
HAL Id: cea-01807032
https://cea.hal.science/cea-01807032

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Bitcoin Limitations to Deliver Fairness to Users
Antonella del Pozzo, Sara Tucci-Piergiovanni, Önder Gürcan

To cite this version:
Antonella del Pozzo, Sara Tucci-Piergiovanni, Önder Gürcan. On the Bitcoin Limitations to Deliver
Fairness to Users. 25th International Conference on Cooperative Information Systems (CoopIS 2017):
On The Move Federated Conferences and Workshops 2017, Oct 2017, Rhodos, Greece. �cea-01807032�

https://cea.hal.science/cea-01807032
https://hal.archives-ouvertes.fr

On the Bitcoin Limitations to Deliver

Fairness to Users

Önder Gürcan and Antonella Del Pozzo and Sara Tucci-Piergiovanni

CEA LIST
Point Courrier 174, Gif-sur-Yvette, F-91191 France

{onder.gurcan, antonella.delpozzo, sara.tucci}@cea.fr

Abstract. While current Bitcoin literature mainly focuses on miner be-
haviors, little has been done to analyze user participation. Because Bit-
coins users do not benefit from any incentive, their participation in the
system is conditional upon system ability to provide a transactional ser-
vice at a reasonable cost and acceptable quality. A recent observed trend
on a growing number of unconfirmed transactions seems, however, to
substantiate that Bitcoin is facing service degradation. The objective of
this paper is to shed some light on user participation in Bitcoin against a
notion of system fairness, through a utility-based approach. We first in-
troduce fairness to quantify the satisfaction degree of participants (both
users and miners) with respect to their justified expectations over time.
We then characterize user strategies, deriving the necessary condition
for fairness, and we show Bitcoin limitations in delivering it. The utility-
based model allows to finally draw conclusions on possible improvements
for fairness to promote user participation.

Keywords: Bitcoin, Blockchain, Fairness, User Expectation.

1 Introduction

The blockchain protocol, introduced by Satoshi Nakamoto [13], is the core of the
Bitcoin-like decentralized cryptocurrency systems. Participants following this
protocol can create together a distributed economical, social and technical sys-
tem where anyone can join (or leave) and perform transactions in-between with-
out neither needing to trust each other nor having a trusted third party. It is
a very attractive technology since it maintains a public, immutable and ordered
log of transactions which guarantees an auditable ledger accessible by anyone.

Technically speaking, all participants of a blockchain system store uncon-
firmed transactions in their memory pools and confirmed transactions in their
blockchains. Participants called users create transactions with a fee and then
broadcast them across the blockchain network for being confirmed. After receiv-
ing a certain number of transactions, participants called miners try to confirm
them as a block by solving a computational puzzle (a hash-based proof-of-work
- PoW) of pre-defined difficulty by consuming a considerable amount electricity

power. Note that, each miner tries to confirm a different block, with its own set
of transactions, put into its own order. The successful miner broadcasts its block
to the network to be chained to the blockchain. This block contains the trans-
actions, the unique hash value (the solution of the puzzle) and a block reward,
which is composed of a static block reward plus the total fees of transactions,
expressed as a transaction to the successful miner.

To analyze the security properties of Bitcoin-like blockchains [13], several
formal studies have been conducted so far [8, 7, 18, 14]. Garay et al. [8] showed
that the number of blocks created by honest miners is proportional to their
fraction of computational powers if majority of the computational power belongs
to them, assuming that there are honest and Byzantine miners. Eyal and Sirer
[7] and Sapirstein et al. [18] showed that even if the majority of the miners are
honest, a selfish miner having enough resource and good network connectivity
can increase its proportion of blocks, assuming that there are honest and selfish
miners. These studies conclude that Bitcoin-like blockchains are not promoting
honest participation. In such context, Pass et al. [15] provided a first definition of
fair protocol for miners: if, in any sufficiently long window of time, honest miners
create blocks proportionally to their computational powers then the protocol is
fair.

However, as well as miners, the participation of users is also important. With-
out users, miners will have no transactions to confirm1. In this sense, we claim
that a comprehensive definition of fairness is crucial for improving overall par-
ticipation. Both users and miners consider worthwhile to join and stay over time
in the system only if they find it fair. For instance, miners find the system fair if
they are able to create blocks as they expected, and users find the system fair if
their transactions are confirmed as they expected. Hence, fairness can be defined
as the satisfaction of expectations of participants to a certain degree.

The contributions of this paper are as follows:

– A detailed basic model for Bitcoin blockchain;

– An elaborated rational system model where all participants (users and min-
ers) are modeled as rational agents;

– A formal definition of fairness with respect to the utilities of rational agents;

– A necessary condition to have user fairness;

– An analysis of the Bitcoin protocol limitations in delivering fairness to users.

The paper is organized as follows. Section 2 gives the related work about
fairness in blockchain systems. Section 3 provides a formalization of the existing
Bitcoin protocol. Section 4 defines the rational agent model and proposes a
definition of fairness related to rational behaviors for each type of participant
(users and miners). Moreover, a necessary condition for fairness provided to the
users is presented. Section 5 presents an analysis of the agent behaviors and
finally, Section 6 concludes the paper.

1 Technically the miners can create empty blocks and get block rewards. But this is
not the purpose of blockchain systems.

2 Related Work

In the rational agents context, two concepts play a key role: “incentive compat-
ibility” and “fairness”. Informally, a protocol is incentive compatible if rational
nodes have incentives to follow it, while a protocol is fair if rational nodes are
satisfied by executing the protocol actions, i.e., they have a profit acceptable for
them.

Eyal et al. [7] show that the mining protocol itself is not incentive compatible:
a miner that follows the protocol has a lower gain than a miner that does not.
To such purpose they define a new attack strategy, the selfish mining in which
colluding miners obtain a revenue larger than their fair share withholding new
created blocks. Hereafter, other works analyzed scenarios where for miners it
is more profitable to be selfish than to correctly follow the protocol (cf. [5],[18]
and [9], just to cite a few). The blockchain protocol does not rely only on the
mining task but also on the information (transactions, blocks, etc.) flooding. As
discussed by Babaioff et al. [2], rational agents have not incentives to forward
information.

Contrarily to incentive compatibility, less research has been done concerning
fairness in the Bitcoin-like systems. In [10], the authors present an inclusive
protocol and discuss about its fairness as related to proportion between the miner
hashing power and their rewards (a similar concept appears in [6]). Finally, Pass
and Shi [15] present a formal concept of “fairness” and a protocol that provides
it. Informally they propose a protocol where “honest players contributing a φ
fraction of the computational resources get a φ fraction of the blocks (and thus
rewards) in a sufficiently long window”.

All those works consider the strategies that rational miners can put in place
with respect to the actual Bitcoin situation. Actually the Bitcoin protocol pro-
vides two incentives for a miner that solve the PoW, the static block reward and
the transaction fees. Let us recall that the static block reward is periodically
halving to eventually disappear. Carlsten et al. [3] analyze what would be more
profitable for miners in a scenario where the transaction fees dominate the static
block rewards. To do so they stated the decisions that miners can take at each
time instant as: which block to extend, how many of the available transactions
include in the block and for each unpublished block, whether or not to publish it.
As a result, the Bitcoin will be an unstable system where selfish mining performs
even better than in the current scenario advocating that block reward plays a
key role for the stability of the system.

Carlsten et al. [3] is the closest to our contribution, not only for the scenarios
considered, but also for the analysis on the decisions that miners can take. On
our side we considered not only the miners’ but also the users’ actions in order to
model the expectations and rewards of those participants and provide a definition
of fairness general enough for both of them. At the best of our knowledge the
only notion of fairness applied to the user side concerns the fair exchange in the
e-commerce context [1] which is extended to the Bitcoin-Like scenario in [11]
more in the sense that if there are two players performing an exchange then
either both of them get what they want or none of them. All those fairness

definitions apply globally to the system, contrarily, in our work we provide a
local definition of fairness looking at the perceptions that users have about the
system fairness.

3 Basic Blockchain System Model

In this section we provide a high-level Bitcoin protocol description2. To this end,
we first introduce a basic model for each element involved in the protocol and
then we provide a high-level detailed pseudocode.

3.1 Network Model

We model the blockchain network as a dynamic directed graph G = (N,E)
where N denotes the dynamic node (vertex) set, E denotes dynamic directed
link (edge) set. A node n can enter and leave G by using its join(G) and leave(G)
actions respectively. Upon joining G, n discovers neighbor nodes to connect to3.
A link 〈n,m〉 ∈ E represents a directed link n → m where n,m ∈ N , n is the
owner of the link and n is the neighbor of m.

A node n can communicate with a set of recipient nodes Rn (where ∀m ∈
Rn|{n,m} ∈ E) by exchanging messages of the form 〈n,msg, d〉 where n is the
sender, msg is the type and d is the data contained.

3.2 Node Model

Each node n ∈ N has a list of its neighbors Nn where Nn ⊆ N and ∀m ∈
Nn|〈n,m〉 ∈ E. A node n adds and removes another node m as its neighbor us-
ing its addNeighbour(m) and removeNeighbour(m) actions respectively. Each
neighbor m ∈ Nn is represented as a 3-tuple 〈m,×m, tm〉 where ×m is the ban
score and tm is the last communication time. tm is updated at each message
receipt and if m has not communicated for more than some time, m is removed
from Nn.

Each node n has a memory pool Θn in which it keeps unconfirmed trans-
actions that have input transactions, an orphan pool Θ̄n in which they keep
unconfirmed transactions that have one or more missing input transactions (or-
phan transactions) and a blockchain ledger Bn in which they keep confirmed
transactions where Θn ∩ Θ̄n = ∅, Θn ∩Bn = ∅ and Θ̄n ∩Bn = ∅ always hold.

2 This description is based on the Nakamoto paper [13], the Bitcoin source code
(https://github.com/bitcoin/bitcoin), bitcoin.org (https://bitcoin.org/) and
the Bitcoin StackExchange forum (https://bitcoin.stackexchange.com/).

3 https://bitcoin.stackexchange.com/questions/53938/

how-does-one-node-connect-to-other-nodes, last access 30 May 2017.

3.3 Miner Model

A (user) node n can turn to be a miner node if it chooses to create blocks for
confirming the transactions (mining) in its memory pool Θm. It can start and
stop mining using the actions of the form startMining() and stopMining()
respectively, and n is said to be a miner node if it started mining but has not
stopped yet. The set of miner nodes is then denoted by M where M ⊆ N . In
order to be able to mine, n ∈M has to solve a cryptographic puzzle (i.e. Proof
of Work) using its hashing power4 qn where qn > 0. The first successful miner
is awarded by a fix amount of reward plus the total fee of the transactions.

Algorithm 1 The actions of a miner node m.

1: action startMining()
2: ω ← true
3: createBlock()
4:
5: action stopMining()
6: ω ← false
7:
8: action createBlock()
9: while (ω) do

10: i← |B?
n|+ 1

11: θn ← selectTransactions(Θn)
12: createBlock(i, θn)
13: endwhile

14:
15: action createBlock(i, θn)
16: Σf ← calculateTotalFee(θn)
17: txc ← createTransaction(n, R +Σf)
18: Ψi ← createMerkleTree(txc, θn)
19: tbi ← getTime()
20: hi = 〈vn,H(hi−1),H(hi), tbi , ηi, ψi〉
21: try
22: find ηi such that H(hi) < µ holds
23: bi = {hi, Ψi}
24: processBlock(∅, bi)
25: catch (i = |B?

n| ∨ ω = false)
26:

The actions performed by miners are reported in details in the Algorithm 1.

3.4 Blockchain Model

We model the blockchain ledger of a node n as a dynamic append-only tree

Bn = {b0
r0←− b1

r1←− ...
rh−1←−−− bh} where each block bi (0 < i ≤ h) contains a

cryptographic reference ri−1 to its previous block bi−1, h = |Bn| is the depth
of Bn, b0 is the root block which is also called the genesis block and bh is the
furthest block from the genesis block which is referred to as the blockchain head.

A block bi−1 can have multiple children blocks, which causes the situation
called a fork. The main branch is then defined as the longest path h from
any block to b0 and is denoted as B?n where |B?n| = h and B?n ⊆ B such that
|Bxn| < |B?n| for all branches Bxn ⊂ Bn where Bxn 6= B?n. All branches other than
the main branch are called side branches. If at any time, there exists more than 1

4 Hashing power is proportional to computational power and nodes may change this
power by time.

longest path with a depth h (i.e. there are multiple heads), the blockchain ledger
Bn is said to be inconsistent and thus B?n = ∅. This situation disappears when
a new block extends one of these side branches and creates B?n. The blocks on
the other branches are discarded and referred as stale blocks.

3.5 Block Model

We denote a block as bi = 〈hi, Ψi〉 where hi is the block header and Ψi is the
block data. The block data Ψi contains all the transactions organized as a Merkle
tree [12]. Basically, the copies of each transaction are hashed, and the hashes are
then paired, hashed, paired again, and hashed again until a single hash remains,
the merkle root of a merkle tree. We denote a merkle tree and its root as Ψi
and ψi respectively. A merkle tree Ψi is created using the action of the form
createMerkelTree(txc, θm) where txc is the coinbase transaction5 that rewards
the miner node m ∈M with the block reward R = F +Σf for its work6 (where
F is the static block reward, and Σf is the total fees of the transactions included
in this block), θm ⊆ Θm is the set of candidate transactions chosen for this
block. Here it is important to note that, blocks have limited sizes7 and thus the
size of θm can not exceed this limit8. The set of candidate transactions θm are
selected using the action of the form selectTransactions(Θm) : θm where Θm is
the memory pool of the miner. The total fee Σf is then calculated by using the
action of the form calculateTotalFee(θm).

The block header is denoted as hi = {vn,H(hi−1),H(hi), tbi , ηi, ψi} where vn
is the version number of the protocol used by n, H(·) is the cryptographic hash
function, H(hi−1) is the cryptographic hash code of the header of the previous
block bi−1 (i > 0), H(hi) is the cryptographic hash code of hi generated by m,
tbi is the current time stamp, ηi is an integer nonce value (ηi ≥ 0) to be found
by the miner in order to generate the right H(hi) conforming to the difficulty
level µ defined in the protocol version v (the cryptographic puzzle mentioned in
Section 3.3) and ψi is the root of the merkle tree.

3.6 Transaction Model

We model a transaction as tx = 〈I,O〉 where I is a list of inputs (I 6= ∅) and O
is a list of outputs (O 6= ∅). Each input i ∈ I references to a previous unspent
output (for spending it). Each output then waits as an Unspent Transaction
Output (UTXO) until an input spends it. If an output has already been spent

5 Any transaction fees collected by the miner are also sent in this transaction.
6 Note to remember is that the coins in a coinbase transaction cannot be spent until

they have received 100 confirmations in the blockchain. All things being equal, 100
confirmations should equate to roughly 16 hours and 40 minutes.

7 The current maximum block size in Bitcoin is 1 MB. See https://bitcoin.org/en/

glossary/block-size-limit, last access on 18 July 2017.
8 Average block size for Bitcoin is given in https://blockchain.info/charts/

avg-block-size, last access on 18 July 2017.

by an input, it cannot be spent again by another input (no double spending).
We model the outputs as oi = 〈m,¢oi〉 where m ∈ N is the receiver of the coins
¢oi (¢oi ≥ 0). All inputs of a transaction have to be spent in that transaction
and the total input coins ¢I has to be greater than or equal to the total output
coins ¢O. The fee ftx of a transaction tx is then modeled as ftx =¢I−¢O. The
fees of transactions are not fixed and are estimated by using the action of the
form estimateFee(I,O) where I is the set of inputs and O is the set of outputs.
Depending on the fee to be paid, if there are still some coins left to be spent,
the sender can add an output that pays this remainder to itself.

Algorithm 2 The actions of a user node n.

1: action makeTransaction(m,¢)
2: tx = createTransaction(m,¢)
3: processTransaction(n, tx)
4:
5: action createTransaction(m,¢)
6: I ← selectUnspentTransactionOutputs(Bn, ¢)
7: o1 ← 〈m,¢〉
8: f ← estimateFee(I, {o1})
9: ¢r ←¢I−¢−f
10: o2 ← 〈n,¢r〉
11: return tx = 〈I, {o1, o2}〉
12:
13:

14: action processTransaction(s, tx)
15: × ← validateTransaction(tx,Θn)
16: if (× = 0) then
17: U ← getUnspentTransactionOutputs()
18: if ({∀i ∈ Itx ∧ ∃o ∈ U |o ≺ i} = ∅) then
19: Θ̄n ← Θ̄n

⋃
{tx}

20: else acceptTransaction(tx) endif
21: else updateBanscore(s, ×) endif
22:
23: action acceptTransaction(tx)
24: Θn ← Θn

⋃
{tx}

25: sendMessage(〈n,”inv”,H(tx)〉,Nn)
26: processTransaction(∅, ∀tx′ ∈ Θ̄n|tx′ ≺ tx)

The coinbase transaction txc (see Section 3.5) is special transaction that
collects and spends any transaction fees paid by transactions included in a block
and exceptionally it does not have any input set (I = ∅). It is the first transaction
in a block and can only be created by a miner.

Creating a transaction tx by a node n is modeled as the action of the form
createTransaction(m,¢) where ¢ is the amount of coins (¢> 0) paid to m (n,m ∈
N). Selecting the right inputs to be able spend ¢ is modeled using the action of
the form selectUnspentTransactionOutputs(Bn,¢) where Bn is the blockchain
and ¢ is the coin to be spent. All those actions are detailed in Algorithm 2.

In the next section, we define a rational system model by augmenting the
basic system model for better capturing its properties formally and defining the
concept of fairness.

4 Rational Model

In this section we augment the basic blockchain system model given in Section
3 by the rational agent concept. Informally speaking, such agent chooses its ac-
tions/behavior with respect to its perceptions in order to maximize its utility.
In such context we introduce a concept of fairness dependent on the agent be-
haviors and the corresponding utilities. To this aim, the remaining part of the
section characterizes both agent and minor behaviors.

4.1 Rational Agent Model

A rational agent behaves according to its local perceptions and local knowl-
edge, models uncertainty via expected values of variables or actions, and always
chooses to perform the actions with the optimal expected outcome (among all
feasible actions) for maximizing its utility [17]. We model all nodes in the block-
chain network as rational agents and denote the rational agent set as N . Each
rational agent n ∈ N has a set of actions An and a utility function Un. Using
An and Un, n uses a decision process where it identifies the possible sequences of
actions to execute. We call these sequences as rational behaviors of n and denote
as β. The objective of n is to choose the behaviors that selfishly keep Un as high
as possible.

We model the utility function of a rational agent n ∈ N as Un = u0 +∑k
i=1 U(βi) where u0 is the initial utility value, k ≥ 0 is the number of behaviors

executed so far and U(βi) is the utility value of the behavior βi. A utility value
U(βi) can also be interpreted as the degree of satisfaction experienced by the
realization of βi. The utility value U(βi) is calculated as R(βi) − C(βi) where
R(βi) is the overall reward gained and C(βi) is the overall cost spent for the
execution of βi.

When an agent needs to choose a behavior for execution, it needs to calculate
its expected value. The expected value E(βi) depends on the probabilities of
the possible outcomes of the execution of βi. We model the expected value as
E(βi) =

∑m
j=1 pj · U(βji) where m > 0 is the number of possible outcomes, U(βji)

is the utility value of the possible jth outcome βji and pj is the probability
of this outcome such that

∑m
j=1 pj = 1. Since behaviors are chosen based on

their expected values, it can be said that a utility value U(βi) represents the
satisfaction of expectation about βi.

Fairness: A rational agent n ∈ N finds a system (i.e. the blockchain
network) G fair, if the total satisfaction of its expectations Un is above
a certain degree τn where τn < u0.

If at any time, an agent n finds G unfair (Un ≤ τn), it may decide to leave
G if from its points of view it will not be possible to increase its overall utility
above τn by calculating the expected values of its possible future behaviors. In
other words, n may decide to leave G if Un +

∑m
j=k E(βj) ≤ τn where βk, ..., βm

are sufficiently enough desired future behaviors of n.
Based on this model, to be able to decide if Bitcoin-like blockchains are fair,

we propose behavioral models for rational user and miner agents in the next
subsection.

4.2 Rational Behavior Model

The rational behaviors given in this section define the possible strategies of
agents by using and improving the basic actions given in Section 3.

To formalize the behaviors, we model a round based approach (like Garay et
al. [8]) in which miner agents start creating a new block with at the beginning of

the round and a round ends when a new block is successfully created by one of
the miners. Both user and miner agents make their decisions on a roundly basis.
This round-based model implicitly assumes that the block sent at at the end of
the round is immediately delivered by all participants, i.e. communication delay
is negligible with respect to block generation time.

User Agent Behaviors The user agent in the system makes transactions. To
make a transaction, she has to determine a fee to assign to the transaction.
This decision depends on the probability that the assigned fee has to lead the
transaction confirmed as soon as possible and the interest of the agent on the
transaction. All the duration the user agent spends waiting for the transaction
confirmation is said to be the waiting cost. Such a cost is unavoidable, the user
agent has to wait as long as the transaction is confirmed since the basic protocol
does not allow revoking transactions, even if they are not confirmed after a
considerable time.

We model making a transaction with a specific fee f as with the action of the
form makeTransaction(m,¢) where m ∈ N is the receiver and ¢ is the amount
of coins. For simplicity, it is assumed that a users agent has an ordered set of
fees {f1, f2, . . . , fk} to use. It is also assumed that fi < fi+1 where 0 < i < k
and 0 ≤ P (fi) ≤ P (fi+1) ≤ 1 where P (f) is the probability of a transaction
with a fee f to be confirmed.

We model the interest the user agent has with respect to the transaction as
I. It is assumed that the initial interest does not decrease round after round. We
denote the waiting cost as C(f), which is proportional to the fee f applied to
the transaction. Intuitively, waiting for the confirmation of a transaction with a
high fee assigned is more costly than waiting for the confirmation of a transaction
with a lower fee assigned.

Along with the interest and the waiting cost, an important role is played by
the fee assigned to the transaction. The fee is paid only when the transaction is
confirmed in a block in the main chain. Thus, when a transaction is confirmed
at round r, the expected value is given by the net difference between the interest
I and the assigned fee f plus the waiting cost C(f) for all the r−1 rounds while
the user agent waited.

Let us consider a user agent that issues a transaction tx and chooses a fee f ,
has an interest I on tx and a waiting cost C(f). The confirmation probability of
tx at the first round is P (f), thus if tx is confirmed during the first round the
user agent gains: (I − f) ·P (f) and no waiting cost. Let P (f) = 1−P (f) be the
unconfirmation probability of tx during a round. If tx is confirmed during the
second round she gains: P (f)·P (f)·(I−f)−P (f)·C(f), and if confirmed during

the third round she gains: P (f)
2
· P (f) · (I − f) − P (f)

2
· C(f)2. Generalizing

for an infinite number of rounds r, the expected value E is:

E(β) =

∞∑
r=1

P (f)
r−1
· P (f) · (I − f)−

∞∑
r=1

P (f)
r−1
· C(f)r−1 (1)

start

SelectingWaiting

Mining

end

/ ⇥m = Tx1

Tx1 not selected
/ wait()

Tx2 received
/ ⇥m = Tx2

block
received

block
created

block
received

block
received

Tx1 selected
/ createBlock(r, Tx1)

Tx1 selected
/ createBlock(r, Tx1)

/ createBlock(r, Tx2)
Tx2 selected

/ createBlock(r, Tx2)
Tx2 received

Fig. 1: The state machine of the rational mining behavior of a miner m for a
round r.

where β = {makeTransaction(m,¢, f)}. An analysis of Equation 1, along
with necessary condition for fairness, is given in Section 5.1.

Miner Agent Behaviors In the decision model for the user agent, we consid-
ered a probability P(f) constant over rounds9. On the other hand, in this section
we want to shed some light on the miner behavior, in order to have insights on
how the probability changes over rounds.

To this end, we consider the miners at the beginning of a round and focus
on understanding how miners choose the transactions. In particular, since the
size of the block is limited, miners could decide to deliberately exclude an uncon-
firmed transaction that has already been received with a lower fee. This behavior
would obviously delay the confirmation time of that transaction and affects its
confirmation probability. More in detail, we consider that at the beginning of
a round a miner can decide if to start immediately creating a block with the
transactions it already has in its pool (Tx1)10 or to wait for a set of transactions
with better fees (Tx2) to arrive. If such transaction arrives a miner decides if
to continue to mine Tx1 or to start mining with Tx2.This decision process is
depicted in the state machine given in Figure 1.

Let {0, 1}k be the range of the hash function run to solve the Proof-of-Work
(PoW) and k the security parameter and let D be difficulty level. Let q be the

9 Technically speaking this means to consider P (f) modeled as a stationary process,
and the blockchain system as an ergodic dynamical system [4].

10 For simplicity, it is assumed that the sizes of both Tx1 and Tx2 are equal to the
maximum block size.

upper bound on the number of times the hash function can be invoked during
a round and each invocation is independent from the other (as independent
Bernoulli trials). The probability that an attempt solves the PoW is p = D

2k thus
the upper bound on the number of solutions that a miner can found per round
is P = p · q. If the miner solves the PoW, it gets a reward R = F + fTx, where
fTx is the total fee associated to the transactions in the set Tx. In the following,
we model how P and R changes over the time, to take into account the miner
decision to wait or not before starting creating a block.

Along with the miner rewards, we consider also the power consumption cost.
We consider that each attempt implies a cost that we call C. Thus, the miner
gain is net between the reward and the costs multiplied by the probability to
win the PoW which depends on how many attempts are performed. The reward
is R = F + fTx2 if the expected Tx2 arrives and R = F + fTx1 otherwise. At
each round r, miners calculate the expected values of each different behavior and
choose one of them.

Algorithm 3 Rational createBlock() action of a rational miner agent m.

1: action createBlock()
2: while (w) do
3: i← |B?

n|+ 1
4: E ← calculate expected values
5: Tx1 ← selectTransactions(Θn)
6: depending on E either:
7: wait until ΣfTx2 >> ΣfTx1 such that Tx2 ← selectTransactions(Θn)
8: if Tx2 arrives either createBlock(i, Tx2) or createBlock(i, Tx1)
9: if Tx2 not arrives either createBlock(i, Tx1) or continue waiting

10: or:
11: start createBlock(i, Tx1)
12: if Tx2 arrives either createBlock(i, Tx2) or continue
13: if Tx2 not arrives continue
14: endwhile

Based on the state machine given in Figure 1, the rational behaviors of miner
agents can be implemented by improving the createBlock() action given in the
Basic System Model (Algorithm 1) as shown in Algorithm 3. In particular, we
consider three behaviors: (β1) the miner waits the arrival of Tx2 ignoring Tx1;
(β2) the miner starts mining with Tx1 ignoring Tx2 (either if it arrives or not);
(β3) the miner starts mining with Tx1 and when Tx2 arrives she starts mining
with Tx2. Following the same reasoning as in Section 4.2, for each behavior we
compute the expected values:

E(β1) =

q∑
q′=1

1/2 · (p · (1− p)q
′−1 · (F + fTx2)− C) (2)

E(β2) =

q∑
q′=1

(p · (1− p)q
′−1 · (F + fTx1

)− C) (3)

E(β3) =

q∑
q′=1

(1/2·p·(1−p)q
′−1 ·(F+fTx1

)+1/2·p·(1−p)q
′−1 ·(F+fTx2

)−C) (4)

These expected values depend on the transaction the miner is considering to
mine (Tx1) and the probability that a juicy transaction (Tx2) arrives. Having a
probability distribution over such an event is far from being trivial. We consider
that the user has no information about the exact distribution probability, i.e.,
she takes a decision under ignorance. By applying the principle of insufficient
reason11 we then assign the same probability, to the two events: “Tx2 arrives”;
“Tx2 does not arrive”.

We show the results associated with a scenario in which the two events are
considered as equally as possible in Section 5.2.

5 Analyses and Results

We analyzed the rational behaviors of each agent proposed in Section 4.2 using
Matlab R2017a. It is assumed that the initial utility values u0 of all agents are
the same and high enough from the threshold τ . In the following, we provide
results of these analyses considering both the users and the miners employing
synthetic data.

5.1 User Agent

Recalling Equation (1), it is clear that depending on the values of P (f) and C(f)
the expected value E may or may not converge to −∞.

Let us first give a graphical intuition of the series behavior (Figure 2). For

simplicity, we denote the first part of Equation (1) as αgain =
∑∞
r=1 P (f)

r−1
·

P (f) · (I− f) and the second part as αcost =
∑∞
r=1 P (f)

r−1
·C(f)r−1. Consequ-

ently, E = αgain−αcost. As can be seen, if C(f) ≥ 1/P (f) then αcost goes to∞,

thus E goes to −∞ (cf. Fig 2a). Otherwise, if C(f) < 1/P (f) the cost converge
to a bounded quantity and E as well (cf. Fig 2b). In the first case, it can be
said that the user agent is facing an unfair situation, if she chooses the fee f her
expected value E is −∞ due to the fact she would pay an infinite waiting cost12

with no possibility to change the strategy.
Based on this observation we state that

11 The principle of insufficient reason prescribes that if one has no reason to think
that one state of the world is more probable than another, then all state should be
assigned equal probability [16] .

12 This is the same situation as in the Saint Petersburg Paradox [19].

C(f) < 1/P (f) (5)

is a necessary condition for fairness since its violation leads the waiting cost
to ∞ and the E for the transaction to issue to −∞. That is, in such scenario is
never profitable to try.

(a) (b)

Fig. 2: Expected values during a period of 144 rounds (one day), depending on
the relationship between C(f) and P (f), E may converge to a finite quantity or
to −∞. P (f) and C(f) are chosen such that the different behavior of E can be
seen when (a) Equation (5) holds, and (b) not holds.

In the following, we consider a scenario where the necessary condition given in
Equation (5) is met and we show with a practical example why having C(f) <
1/P (f) is not sufficient to have fairness as defined in Section 4. We consider
an user agent whose already issued some transactions, her Un = −30Satoshi
(1Satoshi = 0.00000001BTC) and her threshold is τn = 70Satoshi. Since Un <
τn the user finds the system unfair if the expected value of the next transaction
does not allow to reach the threshold, in this case the user will leave. Let us
consider that such user has a transaction to issue and can decide to play with
two fees: a low and a high fee, 20 and 40 Satoshi respectively. In order to rise
Un above τn, the expected values have to be at least 100 Satoshi.

Figure 3 plots the expected values for two different scenarios with respect
to rounds where in both cases the necessary condition (5) is met. In the first
scenario (Figure 2a),the user agent can issue a transaction with a low fee of 20
Satoshi such that P (20) = 0.25 and C(20) = 0.5. If the user agent chooses a
high fee of 40 Satoshi then such probability rise to 0.75 and the waiting cost to
1.5. In the second scenario (Figure 2b) nothing changes but the probability and
the waiting cost for the low fee, P (20) = 0.6 and C(20) = 1 respectively. In both
cases the user interest I is 100 Satoshi and is constant.

(a) (b)

Fig. 3: Expected values of user behaviors given in Section 4.2 with respect to
rounds.

As can be seen, whatever fee the user decides to assign to the transaction
the expected value is below 100 Satoshi so the user has no way to rise Un
above τn and since she will find the system unfair with no possibility to change
such situation, she will leave the system. It is important to underline that the
perception of fairness is strictly local to the user since it depends to the interest
she puts in the transactions issue and the waiting cost it perceives.

5.2 Miner Agent

Figure 4 depicts miner expected values as defined in Section 4.2. We consider
different scenarios depending on the reward that a miner gets solving the PoW:
a fixed part and the sum of the transactions fee included in the block. For
simplicity, it is assumed that each miner can insert only one transaction in a
block13 and that at the beginning of the round the miner has in its transaction
pool a transaction Tx1 and it is expecting to deliver a second transaction Tx2

such that Tx2 > Tx1. We consider that the miner has a AntMiner S9 device14,
thus miner has q = 504e15 attempts to solve the PoW during a round and the
probability to solve it is p = 6.1201e − 66 for each attempt. In this analysis we
are comparing the different strategies in one single round and the power cost is
common and constant but a way greater than the possible reward in one round,
for this reason we do not consider the cost in the plots. In Figure 4 on the y-axis,
we have the Expected Value in Bitcoins (BTC) and on the x-axis the q attempts.

As can be seen, whenever Tx2 arrives it is convenient to swap the two trans-
actions and start creating a new block with Tx2. How convenient it is depends

13 In the Bitcoin protocol blocks have fixed size (see Section 3.5).
14 Such device hash rate is 14TH/s, which means 14e12 ∗ 36000 attempts to solve the

PoW in a round (10 minutes in average).

(a) (b)

(c) (d)

Fig. 4: Expected values of miner behaviors with respect to rounds. In cases (a)
and (c) the fixed reward is 12.5 BTC, in cases (b) and (d) fixed reward is zero.

on the difference between the two fees, independently of the fixed part amount. In
Figure 4a and Figure 4b, Tx2 >> Tx1 and for the miner it is clearly convenient
to swap from Tx1 to Tx2. This this is also true if the transaction fees are close
to each other, Figure 4c and Figure 4d. Let us note that in the case of a bigger
block size the miner would have started to mine a block with both transactions
to increase her reward.

6 Discussion and Conclusion

To the best of our knowledge, this is the first study focusing on users. The
rational system model given in Section 4 allows us to define fairness as the
overall satisfaction of participants. However, there is still no mechanism which
guarantees fairness for users. As shown in Section 5, the expected values for the
users are always decreasing when their waiting costs are not taken into account
by the miners. Moreover, we showed that the miners as rational agents have no
incentive to keep the probability over rounds stationary.

Based on these findings, the main issues arisen by Bitcoin-like blockchain
systems can be resumed as follows:

– There is no mechanism for a user to cancel an already issued transaction,
i.e. once she decides to engage in the game, it can never abandon the game.
This implies expected values going to minus infinity. In decision theory terms,
this would mean assuming a user having an infinite interest on a transaction,
which is in fact hard to assume in real settings.

– Given different fees with their associated probabilities, more flexibility to
guarantee fairness would have been reached by allowing the user (experi-
encing a long waiting time) to resend the transaction with a lower fee. This
flexibility, on the other hand, is not achieved in Bitcoin-like blockchain sys-
tems mainly due to two reasons: (1) there is no deterministic guarantee that
the system chooses a given copy of the transaction, it is only guaranteed with
high probability that only one copy will be inserted into the blockchain, and
(2) the miner behavior favors the transaction with the highest fee to get
included in a block.

– The block size is a fixed parameter today. Obviously, if the volume of trans-
actions increases over time, the block size can become a scarce resource and
miners will be more apt to deliberately delaying a transaction with a low
fee. This will dramatically drop the probabilities for low fees and their cor-
responding expected values by time.

– Fees are decided by the users, leading to a possible race among users fees.
Such a situation would make the probabilities difficult to predict, and ex-
pected values of users might drop even more quickly.

– The fairness is a locally perceived concept and it must indeed be tracked.
This needs further detection mechanisms not included in the current systems.

In a nutshell, we can claim that Bitcoin-like blockchain systems do not en-
visage any specific mechanism to avoid unfairness for the users. Unfairness situ-
ations are not caused by the users and it is the users who has to sacrifice more.

Such situations may reduce the satisfaction of the users dramatically, and as a
result the users may leave the system totally. Consequently, the rational system
model should be augmented with mechanisms that allow agents to change their
behaviors upon detecting unfair situations for balancing their overall satisfac-
tion. Such a system will obviously encourage honest participants to stay in the
blockchain system.

Besides, it is particularly difficult to devise such mechanisms while preserving
the security properties of blockchain systems. This is especially true for those
solutions envisaging to give rewards to users (this will change the computation
of the expected value given in Section 4) for other protocol actions they do in
the system, such as forwarding messages or validating transactions and blocks.
Unfortunately, no proved solution exists on this line, to the best of our knowledge.

Pragmatically speaking, to avoid security issues and related complex analy-
ses, we claim that a promising approach would be to stick as much as possible
to the original Bitcoin protocol, introducing mechanisms to improve the degree
of fairness of the system. For example, it would be interesting to consider how
to give the possibility to the user to revoke a transaction, or to re-issue it again
with a lower fee. It could also be interesting to allow the block size to be an ad-
justable parameter, as it is now for the difficulty parameter of the mathematical
puzzle15.

References

1. Asokan, N.: Fairness in electronic commerce (1998)

2. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In:
Proceedings of the 13th ACM conference on electronic commerce. pp. 56–73. ACM
(2012)

3. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 154–167. ACM (2016)

4. Coudene, Y.: Ergodic Theory and Dynamical Systems. Universitext, Springer-
Verlag London (2016), http://dx.doi.org/10.1007/978-1-4471-7287-1

5. Eyal, I.: The miner’s dilemma. In: Security and Privacy (SP), 2015 IEEE Sympo-
sium on. pp. 89–103. IEEE (2015)

6. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng: A scalable block-
chain protocol. In: NSDI. pp. 45–59 (2016)

7. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
International Conference on Financial Cryptography and Data Security. pp. 436–
454. Springer (2014)

8. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and
Applications, pp. 281–310. Springer Berlin Heidelberg, Berlin, Heidelberg (2015),
http://dx.doi.org/10.1007/978-3-662-46803-6_10

15 During the submission process of this paper (August 2017), the Bitcoin (BTC) pro-
tocol, which has 1 MB of block size, has been hard forked as the Bitcoin Cash (BCC)
protocol, which has 8 MB of block size. However, it is early to conclude if BCC is
better than BTC for the moment.

9. Göbel, J., Keeler, H.P., Krzesinski, A.E., Taylor, P.G.: Bitcoin blockchain dynam-
ics: The selfish-mine strategy in the presence of propagation delay. Performance
Evaluation 104, 23–41 (2016)

10. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
International Conference on Financial Cryptography and Data Security. pp. 528–
547. Springer (2015)

11. Liu, J., Li, W., Karame, G.O., Asokan, N.: Towards fairness of cryptocurrency
payments. arXiv preprint arXiv:1609.07256 (2016)

12. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function,
pp. 369–378. Springer Berlin Heidelberg, Berlin, Heidelberg (1988), http://dx.

doi.org/10.1007/3-540-48184-2_32

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2018), https://

bitcoin.org/bitcoin.pdf

14. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. IACR Cryptology ePrint Archive 2016, 454 (2016)

15. Pass, R., Shi, E.: Fruitchains: A fair blockchain. Cryptology ePrint Archive, Report
2016/916 (2016), http://eprint.iacr.org/2016/916.pdf

16. Resnik, M.D.: Choices: An introduction to decision theory. U of Minnesota Press
(1987)

17. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education (2010)

18. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: International Conference on Financial Cryptography and Data Security.
pp. 515–532. Springer (2016)

19. Weiss, M.: Conceptual Foundations of Risk Theory. Technical bulletin (United
States. Department of Agriculture), U.S. Department of Agriculture, Economic
Research Service (1987)

