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Efficient Time Synchronization in a Wireless Sensor
Network by Adaptive Value Tracking

Kasım Sinan Yıldırım and Önder Gürcan

Abstract—A desirable flooding-based time synchronization pro-
tocol in Wireless Sensor Networks (WSNs) should neither demand
fast propagation of up-to-date time information nor keeping track
of the neighboring nodes. Moreover, such a protocol is strictly re-
quired to have low computational and communication overhead as
well as small memory footprint. Would there be a protocol which
meets these requirements’ We answer this question positively by
introducing a novel time synchronization protocol whose main
component is “adaptive-value tracking”. Thanks to this compo-
nent, each sensor node synchronizes the rate of its clock to that of
a reference clock through successive feedbacks with a considerably
low computational and memory overhead. By adjusting time offset
of the rate-synchronized clocks, the network-wide synchronization
is established even without demanding rapid propagation of the
reference clock and keeping track of the neighboring nodes. In
the light of our experimental evaluation in a testbed of 20 MICAz
sensor nodes, we observed that the proposed protocol provides
similar synchronization under the same communication frequency
with an approximately 97% less CPU overhead and 80% less
memory allocation compared to the recent flooding based time
synchronization protocols in WSNs.

Index Terms—Distributed algorithms, flooding based time syn-
chronization, adaptive value tracking (AVT).

I. INTRODUCTION

THE accurate and efficient operation of many applications
and protocols in wireless sensor networks (WSNs) require

synchronized notion of time. Unfortunately, built-in hardware
clocks of sensor nodes are not sufficient alone to fulfill this
requirement since they frequently drift apart. By means of time
synchronization, each sensor node establishes a logical clock
whose value at any time represents the network-wide global
time. However, this establishment is not straightforward and
requires coping with several aspects such as environmental
dynamics, various error sources arising from communication,
frequent topological changes and power, memory and compu-
tation constraints of the sensor nodes. These aspects make time
synchronization challenging.
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Up until now, researchers proposed several protocols for time
synchronization in WSNs. These protocols can be roughly clas-
sified into fully-distributed protocols where sensor nodes inter-
act only with their direct neighbors in a peer-to-peer fashion and
flooding based protocols where one or more special node act as
time reference for the other nodes. Fully distributed protocols,
e.g., protocols in [1], [2], exploit all neighborhood information
and they strive to locally optimize the synchronization error.
Hence, these protocols are more appropriate for protocols such
as TDMA [3] which require better synchronization among the
neighboring nodes. However, local optimization comes at the
price of slow dissemination of the time information and hence
a large global synchronization error [4]. On the other hand,
the flooding based protocols are known as to exhibit better
global synchronization error [1]. Moreover, if synchronization
to stable time sources such as Coordinated Universal Time
(UTC) is required, i.e., external synchronization, employing the
method of flooding to provide time synchronization becomes
crucial [5].

In this article our focus is on flooding-based time synchro-
nization in WSNs where one or more predefined or dynamically
elected reference nodes periodically disseminate their stable in-
formation through the network via flooding. The receiver nodes
collect reference time information and synchronize by calcu-
lating the offset and frequency difference of their clocks with
respect to the reference clock. To establish network-wide time
synchronization, they also propagate the value of their synchro-
nized clock to the other nodes in the network. This approach is
robust to dynamic topological changes since there is no demand
to construct and maintain a topological infrastructure. In case of
reference node failures, dynamic leader election or having mul-
tiple reference nodes increase the robustness of this approach.

There are several flooding based time synchronization pro-
tocols in the WSN literature. Among them, Flooding Time
Synchronization Protocol (FTSP) [6] received considerable
attention from both researchers and practitioners due to its
simplicity, public availability, robustness to network dynam-
ics and low communication overhead. In FTSP, sensor nodes
synchronize to a dynamically elected reference node by col-
lecting its flooded time information and perform least-squares
regression on the collected data to estimate future clock values
of the reference node. The network-wide synchronization is
achieved by having sensor nodes broadcast their estimates
for their neighboring nodes in a slow manner. Interestingly,
recent studies [4], [7], [8] pointed out that slow-propagation of
time information and performing estimation with least-squares
regression together give rise to a substantial degradation of
synchronization accuracy as the network diameter increases.
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In contrast, PulseSync [4] offers the time information of
the reference node to be propagated as fast and reliably as
possible through pulses to improve the scalability. It has been
shown by experimental and simulation results that such rapid
flooding improves the synchronization accuracy drastically and
it is desirable to adapt to system dynamics quickly. However,
establishing rapid flooding in WSNs is difficult [5], [9]. Cur-
rent trend to provide rapid flooding in WSNs is to exploit
constructive interference [10], which allows multiple senders
to transmit an identical packet simultaneously. Unfortunately,
this mechanism requires fragile hardware-dependent software
solutions and additional hardware capabilities [11], and worse,
it has a serious scalability problem [12], [13].

A recent protocol, namely Flooding with Clock Speed
Agreement (FCSA) [8], eliminates the demand of rapid flood-
ing by employing a clock speed agreement algorithm that
requires to keep track of the neighboring nodes. Nodes whose
clocks are running at identical rates synchronize to a reference
node which floods stable time for the whole network in a
slow manner, as in FTSP. Unfortunately, FCSA suffers from
the crucial problem of deciding which neighbors to keep track
of and which ones to discard since it is infeasible for sensor
nodes to keep track of all their neighbors due to their memory
constraints. Moreover, it takes a long time to provide tight
synchronization with FCSA.

Having mentioned the drawbacks of these recent studies,
we claim that existing flooding based time synchronization
in WSNs is still unsatisfactory. From our point of view, a
desirable protocol should neither demand propagating the time
information in a rapid manner nor force sensor nodes to keep
track of their neighboring nodes. In addition to exhibiting these
desirable properties, such a protocol is strictly required to have
low computational and communication overhead as well as
small memory footprint. To this end, we present in this article a
novel protocol which meets these requirements.

A. Contributions

In this article, we consider the problem of synchronization to
a reference clock from a different perspective compared to the
existing flooding based approaches. We handle this problem as
a search process in which each sensor node is trying to find the
rate of the reference clock without knowing its correct value.
Due to the dynamics of the WSN environment, e.g., where
clock drifts are subject to changes quite frequently, an adaptive
search technique is required for the search process. To this
respect, we employ the technique of Adaptive Value Tracking
(AVT) [14], which finds and tracks a dynamic searched value in
a given search space through successive feedbacks.

In particular, we propose a novel flooding based protocol
for time synchronization in WSNs. The proposed protocol,
namely Adaptive Value Tracking Synchronization (AVTS),
synchronizes the rates of the clocks of sensor nodes to a
reference clock by employing the AVT technique. By means of
adjusting time offset of the rate-synchronized clocks, the whole
network becomes synchronized. With this simple mechanism
that neither requires least-squares nor distributed agreement,
we observed drastic improvements over recent flooding based

protocols through experiments performed in our testbed of 20
MICAz sensor nodes and simulations. In the light of these
observations, we list the superiorities and desirable properties
of AVTS as follows:

• AVTS catches the synchronization performances of Puls-
eSync and FCSA under the same communication fre-
quency with an approximately 97% less CPU overhead
and considerably smaller code size.

• AVTS neither requires memory storage to collect time
information of the reference node, e.g., a regression ta-
ble, nor keeps track of the neighboring nodes. Hence,
our implementation has approximately 80% less memory
footprint when compared to FTSP, PulseSync and FCSA.

• Since errors accumulate additively at each hop, AVTS is
quite scalable and does not demand the time information
to be propagated in a rapid manner, hence eliminating the
drawbacks of rapid flooding.

• AVTS achieves tight synchronization quickly compared to
another slow flooding approach FCSA, which requires a
long time for sensor nodes to agree on a common logical
clock speed.

B. Organization

The remainder of this article is organized as follows. In
Section II we present the challenges of time synchronization
in WSNs. By considering these challenges, we describe our
system model in Section III. We introduce AVTS protocol in
Section IV and we describe the technique of adaptive value
tracking in detail in Section V. In Section VI, we analyze the
synchronization performance of AVTS. Our implementation
details and experimental work are presented in Section VII.
Section VIII describes the related work and finally, we present
our conclusions in Section IX.

II. CHALLENGES FOR TIME SYNCHRONIZATION IN WSNs

Time synchronization is an important service for the collab-
orative and coordinated operations in WSNs. For instance, net-
work protocols such as time division multiple access (TDMA)
strictly demands synchronization among sensor nodes. Capa-
bilities such as temporal event ordering of data collected from
sensor nodes or providing access to a global time source, i.e.,
UTC, to integrate sensor network to Internet can be provided
only if sensor nodes are synchronized.

Besides, low-cost clocks and resource constraints of the
sensor nodes, error sources during communication, frequent
topological changes and node failures are the main factors
which affect time synchronization of WSNs. These factors
should be considered during the design and implementation of
the synchronization protocols.

The most important factor which affects synchronization is
the low-cost materials used for the implementation of the built-
in clocks of the sensor nodes. In WSNs, each sensor node
is equipped with a read-only clock that contains a counter
register and a low-cost crystal oscillator. The counter register
is increased with each periodical oscillator pulse event which
is called the tick of the clock. The duration between two
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consecutive ticks is the rate of the built-in clock. External crys-
tal oscillators in sensor nodes are used as clock source for their
built-in clocks. Clock drift occurs where the built-in clock does
not generate ticks at the exact speed of real-time. Environmental
factors such as temperature, voltage level and aging of the
crystal affect the drift rate. The most prominent environmental
factor is the temperature whose change affects the frequency
of the clocks non-linearly (See Fig. 1 in [4]). Generally, crystal
oscillators in sensor nodes are reported to exhibit a bounded
drift which is at most 100 ppm1[1]. Due to their different rates,
the built-in clocks of the sensor nodes frequently drift apart,
thus they only provide local time notion. Hence, sensor nodes
are required to exchange their clock information periodically
to synchronize their built-in clocks. Since the built-in clocks
are read-only, each sensor node computes a logical clock value
(software clock) that represents synchronized notion of time.

However, there are sources of errors that affect the computa-
tion of the logical clock, hence the synchronization error. One
of the major error sources is the transmission delay introduced
by the wireless communication, which is defined as the time
that passes between the start of the broadcast attempt and
the receipt by the receiver node. The transmission delay is
composed of deterministic and non-deterministic components
[6]. The non-deterministic components of the transmission
delay affect the error of the synchronization in sensor networks
directly, since nodes receive outdated and hence inaccurate time
information due to delays. Apart from the transmission delay,
another major error source is the granularity of the built-in
clock that effects the error of the timing measurements. Since
the time elapsed between consecutive ticks of the built-in clock
depends on its frequency, quantization errors occur with low-
frequency built-in clocks, which introduce additional errors to
the calculation of the logical clock.

Unlike traditional distributed systems, sensor nodes typically
are powered by batteries and energy is a very scarce resource.
Since communication is expensive in terms of energy, time
synchronization must be kept infrequent and small amounts
of data should be exchanged. However, it is desirable that
sensor nodes detect variations in their clock speeds and adapt
quickly. Hence, reducing the frequency of the communica-
tion and quick adaptation are contradictory goals. In addition,
computing, storage, and the communication capabilities of a
single sensor node are limited. Technologies like GPS cannot
be used for synchronization of nodes due to their high cost,
size and energy overhead. Nodes in a sensor network may
be mobile, they can stop operating due to depleted batteries
or environmental factors, new sensor nodes may be added
to network dynamically. The network topology may change
frequently in an unpredictable way and there is no guarantee
of stable connectivity between nodes. Moreover, the delays
on the communication links between the sensor nodes are
unpredictable. Thus, time synchronization protocols designed
for WSNs must consider those dynamics.

1ppm = parts per million (microsecond). An oscillator with 100 ppm run-
ning at 1 MHz drifts apart 100 microsecond in one second.

III. SYSTEM MODEL

In this section, we introduce a system model by considering
the design challenges introduced in the previous section to
present and analyze the time synchronization algorithms in this
article.

A. Network Model

As in many studies in the literature, our mathematical model
which represents a real sensor network is a graph G = (V,E)
with a vertex set V = {1, . . . , N} representing the sensor nodes
and an edge set E ⊆ V × V representing the bidirectional
communication links between these nodes. The set of nodes
inside the wireless broadcast region of any node u ∈ V is
referred to as the neighbors of that node. These nodes are
directly connected to node u in G and denoted by Nu = {v ∈
V |{u, v} ∈ E}. To simplify our analysis in the next sections,
we assume that communication is reliable and the network is
static. Hence, a message sent by a node u ∈ V is received by
all of its neighbors Nu. We denote the transmission delay on
the communication link {u, v} ∈ E at time t by γu,v(t).

B. Hardware Clock Model

We assume that each node is equipped with a read-only
hardware clock (built-in clock) subject to clock drift. The
hardware clock of any sensor node u ∈ V is denoted by Hu(),
whose value at any real time t is modeled as

Hu(t) =

t∫
0

hu(τ)dτ. (1)

Here, hu(τ) represents the rate of the hardware clock at time
τ . Since the crystal oscillators in sensor nodes are reported to
have bounded drifts, we assume that the rate of the hardware
clock Hu at any time t as 1− ε ≤ hu(t) ≤ 1 + ε where ε is a
constant which satisfies 0 < ε � 1. Moreover, we denote the
quantization error due to the frequency of the hardware clock
Hu at time t by qu(t).

C. Logical Clock Model

We denote the logical clock of any sensor node u ∈ V by
Lu() which is an estimate for the global time. The value of the
logical clock at time t is calculated as

Lu(t) = Lu(tup) + lu(tup) (Hu(t)−Hu(tup)) (2)

where tup is the latest time such that a recent global time
information is received and the progress rate and the offset of
the logical clock are updated. As can be observed, the progress
rate of the logical clock at time t is

dLu

dt
(t) = lu(tup)

dHu

dt
(t) = lu(tup)hu(t) (3)

where lu(tup) denotes the rate multiplier which is calculated
at the time tup. Upon receiving a recent global time infor-
mation, node u may speed up or slow down its logical clock
by modifying lu to synchronize its progress speed. It can be
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noticed, according to (2), the amount of the estimated progress
of the global time since the latest update, i.e., lu(tup)(Hu(t)−
Hu(tup)), is added up to the value Lu(tup).

D. Synchronization Error

The objective in time synchronization is to minimize the syn-
chronization error which is defined as instantaneous differences
of the logical clock values in the system, i.e., clock skew. The
network synchronization error (global skew) at any time instant
t is defined as the largest clock skew observed between arbitrary
nodes at that time, which is formally defined as max

u,v∈V
{|Lu(t)−

Lv(t)|}. We also formally define the average global skew
as (1/N)

∑
u∈V max

v∈V
{|Lu(t)− Lv(t)|}. Similarly, the neigh-

bor synchronization error (local skew) at any time instant t
is defined as the largest clock skew observed between the
neighboring nodes at that time, which is formally defined as
maxu∈V,v∈Nu

{|Lu(t)− Lv(t)|}. Finally, we formally define
the average local skew as (1/N)

∑
u∈V maxv∈Nu

{|Lu(t)−
Lv(t)|}.

IV. TIME SYNCHRONIZATION WITH ADAPTIVE

VALUE TRACKING

To tackle the challenge of time synchronization given in
Section II, we designed the Adaptive Value Tracking Synchro-
nization (AVTS) protocol, whose objective is to synchronize
sensor nodes to the clock of a reference node. In AVTS, a
dynamically elected reference node floods its time information
(e.g., the value of its hardware clock value) into the network. By
using the flooded time information, each sensor node adjusts
its time offset and tries to find the rate of the reference clock
without knowing its correct value. To find the right rate value in
a dynamic WSN environment (e.g., where clock drifts are sub-
ject to changes quite frequently), an adaptive search technique
is required.

Algorithm 1 AVTS pseudo-code for node u with a fixed
reference node ref

1: Initialization
2: avtu.init(Δmin,Δmax, vmin, vmax)
3: sequ ← 0
4: set periodic timer with period B
5:
6: � Upon receiving < Lv, seqv > such that sequ < seqv
7: skew ← Lu − Lv

8: if skew > δ then avtu.adjust(f ↓)
9: else if skew < −δ then avtu.adjust(f ↑)
10: else avtu.adjust(f ≈) endif
11: Lu ← Lv

12: sequ ← seqv
13:
14: � Upon timer timeout
15: if u = ref then sequ ← sequ + 1 endif
16: broadcast < Lu, sequ >

In this sense, each sensor node u ∈ V executing AVTS
maintains an adaptive value tracker, i.e., avtu, which searches
and tracks the rate of the clock of the reference node ref
with respect to its hardware clock rate hu through successive
feedbacks. Hence, the value provided by avtu at any time t
represents the rate multiplier lu of the logical clock Lu. Upon
receiving synchronization messages, sensor node u adjusts the
value of avtu through feedbacks, to speed up or slow down
the progress rate of the logical clock Lu. As another variable,
node u maintains a sequ variable to store the largest sequence
number received from the reference node.

The pseudo-code of the AVTS protocol is presented in
Algorithm 1.2 When node u is powered on, avtu is initialized,
which assigns upper and lower bounds for the searched rate
value ([vmin, vmax]) and its adjustment step ([Δmin,Δmax])
(Algorithm 1, line 2). After this operation, avtu assigns 1 to its
initial value v0 and Δmax to its initial adjustment step Δ0 (the
internal details of adaptive value tracking is given in Section V).
Hence, the logical clock progresses at the same rate of the
hardware clock unless it is modified upon receiving a recent
synchronization message. Then, sequ variable is initialized to
zero (Algorithm 1, line 3). As a last step of the initialization, a
periodic timer is started, which will fire at every B ticks of the
hardware clock (Algorithm 1, line 4).

Receiving a synchronization message carrying a greater se-
quence number than sequ indicates that the reference node
initiated a new synchronization round (Algorithm 1, line 6).
Hence, the received logical clock value can be considered as
a fresh estimate of the reference clock.3 To adjust its logical
clock rate, node u calculates its clock skew by subtracting
the received reference clock estimate from the value of its
logical clock (Algorithm 1, line 7). If the skew is greater than
a predefined tolerance δ, node u sends a decrease feedback
f ↓ to avtu to inform that the logical clock needs to progress
at a lower rate, since the value of its logical clock is greater
than that of the reference clock (Algorithm 1, line 8). Similarly,
if the skew is smaller than tolerance δ, node u informs avtu
to progress its logical clock at a greater rate by sending an
increase feedback f ↑ (Algorithm 1, line 9). If the skew is
within tolerance bounds, the progress rate of the logical clock is
considered to be closer to its desired value and a good feedback
f ≈ is sent to avtu (Algorithm 1, line 10). After informing its
adaptive value tracker avtu for adjusting the progress rate of its
logical clock, node u updates the value of its logical clock to
the received logical clock value (Algorithm 1, line 11). Finally,
the sequence number is updated (Algorithm 1, line 12).

Upon a timer timeout (Algorithm 1, line 14), solely the
reference node increments its sequence number and thus a new
flood round is initiated (Algorithm 1, line 15). However, all of
the sensor nodes broadcast the value of their logical clocks and
sequence numbers to achieve network-wide synchronization
(Algorithm 1, line 16). It should be noted that time information

2It should be noted that AVTS can be configured to work with a predefined
reference node or with a dynamic reference node election mechanism. For
simplicity, we present the algorithm with a predefined reference node ref .

3It should be noted that the value of the logical clock at any time is an
estimate of the clock of the reference node at that time.
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Fig. 1. Successive reactions of the sensor node u (a, b, and c, respectively) upon receiving successive synchronization messages carrying a greater sequence
number than sequ from its neighbor v. When a new message is received (a.1), the logical clock value (Lu) of u is calculated by using its latest rate multiplier
value lu (a.2). Then by comparing the logical clock values, the sensor node u sees that the skew is smaller than the predefined tolerance δ (a.3) and thus sends an
increase feedback f ↑ to its adaptive value tracker avtu (a.4). Upon receiving f ↑, avtu increases its value (a.5). And then sensor node u updates the value of
its logical clock Lu to the received logical clock value Lv (a.6). When a second message is received (respectively a third message), the same steps are executed.
However, this time since the skew is greater than the predefined tolerance δ (resp. the skew is within tolerance bounds), a decrease feedback f ↓ (resp. a good
feedback f ≈) is sent to avtu and avtu decreases its value (resp. avtu does not change its value).

of the reference node may follow many paths to reach any
node u in any synchronization round. Since the firstly received
message can be considered as carrying the most up-to-date
estimate of the reference node, node u discards other messages
in that synchronization round (Algorithm 1, line 6).

An illustrative execution example of the AVTS protocol is
shown in Fig. 1. As shown, the heart of AVTS protocol is
adjusting the progress rate of the logical clock through an
adaptive value tracking mechanism. We give the internal details
of this mechanism in the next section.

V. METHOD OF ADAPTIVE VALUE TRACKING

Adaptive Value Tracking is a search technique which was
firstly proposed in [14]. In this method, an Adaptive Value
Tracker (AVT) finds and tracks a dynamic searched value4

in a given search space. The tracking is established via the
successive feedbacks coming from the environment of the AVT5

which indicate the direction that probably lead to the searched
value.

Formally speaking, an avt searches (and tracks) a dynamic
value v� inside a given real interval (search space) AV Tss =
[vmin, vmax] ⊂ R where vmin is the lower boundary and vmax

is the upper boundary for the searched value v�. At any time
instant t, avt is able to propose a value vt ∈ AV Tss to its
environment which can be accessed using an action of the form
vt = avt.value(t).

The objective of the environment of avt is to determine if
the searched value v� is smaller than, equal to or greater than
the current proposed value vt, without knowing the value v�.
After this determination, the environment interacts with avt
using an action of the form avt.adjust(ft ∈ F) for sending
a feedback ft from the feedback set F = {f ↑, f ↓, f ≈}. The

4i.e., a searched value that may change in the time due to the dynamics of the
system. For example, considering WSNs, the right rate value can be affected by
changing temperatures.

5Recalling Section IV, the environment of avtu is its sensor node u.

feedback ft can be about increasing vt(f ↑), decreasing vt(f ↓)
or informing that vt is good (f ≈).

After receiving the feedback, avt derives its next value vt+1

from vt as

vt+1 =

{
vt +Δt+1, ft = f ↑
vt −Δt+1, ft = f ↓
vt, ft = f ≈

(4)

where Δt+1 is the adjustment step at time t+ 1.6 It should hold
for the adjustment step that

Δt ∈ [Δmin,Δmax] ⊂ (0, |vmax − vmin|] (5)

where Δmin is the lower boundary and Δmax is the upper
boundary for Δt. Δmin represents the minimum adjustment
step that avt can use. Δmin is also called precision since avt
can only guarantee that it will approximate the v� value within a
margin of ±Δmin: Δmin ≥ |vt − v�|. Δmax, on the other hand,
represents the maximum adjustment step that avt can use and
as a result it is the maximum evolution speed of vt.

During search process, the more the avt receives successive
feedbacks of the same direction, the more vt is supposed to be
far away from v� (or worse: vt is moving far away from v�).
It is then necessary to accelerate the adjustment of vt to reach
v� more quickly. Consequently, at each feedback receipt, the
adjustment step is increased as

Δt+1 = Δt · λincr. (6)

On the contrary, the more avt receives successive feedbacks
of opposite directions, the more vt is oscillating around a
more or less stable v� value.7 To get closer to this latter value
(not to jump to a further value suddenly) and thus to reach
v� more quickly, it is necessary to decelerate the adjustment.

6Note that since vt+1 cannot exceed the boundary values of AV Tss, if vt +
Δt+1 > vmax then vt+1 = vmax and if vt +Δt+1 < vmin then vt+1 =
vmin.

7Assuming that the feedbacks coming from the environment are correct.
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Fig. 2. Interaction between an AVT and its environment. The adaptive value
tracking process starts with an initial value v0 and includes several cycles of
search iteration: e.g., (1) the AVT proposes a value vt to its environment,
(2) the environment sends a feedback f ↑, (3) from this feedback (and from
the previous feedback), the AVT determines the best tuning step Δt+1 to reach
a value vt+1 = vt +Δt+1 that is as close as possible to v�, (4) the new value
vt+1 is proposed to the environment, (5) then another feedback f ↑ is sent
by the environment, (6) from this feedback the AVT determines to go further
by increasing its tuning step by Δt+2, (7) the new value vt+2 is proposed
to the environment, (8) however this time an opposite feedback f ↓ is sent
by the environment, (9) consequently the AVT reduces the tuning step and
moves toward the opposite direction, then another new value is proposed and
the process goes on till v� is reached.

Consequently, at each feedback receipt, the adjustment step is
decreased as

Δt+1 = Δt · λdecr. (7)

Lastly, when avt receives a good feedback, this means that vt
has reached a (at least, briefly) correct value. Consequently, the
value vt+1 remains the same as vt+1 = vt since v� is probably
close to vt. The adjustment step, on the other hand, is decreased
as presented in equality (7), since in the next step if a different
feedback is received, v� is probably less far away from the
value vt+1.

The above search mechanism is illustrated in Fig. 2. As
shown in this figure, the Δt value reflects the occurrence of suc-
cessive feedbacks and the decision of increasing or decreasing
Δt is taken from the last two feedbacks.

As a result of this process, it can be shown that after a
sufficient number of iterations the proposed value and the
adjustment step value at time t� satisfy

v� −Δmin ≤ vt� ≤ v� +Δmin, (8)
Δt� =Δmin. (9)

It should be noted that even if the dynamic value v� changes
somehow after reaching this state, avt continues to track this
value via the feedbacks coming from its environment.

A. Performing Fast Search Using AVTs

In this subsection, we answer the important question of what
the optimal values for λincr and λdecr are for the fastest search.
We assume that the searched value v� is static and we try to
find the values of λincr and λdecr which force AVT to perform
a dichotomic search. A dichotomy is a binary search method
that splits the search area into two non-overlapping parts and

Fig. 3. Starting from an initial value v0 and an initial adjustment step Δ0, the
AVT first exponentially changes the value until it crosses the searched value v∗,
and then starts a dichotomy around v∗.

processes by eliminating one of these parts. In the literature
dichotomy methods are known to have fairly good conver-
gence, yielding close values in logarithmic time ([15] referring
to [16]).

Consider the case shown in Fig. 3, such that the initial value
proposed by AVT is v0 < v∗. In the beginning of the search pro-
cess, the successive feedbacks are identical, and consequently
the proposed value comes closer to the objective value v∗

with exponentially increasing steps, which are factors of λincr.
Assume that at a time t the objective value v∗ is crossed. In this
case, the search process continues in the opposite direction and
the adjustment value Δt is decreased by a factor λdecr. Then the
proposed value approaches the objective value v∗ again with a
factor of λincr and changes its direction each time it crosses the
objective value v∗. This process continues until v∗ is reached. In
the process described here, if λdecr = 1/(1 + λincr) holds,8 the
process starting at t is a dichotomy with intervals of proportion
1/1 + λincr and λincr/1 + λincr.

We now focus on the derivation of time t as a function of the
distance between the objective value and the proposed value vt.
We have for vt that

vt = v0 +Δ0

(
1 + λincr + λ2

incr + · · ·+ λt−1
incr

)
= v0 +Δ0

1− λt
incr

1− λincr
. (10)

Since t is the first time such that vt ≥ v∗ holds, we get from
(10) that

λt
incr ≥ v∗ − v0

Δ0
(λincr − 1) + 1. (11)

It can also be shown that if v0 > v∗ then λt
incr ≥ −((v∗ −

v0)/Δ0)(λincr − 1) + 1. By considering the two cases v0 < v∗

(as in Fig. 3) and v0 > v∗, we reach that

t′ =

⌊
logλincr

(
|v∗ − v0|

Δ0
(λincr − 1) + 1

)⌋
. (12)

8As shown in Fig. 3, Δt = Δt+1 +Δt+2 and thus Δ0 · λt
incr = Δ0 ·

λt
incr · λdecr +Δ0 · λt+1

incr · λdecr . And this equation implies λdecr =
1/(1 + λincr).
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Fig. 4. Bounds on the distance to objective value for times t =
10, 15, 20, 50, 100 as a function of the increase factor λincr . Apparently,
λincr = 2 is a satisfactory value for fast convergence.

It should be noted that as soon as the dichotomy process has
started, |v∗ − v0| at time t′ > t is bounded by

Δ0λ
t
incr

(
λincr

1 + λincr

)t′−t

. (13)

In order to find the best value for λincr we studied the minima
of these bounds, setting v0 = 0, Δ0 = 10−7,5 and v∗ = 5 · 10−5

with the same order of magnitude as in our experimental
setup (see Section VII). In these simulations, we traced the
distance to objective value for different number of steps t =
10, 15, 20, 50, 100 as a function of λincr (see Fig. 4). The
result of these simulations show that λincr = 2 is a satisfactory
value for fast convergence. As a consequence, λdecr = 1/3 is
chosen.

Besides, as stated above, whenever λincr > 1 and λdecr =
1/(1 + λincr) an AVT converges to its objective value for any
initial value v0 and any initial step size Δ0 > 0. Consequently,
for any finite number of wrong feedbacks, an AVT still con-
verges to its objective value since it can be consider that the
AVT is restarting its search as v′0 = vte and Δ′

0 = Δte where
te is the time instant of the last erroneous feedback.

VI. COMPARISON OF TIME SYNCHRONIZATION

WITH AVT AND LEAST-SQUARES

In this section, we provide a theoretical comparison of AVTS
protocol and least-squares based protocols. To this end, we
consider a simple synchronization scenario between two sensor
nodes. Let r and u be two nodes such that r is the reference
node with a perfect clock, i.e., hr = 1. For simplicity, assume
that these two nodes are powered on at the same time, there is
no transmission delay between them, there are no quantization
errors in the system and the hardware clock rate hu is constant.
Let tk, where k = 0, 1, . . . , are the time instants such that node
u receives synchronization messages from r. Let t+k denotes
the time instant just after tk. Since the reference node r has a
perfect clock, it holds that tk = kB. We focus on the actual
synchronization error between the reference node r and node
u, which is defined as

eu(tk) = Lu(tk)− Lr(tk) = Lu(tk)− kB. (14)

Whenever node u receives a message from r, it calculates the
estimated synchronization error as

êu(tk) = Lu(tk)− L̂r(tk) (15)

where L̂r(tk) is the received clock value.9 Since there is no
transmission delay, L̂r(tk) = Lr(tk) and eu(tk) = êu(tk).

According to Algorithm 1, upon node u receives a message
from r at time tk, Δu(t

+
k ) is calculated as follows:

Δu

(
t+k

)
= Δu(tk)Fu(tk) (16)

where Fu(tk) is the adjustment function which returns λincr,
λdec or 1 by considering the error functions êu(tk) and
êu(tk−1), as we defined in Section V. By considering Δu(t

+
k ),

the rate multiplier lu(t
+
k ) is updated as follows:

lu
(
t+k

)
= lu(tk) + 1u(tk)Δu

(
t+k

)
= lu(tk) + 1u(tk)Δu(tk)Fu(tk) (17)

where 1u(tk) is a function which is defined as

1u(tk) =

⎧⎨
⎩

êu(tk) < 0 1
êu(tk) > 0 −1
êu(tk) = 0 0.

(18)

By considering (17), we have for eu(tk) that

eu(tk) =Lu(tk)− kB

=Bhu

(
lu
(
t+k−1

)
− lu(tk−1)

)
+ Lu(tk−1)− (k − 1)B

=Bhu

(
lu
(
t+k−1

)
− lu(tk−1)

)
+ eu(tk−1)

=Bhu1u(tk−1)Δu(tk−1)Fu(tk−1)

+ eu(tk−1). (19)

With an abuse of notation, we denote tk by k and the overall
evolution of the system can be written in the matrix form as
follows: ⎡

⎣ eu(k + 1)
lu(k + 1)
Δu(k + 1)

⎤
⎦ = A(k)

⎡
⎣ eu(k)

lu(k)
Δu(k)

⎤
⎦ (20)

where the system matrix A(k) is defined as

A(k) =

⎡
⎣ 1 0 Bhu1u(k)Fu(k)
0 1 1u(k)Fu(k)
0 0 Fu(k)

⎤
⎦ . (21)

The entries of the system matrix A are time-dependent con-
stants and the AVT system is an almost linear dynamical
system. As explained in the beginning of this section, Δmin

is the precision of the search and after a finite number of
steps, Δu will converge to Δmin. Hence, lim

h→∞
Δu(t

+
k ) =

Δu(tk)Fu(tk) = Δmin and the rate multiplier will have value
within a margin of ±Δmin: Δmin ≥ |vt − v�|.

9êu(tk) corresponds to the skew in Algorithm 1.
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Now, assume that there are measurement errors in the system
due to factors such as transmission delay and quantization.
Hence, the received clock values from the reference node
are not completely accurate, i.e., L̂r(tk) = kB + γr,u(tk) +
qr(t) such that γr,u(tk) is the error of the logical clock due
to the transmission delay between r and u, and qr(t) is
the quantization error of the hardware clock Hr at time t.
Similarly, L̂u(tk) = Lu(tk) + qu(tk) due to the quantization
error of the hardware clock Hu at time t. Thus, êu(tk) =
eu(tk) + qu(tk)− γr,u(tk)− qr(t). Since êu(tk) is inaccurate,
the output of the adjustment function Fu(tk) may introduce
errors. It can be observed that, as long as |eu(tk)| > |qu(tk)−
γr,u(tk)− qr(t)|, Fu(tk) is not affected by the transmission
delays. Hence, the system without transmission delays is identi-
cal to the system with transmission delays. By considering this
observation, during the period such that |eu(tk)| > |qu(tk)−
γr,u(tk)− qr(t)| holds, the equality (19) becomes

eu(tk) =Lu(tk)− kB

=Bhu

(
lu
(
t+k−1

)
− lu(tk−1)

)
+ eu(tk−1)

+ qu(tk−1)− γr,u(tk−1)− qr(tk−1)

=Bhu1u(tk−1)Δu(tk−1)F(tk−1) + eu(tk−1)

+ qu(tk−1)− γr,u(tk−1)− qr(tk−1). (22)

By considering the equality above, the system evolution can be
written as follows:⎡

⎣ eu(k + 1)
lu(k + 1)
Δu(k + 1)

⎤
⎦ = A(h)

⎡
⎣ eu(k)

lu(k)
Δu(k)

⎤
⎦− B(k) (23)

where the error matrix B(k) is defined as

B(k) =

⎡
⎣ qu(k)− γr(k)− qr(k)

0
0

⎤
⎦ . (24)

As can be observed from the matrix description of the system,
the errors enter linearly to the system evolution.

Consider the least-squares regression, which assumes a lin-
ear relationship between the Hu(tk) and Lr(tk) pairs, i.e.,
Lr(tk) = α+ βHu(tk) + ε such that ε ∼ N (0, σ2). If we de-
note the N collected points as (xi, Yi) for i = 0, . . . , N − 1,
if we let x =

∑
xi/N , Y =

∑
Yi/N , Sxx =

∑
(xi − x)2 and

SxY =
∑

(xi − x)(Yi − Y ), the estimated least-squares line is
calculated as Ŷ = α̂+ β̂x, where β̂ = SxY /Sxx is the slope
and α̂ = Y − β̂x is the intercept. Assume that node u stores
the two most recent time information of the reference node. For
this case, i.e., N = 2, we have

β̂(k) =
Lr(k)− Lr(k − 1)

Hu(k)−Hu(k − 1)
. (25)

When measurement errors are present in the system, the slope
equation above can be rewritten as follows:

β̂(k) = (Lr(k) + qr(k) + γr,u(k)− Lr(k − 1)

− qr(k − 1)− γr,u(k − 1))

/ (Hu(k)−Hu(k − 1) + qu(k)− qu(k − 1)) . (26)

As can be observed, the errors enter non-linearly to the system
evolution. This reality also holds for the intercept equation.

Based on our analysis, we list the following facts about time
synchronization with AVT:

• When multi-hop time synchronization is considered,
nodes send the value of their logical clocks for the other
nodes. Since the errors enter to the system evolution
linearly in AVT, these errors are additive at each hop.
Thus, the synchronization error grows with the square root
of the network diameter in AVTS while it is exponential if
least-squares regression is employed.10

• AVT converges in a finite amount of time while least-
squares regression converges in a fixed amount of time, as
we have shown in Section V-A. Hence, AVTS has slower
convergence time when compared to the least-squares
based solutions.

• AVT stores only two variables lu(k) and Δu(k) in the
main memory to calculate the rate multiplier of the log-
ical clock. On the other hand, least-squares regression
requires a table of N entries in the main memory to
store (Hu(k), Lr(k)) pairs for this calculation. As a con-
sequence, AVTS has lower memory overhead for time
synchronization.

• AVTS has lower computation overhead when compared to
least-squares based time synchronization. AVT performs
only 1 addition and 1 multiplication to calculate the
rate multiplier of the logical clock. On the other hand,
least-squares regression requires 2N subtractions, 2N
additions, 2N multiplications and 3 divisions to calculate
slope β̂.

VII. TESTBED EXPERIMENTS AND SIMULATIONS

In this section, the real-world performances of the flooding
based time synchronization protocols we mentioned in this
article are compared by presenting their experimental results
collected from a small testbed of 20 sensor nodes. Our evalu-
ation metrics were the instantaneous global skew, local skew,
average global skew and average local skew values, as we
defined in Section III. For larger networks, we present an
evaluation based on simulation results to make a comparison
of these protocols in terms of their scalability.

A. Hardware Platform

The hardware platform used for the implementation is
MICAz sensor nodes from Memsic.11 The microcontroller
included in this platform is 8-bit Atmel Atmega128L micro-
controller which has 4 kB RAM and 128 kB flash memory.
The transceiver on the MICAz board is Chipcon CC2420 radio
chip which provides a 250 kb/s data rate at 2.4 GHz frequency.
We used 7.37 MHz quartz oscillator on the MICAz board as
the clock source for the timer used for timing measurements.
The timer operates at 1/8 of that frequency and thus each timer
tick occurs at approximately every 921 kHz, i.e., approximately

10The exponential behavior of the least-squares based time synchronization
has also been shown in [4].

11http://www.memsic.com/, last access on 27 September 2013.
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1 microsecond. The CC2420 transceiver has the capability to
timestamp packets using this timer. As a final detail, oscillators
of MICAz nodes are reported to exhibit a drift of ±40 ppm [17].

B. Implementation Details

We carried out our experiments using publicly available
implementations of FTSP and FCSA. On the other hand, we im-
plemented AVTS and PulseSync by ourselves. The implemen-
tation of the aforementioned protocols has been done on top of
TinyOS operating system [18] that is designed for networked
embedded systems. nesC [19], a component-based program-
ming language which was also used for the implementation
of TinyOS and its applications, has been used for these imple-
mentations. The nesC compiler, ncc, avoids dynamic memory
allocation, detects and eliminates dead-codes, reduces the code
size and prevents most of concurrency related race conditions
by static analysis. The output of ncc is a C language file which
is compiled by the C compiler of the target microcontroller to
produce a target object file. We did not perform any explicit
optimization other than the optimizations performed by ncc and
avr-gcc which is the C compiler for Atmel microprocessors.

An implementation detail worth mentioning here is the way
we compensated the non-deterministic error sources during
communication to achieve high precision time synchronization.
MAC layer timestamping is a common method used for this
compensation to increase the quality of time synchronization
[1], [6], [20]–[22]. For the MAC layer time-stamping, we used
packet level time synchronization interfaces [23] provided by
TinyOS. The compensation mechanism employed by these
interfaces can be summarized as follows. When any node
u has decided to send its time information via a packet, it
timestamps this event at real-time te by storing Hu(te) as a
timestamp. Then, it sends a request to the MAC layer. When
the MAC layer accesses the wireless channel and the packet
starts being transmitted, a corresponding event at real-time
ttx is timestamped with Hu(ttx) by the radio chip. Then the
difference Hu(ttx)−Hu(te), how much time ago the event
had occurred, is stored at the timestamp field of the packet.
When any node v starts receiving the packet at real-time trx,
the packet is timestamped with the local clock at reception,
i.e., Hv(trx). Then, the receiver node v adds Hu(ttx)−Hu(te)
to compensate for the non-deterministic error sources, and can
calculate Hv(trx)−Hu(ttx)−Hu(te) which is the approxi-
mate time of the event te in the node v’s local clock.

We did not perform any additional compensation mecha-
nism other than the MAC layer time-stamping employed by
TinyOS. It should be noted that the compensation error of
this mechanism is (hu − hv)(ttx − te). As can be observed, if
(ttx − te) ≤ 105 μ sec = 100 ms, then the compensation error
will be at most 8 μsec in the worst case, i.e., 8 ticks, in MICAz
platform since the maximum drift is between ±40 ppm, i.e.,
hu − hv ≤ 8× 10−5.

C. Testbed Setup

Our experiments were performed on a testbed of 20 MICAz
sensor nodes. These sensor nodes are placed in the communi-

Fig. 5. Testbed setup for the experiments: 20 MICAz sensor nodes (incuding
the reference node of the time synchronization protocol), a query broadcaster
node that periodically transmits query packets, a base station that collects and
transfers logical clock values to the serial port of our PC.

TABLE I
PARAMETERS OF AVTS USED DURING THE EXPERIMENTS

cation range of a query broadcaster sensor node as shown in
Fig. 5. We constructed line and grid topologies with the help of
the software by configuring each node such that it will accept
incoming messages from the nodes which are its neighbors in
the corresponding topology. Experiments on the line topology
allowed us to observe the scalability of the protocols since the
performance of flooding based time synchronization degrades
as the diameter of the network increases [4]. With the experi-
ments on the grid topology, we could evaluate the performances
of the protocols under contention, congestion and increased
packet collisions.12

To collect instantaneous logical clock values from sensor
nodes, the query broadcaster transmits query packets peri-
odically. The interval between successive query packets is
uniformly distributed between 20 and 23 seconds. Each of
these packets are received approximately at the same time by
all nodes. Upon receiving a query packet, each sensor node
responds with a reply packet which carries the value of its
logical clock. A base station node listens the reply packets and
transfers them to the serial port of our PC for the logging of
the logical clock values. At the end of the experiments, the
evaluation metrics are applied to the collected data and the
results are analyzed.

D. Protocol Parameters

Each of our experiments took approximately 20000 seconds
(approximately 5.5 hours). We powered on sensor nodes ran-
domly in the first 3 minutes. The evaluated protocols had an
identical beacon period of 30 seconds (B=30 seconds). The

12Remembering that each sensor node sends feedbacks to its adaptive value
tracker upon receiving a synchronization message, it can be said that each
packet collision causes a feedback loss.



YILDIRIM AND GÜRCAN: EFFICIENT TIME SYNCHRONIZATION IN A WIRELESS SENSOR NETWORK 3659

Fig. 6. Global skew (left column), local skew (middle column) and rate multipliers (from which 1.0 is subtracted) on the line topology for FTSP, PulseSync,
FCSA and AVTS, respectively. (a) FTSP; (b) PulseSync; (c) FCSA; (d) AVTS.

number of entries in the protocol tables of FTSP, PulseSync
and FCSA, e.g., regression table and neighbor repository, was
8. The parameters of the AVTS used for the experiments are
presented in Table I. The tolerance value δ in Algorithm 1 was
set to zero, because we require the synchronization error to be
as small as possible. Since the hardware clocks are reported
to have a drift of ±100 ppm, i.e., 10−4 seconds, we defined
the upper bound and lower bounds of the searched logical
clock rate as v� ∈ [vmin; vmax] = [−10−4, 10−4]. We adjusted
the upper and lower bounds for the adjustment step Δt as
Δt ∈ [Δmin,Δmax] = [10−10, 10−5] since a precision of 10−10

for the searched logical clock rate is sufficient to achieve tight
synchronization. These parameters of adaptive value tracker
can also be verified empirically.

E. Experimental Results

Fig. 6 presents the maximum and average values of global
and local synchronization skews and the rate multipliers during
the experiments on the line topology. Table II summarizes these
results. Even if a line topology of 20 sensor nodes is a small

TABLE II
SUMMARY OF THE MEASURED SKEW VALUES FOR FTSP, PULSESYNC,

FCSA AND AVTS ON THE LINE TOPOLOGY

network, we observed more than 0.5 milliseconds maximum
global and local skew values with FTSP. This observation is
quite consistent with the experimental results presented in [4],
[7], [8]. The least-squares regression together with the slow-
propagation of time information led to quite unstable rate
multipliers as the distance from the reference node increases.
Hence, nodes poorly determine the relative speed of the refer-
ence clock with respect to the speed of their hardware clocks,
which also leads to poor synchronization quality. As we showed
theoretically in Section VI, FTSP employing least-squares for
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Fig. 7. Global skew (left column), local skew (middle column) and rate multipliers (from which 1.0 is subtracted) on the 5 × 4 grid topology for FTSP, PulseSync,
FCSA and AVTS, respectively. (a) PulseSync; (b) FCSA; (c) AVTS.

multi-hop time synchronization exhibits a synchronization error
growing exponentially with the network diameter.

When PulseSync is considered, it can be noticed that the
rapid-flooding strategy leads to a drastic improvement in
the synchronization quality. Since the time information of the
reference node is propagated through reliable and fast pulses,
the error of the multi-hop time synchronization with PulseSync
grows with the square root of the network diameter [4]. Hence,
the rate multipliers are quite stable and their variations are
reduced. Forwarding the pulses from the reference node with
the rapid-flooding approach prevented the error of the propa-
gated time information from being amplified at each hop, hence
reduced both global and local skew values. On the other hand,
experiments with FCSA showed that the improvement of the
synchronization quality achieved with rapid-flooding can also
be achieved by employing a slow-flooding strategy together
with a distributed agreement strategy. It can be observed that
the synchronization performances of FCSA and PulseSync
are nearly identical in terms of their global skew. Besides,
PulseSync exhibited smaller local skew values when compared
to FCSA, as expected. Since nodes collect the recent time
information and update their logical clocks more quickly with
rapid-flooding, the occurrence of large instant local skews is
eliminated with PulseSync.

Among the aforementioned protocols, AVTS achieved the
best performance with its simple approach during our exper-
iments on the line topology. We observed that the rate mul-
tipliers, i.e., the rates of the logical clocks, were quite stable
with AVTS. Hence, the adaptive value tracking mechanism

performed pretty good performance and the nodes were able
to estimate the relative clock rate of the reference node with
respect to the rate of their hardware clocks quite well. Due
to the high performance of this estimation as we presented
in Section VI, local and global skew values of AVTS were
similar to that of PulseSync although AVTS propagates time
information slowly. A desirable property of AVTS compared to
FCSA is that tight network-wide synchronization is established
quickly. It took approximately 7500 seconds for FCSA to reach
the performance of AVTS. Before the convergence, the rate
multiplier values of AVTS are fluctuating a lot. The reason
is that, in the beginning of the experiments, the rates of the
logical clocks are not synchronized and they have big skews.
When unsynchronized sensor nodes forward their logical values
to their neighboring nodes, the receiver nodes get the time
information of the reference node with big errors and hence
send wrong feedbacks to their AVTs. It should be noted that
during this initial synchronization period, nodes which are
closer to the reference node get more accurate time information
when compared to the far-away nodes. As time passes, the
synchronization is achieved hop by hop. Thus, far-away nodes
start to get more accurate time information of the reference
node, they start to send correct feedbacks to their AVTs and
hence they get synchronized.

To compare the performances of FCSA, PulseSync and
AVTS under increased contention and packet collisions, we also
performed experiments on a 5 × 4 grid topology. Fig. 7 presents
the maximum skew values and the rate multipliers on this
topology. Table III summarizes these results. It can be observed
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TABLE III
SUMMARY OF THE MEASURED SKEW VALUES FOR PULSESYNC,

FCSA, AND AVTS ON THE 5 × 4 GRID TOPOLOGY

TABLE IV
MEMORY REQUIREMENTS, CPU OVERHEAD, AND SYNCHRONIZATION

MESSAGE LENGTH OF FTSP, PULSESYNC, FCSA AND AVTS
DURING THE EXPERIMENTS. |N | IS USED TO DENOTE

MAXIMUM NEIGHBORHOOD CARDINALITY

that the performances of these protocols are nearly identical,
but with AVTS we observed a slight decrease on the clock
skew. We think that even in this small network, rapid-flooding
suffered from packet collisions and losses since it requires the
time information to be propagated reliably. Due to the increased
neighbor cardinality, flooding the time information rapidly is
more difficult on the grid topology than on the line topology.
Since AVTS does not demand rapid-flooding, its performance
on the grid topology is quite comparable to its performance on
the line topology.

In the light of our experiments, we conclude that AVTS
performs tight synchronization without demanding rapid prop-
agation of time information and increasing communication
frequency. In the next subsection, we present the superiority
of AVTS over the existing approaches in terms of energy and
memory requirements.

F. Energy Consumption and Memory Requirements

Previously, we focused on the synchronization quality of the
protocols in consideration and evaluated them under identical
communication frequencies. In this subsection, we evaluate
them in terms of their CPU overhead, memory requirements
and the length of the synchronization messages. The results
collected from our testbed are presented in Table IV.

To compare the overall energy requirements of these pro-
tocols, it is required to determine their CPU overhead. From
the time where a recent synchronization message is received to
the time it is processed and time information is updated, AVTS
required drastically smaller CPU processing time compared to
other protocols. For instance, a node with only one neighbor
consumed at most 5620 microseconds CPU time with FCSA
and this requirement increases as the number of neighbors

Fig. 8. Package field descriptions of the synchronization messages, (a) for
FTSP, PulseSync, AVTS and (b) for FCSA, in their TinyOS implementations.

of this node increases. On the other hand, AVTS consumed
approximately 175 microseconds! In conclusion, AVTS has
approximately a factor of 31 lower CPU overhead compared
to FTSP, PulseSync and FCSA, respectively.

Another property that effects the energy consumption of the
protocol is the length of the synchronization messages. The
reason is that the longer the synchronization messages are,
the more time is required to transmit and receive them. As
can be observed from Table IV and Fig. 8, AVTS requires the
length of the synchronization messages to be 9 bytes, which is
identical to that of PulseSync and FTSP and smaller than that
of FCSA. Hence, AVTS does not increase the duration of the
communication due to its small message length requirement.
As a conclusion, AVTS can be characterized as being able to
achieve high quality synchronization with low energy require-
ments compared to the existing methods.

Since memory is also a scarce resource for WSN nodes,
we are also required to evaluate the memory requirements
of time synchronization. The amount of memory required to
store collected time information determines the major main
memory (RAM) requirements of the protocols. Since FTSP
and PulseSync employ the method of least-squares, they both
require 40 bytes of memory to store the time information of the
reference node and perform regression on the collected data.
In FCSA, a least-squares table is allocated for each neighbor
and hence together with the additional stored information, a
total of 64 bytes of memory is allocated to keep track of a
neighboring node. As a substantial superiority, AVTS does not
require any table and it requires only 9 bytes of memory to
achieve time synchronization. It can be concluded that AVTS
decreased the amount of RAM required for time synchroniza-
tion by approximately a factor of 4.5 compared to FTSP and
PulseSync, and more than a factor of 7 compared to FCSA.
Another scarce resource is the flash memory (ROM) which
stores the program code of the applications. As presented in
Table IV, AVTS reduced the code size of the application by
more than 2160 bytes compared to the other approaches. This
is also a remarkable gain for sensor nodes.

G. Simulation Results

To compare the scalability of the aforementioned flood-
ing based protocols, we performed simulations in our WSN
simulator which is a discrete event simulator implemented in
Java language. Our simulator models the hardware clocks of
nodes with a random drift of ±50 ppm and the message delay
with a normally distributed random variable. For MAC layer,
we implemented a CSMA protocol inspired from the MAC
protocol in TinyOS.
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Fig. 9. Simulation results of FCSA, AVTS and PulseSync on different net-
works. The synchronization errors of FCSA, AVTS and PulseSync grow quite
similarly with the network diameter.

We implemented PulseSync, FCSA and AVTS protocols in
Java language to work with our simulator. The error of time
synchronization is a function of the network diameter [4] and
simulations on longer line topologies allowed us to observe
the scalability of the protocols in the worst case. Hence, we
constructed networks of diameter from 10 to 100 and performed
5 simulation runs for each network which simulated a real-
world experiment of 55 hours. Then, we averaged the maximum
global skew and local skew values of these runs.

Fig. 9 presents the results of our simulations. It can be ob-
served that the performance of AVTS does not degrade quickly
with the diameter of the network. As we presented in subsection
VI, the errors enter the system dynamics of AVTS linearly
and the global skew of AVTS grows with the square root of
the network diameter (like as reported in [8] for FCSA and in
[4] for PulseSync). Hence, we conclude that AVTS not only
provides tight synchronization on a small real network of 20
sensor nodes, but also preserves its quality on longer networks,
which makes it scalable.

It can also be observed that AVTS performed better than
FCSA but slightly worse than PulseSync. The reason is that
PulseSync disseminates time information fast to minimize
transmission delays and maintains a history, i.e., a regression
table, to reduce the effect of these errors. In AVTS, the logical
clocks of the nodes are instantaneously updated to the received
time information. Due to this update strategy, the logical clocks
are more sensitive to the large message delays.

VIII. RELATED WORK

Due to being a fundamental building block in distributed
systems, time synchronization has received considerable atten-
tion from researchers. There are both theoretical and practical
dimensions of time synchronization research in the literature.
The main focus of the theoretical studies is to bound the
synchronization error in any network and develop optimal
distributed algorithms in terms of the proven bounds [24]–[37].
Under the light of the theoretical results, protocol based time
synchronization studies led the research with the emergence
of wireless sensor networks [1], [2], [4]–[6], [8], [17], [20],
[21], [38]–[41]. A common method employed by most of these
protocols is to flood stable time information of a reference
node into the network [4]–[6], [8], [21], [38]–[41]. By means
of establishing a relationship between their hardware clocks
and the reference clock, sensor nodes can estimate future

global clock values with a small error without communicating
too frequently. The method of least-squares and occasionally
distributed agreement [8] are the main techniques employed
for this establishment in these protocols. Up to our knowledge,
AVTS is the only protocol in WSN literature that puts least-
squares regression and agreement techniques away from flood-
ing based time synchronization by employing an adaptive value
tracking mechanism.

Besides, until know, AVT approach has been successfully
used in several projects such as maritime surveillance [42],
[43], scenario control in games [44], self-organizing neural
networks [45], [46], manufacturing control [47], user profiling
[48]. Moreover, its use by engineers of UPETEC Ltd13 in
various industrial projects have shown good results. Recently,
we have applied AVT for self-organizing and fully distributed
time synchronization in WSNs [49]. This simulation based
study does not present a real-world implementation. Moreover,
we still do not have any mathematical proof of convergence for
the algorithm in this paper and the convergence time of this
algorithm is too long which makes it impractical.

IX. CONCLUSION

In this paper, we considered the recent flooding based time
synchronization schemes in the WSN world. We revealed the
major drawbacks of these schemes: demanding rapid flood-
ing or keeping track of the neighboring nodes, even worse,
a common shortcoming of having considerable overhead in
terms of computation and memory allocation. We asked the
question of whether it is possible to achieve high quality time
synchronization without having these drawbacks.

We considered the problem of synchronization as a search
process in which each sensor node is trying to find the rate of the
reference clock without knowing its correct value. Due to the
dynamics of the WSN environment, we employed an adaptive
search technique for this search process. Within this context,
we introduced the Adaptive Value Tracking Synchronization
(AVTS) protocol, which employs an adaptive value tracking
algorithm to synchronize the clock rates of the sensor nodes
to that of a reference node through successive feedbacks. We
presented an experimental evaluation of our approach, which
exposed that tight synchronization can be achieved with low
computational and memory overhead, with small memory code
size and without demanding rapid flooding. In the light of the
simulations, we observed that AVTS is also scalable.

We believe that AVTS brought a new dimension for time
synchronization in WSNs by eliminating the major drawbacks
of the existing studies without compromising synchronization
quality. It would be interesting to observe the actual perfor-
mance of AVTS on real-world deployments of applications
which require microsecond precision time synchronization and
we leave this issue as a future work.
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