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Abstract 

Dead-time correction formulae are established in the general case of superimposed non-homogeneous 

Poisson processes. Based on the same principles as conventional live-timed counting, this method 

exploits the additional information made available using digital signal processing systems, and 

especially the possibility to store the time stamps of live-time intervals. No approximation needs to be 

made to obtain those formulae. Estimates of the variances of corrected rates are also presented. This 

method is applied to the activity measurement of short-lived radionuclides. 
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1. Introduction 

The problem of dead-time correction in nuclear measurements has been addressed for a long time. 

Formulae have been established to get corrected count rates from measured ones, according to the 

different types of dead times (non-extending, extending or generalized). The most recent review article 

on this topic is by Pommé et al. (2015), where many references can be found. A prerequisite of the 

valid application of these formulae is that dead times be well defined and that the theoretical ones 

accurately reproduce the experimental ones. To comply with this requirement, a dead time generator is 

introduced in the electronic circuit of measuring systems. Triggered by input events due to the 

detection of radiation, this generator superposes an artificial dead time of fixed, larger duration τ to the 

experimental dead times generated by the detection. To apply correction formulae, this length has to 

be known accurately. In the case of non-extending dead times, this artificial dead time is triggered 

only by counted events, i.e. those occurring during live time. In the case of extending dead times, it is 

also prolonged by the events occurring during dead-time intervals. In that case, the only events that 

can be counted are those preceded by no event during the time τ. The main advantages over non-

extending dead times are then to avoid creating hidden dead times due to the events occurring just 

before the end of apparent dead times, and to avoid counting a series of correlated events several times 

by setting dead times of length adapted to their time distribution (Bouchard, 2000). For example, this 

can be applied to get rid of spurious afterpulses in gas proportional counters, of delayed-fluorescence 

pulses in liquid scintillation counting, and of delayed radiation emission from radionuclides with a 

metastable state in their decay scheme. 

A significant progress was achieved by introducing the live-timed counting technique (Baerg et al., 

1976, Bouchard, 2000). The total duration of live-time intervals is measured by counting the number 

of pulses delivered by a clock during those time intervals. The dead-time correction factor is then 

simply equal to the ratio of the total measurement time to the live-time duration. 

All these methods work well for the measurement of events that follow a homogeneous (stationary) 

Poisson process, e.g. when measuring radionuclides whose decay is negligible during the time of 

measurement. For short-lived radionuclides, approximated correction factors have been obtained for 

dead times using the live-timed counting method (Fitzgerald, 2016). 

In the present paper, a general method for correcting count rates for dead times is introduced based on 

the recent developments of digital processing systems, and the possibility to store the time stamps of 

input events. As an extension of the live-timed counting method, it starts from the dead times as they 

are implemented in a measuring system, assuming they are correctly defined. The handling of specific 
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problems, like those due to hidden dead times, pile-up (Pommé, 2008), sub-threshold or correlated 

pulses, is related to the implementation as such of dead times, and is here out of scope. This method is 

shown to be particularly adapted to the measurement of short-lived radionuclides. 

2. Properties of the live-timed counting method 

2.1. Corrected rate and associated variance 

The live-timed counting method is based on the measurement of periods of “calm” during the 

measurement time Ttot. These periods of total duration TL can be characterized by the absence of any 

event and they end at the arrival of a new event. 

The method relies on the stationary- and independent-increment properties of Poisson processes. 

Basically a Poisson process of rate ρ is defined by the following characteristics. At any time t, the 

probability of occurrence of one event during the infinitesimal time interval dt after t is independent of 

the preceding events and constant over time. This probability is proportional to dt, and equal to ρ dt. In 

addition, the probability of occurrence of more than one event during dt is negligible. Then the 

probability of non-occurrence during dt is given by (1- ρ dt). 

As a consequence, the expected number of events that occur during any time interval of duration T is 

obtained by summing the probabilities of occurrence of one event during dt, ρ dt, over this time 

interval. The result is equal to ρT. An estimated value of that number is given by the number N of 

events that actually occur during the time T. Likewise, the number N is an estimate of the variance of 

the number of events arriving during T, equal to ρT. 

On the other hand, in the presence of dead times, the expected number of events that occur over all the 

live-time intervals of total duration TL is the same as the expected number of events that occur during 

the time TL in the absence of dead times, namely ρTL. An estimate of that number can be given by the 

number N of events counted during Ttot. Indeed because of the stationary- and independent-increment 

properties, a series of counted events of a Poisson process subjected to dead times and measured 

during Ttot behave like a series of events of the same process occurring during TL in the absence of 

dead times. In the latter case, the time intervals between successive events are reduced to the live-time 

intervals between the forementioned counted events, dead-time intervals being ignored. It follows that 

an estimate of the rate ρ can be obtained from the number of counted events and the measured total 

live-time duration, 

   
 

  
  (1) 

In the same way, the variance of    for a given value of TL can be derived from the variance of the N 

events of the Poisson process occurring during TL, whose estimated value is given by N, 

       

   
 

      

  
 

 

 
  (2) 

It can be noted that in the foregoing considerations, there is no special requirement on the way in 

which live-time intervals are stopped. The dead times can be triggered not only by an event of the 

measured process of rate ρ, but also any event of another process, Poisson or not. In those cases, the 

number NL of live-time intervals is larger than N. Then an additional condition is required for making 

relation (1) applicable; this is the possibility of selectively counting the events due to the Poisson 

process of rate ρ, which involves that they can be discriminated between all the events that can trigger 

a dead time. 

2.2. Application of the maximum-likelihood method 

Another way to get an estimate of ρ is based on the maximum-likelihood method. It consists in 

calculating the probability to get the measured sequence of N counted events, given the starting times 

of all the live-time intervals, and then calculating the value of the rate ρ which maximizes this 

probability. This is done by calculating the derivative of this probability with respect to the variable ρ 

and by calculating the value of ρ that makes this derivative equal to zero. 
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The k
th
 live-time interval of duration ik starts at time tk and ends at time tk + ik at the arrival of the k

th
 

event. Denoting dp(tk,ik) the probability for the k
th
 counted event to occur within the infinitesimal time 

interval di following the live time of duration ik, one can write 

dp (tk, ik) = ρ exp (-ρ ik) di  (3) 

This expression is the product of the probability of occurrence of one event during di, ρ di, by the 

probability of non-occurrence during ik, exp (-ρ ik). 

If needed, to account for the possibility for dead times to be triggered by other events than those 

measured, the k
th
 live-time interval can be understood as the addition of all the live-time intervals 

between the (k−1)
th
 and the k

th
 counted events of the process of rate ρ, ik denoting then the sum of their 

durations. 

Due to the independent-increment property, the N probabilities dp (tk,ik) are independent from each 

other. The probability of occurrence, given the starting times of the live-time intervals, of the N 

counted events according to the measured sequence is then equal to the product of those probabilities, 

             
          

 
     

        . 

This expression can finally be written 

             
           

 
          

It can be noted that this probability depends only on the number of live-time intervals and on their 

total duration, and not on their individual starting times and durations. Since the process is stationary, 

this expression remains unchanged for any sequence of N events of rate ρ counted during a total live 

time of duration TL. 

The derivative of this expression with respect to ρ is equal to 

                           
   

This quantity is equal to zero when the value of the rate ρ is taken equal to N/TL. It is positive for 

smaller values of ρ and negative for higher ones. This shows that the probability is maximal for ρ 

equal to N/TL. 

2.3. Comments 

It is worth noting that these relations do not depend on what happens during dead-time intervals and 

particularly on the type and characteristics of the imposed dead times (extending, non-extending or 

mixed). The only condition of their validity is that the process be Poisson, and especially that all the 

counted events be uncorrelated to any preceding event. This means that the live-timed counting 

method is applicable to any type of dead time, provided that the measured events follow a Poisson 

process. Another conclusion is that the dead-time correction factor can be obtained without exact 

knowledge of the type of dead time introduced and of its setting parameters. 

On the other hand, the principle of extending dead times is based on the introduction of a dead time of 

given duration after each detected event. This ensures that the distance between a counted event and 

the preceding event is always longer than this duration. If this minimal dead time is set long enough to 

cover all the perturbances that can be caused by the triggering event (in the detector, in the counting 

electronics,…), then all the counted events are “clean” and can give reliable information. As a result, 

the combination of live-timed counting with extending dead times seems so far the best option for 

accurate radionuclide activity measurements, as far as conventional analog counting systems are 

concerned (Bouchard, 2000). 

3. Case of short-lived radionuclides 

The preceding method holds for radionuclide sources undergoing a negligible decay during the time of 

measurement. Fitzgerald (2016) has recently reviewed and reported the corrections to apply for the 

combined effects of decay and dead times in the case of the live-timed counting of short-lived 

radionuclides. Formulae are obtained for the counting of one radionuclide in the absence of 

background in the cases of extending dead times and non-extending dead times of fixed duration τ. 
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Exact forms of the correction factors are given in function of two parameters, the product of the decay 

constant λ by the total measurement time Ttot, and the product of the dead time T by the count rate at 

time 0, ρ(0), whose  

exact value is the unknown. As the formulae are complex (including exponential integrals for 

extending dead times), series expansions including both parameters are calculated to the fourth power 

of the first parameter aforementioned (λ Ttot) for practical applications. 

From this work, it can be seen that for short-lived radionuclides, the precise determination of the dead-

time correction factor in live-timed counting is hampered by the lack of available information, which 

is limited to the total number of counted events and the total live time. 

The next sections are devoted to the possibilities offered by digital treatment systems which are of 

increasing use in nuclear electronics, to solve this problem. In particular, these systems enable the 

acquisition and storage of the time stamps of detected events and of the starts and stops of live-time 

intervals. They also enable superposing artificial dead times of chosen type and length to the real 

sequence of events, in off-line mode, to study the influence of the type of dead times and of their 

characteristics on the counting of events. 

4. Non-homogeneous Poisson processes 

4.1. Introduction to the measurement of non-homogeneous Poisson processes 

The disintegrations of short-lived radionuclides do not follow a homogeneous Poisson process, since 

the occurrence rate can no longer be considered as constant during the measurement but undergoes an 

exponential variation with time according to their decay constant. This process belongs to the category 

of non-homogeneous Poisson processes. The main objective of the study presented here is to 

determine a dead-time correction factor for the counting of such radionuclides. However, in this 

section the choice is made to enlarge the study to the general case of non-homogeneous Poisson 

processes for which the exponential is replaced by any integrable function. Far from complicating the 

calculations, this generalization leads to formulae that remain simple, and offers a larger number of 

possible applications. 

Unlike in previously published studies on dead times, it is assumed here that the starting time and the 

duration of each live-time interval of the measured sequence of events are accessible data, namely that 

live-time stamping is possible. No assumption is made concerning dead times, their type and 

characteristics. Indeed, it will be seen in what follows that dead times play no explicit role in this 

calculation. In this approach, dead times can be considered just as periods of time of arbitrary duration 

triggered by the first event that occurs during a live time. 

4.2. Properties of non-homogeneous Poisson processes 

The non-homogeneous Poisson process followed by the measured events can be described by a rate of 

occurrence ρ(t) expressed as the product of a constant rate, ρ, by a function of time f(t) supposed to be 

integrable within the measurement time. 

The probability of occurrence of one event during the infinitesimal time interval dt after t, is equal to 

ρ f(t) dt. This is a time-dependent probability; therefore, compared to homogeneous processes, the 

stationary-increment property is lost, while the independent-increment one is maintained. The 

probability of occurrence of more than one event during dt is negligible, and consequently the non-

occurrence probability during the time interval dt after t is equal to (1 - ρ f(t) dt). 

During the infinitesimal time interval dt following any time t, the process is assumed to be stationary 

because of the negligible variation of f during dt. As a consequence it is considered in this interval as a 

homogeneous Poisson process of rate ρ f(t) with an expected number of events equal to ρ f(t) dt. 

Therefore the expected number of events occurring between times t and t + i, E(N (t, t+i)), can be 

given by the integral 

                       
   

 
  



Denoting F the integral of the function f such as                 
 

 
, one can write 

                              . 

The probability of non-occurrence between t and t + i, denoted PO (t, t+i), can be calculated as well 

assuming as above that the process is homogeneous on infinitesimal time intervals. To this end, this 

probability can be considered as the product of the probabilities of non-occurrence in all the 

infinitesimal intervals du from t to t + i. Then, one can write 

                     
   
    ; 

                            
                        

                    
   

 
  ;  

                              .  

Then the probability, given a time t, for the next event to occur during the infinitesimal time interval di 

after the time interval i, can be expressed by 

                                            (4) 

Going further in the properties of non-homogeneous Poisson processes, it is established that such a 

process of rate ρ f (t) can be converted into a homogeneous one of rate ρ by a monotone transformation 

of time using the function F defined before (see Kingman, 1993, Sections 2.3 and 4.5). More 

specifically, a series of events of the non-homogeneous process of rate ρ f (t) that occur at successive 

times tk, tk+1, etc., can be transformed into a series of events arriving at successive times F (tk), F (tk+1), 

etc., which then belong to a homogeneous Poisson process of rate ρ. 

For example, the probability of occurrence of one event during the infinitesimal time interval dt after t, 

equal to ρ f (t) dt, can be rewritten ρ dF (t). After a transformation of time where t is replaced with F 

(t), this can be interpreted as the probability of occurrence of one event during an infinitesimal time 

interval for a homogeneous Poisson process of rate ρ in the transformed time. 

Similarly, the expected number of events that occur between times t and t+i, equal to ρ (F (t+i) – F (t)) 

can be viewed as the expected number of events of the homogeneous process of rate ρ between F(t) 

and F(t + i) in this transformed time. This holds also for the probability dp (t, i) defined above, noting 

that relation (4) can be rewritten 

                                             . 

Properties of the measured non-homogeneous Poisson process can then be deduced from the 

associated homogeneous process by inversion of F (Kingman, 1993, section 4.5). 

5. Relations obtained for non-homogeneous Poisson processes 

5.1. Corrected rate and associated variance 

It can be noted that, in the presence of dead times, the transformation of time described in the previous 

section applies also to the starting and ending times of live-time intervals. Assuming a number NL of 

live-time intervals, and denoting tk the starting time of the k
th
 one and ik its duration, the expected 

number of events of the non-homogeneous process that occur during a period of time comprised of the 

totality of live-time intervals is obtained by summing the expected numbers of events obtained for 

each live-time interval. According to Section 4.2, this number is equal to  

                  
  
   . 

This quantity can as well be interpreted as the expected number of events of the homogeneous Poisson 

process of rate ρ that occur during a time equal to the total transformed live time 

                 
  
    in the absence of dead times. As seen in Section 2.1, the number N of 

events of this process that are actually counted during the transformed total time can then be 

considered as an estimate of this expected number of events. It follows that an estimate of the rate ρ 

can be obtained from the number of counted events and the transformed measured live-time duration, 
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   (5) 

In the same way, the variance of    for a given value of the transformed live time  

                 
  
    can be derived from the variance of the N events of the homogeneous 

Poisson process in the transformed time scale, 

       

   
 

      

  
 

 

 
  (6) 

As in Section 2.1, when events other than those of the measured process are present and can trigger 

dead times, this makes the number of live-time intervals NL larger than N. The applicability of 

relations (5) and (6) then relies on the possibility of selectively counting the events due to the 

measured process of rate ρ, and thus of discriminating them between the other events. Provided that 

this condition is also satisfied for any other Poisson process of rate ρ’f’(t) superimposed to the 

preceding one, the relations (5) and (6) can be applied to that process, replacing F with F′ in the 

transformation of time and N with the number N′ of counted events of that process. 

Furthermore, to make the comparison with the rate given by relation (1) for homogeneous Poisson 

processes, it may be noted that the expression given by (5) can still be read as the quotient of a number 

of counted events divided by a live time, this one being corrected for decay. In this view, the 

correction factor to be applied to the k
th
 live-time interval of duration ik is equal to (F (tk+ik) - F(tk)) / ik. 

This expression turns out to be equal to the mean value of f (t) over this live-time interval. The 

correction factor to be applied to the total live time TL is then the mean value of f (t) taken over the NL 

live-time intervals. 

5.2. Application of the maximum likelihood method 

To confirm them, the preceding results can be obtained in an alternative way. To this aim, the 

maximum-likelihood method is applied to a given number of superimposed non-homogeneous Poisson 

processes. The calculation is detailed hereafter. 

A sequence of events that originates from a number p of independent superimposed non-homogeneous 

Poisson processes is measured. The problem is to derive the rates of the different processes corrected 

for dead time, from the N events counted during the total time Ttot including NL live-time intervals of 

known starting and ending times. 

Each process j is defined at time t by its rate ρj fj (t). The superimposition of these processes results in 

a non-homogeneous process of rate ρ(t) at time t equal to the sum of their respective rates, 

              
 
    . 

In what follows, the different functions fj are supposed to be known. Applying relation (4) to the p 

superimposed processes, the probability dp (t, t+i) that, given a live time starting at time t, the next 

counted event occurs within di after the live-time interval i can now be written, 

                                             
 
        

 
      (7) 

The probability for an event arriving at time t + i to originate from process n is equal to 

                     
 
     . Then the probability dpn (t, t + i) that, given a live time starting at 

time t, the next counted event occurs within di after the time interval i and originates from process n is 

                                             
 
          

To include the possibility for a dead time to be triggered by other events than those from the p 

processes measured (i.e. NL larger than N), one has to account for the probabilities of non-occurrence 

of the measured events in the live-time intervals that precede such dead times. For a live-time of 

duration i such a probability is equal to  

                         
 
     . 
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Then one can express the probability         of occurrence, given the starting times of the NL live-

time intervals, of the N counted events according to the measured sequence. It is equal to the product 

of the (NL – N) forementioned non-occurrence probabilities and of the N probabilities dp (tl, il) given 

by relation (7) where the index l denotes the live-time interval that precedes the l
th
 counted event, 

                      
 
         

                                
 
    

  
       (8) 

After this preliminary calculation, one can apply the maximum-likelihood method as presented in 

Section 2, based on the maximization of this probability. For this purpose, the partial derivative with 

respect to the variable ρn of the expression given by relation (8) is calculated. Then the value of ρn 

which makes this derivative equal to zero gives an estimate of the unknown ρn. 

The expression to be derivated is expressed as a product of functions of the variable ρn.. Therefore, the 

product rule for derivatives can be applied. The partial derivative of         with respect to ρn. can 

then be expressed by 

          

   
                                    

 
     

  
     

 
                          

 
     

          
   

                                   
 
     

    
  
   

   

This expression is equal to zero when the following equation is satisfied 

                          
 

   
 

 

       
                

 

   
 

 

   

 

   

                    
  

   
 

This equation is equivalent to 

 
         

            
 
   

                    
  
   

 
     

Multiplying each member by the unknown rate ρn, an estimate of ρn can finally be given by the 

following expression  

    

 
           

            
 
   

 
   

                   
  
   

  

It can be checked that the probability given by relation (8) is maximized for this value of ρn, as its 

partial derivative with respect to variable ρn is positive for smaller values and negative for higher ones. 

The numerator of the right-hand side represents the sum of the N probabilities for a counted event to 

be of type n. If this probability is denoted           for the l
th
 live-time interval, the relation can now 

be written 

    
          
 
   

                   
  
   

  (9) 

Since ρn is unknown, the N probabilities of the numerator, taken individually, are unknown. However, 

an estimated value of their sum is given by the number Nn of counted events of the process n. When 

the number of live-time intervals increases, the deviation between Nn and this sum of probabilities 

becomes negligible. 

Relation (9) thus becomes 

    
  

                   
  
   

   (10) 
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This result is identical to relation (5). It can be applied to any of the p processes involved, replacing 

index n with the adequate one. 

The variance of     follows from the estimated variance, equal to Nn, of the Nn,events of the 

homogeneous Poisson process of rate ρn in the transformed time scale, 

        

   
  

       

  
  

 

  
   (11) 

In the calculation of the overall uncertainty of    , a component due to the transformed (or corrected) 

live time should be added to account for the uncertainty of Fn. 

5.3. Case of absence of discrimination between the types of events counted 

When the number of counted events Nn can be measured, it has been seen that relation (5), or (10), is 

directly applicable. This implies that the type of each counted event can be identified experimentally 

and discriminated between the different types of events. For example in nuclear measurements, 

spectrometry techniques make possible the selection of counted events according to energy. It is then 

possible to discriminate the counted events according to the radionuclide that emits the detected 

radiation. 

In the opposite case, i.e. when no distinction is made between the different types of events, it is 

possible to use the former relations to obtain the unknown rate ρn as a function of the rates of the other 

processes. Contrary to the preceding case, this requires that those rates be known beforehand. In 

addition, when the total number of counted events N differs from the number of live-time intervals NL, 

it must be possible to determine N, and thus to discriminate the counting of an event of any of the p 

processes of interest from the other events that can trigger a dead time. 

It is assumed in what follows that the number of measured live-time intervals is large enough to 

consider that relations (9) and (10) give close estimates of the known rates ρj. Therefore, one can write 

them 

   
  

                   
  
   

  

Summing the estimated numbers of counted events of the p processes, and denoting      the estimate 

of ρn obtained in this case, one gets 

                       
  
                           

  
      

 
         

The estimate of the number Nn of counted events of process n is therefore given by 

                           
  
                             

  
    

 
         

It follows that the estimate of the rate ρn can be obtained from the total number of counted events N, 

the rates of the other processes and the transformed total live-time durations obtained for all the 

processes, 

     
                         

  
    

 
       

                   
  
   

   (12) 

Similarly, the variance of      can be expressed from the variance of the Nn counted events, and more 

specifically here, of their estimated value    . This gives 

         

     
 

 

                         
  
    

 
       

  (13) 

In the calculation of the overall uncertainty of     , one should add components due to the corrected 

live times for the p processes to account for the uncertainty of the functions F, as well as components 

due to the rates ρj supposed to be known. 
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In the particular case where all processes are homogeneous Poisson ones, all the previous relations can 

be applied replacing for each process j, the quantity fj(t) with 1 and the quantity Fj(t) with t. In 

addition, the different probabilities           being independent of time can simply be denoted p (n). 

As expected, relation (9) becomes 

    
      
   

   
  
   

     
 

  
  

and relation (10) 

    
      
   

   
  
   

 
  

  
  

In the same way, relation (12) becomes 

     
 

  
    

 
         

5.4. Comments 

The relations established in the previous sections are quite general. They apply to any superimposition 

of Poisson processes, homogeneous or non-homogeneous, associated with any integrable function f. 

Provided that the starting and ending times of live-time intervals are known, the formulae do not result 

from any approximation. 

The particular case of short-lived radionuclides, for which the function f is exponential, is studied in 

the next section. It is worth noting that the function f could describe as well any other type of variation 

of the rates with respect to time, e.g. the movement of a radioactive source in front of the detector, and 

more generally any variation of the detection efficiency (varying screening, varying detection 

threshold, etc.), as long as these variations are known. The formulae could also account for parent 

and/or daughter radionuclides in the measurement of a radionuclide present in a decay chain, provided 

that their respective decay constants are such that the counts resulting from their disintegrations can be 

considered as uncorrelated. 

6. Application to short-lived radionuclides 

6.1. General case 

The disintegration of a radionuclide follows a non-homogeneous Poisson process whose rate at time t 

can be given by ρ(0) • exp (-λt), as far as the number of radioactive nuclei remains large enough for the 

binomial law to be correctly approximated by a Poisson law. 

Subject to this prerequisite, the general results presented above can be transposed to the measurement 

of a radioactive source containing any number of radionuclides to correct their measured count rate for 

dead time. 

In the general case, a radioactive source made of p different radionuclides is considered. For 

radionuclide n of decay constant λn, one can write 

                       
            

  
                        

A constant background or a radionuclide j with negligible decay during the measurement can be 

introduced in addition using the constant function        , with        . In both cases, the 

following relations are obtained as expected 

                       
 
   

 
      , and Nj = ρj TL 

6.2. Case of a radionuclide in the presence of background 

The case of a single radionuclide R with an occurrence rate of events ρR (t) = ρR (0) exp (-λR t), 

measured in the presence of a background of constant rate ρB, is presented as an example. 



According to relation (5), when the counts due to the radionuclide R can be identified or discriminated 

from the background, one can get the true rate at time 0, ρR (0), directly from the number of counts NR 

due to the radionuclide R, without having to know the background rate, 
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According to relation (11), the corresponding variance is then given by 
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In the calculation of the corresponding overall uncertainty, one should add a component due to the 

uncertainty of the decay constant λR. 

When there is no discrimination made, the rate ρR (0) can be obtained from relation (12), using the 

total number of counts N and the background rate ρB whose value is in that case supposed to be 

known, 
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According to (13), the variance of         can then be written 
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The corresponding overall uncertainty should include additional components due to the uncertainties 

of λR and of the background count rate ρB. 

7. Implementation 

The relations obtained in 5 Relations obtained for non-homogeneous Poisson processes, 6 Application 

to short-lived radionuclides give the rates of the measured events corrected for dead times. They are 

valid for any type of dead time and, more generally, for any measurement interruption after the 

counting of an event. For using them, the only requirement is the possibility to get and store the time 

stamps of the events occurring during the measurement if the data are taken before the generation of 

dead times, or the time stamps of the live-time intervals if the data are taken after dead time 

generation. In the field of nuclear measurements, instruments equipped with digital signal processing 

systems offer this possibility. 

Once the dead times have been generated and the live-time intervals defined, their starting and ending 

times can be transformed according to the change of time scale described in Section 4.2, i.e. changing t 

in Fj(t) for process j (see Fig. 1). It is worth noting that after this step, the signal processing can be 

carried out identically to the one applied for activity measurements in usual conditions (i.e. negligible 

decay, assumption of homogeneous Poisson process). Indeed the same relations can be applied in the 

transformed time scales. 

https://www.sciencedirect.com/science/article/pii/S0969804317308126?via%3Dihub#s0050
https://www.sciencedirect.com/science/article/pii/S0969804317308126?via%3Dihub#s0075
https://www.sciencedirect.com/science/article/pii/S0969804317308126?via%3Dihub#s0075
https://www.sciencedirect.com/science/article/pii/S0969804317308126?via%3Dihub#s0045
https://www.sciencedirect.com/science/article/pii/S0969804317308126?via%3Dihub#f0005


 

Fig. 1. (a) Chronogram of occurrences of counted events of the non-homogenous Poisson processes n 

and j with associated dead times; (b) live-time intervals with their starting and ending times; (c) and 

(d) live-time intervals with their starting and ending times after changing the time scales for processes 

n and j respectively, thus transformed into homogeneous Poisson processes. 

The rate corrected for dead times can be obtained off-line after the measurement, but also through an 

on-line process. Indeed, the expressions giving the corrected rate and the associated variance are 

composed of terms that are incremented at the end of each new live-time interval, by a quantity 

specific to this interval. Therefore, a new rate can be obtained after each counted event. 

In the case of discriminated events, the number of counted events of type n is incremented by one 

when an event of type n is counted. The corrected total live time is incremented by the quantity 

                 after each live-time interval [tk, tk+ik] regardless of the type of event triggering 

the dead time. It is possible to acquire additional data to perform statistical tests on the results. For 

example, one can study the distribution of the corrected live-time intervals between two successive 

events of type n. The presence of a tendency with time could highlight an inconsistency in the function 

fn used. The measurement of such a time interval starts after the counting of an event of type n, it is 

incremented by the quantity                  after each new live-time interval [tk, tk+ik] up to the 

next counting of an event of type n. Then this measurement ends and the next one starts. 

When the events are not discriminated, the number of counted events is incremented by one after each 

new live-time interval [tk, tk+ik], and the corrected total live time is incremented by the quantity 

                 for each counted process j. 

8. Conclusion 

Dead-time correction formulae have been established in the general case of superimposed non-

homogeneous Poisson processes. They are based on the possibility to get and store the time stamps of 

the live-time intervals, i.e. their starting and ending times. Expressions of the estimates of the 

variances of corrected rates are also presented. The live-time stamping method presented is based on 

the same principles as conventional live-timed counting, but going further as it fully exploits the 

additional information made available for each live-time interval. This progress is made possible due 

to the development of digital signal processing systems, especially in the field of nuclear 

instrumentation for the measurement of radioactive sources. The general formulae can be transposed 

to the case of the activity measurement, in the presence of background, of a mixture of short-lived 

radionuclides regardless of their number. The presented relations are exact within the statistical 

counting uncertainty, insofar as no explicit approximation is made to obtain them. The measured rate 

accuracy then depends only on the accuracy of live-time measurements and on the consistency of the 

measured live-time intervals with the effective ones. 

https://www.sciencedirect.com/topics/physics-and-astronomy/stochastic-process
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