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Abstract

The Internet of Things was born from the proliferation of connected objects and

is known as the third era of information technology. It results in the availability

of a huge amount of continuously acquired data which need to be processed to

be more valuable. This leads to a real paradigm shift: instead of processing

fixed data like classical databases or files, the new algorithms have to deal with

data streams which bring their own set of requirements. Researchers address

new challenges in the way of storing, querying and processing those data which

are always in motion.

In many decision making scenarios, fuzzy expert systems have been useful

to deduce a more conceptual knowledge from data. With the emergence of the

Internet of Things and the growing presence of cloud-based architectures, it is

necessary to improve fuzzy expert systems to support higher level operators,

large rule bases and an abundant flow of inputs.

In this paper, we introduce a modular fuzzy expert system which takes data

or event streams in input and which outputs decisions on the fly. Its architecture

relies on both a graph-based representation of the rule base and the cooperation

of four customizable modules. Stress tests regarding the number of rules have

been carried out to characterize its efficiency.

Keywords: Fuzzy expert system, complex event processing, data stream

∗Corresponding author
Email address: jean-philippe.poli@cea.fr (Jean-Philippe Poli, Laurence Boudet)

Preprint submitted to Fuzzy Sets and Systems October 11, 2017



processing, rule base representation, policies

1. Introduction

The emergence of connected objects and mobile devices gave birth to the

Internet of Things and is leading towards a continuous data acquisition from

different devices and sensors. Before this third era of information technology,

the data were stored in data warehouse, queried at once and manipulated by5

algorithms as a whole. With such data in motion, the use cases have changed: for

instance, new database management paradigms are introduced, special efforts

are made on data compression to avoid networks overload, and supervised or

unsupervised learning algorithms are rethought.

Cugola and Margara [1] define the Information Flow Processing (IFP) do-10

main as the domain of tools capable of processing information as it flows. Usu-

ally, the flow is coming from multiple sources and processed to extract relevant

knowledge. They distinguish two subdomains:Complex Event Processing (CEP)

and Data Stream Processing (DSP). Algorithms for processing such flows have

to be fast and incremental [2] and are evaluated regarding two criteria: the15

number of passes over the stream (which must be as close as possible to 1) and

the size of the workspace in memory [3].

On the one hand, DSP consists in processing data flows and in producing

a new data flow as output. The Federal Standard defines a data stream as a

“sequence of digitally encoded signals used to represent information in transmis-20

sion”. More formally, data stream can be defined [2, 3, 4] as a sequence of data

items x1, . . . , xi, . . . , xn such that the items are read once in increasing order of

the indexes i. A lot of tools have been introduced to process data streams. For

instance, traditional database management systems, which work on persistent

data, are replaced by data stream management systems whose queries run con-25

tinuously: anytime new data arrive, the result of a query is updated [5, 6]. Other

researches mainly include data streams mining with either clustering methods

[7] or neural networks [8]. In [9, 10], the authors are revealing the open chal-
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lenges which must be addressed in the domain of data stream mining, including

privacy issues, developing a methodology for stream preprocessing, developing30

online monitoring systems and balancing resources.

On the other hand, CEP differs by the type of data items it considers: an

item is a notification of event [11]. CEP are also associated with velocity: it

aims at managing thousands of events per second [12], for instance, up to 125000

events for a financial software [13]. In this domain, processing mainly consists35

in filtering, gathering and combining those events to build a higher level infor-

mation [14], to raise alerts or trigger processes. It makes use of the relationships

which exist between events: indeed, events may be related in various ways (by

cause, by timing, or by membership) [11].

Nowaday, DSP and CEP became usual considerations in many real world40

applications. We can cite for example: system monitoring and fault detection,

home automation, security and finance [1]. However, in both data and event

streams, the information may be incomplete and imprecise by nature [15]. For

instance, sensors may be out of order or inaccurate, and data may be noisy.

Fuzzy logic [16] has been specifically designed to mathematically represent un-45

certainty and vagueness and is a popular tool for dealing with imprecision in

many real world problems. Taking advantage of fuzzy logic, fuzzy expert sys-

tems allow to easily represent human knowledge about data and phenomena

and have been successfully applied to many domains [17, 18].

Fuzzy expert systems often come with a higher computational cost compared50

with boolean logic expert systems. For instance, fuzzy inference needs to assess

the whole rule base to compute the outputs, whereas in boolean expert systems,

a subset of the rules are applied one by one to produce the inference. Whereas

fuzzy inference involves simple operations and simple functions to lower the

computational cost, it has been showed that fuzzy rule bases need to be more55

complicated if only piecewise-linear functions (e.g. trapezoids...) are used in-

stead of non-linear membership functions (e.g. sigmoids...) [19]. Consequently,

expensive functions in terms of computation are needed to assess the aggrega-

tion and the defuzzification [20]. In addition, in real-world applications, it is
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possible to have very large rule bases which require a great amount of processor60

time [21]. Moreover, to describe the relations between the data or the events,

more sophisticated operators are needed for temporal [22, 23], spatial [24, 25]

or even spatio-temporal [26] reasoning. These operators imply a higher com-

putational cost. In addition, traditional fuzzy expert systems compute output

values only when input values have changed. This is not compliant with event65

streams whose events are potentially arriving in an irregular manner: in such a

case, expressions may change before the next event arrival (see section 3.3).

Our work aims at developing a fuzzy expert system to process information

flows, handling the imprecision brought by noisy data, sensors or network prob-

lems with fuzzy logic. The motivation of our work is to provide an efficient fuzzy70

expert system in operational contexts. To enable human experts to author more

complex rules, our system is able to efficiently assess complex fuzzy relations

[23]. To ensure it can interface easily with the various information systems of

our partners, we chose to avoid specific architectures (like GPU) and to develop

a software for data and event stream processing on regular CPU platforms. Fi-75

nally, in industrial applications, the efficiency is important not only because

there must be a lot of rules, but also because the rules can be applied to a huge

number of objects or events per second.

The paper is structured as follows: section 2 presents the related work about

large rule base handling. Section 3 describes the architecture of our fuzzy expert80

system. Section 4 presents the implementation, and then the protocol and the

results of experiments on both data and event streams. Finally, section 5 points

out the conclusions.

2. Related work

To address real-world applications, fuzzy expert systems have to be able to85

process large rule bases very fast, and thus face the well-known combinatorial

explosion problem. Indeed, in case of a conjunctive combination of the terms

of all the inputs (also known as grid fuzzy rule structure), the number of rules
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grows exponentially with respect to the number of inputs. For instance, there

are pn possible rules for n inputs with p terms each.90

Combs and Andrews [27] tried to solve this problem by proposing a rule

construction schema based on the union of single-antecedent rules, called Union

Rule Configuration. In this case, the number of rules evolves only linearly in

function of the number of inputs. Mendel and Liang [28] contested this approach

stating that the two rule bases may not be equivalent and suggest to inquire95

whether the replacement makes sense.

Large rule bases are rarely given by human experts and are rather automat-

ically inducted from datasets. Thus, automatic rule induction also faces the

curse of dimensionality. To fix this issue, one can generate a partial rule base

which does not cover the whole input space. Approaches based on input space100

partitioning by k-d trees [29] or quadtrees [30] result in nonuniform overlapping

membership functions which are difficult to label with an understandable lin-

guistic term. Jin [31] takes advantage of the conclusion drawn in [32] : optimal

rules cover the extrema. The generated rule base is then checked for redundancy

and potential inconsistency and optimized by a genetic algorithm. Hence, Jin’s105

algorithm generates 27 rules from a training set of 20000 examples described

by 11 inputs. In [33], authors present S-FRULER a genetic fuzzy system for

regression problem capable of learning rules from big datasets. First, a multi-

granularity fuzzy discretization is applied on the whole dataset, which is then

split into several partitions. Each partition is then treated as an independent110

problem, which allows distribution. The processing consists in selecting vari-

ables randomly and then using genetic algorithms to induce rules. The rules

are then combined into a unique rule base. Authors claim they obtain simple

rule bases in terms of number of rules while maintaining a good precision. How-

ever, the different steps do not guarantee to have an optimal rule base since115

random variable selection, genetic algorithms and rule combination can add a

lot of biases.

The interpretability of the rule base is not the only reason to decrease the

number of rules: applying on information streams needs a fast processing of
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the rules to make decisions on the fly. Fuzzy controllers have been introduced120

to overcome these drawbacks and are able to process inputs in real-time [34].

More recently, papers address the acceleration of fuzzy computation either with

dedicated hardware [35] or with the help of Graphics Processing Units (GPU)

[36]. However, to our experience, fuzzy expert softwares which run on classic

CPU platforms are more convenient for many reasons. Firstly, they are easier to125

interface with an existing system than electronic chipsets. Then, DSP and CEP

both rely on software intensive architectures. Moreover, in terms of scalability,

it is possible to use from a single core of a machine to several machines and it

can all be done transparently for the user ; for instance, it can take advantage

of the virtualization as in cloud-based services.130

The next section describes a suitable architecture for general-purpose fuzzy

expert systems in which the problem of the rule base size in terms of computa-

tion speed is addressed by eliminating redundancy in the assessment. We also

distribute the different roles like gathering inputs, computing and announcing

results in different modules to be able to process information streams.135

3. Architecture description

Fuzzy expert systems can infer regarding two main paradigms:

• Mamdani type, in which rule conclusions are fuzzy set;

• Takagi-Sugeno type, in which rule conclusions are a function of the inputs,

i.e. a crisp value.140

Whatever the type of inference, when a group of inputs change at a time t,

all the rules containing at least one of those inputs have to be reevaluated. In

information streams, inputs may change several times per second, or rules must

be applied on thousands of incoming events per second ; the evaluation of the

whole rule base may thus need a huge computation time. The distribution of145

the rule base is not always a good solution: for instance, monitoring of vehicles
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or of patients need to process the same rule base over different input streams.

However, the evaluation for each vehicle or each patient can be concurrent.

In this article, we introduce an architecture which tends to avoid the system

saturation. In the remainder, without loss of generality, the examples will be150

given for a Mamdani type inference system.

3.1. Architecture overview

Figure 1 presents the overview of the proposed architecture. The modularity

is ensured by a separation of the tasks and a customization provided by the use

of policies. A policy is a set of parameters which customize the behavior of each155

module. The combination of the behaviors of all the modules enable to address

a lot of applications and issues : regular or irregular data rate, delay before

inference, etc. The architecture is composed of several modules :

• the active input queue gathers and groups the inputs by timestamps,

• the scheduler monitors the system (via the operating system) and to160

decide which inputs group has to be processed,

• the evaluator is in charge of the evaluation of the rules,

• the output change broadcaster informs the user about outputs changes.

The different modules help avoiding a system overload (for instance, the ac-

tive input queue selects the inputs which should be treated) or user overfeeding165

(for instance, the output change broadcaster displays only the relevant infor-

mation). We first introduce how we optimize the rule base representation by

common subexpression elimination and the concept of expiration of expressions.

We then describe each module of the architecture and give some examples of

policies.170

3.2. Rule base representation

The rule base in-memory model plays a major role in the efficiency of the

fuzzy expert system. Expressions are usually modeled with a tree [37], as in
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Figure 1: Architecture overview.

Figure 2(a). However, some expressions can be included in several rules or

other expressions: thus, in a tree representation, it is difficult to check the175

redundancy of such expressions, and it is necessary to compute them several

times when a group of inputs changed. This problem is known as common

subexpression elimination (CSE).

To address the CSE problem in our architecture, we chose to represent each

expression by a unique node: thus, the rule base is not represented by a tree180

anymore but by a graph (figure 2(b)). More precisely, we use an acyclic directed

graph to avoid loops during the evaluation. In the graph, an edge A −→ B

means that if the value of the node A changes, it affects the node B and B has

to be evaluated again. In this case, B is called a direct successor of A. In the

graph we are considering, a node may have several direct successors. A node185

can represent fuzzy expressions (including fuzzy propositions) or rules, and we

consider particular nodes for defuzzification and aggregation. Thus, the changes

propagate from input nodes to output nodes. The propagation stops if there

are no changes during the evaluation of the current node.

The propagation is achieved as particular breadth-first traversal of the graph.190

However, for a fuzzy relation of cardinality n, it is necessary to assess its n
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Input X Input Y
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Input Z
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(a) Tree-based representation

Input X Input Y

X is A Y is B

Input Z

Z is C

NOT Z is C

(X is A AND Y is B) OR NOT Z is C

IF (X is A AND Y is B) OR NOT Z is C 
THEN O is D1

(X is A AND Y is B) OR Z is C

(X is A AND Y is B) OR Z is C 
THEN IF O is D2

Aggregation
output O

Defuzzification
 output O

X is A AND Y is 
B

(0)(0) (0)

(1)(1)(1)

(2) (2)

(3)(3)

(4) (4)

(5)

(6)

(b) Graph-based representation

Figure 2: Representations of a base of two Mamdani-type rules.

predecessors before its own evaluation, otherwise it would be evaluated n times,

and worst, at a certain time, its value would be inconsistent. To avoid this effect,

we added a priority information to the nodes. Before starting the fuzzy inference

engine, the graph is traversed and a recursive function priority : Node →195

integer is applied. Let N be the current node to be treated, the function

priority is defined as follow:

• if N is an input node, then priority(N) = 0,

• otherwise, let si be the direct successors of N :

priority(N) = maxi(priority(si)) + 1.200

Let X, Y and Z be three input linguistic variables, and A, B, C a term

from respectively X, Y , Z. Let D1 and D2 be two terms of an output linguistic

variable O. Then, the rule base is composed of two rules:

• IF (X is A AND Y is B) OR NOT Z is C THEN O is D1,

• IF (X is A AND Y is B) OR Z is C THEN O is D2.205

In Figure 2(b), numbers in brackets represent the evaluation priority of each

node; the three inputs are at the bottom of the figure and have a null priority,
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which means they need to be evaluated first. We will develop in section 3.6 the

use of the priority during evaluation.

To the best of our knowledge, current fuzzy expert system does not imple-210

ment CSE. This is due to the fact that they only use classical fuzzy logic opera-

tors which are really fast to compute. For instance, t-norms and t-conorms use

arithmetic operators and binary comparisons (Zadeh’s operator min and max),

whose complexity is O(1), whereas most of temporal operators complexity is in

O(l) where l is a number of samples used [23] and most of spatial operators are215

at least in O(n×m) where n×m is the dimension of the image [24].

We can easily assess the number of nodes in the two representations of the

rule base. Let Nt be the number of nodes in the tree-based one and Ng in the

graph-based one :

Nt(n, p) = n︸︷︷︸
inputs

+ 1︸︷︷︸
aggregation

+ 1︸︷︷︸
defuzzification

+ pn︸︷︷︸
rules

( p︸︷︷︸
propositions

+ (n− 1)︸ ︷︷ ︸
conjonctions

+ 1︸︷︷︸
implication

) (1)

Ng(n, p) = n︸︷︷︸
inputs

+ n× p︸ ︷︷ ︸
propositions

+
n∑

i=2

pi

︸ ︷︷ ︸
conjonctions

+ pn︸︷︷︸
implications

+ 1︸︷︷︸
aggregation

+ 1︸︷︷︸
defuzzification

(2)

Using Landau notations, these equations show the number of nodes is asymp-220

totically O((p + n) · pn) for the tree-based rule base, and O(pn) for the graph-

based one.

3.3. Expiration

Among the sophisticated relations we have implemented, temporal operators

[23] and those which derived from them need a special attention when applied on225

event streams. The particularity of event streams is that the system is noticed

of events irregularly. For instance, let us consider the fact “the temperature was
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too hot on Monday from 2 am to 3 am”. The system has received two events:

at 2am, a temperature high enough to activate the fuzzy proposition “the tem-

perature is too hot”, and at 3am, a lower temperature such as “the temperature230

is too hot” is false. Now, we consider the temporal operator “occurrence” from

[22] which indicates that a phenomenon has occurred on a certain scope in the

past: for instance, it can express that “the temperature was too hot during

the last 24 hours”. Until the next Tuesday 3 am, the degree of truth of this

occurrence is strictly greater than 0. After 24 hours, its degree of truth equals235

0, whereas the system inputs have not changed since Monday 3 am.

Classical fuzzy expert systems cannot perform this trick since they need that

inputs change to compute the outputs. We thus introduce in our system the

notion of expiration. Some expressions in the rule base are represented by special

nodes in the rule base graph, which are marked as “expirable”. After being240

evaluated, the expirable nodes signal to the scheduler they must be evaluated

again after a certain delay (see section 3.5). If an input which is connected to

an expirable node changed before this delay, the expiration is simply postponed

by the scheduler.

Thus, expirable components must provide an expiration frequency and a set245

of criteria to stop the expiration. The expiration frequency is a parameter which

depends on the application and the set of criteria depend only on the definition

of the operator. For instance, in home health patient monitoring applications,

expressions usually expire every day for symptoms persistence, because doctors

cannot have alerts that change too frequently, whereas in control applications,250

the expiration rate is usually less than 1 second to have a smooth behavior.

More details can be found in [23].

3.4. Active input queue

Sensor networks are a particular case of information stream. Some sensors

measure (data stream) and some others detect (event stream), but they usu-255

ally work in an asynchronous way. Moreover, some delays can appear in such

networks. The active input queue is thus in charge of several steps before the
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engine can process them.

Firstly, it listens to the information stream to fetch the interesting values it

contains. Then, it groups the input values by timestamp and enqueue. Finally,260

it signals the scheduler that a new group has been enqueued.

Different policies can be conceived for this component. For instance, in

some applications, it is necessary to wait for delayed sensors or delayed network

packets before signaling the scheduler. Conversely, it can ignore delays and late

arrivals, and thus filter these data. It may also be seen as a firewall which265

protects the scheduler from irrelevant inputs.

3.5. Scheduler

The scheduler has an important role to play to limit the delay between the

arrival of the data and the decision making. When a new input set is announced,

it decides, regarding its own policy, whether it is important to compute it im-270

mediately, later or not at all.

In the simplest configuration, the scheduler just fetches the first element

in the active input queue, asks the evaluator to assess this group of inputs and

gives the results to the broadcaster. With the use of policies, his behavior can be

more sophisticated. For instance, one particular configuration can monitor the275

system to determine how busy the CPU cores are and to decide whether a group

of inputs can be skipped. Moreover, the scheduler implements the expiration.

All the expirable components of the rule base whose evaluation has changed are

placed in another queue, waiting to expire.

Another configuration may consist in evaluating on different processor cores280

of the machine. Each core receives a sub-part of the input set. A simple al-

gorithm based on the graph representation of the rule base is used to separate

independent inputs on different sub-parts: this may simply be achieved by find-

ing connected components of graph with well-known algorithms of graph theory

[38].285
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3.6. Evaluator

The evaluator is the component which evaluates the different expressions and

rules in the rule base. For a set of inputs, it gives a particular set of outputs. It

also takes advantage of the rule base representation to perform the computation

only when necessary.290

To compute the different nodes of the graph representing the rule base, the

evaluator traverses the graph in a certain order. To ensure the right order, we

use a priority queue Q. The priority queue Q places the nodes with the lowest

priority at the front of the queue and can contain each node at most once.

Algorithm 1 presents the general evaluation algorithm. The algorithm takes295

four parameters: I, a dictionary which maps each input which has changed to

its value, E, a set of nodes which has expired and must be evaluated again, M ,

a dictionary which maps each node of the graph to its value, and finally G, the

rule base graph. Eventually, I or E can be exclusively empty: when I is empty,

the procedure is called just to evaluate the expired nodes, whereas when E is300

empty, it is called to evaluate the consequences of the input change. The assess

function takes the node to evaluate and M : it fetches the operands values in

M and applies the operator, then stores the value of the current node in M

and finally returns false if the value of the current node has not changed, true

otherwise.305

In figure 2(b), the priority queue ensures the node “(X is A AND Y is B)

OR Z is C” is evaluated at the right time. It ensures that if several paths lead

to the same node N , all nodes on the paths are assessed before N .

In fuzzy logic, different functions can be used for operators (conjunction,

disjunction, negation, implication, aggregation, defuzzification) evaluation. The310

policies of the evaluator indicate which version of the operators must be used.

3.7. Output change broadcast

The broadcaster is also an important module because it is in charge of build-

ing the output stream. The last step is indeed to inform on the fly the calling

13



Algorithm 1 Evaluation of the rule base graph

Inputs:

� I: dictionary mapping nodes and values representing inputs which have just changed

� E: set of expired nodes

� M: dictionary mapping nodes and values resulting of the previous evaluation

� G: rule base graph

/* Initializes the priority queue Q */

Q ← ∅
/* Adds changed inputs into Q and update memory */

for all pair 〈node, value〉 in I do

Q ← priority enqueue(Q, node, priority(node))

M ← M
⋃ 〈node, value〉

end for

/* Adds expired nodes into Q */

for all node n in E do

Q ← priority enqueue(Q, n, priority(n))

end for

/* Rule base graph browsing */

while Q �= ∅ do

current ← priority first(Q)

Q ← priority dequeue(Q)

if assess(current, M) then

for all n such as n ∈ successors(current, G) do

Q ← priority enqueue(Q, n, priority(n))

end for

end if

end while

return M
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system or the user that some outputs have changed. The policies are used to315

determine when and how the outputs have to be broadcast. For instance, the

changes can be gathered and sent at regular time intervals or only outputs which

have changed are broadcast with their new values. In a more verbose style, the

changes can be sent with a trace of the activated rules.

It may gather information from the graph and the evaluation of its node to320

build justifications (to explain why the decision has been made).

The next section introduces implementation considerations and shows some

experiments we achieved to characterize the performances of the software on

both data and event stream processing.

4. Implementation and experiments325

The software has been developed in C# as an API (Application Program-

ming Interface). This language is not compiled as C++, but it offers a good

compromise between efficiency and the ease of interfacing with other systems

(for instance by webservices) and runs on different platforms without recompil-

ing.330

The succession of the nodes evaluation has been implemented without any

optimization regarding the current fuzzy inference methods : the software per-

forms all the steps needed in Takagi-Sugeno or Mamdani type inferences. We

wanted to be as general as possible to be able to take into account future or

experimental inference methods. Moreover, all calculations involved in the dif-335

ferent inferences (integrals, curves intersection, ...) are processed analytically, in

opposition with, for instance, Matlab which represents a membership function

by a given number of points.

In terms of memory usage, for now, all the rules are kept in memory at all

time. We also have to store the values of the different nodes of the rule base.340

To implement efficiently expiration, which affects only some temporal operators

[23], the values of expirable expression operands are stored in memory regarding

a temporal scope to allow partial recalculation. Indeed, it is necessary to find
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a good compromise between efficiency, scalability and flexibility regarding our

industrial partners and our needs to experiment new operators and inference345

methods.

Implementation is still a work in progress to improve performances. For

instance, from the results in [39], we improved the efficiency of the hash function

and some data structures and divided by up to 170 the computation time of large

rule bases. From the results in [40], we also improved memory usage in order350

to load larger rule bases.

Without loss of generality, we have then experimented the system in two

different ways: either with a data stream or an event stream. On one hand, to

test the ability of the system to process data streams, we measured the time

to process rule bases, varying the number of inputs and terms to increase the355

number of rules at each test. On the other hand, we used an event simulator

to test the event stream processing capabilities, which is used to benchmark

CEP softwares. It is of course possible to address both event streams and data

streams with the same rule base.

In the first series of experiments, all the inputs are changing at each time360

whereas in the second series of experiments, few inputs change simultaneously to

reveal the potential of our system in real world applications of stream processing.

These tests have been processed on only one core of an Intel Xeon X5650

at 2.67GHz on a Windows server and 42GB of RAM to process several tests in

parallel without interfering.365

4.1. Data stream experiment

This experiment aims at comparing the performances of the evaluation of

different rule bases regarding two different policies of the evaluator module :

• full recalculation mode : all the expressions and nodes are reassessed each

time an input changes,370

• partial recalculation mode : last values of the nodes are kept in memory

and are reassessed only when needed,
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and different rule base representations:

• tree-based representation (without CSE),

• graph-based representation (with CSE).375

The graph based representation with partial recalculation is the default be-

havior of our system. Its modularity, through the use of policies, allows to easily

switch between the different modes. The full recalculation mode is obtained by

clearing M before each call of the evaluation procedure (algorithm 1) whereas

the partial recalculation mode stores in memory the dictionary M .380

4.1.1. Protocol

These experiments have been carried out on artificial rule bases and data

sets whose generation is described hereafter. Let {vi}1≤i≤n be n input linguistic

variables, each defined by p terms T 1
i , . . . , T

p
i . Let w be an unique output

linguistic variable whose terms are W1, ...,WK . Those input variables combine385

into rules by the full conjunctive combination principle :

IF v1 is T l1
1 and . . . and vn is T ln

n THEN w is Wk

where T li
i refers to a term of vi with 1 ≤ li ≤ p and k =

∑n
i=1 li − n + 1.

Thus, for a given couple (n, p), there are pn possible combinations of those

inputs (i.e. rules) and w has K = n(p− 1) + 1 terms.390

For the sake of simplicity, the terms T li
i of each variable vi are defined by

triangular membership functions on the domain [0, p + 1]. By construction,

the support of each term T li
i is [li − 1; li + 1] and its kernel is {li}. The same

construction is used for the terms Wk of w. Figure 3 shows an example of a

linguistic variable characterized by 3 terms.395

Each input variable vi receives a data stream of 20 values, which have been

generated following an uniform distribution U([0, p+ 1]).

The architecture has been configured as follows: the active input queue is

set in DSP mode, i.e. it waits to receive a value for each input. The scheduler

evaluates this group as soon as possible, then the new value of the output is400
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Figure 3: Linguistic variable with 3 terms defined on the domain [0, 4].

broadcasted. This is the most simple configuration of these modules. The dif-

ferent modes of evaluation of the architecture have been obtained by configuring

the policy of the evaluator : in one case, it uses its memory functionality; in the

other case, it has to compute all the values of the nodes again. The same input

data streams have been used for both cases.405

By making both the number of inputs n and the number of terms p vary

from 2 to 10, we are able to assess the performance of the architecture on large

rule bases and to draw some conclusions. Due to the computational cost, the

largest configuration was obtained with 7 input variables and 9 linguistic terms

with the graph-based representation (4782969 rules), whereas the tree-based410

representation allows to reach 9 input variables and 4 terms (262144 rules).

Even if these are not realistic cases, it is useful to benchmark the proposed

system.

4.1.2. Results

In this section, we first compare the average number of nodes being reevalu-415

ated in each mode and then compare the average evaluation time of the different

rule bases. The averages are computed over the 20 values of the data stream to

decrease the possible biases.

Figure 4 represents the number of nodes to be evaluated in each configuration

and figure 5 represents the computation times regarding the number of rules.420

These figures show the results for the full and partial recalculation modes and
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for the tree-based and graph-based representations of the rule base in log-scale.

We can see that for the graph-based rule bases, both the computation time and

the number of nodes are linear regarding the number of rules whereas for tree-

based rule bases, it is weakly exponential. Point clouds in figure 5 confirm the425

intuition: storing the value of each node allows to stop propagating the changes,

and strongly decreases the number of nodes to evaluate. For a rule base with 6

input variables and 8 terms (262144 rules), 1572920 nodes may be evaluated in

the full recalculation mode with tree-based rule base and 561784 with a graph,

whereas in the partial one, only 35248 nodes in average are evaluated for trees430

and 275 for graphs.
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Figure 4: Average number of nodes to be evaluated for different rule base sizes in the all four

modes (log-scale for both axes).

In particular, figure 5 shows the duration of the evaluation of the rule bases

in full and partial modes with graph-based rule bases. With the same data

streams as before, to evaluate 262144 rules, full recalculation mode needs almost

2s whereas the partial one needs only 300ms, i.e. the latter one is more than 6435

times faster than the former one on this rule base structure.
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Figure 5: Average computation time in seconds for different rule base sizes in all four modes

(log-scale for both axes).

4.1.3. Discusssion

The drastic reduction of the number of nodes to be evaluated can be ex-

plained by a theoretical analysis. The fuzzy partitions used to create the terms

of the linguistic variables explain why, at each time, for each variable, at most 2440

terms out of p are activated. Thus, at most Ng(n, 2) nodes (equ. 2) have to be

evaluated: for n = 6, at most 208 nodes will be activated. But a large number

of them are null because of the conjunctive combination of the inputs. Now, to

count the number of needed reevaluations, we should consider the worst case :

all the active elementary propositions become null, and the same number of445

propositions get a non-null value. This gives 2×Ng(n, 2) as a pessimistic upper

bound of the number of nodes that need to be reevaluated.

It seems that saved computational time is not as high as we could expect

considering the saved computations shown just before. Indeed, saved compu-

tations correspond to the evaluation of a null value by a quite simple function450

(mainly either by the membership function evaluation or by a conjunctive com-

bination of two expressions) and its affectation to nodes that were already null.
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We will see in section 4.2 that partial recalculation mode is really helpful in

event stream processing.

These tests are good stress tests because all the inputs change at the same455

time. For rule bases of conventional sizes, for instance 343 rules, the engine

needs less than 0.5ms in the partial recalculation mode. Thus, we can handle

inputs which change more than 2000 times per second on only one core.

4.2. Event stream experiment

Streaming events poses some challenges to the design of a benchmark. As460

described in [41], the authors introduce “Linear Road”, a benchmark for event

stream processing systems which matches with many requirements of such bench-

marks. For instance, we cite the two most important requirements in our case:

• the generated data must have a semantic validity,

• the benchmark must be verifiable (even if the streams may vary depending465

on the moment they are generated).

The linear road benchmark is inspired from the problem of variable tolling

(also known as congestion pricing), i.e. the computation of tolls that vary

according to different factors such as congestion levels and accident proximity

[42]. The input data are generated by the MIT Traffic Simulator (MITSIM) [43].470

The benchmark consists in different challenges for stream data management

systems, from historical queries to tolls assessment. In our case, we have only

implemented one challenge out five: the detection of car accidents. The other

challenges are not appropriate for a fuzzy expert system and need the capability

to query historical data or an aggregated view of the expressway.475

4.2.1. Previous work

In the following experiment, we used the “strictly persists” temporal oper-

ator described in [23] and which evaluates how much a phenomenon persists

during a given scope. In our case, the scope is fuzzy since some moments in
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Figure 6: Parameters used for the linear road benchmark.

the past are considered as more important. Figure 6(a) shows the member-480

ship function used to define the scope: it considers the values from 2.5 minutes

to 2 minutes before the present as more and more important, and moments

from 2 minutes to the present as important. This fuzzy scope allows testing a

representative case for the temporal operator in terms of computational cost.

4.2.2. Protocol485

We generated data with the MITSIM simulator [43] in a flat file which rep-

resents a simulation of 6 minutes and 40 seconds, involving 5953 cars. We then

select only a given number of cars inside this simulation. The data consist in

cars positions, emitted every 30 seconds on a bidirectional expressway. Each

direction is composed of 3 travel lanes and one exit and one entrance ramps.490

The position is given by the direction, the lane number and an integer that

represents a 1-D coordinate on a specific lane. In the original benchmark, a car

accident is detected if at least two cars report the same position for at least

four times. More details can be found in [41] and [43]. We developed a software

to play the simulation in real time and another one to check if the accident495

notifications are true regarding the simulation. To use the expiration, we send

the position of a car only if it changes from its previous position.

To match with a fuzzy problem, we changed the benchmark rules. Firstly, we

used a fuzzy definition of the distance, to take into account the GPS inaccuracy
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and the size of the car: figure 6(b) shows a narrow gaussian membership function500

which defines a short distance. Then, we decided to use the “strictly persists”

temporal operator, described in section 4.2.1, and to develop two new nodes for

the rule graph:

• a distance node which simply computes the absolute value of the difference

between two inputs values,505

• a “same lane” crisp node, which is boolean and indicates if two cars are

on the same lane, same direction.

For each unique pair of distinct cars (cari, carj), we wrote the two following

rules :

• IF (cari is on the same lane as carj AND distance between cari and carj510

IS very short) STRICTLY PERSISTS during at least the 2 last minutes

THEN Accident(i, j) IS true,

• IF NOT ( (cari is on the same lane as carj AND distance between cari

and carj IS very short) STRICTLY PERSISTS during at least the 2 last

minutes) THEN Accident(i, j) IS false.515

For n cars on the expressway, we thus have n2 − n pairs of rules. When one

car emits a position, it affects 2 × (n − 1) rules which may be reevaluated. In

particular, for the “strictly persists” operator, the different values of operand

are kept in memory during the last 2.5min as a compressed signal : i.e., as we

receive at most a position every 30s for each car, the signal for each pair of cars520

contains at most 10 values. However, we do not store the past values of the car

positions.

During this test, we used the following configuration :

• Input queue groups inputs by timestamps with no delay,

• Scheduler processes on one core,525

• Evaluator accepts temporal operators and use Zadeh norm and conorm,
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Number Simultaneous events Number Response Total computation

of cars min avg max of rules time (ms) time (s)

50 1 4.7 9 4900 9.38 1.8

100 2 5.6 9 19800 19.22 5.8

250 2 8 20 124500 317.57 5.8

400 2 12.4 24 319200 806.51 21.9

500 2 15.2 24 499000 836.56 40.1

750 2 21.7 37 1123500 847.53 40.5

1000 2 27.2 43 1998000 862.6 41.5

1100 2 29.2 48 2417800 912.37 41.9

1200 2 31 50 2877600 880.11 41.4

1300 2 32.5 53 3377400 808.65 37.2

Table 1: Results of the partial linear road benchmark performed on a scenario of 6’40”

• Broadcaster indicates the value of an output only when it changes,

• The persistence expires every ten seconds.

When an output changes from false to true, we record the time and the value

to indicate that an accident occurs. Note that in the case more than two cars530

are involved in the accident, more than one output will change: for instance, if

an accident occurred between car1, car2 and car3, we will be noticed that an

accident happened between car1 and car2, car1 and car3, car2 and car3 (thus,

3 notifications for the same accident).

4.2.3. Results535

Table 1 shows the results of the car accident detection in the linear road

benchmark. We iterate the tests with different number of cars, from 50 to 1300.

The table characterizes the number of simultaneous inputs that change during

the simulation by the minimum, the average and the maximum values. It then

shows the number of involved rules, the response time, i.e. the average delay to540

evaluate the rule base in milliseconds, and finally the total time of computations

during the simulation.

For instance, with 1300 cars, in average 32.5 cars report their positions

simultaneously. 808.65ms were necessary to tell if an accident happened or not.
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The total computation time lasts only 37.2s over 401s of simulation.Thus, the545

system was evaluating the rules during less than 10% of the total duration of

the simulation.

The results show that, thanks to partial recalculation mode, the number of

rules does not impact so much on the response time. Naturally, the latter is

more impacted by the number of simultaneous events.550

4.2.4. Discussion

In this benchmark, regarding the current state of the software, we were lim-

ited by two main factors. First, the number of simultaneous events is always

low because of the nature of the simulation. Indeed, to the best of our compre-

hension, to increase the number of simultaneous events in MITSIM, we have to555

increase the number of cars. However, the number of rules grows too fast regard-

ing the number of cars. This leads to the second limitation : the construction of

such large rule bases. We have not been able to deal with more than 1300 cars

because of the time needed to create the rule base. Indeed, in our architecture,

to apply common subexpression elimination on rule bases, we need to check if a560

subexpression has been created before. Even with hashing functions, this step

implies a certain amount of computations. Despite this cost, we have to remind

that without CSE, we could not evaluate such large rule bases.

To better handle the linear road benchmark, systems may consider dynamic

rule bases (when a new car appears on the express way, a new set of rules is565

added, and they are removed whenever the car disappears) or to filter the rules

to evaluate (e.g. the rules concerning two cars are created only if the two cars

are close enough).

The goal of this experiment was to study the behavior of the system on

large rule bases for event streams. In the case we would want to address this570

benchmark fully, we should use a multi-core scheduler and higher level rules,

like “FOR ALL unique pair of cars (x, y), IF ... THEN ...”: we will thus have

only two rules in memory for all the pair of cars, while keeping the performances

of the inference engine.
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5. Conclusion575

In this paper, we have presented a modular architecture for a fuzzy expert

system designed to handle information streams (data streams or event streams).

The architecture relies on two aspects. Firstly, the graph representation of

the rule base indicates the dependency between inputs, expressions, rules and

outputs. More generally, it indicates what must be computed and in which580

order. Secondly, the use of four cooperating modules permits to filter and to

decide when it is possible to process a set of inputs. The introduction of policies

in the four modules allows to customize their behaviors regarding the addressed

projects or issues. Moreover, the flexibility of the rule base representation has

been shown by the addition of two ad-hoc types of node in the graph (“distance”585

node and “same lane and direction” node).

The described architecture has been implemented and used in several in-

dustrial projects in different domains: home automation, decision making in

industry and home care services. All projects needed to process either data

stream or event stream, sometimes both of them at the same time.590

Uncertainty and imprecision are real-world challenges, but others emerge.

The different experiments that have been presented in this paper show some

limitations of the current system: the usage of only one core of the processor and

the necessity to load a potentially huge number of rules. Considering CEP and

several thousands of inputs per second, we should parallelize the computations.595

We should also consider higher level rules that could be applied efficiently to a

lot of inputs while keeping the performances of the inference engine. Moreover,

users need more fuzzy relations to be able to describe their scenarios or to

characterize what they want to extract from the streams. Finally, online rule

base optimization will allow users to sketch first rules and then let the system600

evolve.
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