make it more secure. In the remainder of this section we provide
a characterisation of the visa management as a Cyberlogic protocol, highlighting the kind of
reasoning that can be made. In particular, the Cyberlogic specification allows the verifier of
the visa (e.g. the customs officer) to roll-up the entire chain of trust to find the authority
accountable for the possible error.

3.2 The Schengen Visa as a Cyberlogic Protocol

We propose to implement the Schengen visa management protocol as a smart legal contract.
The result would be to alleviate centralization and possible related bottlenecks by digitizing the
process in a secure and decentralized way 2. Let us note, indeed, that the intermediary here
is the smart legal contract itself that will be later encoded as a smart contract code running
in a blockchain. The smart contract code will, indeed, (i) encode all the rules pertaining to
the management of the Schengen’s visa, including rules on authorities that have the right to
deliver it, and (ii) will be executed in a secured and decentralised fashion among the blockchain
participants.

Let us now to explicit our smart legal contract. First of all, to satisfy the autonomy and the
authority of the real states of the Schengen area, the smart legal contract includes a consulate
(or prefecture) role as official authority having the rights to deliver the visa. At delivery time,
this official authority delegates the visa to the requester, where: (i) the official authority is
still the unique accountable for the visa and (ii) the requester is allowed to provide directly the
required pieces of evidence.

Let us note that the consulate can be viewed as a trusted third party we are still relying on.
On the other hand, we propose to formally delegate the entire procedure to the requester and to
exploit blockchain immutability properties to correctly compute proofs on executed scenarios.
This approach without fully realising the vision of a decentralised and autonomous organisation,
represents a first step in this direction 3. Anyway, a smart legal contract to manage the Schengen
visa will allow active controls, transparency and detection of contradictory requirements. A
controller will be able to “go behind” the visa itself and consult the requirement it represents.
In case of two requirements are contradictory, the controller will be able to observe it.

The management of the Schengen visa as a smart legal contract in Cyberlogic is composed of
4 functions which are: its demand, its delivery, its control and its indictment. Let’s informally
define these 4 functions.
To demand a Schengen visa is to write evidential requirements of the Visa’s protocol in the

2We are aware that the adoption of such a smart legal contract is not only a technical issue, since legal
compliance with the proposed framework should also be evaluated. However, since our goal is to show how
CyberLogic works, we are not taking into consideration legal issues.

3Our approach is still compliant with the actual organisation of States and their rules, a different fully
decentralized organisation would be possible using self-certification and new governance rules.

6

https://ec.europa.eu/home-affairs/what-we-do/policies/borders-and-visas/visa-policy/required_documents_en
https://ec.europa.eu/home-affairs/what-we-do/policies/borders-and-visas/visa-policy/required_documents_en

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

blockchain, once and for all thanks to immutability. The accountability is preserved thanks
to the Cyberlogic protocol, where each evidential requirement is a claim from the appropriate
authority.
To deliver a Schengen visa is to write the visa in the blockchain, the visa is claimed by the con-
sulate (or official state organization) and is delegated to the requester, thanks to the Cyberlogic
delegation. The chain of trust from the visa is digitized thanks to the delegation mechanism of
Cyberlogic.
To control a Schengen visa is a read in the blockchain, accessing to the evidential requirements
by rolling-up the trust chain.
To suspect a Schengen visa is to extract the evidential requirements from the blockchain,
analysing the evidential requirements and identifying the potential suspicious claims, i.e. com-
puting accountability.

3.3 The Cyberlogic Protocol

We present the smart legal contract of the Schengen visa as a Cyberlogic protocol that exchanges
transactions that carrying a visa, its demand or its control.

Inductive transaction:=
| Demand: Schengen demand → transaction
| Deliver : visa → transaction
| Control : visa → transaction.

Queries are the suspicions that an officer can make. When an officer suspects a visa, he will
make queries about it.

Definition query := visa → Prop.
Definition queries := list query.

A smart contract answers to a querry either that the visa is valid or that there is a list of
suspicious claims about the visa.

Inductive answer :=| Valid : answer | Suspects : list Prop → answer .

Action designates the interaction API with the blockchain. It consists in three operations
on transactions: reading the ledger, writing in the ledger and questioning the ledger about
properties on a specific data. The API presented here is light but sufficient for highlighting the
Cyberlogic properties.

Variable action:Type.
Variable write: Authority → transaction → action.
Variable read : Authority → transaction → action.
Variable verify : Authority → visa → queries → answer .

The functions of the Schengen visa smart contract in the Cyberlogic protocol becomes:

Definition demand (Requester : Authority)(C :country) (f :schengen form) (pic:photo)
(pport :passport)(trvls:travel itinerary)(ins policy :travel health)(accs:accommodations)
(suff :sufficient means)(t :time):=

write Requester (Demand (mkDemand f pic pport trvls ins policy accs suff t)).
Definition deliver (cons:Authority)(v :visa):= write cons (Deliver v).
Definition control (officer :Authority)(v :visa):= read officer (Control v).
Definition suspect (officer :Authority)(v :visa) (ev :queries):= verify officer v ev.

7

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

3.4 The Protocol Policies

The policy of demanding a visa is a time-stamp verification. The requester is accountable of
the demand.
Definition demanding (r :Authority) (t :time) (c:country) (d :Schengen demand):=

time stamp d = t ∧ (r |>=t make (demand r c (form d) (picture d) (pass d) (travels d)
(insurance d) (lodgings d) (sufficient d) (time stamp d))).

A consulate delivers a visa if the visa demand is valid. The appendix (see A) details the
validity of a demand: the seven requirements are satisfied and claimed by the appropriate
authority. For example, the validity of the passport of a citizen of a country C, is a claim of C,
i.e. C is accountable for the validity of the passport.
Definition delivering validation (cons req :Authority) (v :visa) (t :time) :=
∃ d, visa of demand d v ∧ demanding req (time stamp d) (country of cons) d ∧

schengen demand validation req d ∧ (cons |>=t (make (deliver cons v))).
Definition delivering (cons req :Authority) (v :visa) (t :time) :=
(D1 req cons (cons |><t delivering validation cons req v t)).

Of course only specific persons can control a visa, this officer has to be one of the Schengen
area. If an officer has some suspicions regarding specific properties of the visa, two cases can
happen. First case, this was a false alert and the officer claims a proof that all queries are
satisfied. Second case, this was a real alert and the officer claims a list of suspicious claims that
have to be checked.

Definition controlling (officer :Authority) (v :visa) (t :time):=
schengen officer officer ∧ curr t ∧ (officer |>=t (make (control officer v))).

Definition false alert (officer :Authority) (v :visa)(ev :queries) (t :time):=
schengen officer officer ∧ (officer |>=t (make answer (suspect officer v ev))) ∧
suspect officer v ev= Valid.

Definition raise alert (officer :Authority)(v :visa)(ev :queries) (evidences: list Prop) (t :time):=
schengen officer officer ∧ (officer |>=t (make answer (suspect officer v ev))) ∧
suspect officer v ev= Suspects evidences.

3.5 The Cyberlogic Protocols at Work

In this section, we present a scenario specified in the Cyberlogic implementation to highlight
the accountability computation, its role in conflict detection and the fact that it allows to raise
an alert. Today, this facility can only be applied at design time while playing scenarios to
improve Cyberlogic protocol. We plan to transpose this facility at runtime via a monitoring
smart contract or service. To do this, the Cyberlogic framework has to be extended to consider
transactions as first class citizens and to express accountability on transaction instead than
only on properties. The scenario is as the following:

Jon Snow requests a Schengen visa to the French consulate for 3 months. He plans to stay
in Paris from the 1st June 2018 to 31st August 2018 in the Icy Wall.

Definition JSaccs := mkAcc IcyWall FirstJune2018 ThirtyFirstAugust2018 .
Definition JSaccs := JSacc::nil.

His flight tickets are:
Drogo airline from Winterfell (Essos) to Paris (France) on the flight 3

1st June 2018 departure: 3am arrival: 3:30am

Drogo airline from Paris (France) to Winterfell (Essos) on flight 10

31st August 2018 departure: 4pm arrival 4:30pm

8

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

Definition JSoutward :=
(mkFlight Drogo 3 JonSnow (Winterfell,FirstJune2018+Wdep t)

(France,FirstJune2018+Farr t) W IATA F IATA 100).
Definition JSreturn :=
(mkFlight Drogo 10 JonSnow (France,ThirtyFirstAugust2018+Fdep t)

(Winterfell, ThirtyFirstAugust2018+Warr t) F IATA W IATA 100).
Definition JStravels := JSoutward::JSreturn::nil.

Thanks to his new job as King of The North, he provides his employment contract as a
mean of sufficient.

Definition was KingOfTheNorth:= KingOfTheNorth JonSnow demand t.
Definition JSsuff:= Employment Cwinterfell was KingOfTheNorth.

He also provides its passport number (delivered by Winterfell) and a reference of its travel
health insurance delivered by Three-eyed crow &cie.). We have axiomatized the no significant
part of the requirements.

Definition JSdemand:= (mkDemand JSform JSpic JSpassport JStravels JSinsurance JSaccs JS-
suff demand t).

He obtains his visa, JSvisa. The 1st July 2018, a police officer controls his visa. The officer
recognizes him and knows, thanks to the Winterfell Times that Lady Sansa Stark. It reveales
that she took his job since 4 months. So he suspects his visas and asks for evidence of sufficient
means.

Definition suspicious clue := WinterfellTime |> (KingOfTheNorth SansaStark (demand t - 5)).

Definition JSsuff query (v :visa):=
∀ d, visa of demand d v → (sufficient d) = JSsuff → KingOfTheNorth JonSnow demand t.

The protocol returns the claim of the employment contract, which is a claim of the Winterfell
kingdom. At this stage, the smart contract waits for physical world intervention and raises an
alert.

Axiom suspicious sufficient means:
demanding JonSnow demand t France JSdemand → delivering CFrance JonSnow JSvisa deliver t
→
raise alert JaimeL JSvisa (JSsuff query::nil) ((Cwinterfell |> was KingOfTheNorth)::nil) suspi-
cious t.

While the expressiveness of Cyberlogic allows to specify and reason on smart legal contracts
and execution scenarios, a lot has to be done to provide mechanisms to monitor accountability
at runtime in a blockchain-based execution environment 4. Moreover, the authorities algebra
allows to claim properties while in a smart legal contract language, this is the object/data
of a transaction that has to be claimed. The chosen example is an evidential protocol for
which Cyberlogic is particularly suitable. It also highlights the trust and accountability issues
that DAO has to manage. However, to cover the whole kind of DAO the Cyberlogic has to
be extended to handle contractual relationship (see section 4). The scenario we had unfolded
highlight the detection of conflict and active control. To treat more complex scenarios, with
several demands, the write, read and query operations have semantics concording with the
distributed and immutable characteristics of the ledger. Therefore, those operations have to be
first-class citizen of the smart legal contract language. In the next section the blockchain-based
smart contract, i.e. the code counterpart of the Cyberlogic protocol is presented.

4In section 4 this issue is discussed as work-in-progress.

9

:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '-' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

3.6 A solidity smart contract code

We implemented the Schengen Visa smart contract given in Section 3.2 in the Solidity language
(Algorithm 1). Solidity is a contract-oriented, high-level language whose syntax is similar to
that of JavaScript and it is designed to target the Ethereum blockchain framework [10]. It is
statically-typed, supports inheritance, libraries and user-defined abstract data types. Solidity
contracts bundle data with the functions operating on that data and have mechanisms for
restricting direct access to some of their components.

The Schengen Visa smart contract functions are implemented as demand(), deliver(), con-
trol() and suspect() functions respectively in Algorithm 1. It is assumed that the identity
(address) of the consulate and the officer are already known by the contract, and they are
used by the contract to restrict access to its functions. External calls to the contract functions
bring a msg.sender parameter that returns the address of the caller. The contract can then use
these information to verify the identities when needed using the modifier construct of Solidity
together with the msg.sender parameter. Modifiers are used to amend the semantics of func-
tions in a declarative way. The modifier onlyConsulate() is used for verifying that msg.sender
is a valid consulate (Algorithm 1 line 6) and the modifier onlyOfficer() used for verifying that
msg.sender is an officer of schengen aera (Algorithm 1 line 7). This way, it is assured that the
deliver() function can only be called by the consulate (Algorithm 1 line 18) and the control()
and suspect() function can only be called by the officer (Algorithm 1 line 30 and 34).

4 On-going and Future Research Perspectives

Our aim is to provide a framework to design and implement smart contracts in a secure and
trusted manner. Our point of view is that a smart legal contract has to be compiled in a smart
contract code. We advocate that an extension of Cyberlogic is a good candidate to specify the
smart legal contract. As transparency and trust are at core of our vision, we plan to equip
our framework with formal analyzers as well as a formal verification of the compiler. In this
section, we discuss the different current works in progress and futures research perspectives that
we intend to explore.

4.1 Specification of Legal Artefacts

Smart contracts aim at digitized parts of legal contracts between entities. Specifying law is a
recurrent holy Grail in formal methods [18]. However, deontic logic [16] with some restriction
to avoid paradoxes have been embedded in formal frameworks. In particular, the Contract
Language [11] is an action-based language featuring concepts for permission, obligation and
prohibition as first-class citizen. The tool CLAN allows to analyze specification in CL and
detect conflicts. On the other hand, CL does not allow to reason about trust and accountability
as Cyberlogic does. We aim at extending Cyberlogic with CL-like mechanisms to provide more
specific expressiveness dedicated to smart legal contracts. The open project Legalese also aims
at providing such a language based on Contract Language.

4.2 Targeting Secure Smart Contract Code

Cyberlogic protocols in our Coq implementation are Gallinea programs. Therefore, they can
be extracted to Ocaml code and then be compiled into a smart contract code language. In
particular, we target Ocaml based languages as they might provide a formal base such as
Michelson for the smart contract language of Tezos [13]. Another possibility is to target a

10

ttps://legalese.com

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

Algorithm 1 The solidity implementation of the Schengen Visa smart contract. It is assumed
that the identity (address) of the consulate and the officer are already known by the contract.
Due to the space limitation the abstract data types Demand and Visa are not shown.

1: contract SchengenVisa {
2:

3: address public consulate;
4: address public officer;
5:

6: modifier onlyConsulate() { require(msg.sender == consulate); ; }
7: modifier onlyOfficer() { require(msg.sender == officer); ; }
8:

9: mapping (address => Demand) demands;
10: mapping (uint => Visa) visas;
11: ...
12:

13: function demand(uint sch form id, uint photo id, string passport id, uint[] travel ids,
uint travel health, uint[] accommodation ids, uint sufficient means, uint time stamp)
public {

14: address visaDemander = msg.sender;
15: demands[visaDemander] = Demand(sch form id, photo id, passport id, travel ids,
16: travel health, accommodation ids, sufficient means, time stamp); }
17:

18: function deliver(Demand demand, string country, string duration) public returns (uint
visaId) onlyConsulate {

19: if (isValid(demand)) {
20: visas[++visaId] = Visa(visaId, consulate, country, duration);
21: return visa.id;
22: } else return -1; }
23:

24: function isValid(Demand demand) returns (bool valid) private {
25: valid = validateTravels(demand.travel ids, demand.accommodation ids);
26: valid &= (demand.sufficient means >= 5000);
27: return valid;
28: }
29:

30: function control(uint visaId) public returns (Visa visa) onlyOfficer {
31: var visa = visas[visaId];
32: return visa; }
33:

34: function suspect(uint visaId, string reqField) public returns (var field) onlyOfficer {
35: var visa = visas[visaId];
36: var field = visa[reqField];
37: return field; }
38:

39: } // contract SchengenVisa

11

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

subset of Solidity [10] of the Ethereum Virtual Machine EVM [22]. The execution infrastructure
should also include a monitoring mechanism for trace/scenarios analysis which is linked to the
Cyberlogic formalisation and allowing reasoning.

4.3 Specification of the Blockchain at Low-Level

The inherent non-determinism caused by the execution of the programs in a widely distributed
environment subject to Byzantine failures and network partitions exposes the programs to
several vulnerabilities, which are often misunderstood by programmers. The survey [3] shows,
indeed, that most attacks in Ethereum were caused by vulnerabilities of the execution platform
(Ethereum Virtual Machine and blockchain protocols).

Available formal analyses of security of the blockchain [12] have several limitations, assuming
a perfect message diffusion mechanism, instantaneous communication and a fixed number of
participants. These assumptions are far from being realistic so security thresholds as the famous
“majority assumption” for Bitcoin (the system is secure if the majority the hashing power is
in the hands of honest nodes) falls short in more realistic settings. A formal definition of
blockchain (first attempts in [1, 8]) is indeed needed to (i) allow the secure design of blockchain
protocols and (ii) to gain trust in the smart contract execution by defining formal semantics to
specify the properties of the execution context.

5 Conclusion

We advocate that since the final goal of smart contracts is to obviate the use of trusted third-
parties, a smart contract specification must allow reasoning about trust and accountability. By
considering smart contracts as evidential protocols we take advantage of Cyberlogic to specify
and verify them. In this paper we have shown the use of Cyberlogic through an illustrative
example and we have described the overall approach along with the elements needed to provide a
trustworthy framework to design and implement secure and trusted-by-design smart contracts.
Finally, we are currently exploring extensions of Cyberlogic with deontic supports and dedicated
features to interact with the underling immutable distributed ledger.

References

[1] E. Anceaume, R. Ludinard, M. Potop-Butucaru, and F. Tronel. Bitcoin a distributed shared regis-
ter. In Stabilization, Safety, and Security of Distributed Systems - 19th International Symposium,
SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings, pages 456–468, 2017.

[2] A. W. Appel and E. W. Felten. Proof-carrying authentication. In Proceedings of the 6th ACM
Conference on Computer and Communications Security, CCS ’99, pages 52–62, New York, NY,
USA, 1999. ACM.

[3] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart contracts sok. In
Conference on Principles of Security and Trust - Volume 10204, New York, USA, 2017.

[4] V. Bernat, H. Ruess, and N. Shankar. First-order cyberlogic. Technical report, SRI International,
2005.

[5] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Ku-
latova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-Béguelin. Formal verification of
smart contracts. In Workshop on Programming Languages and Analysis for Security, PLAS ’16,
New York, USA, 2016.

12

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

[6] M. Blaze, J. Feigenbaum, and A. D. Keromytis. Keynote: Trust management for public-key
infrastructures (position paper). In Security Protocols, 6th International Workshop, Cambridge,
UK, April 15-17, 1998, Proceedings, pages 59–63, 1998.

[7] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the policymaker trust manage-
ment system. pages 254–274. Springer, 1998.

[8] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. (leader/randomization/signature)-free byzantine
consensus for consortium blockchains. CoRR, abs/1702.03068, 2017.

[9] P. Daian. Analysis of the dao exploit. http://hackingdistributed.com/2016/06/18/

analysis-of-the-dao-exploit/.

[10] C. Dannen. Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain
Programming for Beginners. Apress, Berkely, CA, USA, 1st edition, 2017.

[11] S. Fenech, G. J. Pace, and G. Schneider. CLAN: A Tool for Contract Analysis and Conflict
Discovery, pages 90–96. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[12] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and appli-
cations. In EUROCRYPT (2), pages 281–310, 2015.

[13] L. Goodman. A self-amending crypto-ledger. tezos white paper. 2014.

[14] N. Li, B. N. Grosof, and J. Feigenbaum. A practically implementable and tractable Delegation
Logic. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 27–42. IEEE
Computer Society Press, May 2000.

[15] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004.
Ver. 8.0.

[16] P. McNamara. Deontic logic. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, winter 2014 edition, 2014.

[17] S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification system. In Conference on
Automated Deduction: Automated Deduction, CADE-11, pages 748–752, London, UK, UK, 1992.
Springer-Verlag.

[18] H. Prakken and G. Sartor. The Role of Logic in Computational Models of Legal Argument: A
Critical Survey, pages 342–381. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[19] Rueß and N. Shankar. Introducing cyberlogic. In B. Martin, editor, HCSS’03—High Confidence
Software and Systems Conference, Baltimore, MD, 1-3 April 2003.

[20] J. Stark. Making sense of blockchain smart contracts. https://www.coindesk.com/

making-sense-smart-contracts/.

[21] D. Tapscott and A. Tapscott. The blockchain revolution:how the technology behind bitcoin is
changing Money,Business and the World, pages 72,88,101,127. TNew York, New York : Portfolio
/ Penguin, 2016. ISBN-13: 978-1101980132.

[22] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. http://

bitcoinaffiliatelist.com/wp-content/uploads/ethereum.pdf, 2014. Accessed: 2016-08-22.

[23] W. Yao. Trust management for widely distributed systems. Technical Report UCAM-CL-TR-608,
University of Cambridge, Computer Laboratory, Nov. 2004.

A Specification of the Verification of Schengen Visa Re-
quirements

A smart contract for Schengen visa requests a generic specification of visa. A visa is delivered
by a specific authority, has a duration or an expiry date, is an evidence that allow someone to
circulate in a country.

Variable visa: Type.

13

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://www.coindesk.com/making-sense-smart-contracts/
https://www.coindesk.com/making-sense-smart-contracts/
http://bitcoinaffiliatelist.com/wp-content/uploads/ethereum.pdf
http://bitcoinaffiliatelist.com/wp-content/uploads/ethereum.pdf

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

Variable visa delivered by : visa → cyber.Authority.
Variable visa duration: visa → cyber.time.
Variable visa kind : visa → Prop.
Variable visa country : visa → country.

1-The Visa Application form must be fully completed and signed in the corresponding blanks.

Variable schengen form:Type.
Variable schengen from:schengen form → time.
Variable schengen to: schengen form → time.
Variable schengen requester :schengen form → Authority.
Variable schengen country : schengen form → country.
Variable schengen form requirement : schengen form → Prop.

2- A passport is delivered by an authority, has a expiry date and contains a list of visas.

Variable photo: Type.
Variable passport photo: photo → Prop.
Variable passport :Type.
Variable passport delivered by : passport → Authority.
Variable visas of passport : list visa.
Variable passport expericy date: passport → time.

Passport of is a mapping that associates a passport to its owner.

Variable passport of : Authority → passport.

3- The passport as well as all the copies of your previous visas, valid for at least 3 months prior to your

departure is required. The passport must have at least two blank pages.

Definition valid passport at (p:passport) (departure time: time):=
(passport expericy date p) ≤ (departure time - (months 3)).

Variable valid passport : passport → time → Prop.
Definition valid at time (p:passport)(departure time: time):=
(valid passport p departure time) → (valid passport at p departure time).

4- Round trip reservation or itinerary with dates and flight numbers specifying entry and exit from the

Schengen area. You can use the visa consultation services like this one. These guys can handle most of your

visa requirements such as flight itineraries, hotel reservations along with free consultation over email.

Record flight := mkFlight
{ fl airline: Authority ; fl id: nat; fl for: Authority ; fl departure: country × time;

fl arrival: country × time; fl dep aipport: IATA; fl arr airport:IATA; fl price: nat; }.
Definition trav itinerary := list flight.

trav valid holds is a flight that is valid recording the requirement of the Schengen visa.
That would be a property claimed by an authority.

Variable trav valid : flight → Prop.
Definition travs valid (l :trav itinerary) := ∀ fl, List.In fl l → ((fl airline fl) |> trav valid fl).

travs consistency is a verified property that is not a claim.

Fixpoint travs consistency (tvls : trav itinerary) (tfrom tto:time):Prop:=match tvls with

| a::m ⇒ (snd (fl departure a)) < (snd (fl arrival a)) ∧
(match m with

| nil ⇒ (snd (fl departure a)) = tfrom ∧ (snd (fl arrival a)) = tto
| m ⇒ (snd (fl departure a))=tfrom ∧ (travs consistency m (snd(fl arrival a)) tto)
end)

14

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:nat scope:x '<=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '-' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '-' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '-' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Lists.List
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
snd.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
snd.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
snd.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
snd.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
snd.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
snd.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic

Cyberlogic for Smart Contracts Z. Dargaye, Ö. Gürcan, F. Kirchner and S. Tucci Piergiovanni

| nil ⇒ True end.
5- The travel health insurance policy is to be secured, covering any medical emergency with hospital care and

travel back to ones native country due to medical motives. This health insurance policy has to cover expenses

up to 30,000 euros, the sum depending on the residing days, and also it has to be valid in all Schengen countries.

The health insurance policy must be purchased before picking up the visa and if your visa is refused you can

cancel it!

Variable trav health :Type.
Variable trav health of : trav health → Authority.
Variable trav health emitter : trav health → Authority.
Variable trav health valid : trav health → Prop.

6-Proof of accommodation for the whole duration of the intended stay in the Schengen area.

Record accd:= mkAcc{ shelter at: Authority ; from : time; to:time;}.
Definition accds:= list accd.
Variable accd valid : accd → Prop.
Definition accds valid (acc:accds):= ∀ ac, List.In ac acc → ((shelter at ac) |> accd valid ac).

Fixpoint accds consistency (accs:accds) (tfrom tto:time):Prop:=match accs with

| a::m ⇒ (from a) < (to a) ∧
(match m with

| nil ⇒ (from a) = tfrom ∧ (to a) = tto
| m ⇒ (from a)=tfrom ∧ (accds consistency m (to a) tto)
end)

| nil ⇒ True end.
7- Proof of sufficient means of subsistence during the intended stay in the Schengen area. Varies from

country to country. To complete Supporting document to attest sponsor’s readiness to cover your expenses

during your stay Proof of prepaid accommodation Document about accommodation in private Proof of prepaid

transport.

Inductive sufficient means:=
| Bank statement : (Authority → Prop) → sufficient means
| Credit card : (Authority → nat → Prop)-> sufficient means
| Cash : (nat → Prop) → sufficient means
| Employment : (Authority → Prop) → sufficient means.

Variable means of sufficiency : country → sufficient means → Prop.

Record Schengen demand := mkDemand
{ form: schengen form; picture: photo;pass: passport; travs: trav itinerary; insurance: trav health;

lodgings: accds;sufficient: sufficient means; time stamp:time; }.
Definition schengen demand valid (requester :Authority)(d form:Schengen demand):=
let demand := form (d form) in let C := schengen country demand in

let Consul := consulat of C in let tfrom := schengen from demand in

let tto:= schengen to demand in

(Consul |> (schengen form requirement demand)) ∧
(requester |> passport photo (picture d form)) ∧
(travs valid (travs d form) ∧ travs consistency (travs d form) tfrom tto)/\
((trav health emitter (insurance (d form))) |> (trav health valid (insurance (d form)))) ∧
((accds valid (lodgings d form))/\ (accds consistency (lodgings d form) tfrom tto)) ∧
((means of sufficiency C) (sufficient d form)).

15

nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
True.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Lists.List
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Peano
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
nil.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
True.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.5pl3/stdlib/Coq.Init.Logic

	Introduction
	State-of-the-Art: Specifying Evidential Protocols
	Trust Management
	Cyberlogic
	Shallow Embedding Implementation of Cyberlogic in Coq
	Authority and Attestations
	Different Kinds of Attestations
	Attestations
	Delegation of Attestation
	Time Reasoning in the Cyberlogic

	Cyberlogic for Specifying Smart Legal Contracts
	Schengen Visa Management
	The Schengen Visa as a Cyberlogic Protocol
	The Cyberlogic Protocol
	The Protocol Policies
	The Cyberlogic Protocols at Work
	A solidity smart contract code

	On-going and Future Research Perspectives
	Specification of Legal Artefacts
	Targeting Secure Smart Contract Code
	Specification of the Blockchain at Low-Level

	Conclusion
	Specification of the Verification of Schengen Visa Requirements

