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Chapter 14
Split of Composite Components for Distributed
Applications

Ansgar Radermacher, Onder Giircan, Arnaud Cuccuru, Sébastien Gérard, and Brahim Hamid

Abstract Composite structures as in UML are a way to ease the development of complex ap-
plications. Composite classes contain sub-components that are instantiated, interconnected and
configured along with the composite. Composites may also contain operations and further attributes.
Their deployment on distributed platforms is not trivial, since their sub-components might be allo-
cated to different computing nodes. In this case, the deployment implies a split of the composite. In
this chapter, we will motivate why composites need to be allocated to different nodes in some cases
by examining the particular case of interaction components. We will also discuss several options to
achieve the separation and their advantages and disadvantages including modeling restrictions for
the classes.

14.1 Introduction

The basic idea behind any component-oriented approach is that elementary application pieces (i.e.
components) can be composed together in order to achieve the functionality of a more complex
system. Component-oriented approaches are usually grounded on a design process including
component development or reuse, assembly and deployment.

In the component assembly step, the system under design is itself considered as a component.
It is hierarchically defined by an assembly of existing components using an Architecture Description
Language (ADL) [4], where the assembly is concretely specified by connections expressed between
sub-components (parts). In the context of this chapter, we focus on Unified Modeling Language
(UML) [16] as modeling language. Sub-components can themselves be defined as assemblies,
resulting in hierarchical systems of arbitrary depth.

In the deployment specification step, the target execution platform for the application is con-
sidered. The model of the execution platform usually consists, at least, of an identification of the
various execution nodes, as well as available communication paths between them. The deployment
specification consists of allocating the components of the application model to execution nodes of
the platform (often indirectly by allocating them to processes or threads which in turn are allocated
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to execution nodes, but we simplify this aspect in the context of this chapter). Allocation is usually
done taking into account non-functional requirements of the system under design, such as execution
time constraints, memory footprint, communication throughput, etc.

It is sometimes necessary to allocate sub-components to different execution nodes which requires
a split of the associated composite. The next section illustrates this problem by means of a small
example, section 14.3 provides multiple options how to split composites. Section 14.4 examines how
existing component frameworks split composites. An evaluation and comparison of these options is
given in section 14.5. Section 14.6 concludes this chapter.

14.2 Motivating Example

In this section, we motivate why some composites need to be split by examining interaction
components.

Consider a very simple application with two components, A and B as shown in Fig. 14.1. A has
a port q with a required interface |, B has a port p with a provided interface I.

System

Fig. 14.1 A simple system with two components and uni-directional communication.

Now consider that the communication between A and B is realized by a component that im-
plements the interaction on top of the operating system’s socket API. We call such a component
an interaction component (also called connector in the context of the DDS-for-CCM specification
[15]). On a logical level, this component is a single entity that may contain configuration data such
as a port number, connection policies or a unique identifier (object reference).

If we want to distribute the application onto two nodes, a and b are allocated to different nodes.
Fig. 14.2 shows the architecture of the example system. Please note that the composite structure
diagram distinguishes between a role (corresponding to a kind of instance) and its type, i.e. the
socket is not a nested classifier within the system but a part of the system on an instance level. Thus,
the first component that is split is the component representing the system itself (System). However,
the System component is a particular case, since there exists only one instance, it has no behavior
of its own and there are no connections from the system boundary to inner parts (called delegation
connectors in UML [16]). Thus, it is a pure assembly component and basically used to define the
instances of a system and their interconnections.

Fig. 14.3 shows the internal structure of the SocketConnector component. It consists of a client
and server stub (cli and srv respectively) which both access a socket run-time. The dashed outline of
the latter indicates that this component is shared: it is not instantiated along with SocketConnector
but exists independently. The access to a shared resource within a composite corresponds to a
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System
srv
connAB : SocketConnector b:B
|
« allocate » « allocate »
NodeA NodeB
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Fig. 14.2 Distribution of the system given in Fig. 14.1. The System composite component is now

with sockets and allocation.

e

q]/(—fl

SocketConnector
clientFrag : serverFrag :
Client_impl Server_impl
? 7
T

socketRuntime : SocketRuntime

Fig. 14.3 Internal structure of the SocketConnector composite component given in Fig. 14.2.

kind of vertical connection: the communication of the stubs with the run-time is a communication
between different layers, pre-assembled within the composite.

Since the communication with the interaction component is a simple local communication, the
interaction component itself needs to be separated. We can further follow local connections within
the connector to determine the allocation of the internal parts of the connector. The allocations
within the socket connector can thus be derived from the allocations of the application components:
the client fragment of the connector needs to be co-located with A and the server fragment with B.
An interesting aspect is the socket run-time that is shared by client and by server fragment. Whereas
it exists only once from a logical viewpoint, it must be present on each node and thus be allocated

to NodeA and to NodeB. Fig. 14.4 shows the resulting split of the SocketConnector.
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System

connAB : SocketConnector

) clientStub : serverStub .
a:A Co ) b:B
q Client_impl Server_impl - )

E 1

i
I
| o
I

L ol [}
socketRuntime : socketRuntime : r
SocketRuntime SocketRuntime ‘
|
« allocate » — e « allocate ‘»
Derived allocations’ v
NodeA NodeB

Fig. 14.4 Splitting the composite component SocketConnector during the distribution of the
system.

Since a composite can enable distribution, its split should be authorized under the condition that
this split does not modify the component’s semantics'. This is the case, if a composite does not have
a behavior of its own (only delegation to parts), nor any configuration data. Since the latter is too
strict, the composite may offer virtual configuration attributes that are effectively realized by its
parts. This means that the configuration attributes of the composite are linked with configuration
attributes in the parts. The same attribute might appear in multiple parts.

Now consider a slight extension of the example: B also talks to A, using the same interface, A
has an additional port p, B an additional port q and both are connected, as shown in Fig. 14.5.

In this case two parts (connAB and connBA) are typed with SocketConnector. But, the allocation
of the sub-part is different for the two instances (parts):

Since a is on NodeA, the clientStub part of the instance connAB must be on NodeA as well to
satisfy the co-localization constraint caused by the assumption of inseparable simple connections.
But with the same argument, clientStub of instance connBA must be on NodeB, co-localized with
b. Thus, allocation is instance based and it might happen that two different instances of a composite
have different allocation specifications for their parts. Thus, the split is not trivial and we will study
multiple options how to split the composite in case of the example in section 14.3.

! Preserving semantics of components is also important in order to be able to analyze them correctly
[11].
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System

Fig. 14.5 A simple system with two components and bi-directional communication.

14.3 Different ways to split composites

In the sequel, three different options to split composites are shown by means of the simple example
from section 14.2.

Option 1 — Keep composites

The first option is to keep a modified variant of the composite that only contains the subset of parts
which are deployed on a certain node. Fig. 14.6 shows the result for the uni-directional variant of
the example: SocketConnector’ is the variant of the original SocketConnector. It contains the
subset of parts that are allocated on NodeA, clientStub and socketRuntime. Note that splitting
is in general not trivial, since the split must also consider super-classes. In our case, the ports of
the socket are inherited by an abstract interaction component (aka connector type). Depending on
how the super-class is organized, the composite only inherits from a subset of super-classes or
super-classes need to be split as well which complicates the design.

SystemOnA | Delegation connector

ClientFragment

a A connAB : clientStub : B socketRuntime : |
q ol SocketConnector' Client_impl “ T SocketRuntime

{ Assembly connector

Fig. 14.6 Option 1: Splitting components in the uni-directional example given in Fig. 14.1 by
keeping composites.

Please note that it is not the part that is allocated on a certain node, but the (sub-) instance that is
associated with a part. If there is a second instance whose sub-instances are allocated in a different
way, a second variant of the composite with a part subset must be created. This is shown in Fig.
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14.7. The creation of multiple variants implies a certain overhead which —although small- may be
non-acceptable on resource constraints systems.

SocketConnector’

clientStub : a socketRuntime :
Client_impl T SocketRuntime

SystemOnA_Option1

connAB :
SocketConnector’

SocketConnector”

connBA :

|
04 |
SocketConnector” serverStub : socketRuntime :
Server_impl SocketRuntime

Fig. 14.7 Option 1: Splitting components in the bi-directional example given in Fig. 14.5 by keeping
composites.

Option 2 — Flatten composite

Flattening a composite component is a well-known approach in the literature [6, 7, 11] in which
a composite component may disappear in the deployment model, i.e. it is replaced by its internal
structure. The internal assembly connections of a composite become assembly connections of the
containing composite (the System class in case of the example). The delegation connections? refine
the final targets of existing assembly connections in the containing composite.

Fig. 14.8 shows the example system for NodeA, in which the SocketConnector composite
component has been flattened. The two parts in the system typed by a socket implementation have
been replaced by parts that are directly typed with elements of the socket implementation. The
original composition hierarchy may still be visible via a suitable naming convention for these
new parts by prefixing them with the original part name, as done in the example with the prefixes
connAB and connBA.

Option 3 — Flatten composite, require explicit fragment sub-components

The third option is a variation of the second solution. We also flatten the SocketConnector composite
component, but require that the composite must contain exclusively specific sub-components that
we call fragments. A fragment encapsulates the parts of a composite that are allocated on the same
node, conversely each fragment within a composite is typically allocated on a different node. The
latter implies a restriction that is verified by a validation rule: fragments may not be connected
by UML assembly connectors. The modeling of SocketConnector with fragments is shown in
Fig. 14.9.

The resulting system is shown in Fig. 14.10. The composite has been flattened; the fragments
have become top-level elements. The result looks very similar as the solution in Fig. 14.7, effectively
the explicitly modeled fragments replace the derived subsets of the composite.

2 Assembly connectors are connections between inner parts, delegation connectors connections
from the composite to an inner part.
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SystemOnA_Option2

cli

connAB_clientFrag :
Client_impl

socketRuntime :

srv Server_i

connBA_serverFrag :

mpl

SocketRuntime
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Fig. 14.8 Option 2: Splitting components in the bi-directional example given in Fig. 14.5 by

flattening composites.

SocketConnector

G

clientFrag : ClientFragment

serverFrag : ServerFragment

0

clientStub : serverStub :
Client_impl Server_impl
1 1

o

z

i

[
socketRuntime :
SocketRuntime

-
socketRuntime :
SocketRuntime

.

Fig. 14.9 Option 3: The SocketConnector composite component with explicit fragments.

14.4 Support for splitting composites in existing frameworks

In the following, we sketch the existing component frameworks that have a specific support for
interaction components® and show how these frameworks may handle composite splitting, mainly
in the context of interaction components.

3 Having specific support for interaction components is needed in order to be able to address the
composite split in a systematic way.
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SystemOnA_Option3 ClientFragment

clientStub : L, socketRuntime :
Client_impl AL_r‘ SocketRuntime

connAB :
ClientFragment

|
ServerFragment
|
serverStub : L socketRuntime :
Server_impl SocketRuntime

Fig. 14.10 Option 3: Splitting components in the bi-directional example given in Fig. 14.5 by
flattening the System composite with explicit fragments.

connBA :
ServerFragment

14.4.1 DDS for CCM

The connector element that we have used in the motivating example is supported in multiple compo-
nent models. As already mentioned, it has been standardized within the context of the OMG (Object
Management Group) standard CCM (CORBA component model) [13]. More specifically, it is part
of the DDS for CCM [15] specification, enabling component interactions via OMG’s Data Distribu-
tion Service. Within this specification, the term GIS (Generic Interaction Support) is introduced.
GIS will be part of the upcoming OMG unified component model [17]. The underlying connector
extension for CCM has been proposed in [19]. Deployment with CCM is based on the specification
for Deployment and Configuration (D&C) of distributed component-based applications [14]. The
D&C standard describes a so-called deployment plan, a specification of instances that refer to
component implementations, the interconnections between these instances, their configuration and
their allocation to a node.

In the DDS for CCM specification, DDS interaction components are not identified as composites,
since there are separate writer and consumer components. This is useful in case of DDS in which
connections are implicitly created by sharing the same topic, i.e. there is no single component
that represents an interaction. But the generic interaction support enables explicit point-to-point
interactions for which composites would be useful. D&C supports two kinds of implementations of
software components [14]:

o Monolithic implementations, where the code of the composite component is compiled as a
single block.

e Assembly (composite) implementations, including the set of implementation of all the parts
that the composite component includes. There must eventually be monolithic implementations
at the “leaves” of the hierarchical implementation. Assembly allows dependent packages to be
deployed on distinct target nodes, enabling flexibility in composite component instantiation.

While the D&C specification allows composites, the composites have no identity and cannot be
reused. This has been analyzed in [10]. In this article, the authors review and compare the ability of
13 component models of handling component composition. They identify the development with
D&C as a “deposit only” repository for composites: a composite component that results from the
component assembly step can be deposited in a repository but cannot be retrieved from it, because
it does not have an identity of its own. In the end, only monolithic components are deployed, i.e. the
component hierarchy is flattened. Note that this does not only apply to interaction components but
to all composite components, even if they deployed on the same node, i.e. a stronger variant of the
Slatten option in section 14.3.
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14.4.2 Fractal

Connectors have also been introduced in the context of Fractal* [2, 5]: a binding is defined as
a communication path between component interfaces. Bindings can be primitive or composite.
A primitive binding (direct connector) binds one client interface and one server interface in the
same address space. A composite binding is a communication path between an arbitrary number
of distributed component interfaces and is represented as a set of primitive bindings and binding
components. Binding components are called Fractal connectors, and are normal Fractal components,
whose role is dedicated to communication.

However, there is no support for splitting in Fractal in the sense of interaction components as
shown in Section 14.2.

14.4.3 SOFA

In SOFA’® [1, 3, 12], connectors are used to support transparent distribution of applications. A
connector might support a transport mechanism such as CORBAS or low-level socket mechanisms.
In this context, they are responsible for marshalling and unmarshalling and interfacing with the
transport layer. But they can also be used for synchronization or interception. Connectors are
automatically generated.

In SOFA, the connector plugging is performed after component instantiation using a split of the
connector into two parts: the server and the client connector units (fragments). Whenever component
interfaces query a connector reference, the corresponding server connector unit is returned (instead
of returning a reference directly to an interface). Similarly, whenever an interface is being connected
to another component, a client connector unit is created and bound. The connector composite
specifies the parts, into which it is later split explicitly, corresponding to the fragment option (Option
3).

14.4.4 Qompass

The FCM [8] (Flex-eWare component model) component model has the objective to unify the
component models of Fractal and CCM. It extends the UML composite structures with dedicated
interaction components — as, for instance, the socket connector presented in the motivating example
(Section 14.2) — flexible ports and container services. This component model is supported by an
add-on to the Papyrus” UML modeler called Qompass designer. Fig. 14.11 shows the definition
of the socket interaction component within a Qompass modeling library and the Qompass context
menu. This add-on was first introduced as eC3M (embedded Component Container Connector
Model/Middleware) [18]. Upon deployment, the tool chain executes a model transformation that
replaces annotated UML connectors with the associated interaction components, as shown in
the motivating example given in Section 14.2 (the transition from Fig. 14.1 to Fig. 14.2). This
transformation includes an instantiation of the interaction component to the context in which it is
used (similar to the generation of in SOFA). A further model transformation produces a model per

* The Fractal Component Model, http:/fractal.objectweb.org/specification/, last access on
07/02/2014.

5 SOFA 2, http://sofa.ow2.org/, last access on 07/02/2014.
6 Common Object Request Broker Architecture, http://www.corba.org/, last access on 07/02/2014.
7 The Papyrus UML modeler — http://www.eclipse.org/papyrus, last access on 23.01.2014
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node. During the latter, the composites within the FCM models are split. The composites that are
concerned are mainly interaction components and the dedicated system component.

© Papyrus - org.eclipse. papy rus.qompass. modellibs.distribution/models/librarydistribution.di - Eclipse Platform v o &
file Edit Diagram ~7J Diagram Navigate Search Papyrus Project Run Window Help
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79 osaldi [¢] Base.h [] TimeRequestersM ~? ROOMLibrarydi ~J TimeRequester_a ~ umirt.profile.d 79 distributiondi 52 | 7y = & o
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('} Socket_impl LA Ba R Y )
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Fig. 14.11 Definition of a socket connector within Papyrus, using the client and server fragments

In Qompass, interaction components with explicitly identified fragments are flattened, i.e. the
fragment option (Option 3). Being based on UML, Qompass must handle the specific case of a
dedicated system component. Such a component is required, since connections can only be defined
in the context of an enclosing composite (unlike for instance in D&C). Thus, Qompass must also
split the system component, if the contained components are deployed on different nodes. The
approach that has been chosen is to create a specific variant of the System component on each node,
i.e. the keep option (Option 1). Note that it is not possible to flatten the system component, since the
UML component model requires an enclosing composite for defining connections.

14.5 Discussion

Obviously, all splitting options increase the number of classes. When the composites are kept (Option
1), there is no need to remove additional assembly connections from the system. Flattening (Option
2) makes top-level composites bigger, since these composites have to incorporate the contents of a
flattened component (sub-components and their connections) instead of the component itself. In
fragmentation (Option 3), a possible split is anticipated and explicitly defined by the developer.
Since the composite may not have assembly connectors, no additional connectors are added to the
System class (the composite that contains the split composite). Based on this observation, to make
a quantitative comparison, we measured the footprints associated with the different splitting options.
The code size of a complete application has been measured in case of the simple uni-directional
system and its bi-directional variant for splitting options 1, 2 and 3, as shown in Table 14.5. The
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results were obtained on a Linux machine with gcc 4.7 (optimizations disabled). As expected,
Slattening (Option 2) results in a slightly smaller footprint compared to the other two.

Table 14.1 Footprint of different deployment options for the simple uni-directional (Fig. 14.1) and
simple bi-directional (Fig. 14.5) systems. The results show that flattening has the smallest footprint
among three deployment (splitting) options.

code size (bytes)

example system
Opt 1 (keep) | Opt 2 (flatten) | Opt 3 (fragments)

Simple uni-direct| 13904 12233 13936
Simple bi-direct 14668 13754 14710

However, flattening is evidently not possible for a top-level component, since the transformation
towards a model having only monolithic components and assembly connections® is rather straight
forward. Thus, the resulting system is different, since the internal connections become visible in
the system. This may be annoying, if the same composite is instantiated more than once in the
original model, e.g., if we have more than one socket connector. Also note that the internal structure
of an interaction component might be more complex than the simplified SocketConnector used
for illustration purposes. This makes it a bit difficult to link it with the original model, for instance
when debugging is done on the level of the deployed model, but fixes must be made in the original
design model. Other tasks that are affected by this difference are for instance trace mechanisms
(which must translate a trace specification for a composite into suitable specifications for the inner
parts) and the replacement of a composite implementation with another one (e.g. in the context of
different system configurations). The advantage is a slightly reduced footprint and a resolution for
the splitting problem.

Another important thing to consider is debugging. Debugging is generally defined as the process
of locating and fixing or bypassing bugs in the underlying software, to achieve reliable systems. To
this end, various debugging tools are developed help to identify errors at the various stages of the
software development process. Especially, debugging and visualizing the behavior of component-
based embedded software using models such as the Unified Modeling Language (UML) [16]
diagrams has become a reality. For instance, model-based tools such as Papyrus and the commercial
tool Rhapsody® (“live-animation” features) enable model-based debugging of embedded software
systems using sequence diagrams and state charts. In case of Papyrus, animation is based on an
injected probe that communicates with the development environment. Showing the activation of a
delegation connector within a composite is evidently only possible, if the composition hierarchy has
not been flattened. Hence, the closer the deployed model is to the original architecture, the easier
it is to debug. In this sense, since keeping the original composition hierarchy (Option 1) has the
advantage that the deployed model is closer to the original architecture, it is a bit easier to debug
compared to Option 2 and 3.

Besides, in some domains (such as aerospace and electrical cars) the overall architecture of
vehicles becomes very complex [20]. One possibility to tackle this complexity at run-time, is the use
of dynamic reconfiguration abilities. Dynamic reconfiguration is a process of modifying the software
architecture and enact the modifications during the system’s execution [9], which means making the
software evolve from one configuration to another at run-time, as opposed to design-time, while
introducing little or ideally no impact on the systems execution. This prevents the system to be taken

8 In UML-like languages, connectors are always owned by a composite, i.e. a System composite
must be kept.

° IBM Rational Rhapsody Developer, http://www-03.ibm.com/software/products/en/ratirhapy, last
access on 04.02.2014
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off-line and/or restarted to accommodate changes. Considering the split of composite components
discussed in this chapter, a dynamic reconfiguration would replace the SocketConnector component
with another interaction component. In order to be able to do this seamlessly, splitting Option 1 is
better suited since we do not need to remove additional assembly connections from the system.

14.6 Conclusion

‘We have shown that the deployment of composite instances which are partly allocated on one node
and partly on another can be tackled in several ways with different advantages and disadvantages.
The choice of a suitable split option depends on properties of the composite that should be split.
For instance, in Qompass designer we keep the composite of the System component, since this
particular component (no inheritance, single instance) can be split easily and since flattening would
result in multiple top-level components. On the other hand, we flatten interaction components and
require the explicit use of fragments, since we want to avoid the problems that come with multiple
instances (creating potentially multiple variants of a split component). The choice depends also
on the deployment goals, e.g. whether an optimized application compared to a debug-enabled
application should be delivered. The options are rather evident, but —to our knowledge— the task had
not been examined systematically earlier.

The interest of deploying composites with complex allocation properties is not artificial: a
composite definition is a suitable choice for interaction components enabling distribution. In
this context, the raised issues concern principally framework and tool developers, i.e. developers
of interaction components and developers of model transformations associated with the split of
composites. However, the results also apply to a sub-system modeled by composite classes that
need to be allocated on multiple execution nodes. In this case, system modellers or designers are
concerned since they need to respect restrictions associated with the split of a composite and should
know the consequences of different split options.
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