
HAL Id: cea-01807008
https://cea.hal.science/cea-01807008v1

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction Components Between Components based on
a Middleware

van Cam Pham, Ansgar Radermacher, Önder Gürcan

To cite this version:
van Cam Pham, Ansgar Radermacher, Önder Gürcan. Interaction Components Between Components
based on a Middleware. 1st International Workshop on Model-Driven Engineering for Component-
based Software Systems (ModComp’14) to be held at ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2014), Sep 2014, Valencia, Spain. �cea-
01807008�

https://cea.hal.science/cea-01807008v1
https://hal.archives-ouvertes.fr


Interaction Components Between Components

based on a Middleware

Van Cam Pham, Önder Gürcan, Ansgar Radermacher

CEA, LIST, Laboratory of Model driven engineering for embedded systems,
Point Courrier 174, Gif-sur-Yvette, F-91191 France

name.surname@cea.fr

Abstract. One of the problems of systems based on distributed archi-
tectures is the communication between applications running on di�er-
ent platforms on a network. The appearance of middleware reduces the
complexity in transferring data between heterogeneous platforms of such
systems and helps raise organizational e�ciency. Up until now, various
middleware have been proposed to facilitate the distributed system con-
struction. However, from the modeling perspective, the transition from
interaction components to middleware implementation is still not clear.
This paper reports how to model the interaction components by using
ZeroMQ middleware due to the several advantages it o�ers. In order to
test our approach, we designed and implemented several di�erent case
studies. Based on these examples, we observed that implementing inter-
action components between components based on a middleware simpli�es
the connection between components in a distributed system.

1 Introduction

A distributed system consists of multiple di�erent application components that
connect together to exchange data. These components usually run on heteroge-
neous platforms and thus have to handle platform di�erences such as byte-order.
In model-driven approaches, this problem is often tackled by abstracting the
communication logic from its implementation. In the UML speci�cation, UML
connectors illustrate such abstract communication links between the applica-
tion components. However, the UML speci�cation does not de�ne the behavior
of connectors. One solution is to integrate the implementation (i.e. interaction
components1) into application components directly. In other words, the inter-
action component is a part of the application component that processes data.
Nevertheless, the management of application components becomes more di�cult
as their number increases and also their corresponding interaction components
cannot be reused by other applications. It is therefore necessary to separate in-
teraction components from application components; hence developers can focus
on application components without taking into account the communication.

1 As a common terminology, components that implement a UML connector are called
interaction components.



Based on this observation, the aim of this paper is to de�ne the behavior
of connectors in distributed systems where application components are allocated
onto heterogeneous platforms. The presented paper is based on previous work in
this area, notably the support of connectors [8] for the UML pro�le MARTE and
the support of simple socket interactions in [9]. Thus, in the modeling level, it is
necessary to �rst model the distributed system based on UML. This model has to
be transformed into an intermediate model in order to transform UML connec-
tors to interactions components. After this, the implementation can be generated
from the intermediate model. Since we are dealing with distributed applications,
these interaction components then need to be split into pieces called fragments
that are co-located with the applications components that they connect.

In case of heterogeneous platforms, the implementation of connections be-
tween fragments of an interaction component needs to take several issues into
account notably di�erent conventions for the ordering of bytes within a word2.
In addition, it is also di�cult to directly manage complicated connections from
the application using socket connections since many sockets need to be created.
Middleware is a way to overcome such di�culties since it o�ers a higher level of
abstraction and does not depend on the underlying operating system.

In order to realize this approach, we model the interaction component for
the asynchronous method invocation (AMI) pattern since this pattern allows
clients to achieve high performance and then we use this interaction component
in di�erent case studies to testify it. For modeling, the Papyrus [6] UML editor is
used. For model to model transformations, we use the Qompass Designer of the
Papyrus project since it allows the usage of the Flex-eware Component Model
(FCM) pro�le [8] that provides stereotypes to model interaction components. For
the implementation level, we use the ZeroMQ middleware to connect fragments
since it o�ers powerful socket connections. The use of AMI and ZeroMQ is a
primary novelty compared to [9].

The remaining of this paper is organized as follows. Section 2 gives the back-
ground and Section 3 presents interaction components modeling by means of
ZeroMQ. Section 4 shows case studies to test our implementation. Section 5
gives the related work and the paper is concluded by Section 6.

2 Background

In this section, we introduce the methods and tools used for our study. There
are basically three main steps for realizing interaction components3 (1) modeling
the interaction component based on UML, (2) transforming the UML model into
an intermediate model, and (3) generating the implementation code from the
intermediate model.

The �rst step is modeling the interaction component based on the UML
pro�le. We use Qompass Designer that is coming as an extension of the Pa-

2 Orderding of bytes, http://www.gnu.org/software/libc/manual/html_node/Byte-
Order.html, accessed on 07/07/2014.

3 It is basically a UML component (class) tagged as interaction component.



pyrus modeling tool4. Papyrus [6] is a modeling tool that aims at providing an
integrated and user-friendly environment for editing UML models and related
modeling languages such as SysML5 and MARTE6. Qompass Designer is its
dedicated extension for code generation and deployment.

For representing interaction components, we use the Flex-eware Component
Model (FCM) pro�le that extends UML composite structures by enriching ports
of components. An FCM port has a type and a port kind that determine the re-
quired and provided interfaces of this port. To model an interaction component,
we need to de�ne a UML connector that applies the Connector stereotype of
the FCM pro�le. This connector has ports to connect to the ports of application
components. To be able to allocate these ports on di�erent platforms, interaction
components are logically decomposed into several fragments [9] (fragment per
node). For example, a uni-directional communication interaction component has
a sending fragment and a receiving fragment. These logically connected frag-
ments are physically connected by using programming languages such as C++,
Java in the implementation level.

In this study, we focus on asynchronous method invocation (AMI) callback
communication pattern [10] since it allows clients to achieve high performance.
For example, in a client/server application, a client sends a request to a server.
Instead of blocking and waiting for a reply from the server (as synchronous
calls), it provides callback functions to be invoked in order to process results
received. These callback functions are called once replies are received. In the sense
of component-based development, we use ports dedicated to the AMI callback
pattern that are used by applying the AMI callback element of the FCM pro�le
(see Figure 1).

Fig. 1. The AMI port has two interfaces (right), one required and one provided, derived
from a original port interface (left). The provided interface is needed since it contains
callback functions that are invoked through the AMI callback port.

As a second step, the modeled UML connectors (that apply the FCM Con-
nector stereotype) are transformed into interaction components in an interme-
diate model (Figure 2) by using Qompass Designer. This is necessary since the

4 Papyrus, http://www.eclipse.org/papyrus/, accessed on 17/07/2014.
5 Systems Modeling Language (SysML), http://www.sysml.org/, accessed on
18/07/2014.

6 The UML Pro�le for MARTE, http://www.omgmarte.org/, accessed on 18/07/2014.



UML connector is represented by a graphic conductor element between applica-
tion components, but it is not a classi�er. In the intermediate model, the UML
connectors applying the FCM Connector stereotype is replaced by interaction
components that are represented as UML components7. The ports of application
components then connect to the ports of the generated interaction components
instead of the end points of the UML connectors.

Fig. 2. Transformation from a system with (a) line of connector to (b) a composite
structure of connector

Lastly, the implementation code is generated from the intermediate model.
The code generator is basically generating C++ code from UML model by taking
into account the libraries provided by ZeroMQ8 (also known as zmq) middleware
since we want to apply the AMI callback pattern and ZeroMQ o�ers a set of
asynchronous socket APIs that transfers messages quickly and e�ciently over
the network. These sockets run on top of the standard sockets of operating
systems and carry atomic messages across various transports such as in-process,
inter-process, TCP, and multicast.

3 Interaction components modeling based on ZeroMQ

In this section, we present the decomposition of connectors and how AMI call-
back ports are used for modeling the asynchronous communication pattern. As
mentioned before, an AMI callback port kind dedicated to ports is de�ned by
the Qompass Designer. This port kind is dedicated to asynchronous requesting
components such as clients in Client/Server applications.

An interaction component is de�ned as a UML component represented by
a UML class. This interaction component contains fragments that de�ne the
behavior of connectors and provides interfaces to connect to application com-
ponents through its ports. The interaction component often needs to have two
ports to connect to two end points of a connector.

Figure 3 illustrates an example of interaction component dedicated to the
AMI callback communication pattern (ZMQAMI_InteractionComponent). The

7 We cannot model UML components for representing interaction components directly
in the upper since it is not possible to reuse them.

8 ZeroMQ, http://zeromq.org/, accessed on 18/07/2014.



Fig. 3. Interaction component composite for AMI Callback model

client fragment (ClientFrag_AMICallback) is asynchronous and the server frag-
ment (ServerFrag_AMICallback) is synchronous. The ports of corresponding ap-
plication components must match with ports of these fragments. We want this
interaction component to be reusable in other applications; hence the interfaces
of the ports of the interaction component must match with the interfaces of
di�erent application components. In other words, when the interfaces of a port
change, the interaction component has to adapt with the new interfaces.

For instance, let's say two application components client1 and client2 have a
port with the ICompute1 interface and the ICompute2 interface respectively. In
such a case, the interaction component has to carry ICompute1 in the case of
client1 and ICompute2 in the case of client2. However, this is not a good solution
to change the interfaces of the ports of an interaction component in each use.
To handle this problem, one solution can be to de�ne a template interface. To
do this, we use an interface I as a formal parameter in a template and the ports
of the interaction component are typed with this template. I is then bound to a
speci�c interface when it is in use, i.e., the I template is bound to the ICompute1
interface of a port of client1 when the client uses the connector containing the
interaction component. The template binding de�ned here is realized by model
to model transformations in Qompass Designer.

For the connector decomposition, an interaction component contains several
fragments that play role of transferring data; hence it has a sending fragment and
a receiving fragment at least. As in Figure 3, the fragments of an interaction com-
ponent for a Client/Server application are ClientFragment and ServerFragment.
These fragments will be co-located with appropriate application components on
speci�c nodes of platforms, i.e., they will be co-located with the client on the
client node and the server on the server node. Each of these two fragments is
divided into two parts to di�erentiate between dispatching (xImpl) and commu-
nication (SocketRuntime) tasks. For the client and the server, there is ClientImpl
and ServerImpl respectively that dispatch the requests or callbacks to right ad-



dresses. SocketRuntime, on the other hand, permits the dispatching component
to register the dispatch interface (RegisterDispatcher) to the corresponding port
(pRegister). RegisterDispatcher is called when the SocketRuntime receives some
data. To realize this mechanism, SocketRuntime uses a set of ZeroMQ sockets to
connect to the application components.

When a requesting component (e.g., client1) calls a function through the
AMI method invocation, the parameters of the function are marshalled into a
chain of bytes. These parameters are stored in a bu�er of the interaction compo-
nent, ClientImpl in particular. These parameters are oriented to the parameters
of the appeals of callbacks. This storage is essential to distinguish callbacks from
multiple invocations since di�erent callbacks corresponding to di�erent input
parameters may process results received in di�erent ways. These parameters are
then decoded for calling callback functions. The chain of bytes also include an
operation ID and a handler ID. operation ID is used by the server to determine
the right service (processing function). hander ID is used to �nd again the input
parameters saved corresponding to the right results received. The callback func-
tions therefore execute with its results and input parameters. The called function
returns immediately after saving its parameters. The requesting component can
go ahead without waiting for results. Data are actually sent and received in
background threads.

The maximum number of input data has to be con�gured by users. For net-
work applications with high calls number density or high computational time
on servers, this number should be large enough to prevent the data of previous
requests from overwriting. ClientFragment (sender) has a DEALER9 socket of Ze-
roMQ to send requests and a ROUTER socket to asynchronously receive replies
from ServerFragment (recipient). The DEALER socket connects to a ROUTER
socket of the recipient. These sockets o�er asynchronous data transfers.

4 Case studies

In this section, we present two case studies to testify our interaction component
implementation. The �rst case study is about a client/server application. The
second one is about a simple load balancing application.

4.1 Client/Server application using AMI callback

This section shows the case study about a distributed client/server system. This
system consists of a client and a server. The client requests to the server through
AMI callback communication with the interface ICompute. The interface has four
operations: add, mult, sumOfArray, and �ndMax, as shown in Figure 4. The client
needs to initiate requests. For this need, the FCM provides a simple convention:
the client possesses a port start providing the interface IStart. This interface
contains a run method that is automatically called pending the system start-up.

9 See the ZeroMQ web site for more information.



Fig. 4. Client/Server using AMI Call back case study

The client is asynchronous. It applies the port kind AMICallback for its port
q_ICompute. The connector between the client and the server uses the interac-
tion component implemented in the previous section.

For the deployment, the system is distributed on two di�erent nodes. The
client is deployed on ClientNode, the server on ServerNode as exposed in Figure 5.
The fragments of the connector are co-located with the application components.
The model transformed by Qompass Designer is then the input of the code
generation process. This process is realized by using Acceleo10.

Fig. 5. Client/Server AMI callback example deployment

4.2 Interactions between components in the load balancing model

Client/Server is widely used because of its simplicity and facility of implemen-
tation. However, the model presents some issues, i.e. it is di�cult to scale since
the server must always run or the server can be a bottle neck since it has to treat
all requests. Load balancing model has been proposed as a solution to overcome
these issues.
10 Acceleo, http://www.eclipse.org/acceleo/, accessed on 17/07/2014.



Load balancing is o�ered by ZeroMQ for distributing workloads of an appli-
cation onto several servers called workers. Workloads distribution is performed
by a broker component. The workers have the computational responsibility. They
expedite the result to the broker.

In this case study, the client needs to implement call back functions. AMI
callback port kind is used. The ZMQAMI_InteractionComponent interaction com-
ponent is applied to the connectors between components. The workers act syn-
chronously. Information about the address and listening ports of the broker is

Fig. 6. Simple application follows load balancing model

con�gured. Clients need to know the front end port number and the broker's IP
address and workers know about the back end's.

The components of the system are allocated onto three nodes, client node,
worker node, broker node. Many instances of client and worker can be run in
di�erent platforms. The broker has to start �rstly and listen on the worker side
(back end). When a worker begins, it sends a ready signal to the broker and the
broker sets it as an available worker. The broker only actives on the client (front
end) side if there is one available worker at least. Requests are forwarded from
the broker and arrive to the workers alternatively, i.e. if there are three workers,
request 1 to worker 1, request 2 to worker 2, request 3 to worker 3, request 4 to
worker 1, and so on.

5 Related Work

In the literature, Arulanthu et al. [1] provide the implementation of asynchronous
method invocation model for CORBA. Their implementation is in TAO [10].
They use the IDL compiler to generate callback functions from the original
interface. However, this does not resolve the AMI in MDE. The connection code
cannot be reused in other applications, i.e., di�erent components use di�erent
interfaces, the implementation of each interface needs di�erent connection code.
In order to overcome this issue, we create a template interface. This template
interface is bound to a speci�c one in use.

In the literature, Bures et al. [4] also propose the decomposition of connectors.
They identify four basic communication style driven connectors. These styles are



procedure call, messaging, streaming and blackboard. Bures et al. also de�ne a
set of non-functional properties for each communication type. Connector con-
�gurations and deployment models are also shown. The proposed connector ar-
chitecture consists of a distributor deployment unit and several sender/recipient
units. The sender/recipient unit allows sending messages to attached compo-
nents. The sender/recipient units connect to the distributor unit in a similar
way. This proposal does not however mention the automatic adaptation of con-
nector in use. Moreover, modeling languages are not used. It does not present
clearly how parts of a connector are allocated to speci�c nodes in the deployment
model.

Related to the decomposition of connectors, Fractal component model has
been proposed. Fractal [5] is a hierarchical and re�ective component model [3].
It is intended to implement, deploy, and manage complex software systems, in-
cluding in particular operation systems and middleware [2]. A Fractal component
consists of a membrane, which supports interfaces to introspect and recon�gure
its internal features, and a content, which consists of a �nite set of other compo-
nents. Fractal also mentions the de�nition of connector. Connectors are Fractal
binding components. A composite binding component is a communication path
between an arbitrary number of component interfaces, of arbitrary language
types. These bindings are represented as a set of primitive bindings and binding
components (stubs, skeletons, adapters... in the context of remote method calls).
However, Fractal does not provide the de�nition of connector's behavior.

6 Conclusion and Future Work

In this paper, we have shown the modeling in UML of the AMI interaction
component that de�nes the behavior of connectors. We used the stereotypes of
the FCM pro�le to apply UML connectors and ports for the modeling. A UML
connector applying the Connector stereotype of the FCM pro�le is transformed
to a composite structure. We used Papyrus to model and Qompass Designer to
transform models. At the physical connection level, we used the ZeroMQ sockets
due to the several advantages it o�ers.

After the modeling of the interaction component, in order to test our interac-
tion component, we used it in two case studies. One is a simple Client/Server ap-
plication with asynchronous client and synchronous server; the other case study
is a simple load balancing application11. We �nd that the modeling of interaction
components separated from application components simpli�es the development
process of application components of distributed systems. Moreover, the inter-
action component can be reused in other applications. Application components
developers can therefore focus on data processing at application level.

As future work, we will enrich the properties of quality of service for the inter-
action components to provide more reliable communications. Our purpose is to

11 We also support publisher/subscriber and producer/consumer patterns, but we are
unable to present them here due to space limitation



contribute to the implementation of interaction patterns of Uni�ed Component
Model (UCM) [7].

References

1. Alexander B. Arulanthu, Carlos O'Ryan, Douglas C. Schmidt, Michael Kircher,
and Je� Parsons. The design and performance of a scalable orb architecture for
cobra asynchronous messaging. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms, Middleware '00, pages 208�230, Secaucus, NJ, USA,
2000. Springer-Verlag New York, Inc.

2. E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal Component Model, Febru-
ary 2004. Version 2.0-3.

3. Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java: Experi-
ences with auto-adaptive and recon�gurable systems. Softw. Pract. Exper., 36(11-
12):1257�1284, September 2006.

4. Tomas Bures and Frantisek Plasil. Communication style driven connector con-
�gurations. In LNCS3026, ISBN 3-540-21975-7, ISSN 0302-9743, pages 102�116.
Springer-Verlag, 2004.

5. Thierry Coupaye and Jean-Bernard Stefani. Fractal component-based software
engineering. In Proceedings of the 2006 Conference on Object-oriented Technology:
ECOOP 2006 Workshop Reader, ECOOP'06, pages 117�129, Berlin, Heidelberg,
2007. Springer-Verlag.

6. Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. 19 papyrus:
A uml2 tool for domain-speci�c language modeling. In Holger Giese, Gabor Kar-
sai, Edward Lee, Bernhard Rumpe, and Bernhard Schätz, editors, Model-Based
Engineering of Embedded Real-Time Systems, volume 6100 of Lecture Notes in
Computer Science, pages 361�368. Springer Berlin Heidelberg, 2010.

7. OMG. Omg uni�ed component model for distributed, real-time and embedded
systems. Speci�cation, OMG, May 2014. http://www.omgwiki.org/ucm/doku.php.

8. Ansgar Radermacher, Arnaud Cuccuru, Sebastien Gerard, and François Terrier.
Generating execution infrastructures for component-oriented speci�cations with a
model driven toolchain: A case study for marte's gcm and real-time annotations.
SIGPLAN Not., 45(2):127�136, October 2009.

9. Ansgar Radermacher, Önder Gürcan, Arnaud Cuccuru, Sebastien Gerard, and
Brahim Hamid. Split of composite components for distributed applications. In
Torsten Maehne and Marie-Minerve Louërat (eds), editors, Languages, Design
Methods, and Tools for Electronic System Design, chapter 14, pages 255�267.
Springer, Septembre 2014. doi:10.1007/978-3-319-06317-1_14.

10. Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the tao
real-time object request broker. Comput. Commun., 21(4):294�324, April 1998.


