
HAL Id: cea-01807015
https://cea.hal.science/cea-01807015

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Agent Optimization for Safety Analysis of
Cyber-Physical Systems: Position Paper

Önder Gürcan, Nataliya Yakymets, Sara Tucci-Piergiovanni, Ansgar
Radermacher

To cite this version:
Önder Gürcan, Nataliya Yakymets, Sara Tucci-Piergiovanni, Ansgar Radermacher. Multi-Agent Opti-
mization for Safety Analysis of Cyber-Physical Systems: Position Paper. 2nd International Workshop
on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems, part of Cyber-Physical
Systems Week, Apr 2015, Seattle, United States. �cea-01807015�

https://cea.hal.science/cea-01807015
https://hal.archives-ouvertes.fr


Multi-Agent Optimization for Safety Analysis of
Cyber-Physical Systems: Position Paper

Önder Gürcan, Nataliya Yakymets,
Sara Tucci-Piergiovanni, Ansgar Radermacher

CEA, LIST, Laboratory of Model driven engineering for embedded systems,
Point Courrier 174, Gif-sur-Yvette, F-91191 France

{onder.gurcan,nataliya.yakymets,sara.tucci,ansgar.radermacher}@cea.fr

Abstract. Failure Mode, Effects and Criticality Analysis (FMECA) is
one of the safety analysis methods recommended by most of the interna-
tional standards. The classical FMECA is made in a form of a table filled
in either manually or by using safety analysis tools. In both cases, the
design engineers have to choose the trade-offs between safety and other
development constraints. In the case of complex cyber-physical systems
(CPS) with thousands of specified constraints, this may lead to severe
problems and significantly impact the overall criticality of CPS. In this
paper, we propose to adopt optimization techniques to automate the de-
cision making process conducted after FMECA of CPS. We describe a
multi-agent based optimization method which extends classical FMECA
for offering optimal solutions in terms of criticality and development
constraints of CPS.

Keywords: safety analysis; self-adaptation; optimization; FMEA; FMECA.

1 Introduction

Cyber-physical systems (CPS) are complex organizations of software and hard-
ware systems (i.e. systems of systems) expected to serve, aid and cooperate with
humans. Examples of CPS include large-scale engineering systems such as avion-
ics, healthcare, transportation, automation and smart grids. CPS are expected
to exceed traditional embedded systems in various aspects such as efficiency,
safety, reliability, robustness, adaptability, availability and so on [1]. Since CPS
are expected to interact and involve humans, they require a high-level of safety
which can be achieved by following rigorous procedures defined in safety stan-
dards [2]. Those procedures describe application of various safety assessment
(SA) methods starting from the early phases of system development life-cycle.

Over the last decade, the Model-Driven Engineering (MDE) [3] approach was
widely used by design engineers to describe and analyze CPSs at the conceptual
and design phases of their development cycle [4]. Using open MDE frameworks,
such as Eclipse Modeling Framework and Papyrus UML/SysML modeler, CPSs



2

can be described in Unified Modeling Language (UML)1, System Modelling Lan-
guage (SysML)2 or any Domain Specific Language (DSL) like AADL, RobotML,
etc. and then extended to perform different types of analysis. MDE environments
integrate various technologies to provide an advanced support for system require-
ment management [5], design [6], analysis [7–9], verification and validation, and
deployment. Most of those procedures, including SA activities, can benefit from
tighter coupling with MDE environments.

One of the typical SA methods recommended by safety standards [2] is Failure
Mode and Effects Analysis (FMEA) and its extensions: Production FMEA (or
PFMEA), Criticality FMEA (or FMECA), Diagnostic FMEA (or FMEDA).
PFMEA is used to prioritise, in terms of cost, problems to be addressed in
system production. FMECA [10] is used to assess the criticality of system failures
and to propose improvements introduced as a list of recommended preventive
actions to avoid those failures. The criticality of system failure depends on failure
severity, occurrence and detectability and will be defined in the next section. By
the preventive action we mean a change in system architecture that may be
implemented to address a failure of system components. Another modification
of FMEA called FMEDA helps safety experts to define self checking features and
provides detailed recommendations for system architecture. Therefore, FMEA
is used to identify causes and effects of failures that might appear across system
life-cycle and, in addition, it gives a detailed specification of system failures, their
criticality, cost and ways to avoid them. However, in the case of complex CPS
with thousands of specified failures, multiple FMEA tables (PFMEA, FMECA,
FMEDA) may lead to severe problems when choosing the trade-offs between cost,
criticality and diagnostic coverage of a system. Therefore, existing methods and
tools for FMEA can be improved to automate this task and to offer optimal
solutions in terms of safety related constraints.

In this paper we focus on FMECA type of analysis. The classical FMECA is
made in a form of the table filled in either manually or by using MDE methods
and tools for SA [7, 8]. The latter approach helps to partially automate quanti-
tative part of FMECA related to criticality assessment of system components.
However, FMECA is not capable to detect cases when i) multiple failures can
be rectified using the same preventive action or ii) several alternative prevented
actions have been defined to rectify a single failure. This may lead to overuse
of resources needed to increase system safety (implement redundant preventive
actions) and can significantly impact the cost of CPS. The design engineers have
to decide which actions might be rejected to reach a trade-off between safety
and other development constraints. Therefore, existing methods and tools for
FMECA can be improved to automate this task and to offer optimal solutions
in terms of criticality and other constraints. In the literature, this sort of opti-
mization is called multidisciplinary optimization (MDO). The goal of MDO is

1 Object Management Group, The OMG Unified Modeling Language (OMG UML),
Superstructure, version 2.4.1, 2011.

2 Object Management Group. OMG Systems Modeling Language (OMG SysML), 1st
Sept. 2007.



3

to find the configuration that maximizes (or minimizes) several objectives while
satisfying several constraints [11].

We, therefore, propose to extend the classical FMECA using MDO to resolve
the aforementioned problem. The proposed method analyzes recommended pre-
ventive actions associated with component failures and categorizes them accord-
ing to existing constraints. As an MDO approach, we have chosen the Adaptive
Multi-Agent Systems (AMAS) approach [12] since it is a good candidate for find-
ing an optimal level of system criticality and configuration [13]. Using AMAS, we
can find a set of configurations where the criticality of each component is below
the threshold as much as possible under certain development constraints. We
believe that the use of a criticality-based self-adaptation technique like AMAS,
along with the adoption of SA knowledge will make it possible to harness the
complexity of the given problem by finding optimal configurations automatically.

The remaining of the paper is organized as follows. Section 2 gives background
information about FMECA and states the problem. Section 3 presents the AMAS
approach and shows our method to extend classical FMECA to build safety self-
adaptable CPSs. Lastly, Section 4 discusses and concludes the paper and gives
some prospects for further work.

2 Failure Mode, Effects and Criticality Analysis

FMECA is an inductive bottom up approach used to identify different effects
(or consequences) and causes of component failures by analyzing them from
component-level up till system-level. While the qualitative FMEA [10] helps to
define main causes and effects of failures, the quantitative FMECA identifies the
criticality level of failures. The criticality of a failure is automatically evaluated
according to (1).

C(f) = S(f) · O(f) · D(f), (1)

where C is the criticality, S is the severity, O is the occurence and D is the
detectability of failure f . The severity of failure characterizes the consequences
that the failure could have on CPS or its environment. The occurence of failure
characterizes the appearance of the failure and its average exposure occurrence
on CPS or its environment. The detectability of the failure characterizes the
means which exist to detect or plan the appearance of the feared event. The
severity, occurence and detectability criteria are usually evaluated according to
the matrices recommended by the domain specific standards and norms. Table 1
gives the evaluation matrices for the severity, occurence and detectability criteria
adopted in our work.

During FMECA each system component is annotated with the critical thresh-
old, the boundary value of the allowed criticality for this component. If the value
of criticality estimated through FMECA is higher than the critical threshold,
the analyzed component is considered as critical. Figure 1 illustrates a simple
example of FMEA and FMECA: The FMEA table describes possible causes and



4

effects of the failure called Failure1 (”No current from Generator”) of the Gen-
erator component of the train detection system. The FMECA table shows the
results of the criticality analysis of Failure1 in the Generator component. The
evaluation matrices scale severity, occurence and detectability criteria from 1 to
4 (Table 1). We assume that the critical threshold of each component is 2. Ac-
cording to (1) the estimated initial criticality of Failure1 is 6 which is higher than
the threshold. Consequently, Failure1 is critical for the Generator component.
The two actions recommended to tackle Failure1 of Generator include ”Use of
robust components” and ”Introduction of hardware redundancy”.

Table 1. Evaluation matrices for severity, occurence and detectability.

Severity

Level Negligible Significant Critical Catastrophic

Rank 1 2 3 4

Descr.

Deterioration of
the system with
no impact on its

availability
neither

functioning.

Deterioration of
the system,

which makes it
not available to
perform some

operations.

Deterioration of
the system,

which leads to its
unavailability,
permanent or

definitive.

User’s deadly,
potentially
deadly or

permanent
injuries.

Occurence

Level Very Low Low Medium High

Rank 1 2 3 4

Descr.
Less than once a

week.
At least once a

week.
Several times a

week.
Daily.

Detectability

Level High Medium Low Very Low

Rank 1 2 3 4

Descr.

Failure mode
systematically

detectable before
its appearance.

Failure mode
usually

detectable before
its appearance.

Failure mode
hardly detectable

before its
appearance.

Failure mode not
detectable before
its appearance.

The FMECA process offered by most of the MDE tools for SA can be summa-
rized in several steps: system modeling, annotation, analysis, and result genera-
tion (Figure 2). A system model is created using either UML/SysML notations
(e.g., Sophia [7] or HiP-HOPS [8] tools) or formal languages like NuSMV [14],
SAML [15]. Then the model is annotated (or extended) with the description of
possible failures of system components for further FMECA which is conducted
according to the specified failures and their severity, occurrence and detectability
criteria. The results are displayed using dedicated profiles, editors, tables and
report generation modules.

The classical FMECA gives a detailed description of causes and effects of
single failures on component-level, checks what happens on system-level and



5

Fig. 1. A simple example of FMEA and FMECA.

guides design and safety engineers how to prevent failures. The latter is done
via analysis and selection of recommended preventive actions associated with
every failure. A preventive action is a change in system architecture that may
be selected and further implemented to address a failure of system components.
We consider several types of relations between recommended actions and failure
modes:

– Relation type 1: one action targets one failure mode;

– Relation type 2: several complementary actions target one failure mode;

– Relation type 3: several alternative actions target the same failure mode;

– Relation type 4: one action targets several failure modes.

Those actions are defined during the FMECA process by the safety engineer
and can be implemented by the design engineer to improve system safety.

However, in the case of strict specification requirements, such as cost (how
much it will cost to implement all the preventive actions) or time constraints
(how long it will take to implement all the preventive actions), some improve-
ments recommended during FMECA may be rejected (for instance, when choos-
ing between several alternative actions targeting the same failure). Taking into
account a complexity of CPSs and, as a result, sophisticated FMECA (such
FMECA tables can include thousands of failures and associated preventive ac-
tions) the choice of preventive actions that should be implemented is not trivial.
In addition, this can significantly increase the overall criticality of CPS. The



6

Fig. 2. The automated FMEA process.

FMECA tools do not provide information on how to optimize a set of preventive
actions that should be selected for further implementation.

Based on this observation, we propose to extend classical FMECA method
to automate the decision making process related to choosing optimal selected
actions in terms of safety and other development constraints (Figure 1). We
describe a method for optimized safety analysis based on FMECA technique and
show our preliminary model that is intended to be implemented by extending
our tool for SA called Sophia [7].

3 Using AMAS for Improving FMECA

For improving the FMECA process, an optimization technique, that will help
finding an optimum set of recommended actions by taking into account the
trade-off between criticality and cost, is needed. In this sense, the Adaptive
Multi-Agents Systems (AMAS) approach [12] has been selected since it fits well
to the complexity of the problem at hand [16].

3.1 The AMAS Approach

Overview In the AMAS approach, the system is composed of a set of dy-
namic number of autonomous agents A = {a0, a1, ...}. According to AMAS, a
system is said to be functionally adequate if it produces the function for which
it was designed, according to the viewpoint of an external observer who knows
its finality. To reach this functional adequacy, it has been proven that each au-
tonomous agent ai ∈ A must keep relations as cooperative as possible with its
social (other agents) and physical environment [12, 17]. To do so, each agent ai
keeps tracks of its degree of criticality and tries to help the most critical agent
in its neighborhood including itself. In other words, a critical agent is said to be
the most dissatisfied one and its criticality has to be reduced either by itself or
its neighbors3.

3 In certain conditions, it spontaneously communicates information to agents that it
thinks the information would be useful.



7

Agent-Criticality Heuristic The criticality4 value of an agent ai at time t
is calculated by using an agent-criticality function cai

(t). This function may re-
turn a value ranging between 0.0 and 100.0 where 0.0 criticality indicates the
highest degree of satisfaction and 100.0 criticality indicates the lowest degree
of satisfaction of an agent. There is no single formula for agent-criticality func-
tions. It can be defined by making use of the agent’s internal parameters and
state: e.g., an agent with correct internal parameter values is said to be closer
to its goal and thus should be more satisfied than another agent that is still
searching for its right parameter values; or an agent in a non-cooperative state
should be less satisfied compared to another agent in a cooperative state. How-
ever, evaluation methods and calculation of the agent-criticality are specific to
each type of cooperative agent and thus may change from domain to domain.
Consequently, it is the designer’s responsibility to identify the most appropriate
agent-criticality function for each type of cooperative agent depending on the
problem, the domain, the constraints, etc.

Non-Cooperative Situations The value of inputs coming from other agents
(and physical environment) leads ai to produce a new decision. A non-desired
configuration of inputs causes a non-cooperative situation (NCS) to occur. ai is
able to memorize, forget and spontaneously send feedbacks related to desired or
non-desired configurations of inputs coming from other agents. We denote the
set of feedbacks as F and model sending a feedback fa ∈ F using the action
of the form send(fa,R) where a is the source of f and receiver agents R ⊂ A \
{a}. A feedback fa ∈ F can be about increasing the value of the input (fa↑),
decreasing the value of the input (fa↓) or informing that the input is good (fa≈).

Local Solving When a feedback about a NCS is received by an agent, at any
time during its life-cycle, it acts in order to avoid or overcome this situation [18]
for coming back to a cooperative state. This provides an agent with learning
capabilities and makes it constantly adapt to new situations that are judged
harmful. In case a NCS cannot be overcome by an agent, it keeps track of this
situation by using a level of annoyance value ψfa where fa is the feedback about
this NCS. When a NCS is overcome, ψfa is set to 0, otherwise it is increased by
1. The first behaviour an agent tries to adopt to overcome a NCS is a tuning
behaviour in which it tries to adjust its internal parameters. If this tuning is
impossible (because a limit is reached or the agent knows that a worst situation
will occur if it adjusts in a given way), it may propagate the feedback (or an
interpretation of it) to other agents that may handle it. If such a behaviour of
tuning fails many times and ψfa crosses the reorganization annoyance threshold
ψreorganization (reorganization condition), an agent adopts a reorganisation be-
haviour in which it tries to change the way of its interaction with others (e.g., by

4 To avoid confusion of the term criticality between the safety analysis domain and
the AMAS approach, the terms safety-criticality and agent-criticality are used re-
spectively hereafter in this paper.



8

changing a link with another agent, by creating a new one, by changing the way
in which it communicates with another one, etc.) In the same way this behaviour
may fail counteracting the NCS and a last kind of behaviour may be adopted by
the agent: evolution behaviour. This is detected when ψfa crosses the evolution
annoyance threshold ψevolution (evolution condition). In the evolution step, an
agent may create a new one (e.g., for helping itself because it found nobody else)
or may accept to disappear (e.g., it was totally useless and decides to leave the
system). In these two last levels, propagation of a problem to other agents is
always possible if a local processing is not achieved. The overall algorithm for
suppressing a NCS by an agent is given in Algorithm 1 in [19].

3.2 Identification of agents and their nominal behaviors

We designed an agent-based simulation model Sim, for optimizing FMECA de-
scribed in Section 2, by basically capturing all taken design decisions based on
the AMAS theory as a dynamic undirected graph Sim(t) = (G(t),P(t), q) where
G(t) is the set of time varying failure mode agents, P(t) is the set of time varying
preventive action agents and q is the quality agent.

In the initial model, we only consider the cost constraints. Consequently,
each preventive action agent p ∈ P(t) has only a cost parameter. If p is selected
the cost has a non-zero value, otherwise its value is zero.

Each failure mode agent g ∈ G(t) has a set of recommended preventive
action agents Pg(t) ⊂ P(t) and selects preventive action agents p ∈ Pg(t)
for implementation. In the initial model, we considered the cases where one
action can target one failure mode (Section 2, relation type 1) and several
complementary actions target one failure mode (Section 2, relation type 2).
We denote the set of preventive actions of a failure mode agent g at time
t as Selg(t) = {p ∈ Pg(t)|{p1, p2, .., pn}}. On the other hand, each preven-
tive action p ∈ Pg(t) is selected by failure mode agents g ∈ G(t). We de-
note the set of failure mode agents of a preventive action agent p at time t
as SelByp(t) = {g ∈ G(t)|{g1, g2, .., gn}}.

A failure mode agent g ∈ G(t) through its nominal behaviour aims to increase
the number of selected preventive actions, as much as possible. Similarly, a pre-
ventive action agent p ∈ P(t) through its nominal behaviour aims to increase as
much as possible the number of failure modes it is selected for.

The quality agent q is responsible for the satisfaction of the global quality
properties like cost and time constraints. q knows list all preventive action agents
p ∈ P(t). Since we only consider cost in this paper, the nominal behaviour of q
is to continuously collect the cost information from the preventive action agents
p ∈ P(t), calculate the total cost τ(t) for each time t by summing up the cost of
each p ∈ P(t) and compare it with the total project budget β.

3.3 Identification of Non-Cooperative Situations and Feedbacks

The proposed agent-based model, in which the configuration of failure mode
agents and preventive action agents (their number and connection) can change, is



9

subject to NCSs. All NCSs are identified by analyzing the possible bad situations
of FMECA regarding to the explanation given in Section 2.

Bad Safety-Criticality Value If the number of selected preventive actions
of a failure mode agent g is not enough and thus the safety-critical threshold
is crossed, a bad safety-criticality value NCS is detected by g. When such a
situation is detected at time t, the failure mode agent g should improve its
preventive actions set (by having better preventive actions in the set). To do so,
it sends an select more feedback (f ∈ Fsel↑) to some or all of its recommended
preventive action agents p ∈ Pg(t). Otherwise, the selection is good and an
selection good feedback (f ∈ Fsel≈) is sent to Pg(t).

Bad Total Cost The quality agent q continuously calculates the total cost τ(t)
as mentioned before and if this cost crosses the total budget β (τ(t) > β) a
bad total cost NCS is detected. When such a situation is detected at time t, the
quality agent q should reduce the number of selected preventive actions (and,
consequently, the budget). To do so, it sends a select less feedback (f ∈ Fsel↓)
to some or all of its preventive action agents Preq(t). Otherwise, the costs are
good and a selection good feedback (f ∈ Fsel≈) is sent to Preq(t).

3.4 Agent-Criticality Functions

As described before, each cooperative agent a has to define an agent-criticality
function ca(t) for calculating their agent-criticality value at time t.

Failure Mode Agents For a failure mode agent gi the agent-criticality is
inversely proportional to the number of its selected preventive actions, thus as
an agent-criticality function we use

cgi(t) =
1

mi(t)
(2)

where mi is the number of selected preventive actions of gi at time t.

Preventive Action Agents Similarly, for a preventive action agent pi the
agent-criticality is inversely proportional to the number of failure modes it is
selected for, thus as an agent-criticality function we use

cpi
(t) =

1

ni(t)
(3)

where ni is the number of failure modes of pi at time t.



10

Quality Agent For the quality agent q, on the other hand, the agent-criticality
is inversely proportional to the number of its selected preventive actions, thus
as an agent-criticality function we use

cq(t) =
1

ni(t)
(4)

where ni is the number of failure modes of pi at time t.

3.5 Cooperative Behaviours

There is no tuning behaviour for agents in our initial model since there is no
parameter to tune. There is also no evolution behaviour for any agent type since
the failure modes and recommended preventive actions are predefined. Currenty,
we only defined reorganization behaviours as cooperative behaviours of agents.

The reorganization behaviours of failure mode agents and recommended pre-
ventive action agents are modelled using actions of the form add({g, p}) and
remove({g, p}) for g ∈ G(t) and p ∈ Pg(t), which correspond to the formation and
suppression (respectively) of a selection relation {g, p} at time t. It is assumed
that no selection relation is both added and removed at the same time.

NCSs are suppressed by processing these cooperative behaviours as follows.
When a select more feedback (f ∈ Fsel↑) is received by a preventive action agent
p ∈ Pg(t) from a failure mode agent g, p first checks if it is the most critical
preventive action agent among its neighbours. If yes, it executes add({g, p}) both
for helping g and reducing its criticality. If there are more critical neighbours, p
forwards the incoming feedback to the most critical one.

Similarly, when a select less feedback (f ∈ Fsel↓) is received by a preventive
action agent p ∈ Pg(t) from the quality agent agent q, p first checks if it is the
most critical preventive action agent among its neighbours. If yes, p forwards the
incoming feedback to the most critical one. If there are more critical neighbours,
it executes remove({g, p}) both for helping g and itself, where g ∈ SelByp(t) and
g is the least critical failure mode agent.

Otherwise, if a selection good feedback (f ∈ Fsel≈) is received, p does not
execute any cooperative behaviour.

4 Discussion & Conclusions

Cyber-physical systems (CPS) are constantly growing in complexity. This is ac-
companied by an increasing need for safety in those systems. In this paper, we
propose to enrich the safety assessment process for CPSs by improving the Fail-
ure Mode, Effects and Criticality Analysis (FMECA) method. Our motivation is
based on the observation that the classical FMECA becomes very complicated
and time consuming when the system at hand has thousands of failure modes
and thousands of corresponding recommended preventive actions. In addition to
the classical FMECA, the method proposed in this paper adopts a multi-agent



11

approach, namely Adaptive Multi-Agent Systems (AMAS), for providing an op-
timal set of recommended actions to be implemented, in order to get a trade-off
between system safety-criticality and other constraints such as cost and time.

AMAS is a promising candidate for criticality-based optimization problems
like one arising from post analysis of FMECA results. Moreover, since AMAS
is a self-organizing solution, it offers significant advantages such as increased
scalability [20]. It distributes the complexity of the preventive action selection
issue across agents. The scalability and success on optimization of AMAS has
been shown before in various studies [21, 19, 16, 22, 13, 23, 24]. Due to the limi-
tations coming from the current state of the art of the FMECA methods and
tools, it is not possible to realize the proposed solution directly. First, we need
information about constraints such as cost, time etc. which is not the scope of
classical FMECA. Secondly, we need to be able to automate the calculation of
safety-criticality per failure mode depending on the implemented actions.

In the initial model presented in this paper, we only considered the cases
where one action can target one failure mode (Section 2, relation type 1), several
complementary actions target one failure mode (Section 2, relation type 2) and
the cost constraints. We will further elaborate our model for covering all the
relation types between recommended preventive actions and failure modes, and
the timing constraints. This way, we plan to obtain a highly realistic model.

Furthermore, as a future prospect, we believe that if we can integrate more
safety related information (such as behavioral model) to the safety analysis pro-
cess, it would be possible to realize fully-automated solutions for FMECA with
high coverage of situations. For instance, such a solution may take into account
run-time resource consumptions while deciding the number and type of replica-
tions needed. Currently, there is no such model in the literature.

References

1. Park, K.J., Zheng, R., Liu, X.: Cyber-physical systems: Milestones and research
challenges. Computer Communications 36(1) (2012) 1 – 7

2. IEC, I.E.C.: Functional Safety of Electrical, Electronic, Programmable Electronic
Safety-Related Systems. IEC 61508, parts 1 to 7. Technical report (1998 and 2000)

3. Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies.
Technical Report INCOSE-TD-2007-003-01, International Council on Systems En-
gineering (INCOSE) (June 2008)

4. Selić, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems
with {UML} and {MARTE}. Morgan Kaufmann, Boston (2014)

5. Adedjouma, M., Dubois, H., Maaziz, K., Terrier, F.: A model-driven requirement
engineering process compliant with automotive domain standards. In: Proceedings
of the Third Workshop on Model Driven Tool and Process Integration (MDTPI),
Paris, France (June 2010) 85–96

6. Gérard, S., Dumoulin, C., Tessier, P., Selic, B.: 19 papyrus: A uml2 tool for domain-
specific language modeling. In Giese, H., Karsai, G., Lee, E., Rumpe, B., Schtz,
B., eds.: Model-Based Engineering of Embedded Real-Time Systems. Volume 6100
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2010) 361–368



12

7. Yakymets, N., Dhouib, S., Jaber, H., Lanusse, A.: Model-driven safety assessment
of robotic systems. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. (Nov 2013) 1137–1142

8. Walker, M., Bottaci, L., Papadopoulos, Y.: Compositional temporal fault tree
analysis. In: Proc. of the 26th Int. Conf. on Computer Safety, Reliability, and
Security. SAFECOMP’07, Berlin, Heidelberg, Springer-Verlag (2007) 106–119

9. Walker, M., Reiser, M.O., Tucci-Piergiovanni, S., Papadopoulos, Y., Lnn, H.,
Mraidha, C., Parker, D., Chen, D., Servat, D.: Automatic optimisation of sys-
tem architectures using east-adl. J of Syst. and Soft. 86(10) (2013) 2467 – 2487

10. IEC, I.E.C.: Analysis techniques for system reliability – Procedures for FMEA.
Technical report (1985)

11. Sobieszczanski-Sobieski, J., Haftka, R.: Multidisciplinary aerospace design opti-
mization: survey of recent developments. Struct. optimization 14(1) (1997) 1–23

12. Capera, D., Georgé, J., Gleizes, M., Glize, P.: The amas theory for complex problem
solving based on self-organizing cooperative agents. In: WETICE’03: Proc. of the
20th Int. W. on Enabling Technologies, Wash., DC, USA, IEEE CS (2003) 383

13. Kaddoum, E., Georgé, J.: Collective self-tuning for complex product design. In:
Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO 2012, Lyon, France, September 10-14, 2012. (2012) 193–198

14. Bozzano, M., Villafiorita, A.: The fsap/nusmv-sa safety analysis platform. Inter-
national Journal on Software Tools for Technology Transfer 9(1) (2007) 5–24

15. Gudemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal
model-based safety analysis. In: High-Assurance Systems Engineering (HASE),
2010 IEEE 12th International Symposium on. (Nov 2010) 132–141

16. Jorquera, T., George, J.P., Gleizes, M.P., Regis, C.: A natural formalism and a
multi-agent algorithm for integrative multidisciplinary design optimization. In:
Web Intelligence and Intelligent Agent Technologies, 2013 IEEE/WIC/ACM In-
ternational Joint Conferences on. Volume 2. (Nov 2013) 146–154

17. Camps, V., Gleizes, M.P., Glize, P.: A self-organization process based on coop-
eration theory for adaptive artificial systems. In: 1st International Conference
on Philosophy and Computer Science: Processes of evolution in real and Virtual
Systems, Krakow, Poland. (1998)

18. Bernon, C., Capera, D., Mano, J.P.: Engineering self-modeling systems: Applica-
tion to biology. (2009) 248–263

19. Gürcan, Ö., Türker, K.S., Mano, J.P., Bernon, C., Dikenelli, O., Glize, P.: Mim-
icking human neuronal pathways in silico: an emergent model on the effective
connectivity. Journal of Computational Neuroscience 36(2) (2014) 235–257

20. Martin-Flatin, J., Sventek, J., Geihs, K.: Self-managed systems and services. Com-
munications of the ACM 49 (2006) 37–39

21. Couellan, N., Jan, S., Jorquera, T., Georg, J.P.: Self-adaptive support vector ma-
chine: A multi-agent optimization perspective. Expert Systems with Applications
42(9) (2015) 4284 – 4298

22. Gürcan, Ö., Bernon, C., Türker, K., Mano, J.P., Glize, P., Dikenelli, O.: Simulating
human single motor units using self-organizing agents. In: Self-Adaptive and Self-
Organizing Systems (SASO), 2012 IEEE Sixth International Conference on. (Sept
2012) 11–20

23. Combettes, S., Sontheimer, T., Rougemaille, S., Glize, P.: Weight optimization of
aircraft harnesses (short paper). In: International Conference on Practical Appli-
cations of Agents and Multiagent Systems (PAAMS), Salamanca, Springer-Verlag
(mars 2012) 229–232



13

24. Welcomme, J.B., Gleizes, M.P., Redon, R.: A Self-organising Multi-Agent System
Managing Complex System Design Application to Conceptual Aircraft Design.
International Transactions on Systems Science and Applications, Self-organized
Networked Systems 5(3) (november 2009) 208–221


