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Abstract Nonnegative tensor decomposition allows us to analyze data in their ‘native’ 

form and to present results in the form of the sum of rank-1 tensors that does not nullify 

any parts of the factors. In this paper, we propose the geometrical structure of a basis 

vector frame for sum-of-rank-1 type decomposition of real-valued nonnegative tensors. 

The decomposition we propose reinterprets the orthogonality property of the singular 

vectors of matrices as a geometric constraint on the rank-1 matrix bases which leads to a 

geometrically constrained singular vector frame. Relaxing the orthogonality 

requirement, we developed a set of structured-bases that can be utilized to decompose 

any tensor into a similar constrained sum-of-rank-1 decomposition. The proposed approach 

is essentially a reparametrization and gives us an upper bound of the rank for tensors. At 

first, we describe the general case of tensor decomposition and then extend it to its 

nonnegative form. At the end of this paper, we show numerical results which conform to 

the proposed tensor model and utilize it for nonnegative data decomposition. 

Keywords matrix, tensor, rank-1 decomposition, basis vector frame 

1. Introduction 

A tensor is a multidimensional array of scalars [10,13]. More precisely, an order-p 

tensor is an element of the space spanned by the outer product of p vectors, where each 

vector has its own dimension. The main terms for tensors are the order, dimensions, and 

the rank which we describe in process of exposition. 

The order of a tensor is the number of non-singleton dimensions, also known as ways or 

modes. There is an example of an order-3 (n1, n2, n3)-dimensional tensor with three 

different indices in Fig. 1. In general, an order-0 tensor is a scalar, an order-1 tensor is a 

vector, an order-2 tensor is a matrix, and tensors of order three or higher are higher-

order tensors. In this work, we denote vectors by boldface lowercase letters, a, matrices 

and higher-order tensors (order-3 or higher) by boldface capital letters, A, and scalars by 

lowercase letters, a. 



Fig. 1 An order-3 tensor A ∈ℝ�� � �� ��� 
We propose an alternative decomposition model that utilizes a set of geometrically 

constrained vectors to generate rank-1 bases. The constraint relaxes the orthogonality 

assumption in matrix singular value decomposition (SVD) which turns out to be a one-

to-one reparametrization of the matrix. The proposition is a generalization of the 

orthogonal coordinate frame interpretation of the singular vectors of non-symmetric 

real-valued matrices, which remain as order-2 special cases. The corresponding spacial 

case of decomposition model for symmetric tensors was proposed and solved for using 

iterative random search [11]. 

This paper contributes to the field of tensor analysis and decomposition which appears in 

signal [14] and image [17] processing, factor analysis [9, 15, 19], speech and 

telecommunications [10], and bioinformatics. As tensors could emerge from higher-

order statistics such as joint moments and cumulants (e.g., consider the symmetric tensor 

formed by order-p joint moments of an n-dimensional random vector), we believe, tensor 

decompositions will play an increasingly more important role in statistical signal 

processing. 

The most widely recognized approaches for sum-of-rank-1 tensor decompositions are: 

(i) canonical decomposition (CANDECOMP) [2] or alternatively parallel factor analysis 

(PARAFAC) [9]; (ii) the Tucker model [19]. With the CANDECOMP/PARAFAC (CP) 

model, a tensor can be represented as a sum of rank-1 tensors in a unique fashion 

without any constrains and the dimensionality of this basis set is the rank: 

� =  
 ���(�) o  �(�) o ···  o �(�)�
���                       (1) 

where λ = diag(Λ), u(1) o u(2) o · · ·  o u(p) denotes the p-way outer-product of the vectors �(�)
, and upper index (i), i = 1 , . . .  , p, denotes the way of product. 

Fig. 2 presents a schematic illustration of the CP model, where 

�(�) = ��(�), . . . , �(�) ,  i = 1, . . . , p, 

are the matrices whose columns form frames in ni, i = 1,... , p, dimensional spaces. 



 

Fig. 2 CP model of an order-3 (n1 , n2 , n3 )-dimensional tensor decomposition 

The CP model does not constrain the geometry of the vectors that yield the rank-1 basis 

tensors; this is in contrast with the assumption of orthogonal vectors in SVD of matrices. 

While a matrix might be written as a sum of fewer unconstrained left-right vector 

products than prescribed by SVD, the orthogonality constraint on the geometry of the 

vectors has been found to be useful in many applications of SVD. As opposed to the CP, 

Tucker’s proposed decomposition factors tensors as a finite sum assuming orthogonal 

vectors  to generate the rank-1 basis tensors similar to SVD, but the result is not 

necessarily minimal; in fact, it reparametrizes the tensors with more variables then 

necessary: 

� = 
 
 … 
 "#�,#$….,#%   ��(�)o ��(�) o ···  o �&(�)               ($)    �&

�&��
��

����
��

����  

An illustration of Tucker decomposition of an order-3 tensor is presented in Figure 3. 

 

Fig. 3 Tucker model of an order-3 (n1 , n2 , n3)-dimensional tensor decomposition 

Nonnegative versions of the CP and Tucker models involve a nonnegative restriction on 

all their entries. To review comprehensive explanation on the nonnegative tensor 

decompositions, we refer the reader to the publications of Prof. Andrzej Cichocki from 

The Riken Brain Science Institute (Japan) [3]. 

  



2. Redundancy and cardinality 

There are two differences on the illustrated models: CP model has a diagonal tensor of 

linear combination coefficients Λ and arbitrary directed vectors in frames U(i), on the 

other hand, Tucker model has fully filled tensor of linear combination coefficients Λ 

and orthogonal vector frames U(i). When one does 

analysis/decomposition/transformation of data, he can say that his method does not 

loose data when, at least, his method preserves cardinality of data. Cardinality or 

cardinal number of a set of scalars is the number, c, of free elements (degree of freedom, 

d.o.f.) in a set, e.g., the cardinal number of any full-rank symmetric two-dimensional 

matrix equals three. Indeed, any reparametrization (or coordinate transformation) must 

preserve the cardinality (or the number of dimensions or degrees of freedom). 

In Table 1, we present a brief analysis of described models and compare their cardinality 

with SVD. Let us use a random (2,2)-dimensional matrix A and (2,2,2)-dimensional 

tensor B. Cardinal numbers of A and B equal 4 and 8, respectively. In the general case, to 

describe the SVD of A, we need two singular values, r = 2, and, because of orthogonality 

of vector frames U(i), two rotation angles to define the orientations of orthogonal vector 

frames in 2-dimensional space. Therefore, we can see that SVD preserves cardinality of 

decomposed data. For tensor B, CP models hold r linear combination coefficients and, 

due to the absence of any restriction on vector frame structure, 3r rotational angles. 

Suppose that CP model decomposed tensor B with rank r = 1, in this case, CP model 

does not preserve cardinality, c = 4. For the case of r = 2 cardinality of CP model, c = 8, 

equals cardinality of tensor B. But the same rank, r = 2, we have for matrix A that is 

order-2 data. We assume that this case is just a coincidence, because more complicated 

data must have a higher rank. For rank r = 3 and above cardinality of CP model always 

higher then cardinality of tensor B.  

Tucker model, due to orthogonality of U(i), holds 3 rotation angles for each way of B and 

r1r2r3 linear coefficients. In any case of values of r1, r2, and r3, Tucker model does not 

preserve cardinality of tensor B at all. We need to note that when we apply CP and 

Tucker models to matrix A, we get the same results as for SVD. Therefore, CP and 

Tucker models marginally preserve cardinality of data in case when we apply them to 

matrices and do not do it in the general case. 

Table 1 Cardinal properties of existing models of tensor decomposition 

 

 matrix SVD CP model Tucker model 

cardinality 

of data 

matrix A[2 × 2] 

c = 4 

tensor B[2 × 2 × 2 

c = 8 

tensor B[2 × 2 × 2] 

c = 8 

properties 

of model 

diagonal Λ 

orth. U(1) & U(2) 

diagonal Λ 

non-orth. U(1), U(2), & U(3) 

  

non-diagonal Λ 

orth. U(1), U(2), & U(3) 

cardinality 

of model 

d.o.f. of Λ = 2 
d.o.f. of 

d.o.f. of Λ = r 
d.o.f. of 

d.o.f. 
d.o.f. of 

of Λ = r1r2r3 

U(1) & U(2) = 2  U(1), U(2), & U(3) = 3r U(1), U(2) , & U(3) = 3  

c = 4  c = 4r c = 3 + r1r2r3 

Below we provide a general model for the case of non-redundant tensor decomposition 

and then we extend it to nonnegative form. 



3. Decomposition of a symmetric tensor 

The decomposition of a symmetric tensor A into a sum of rank-1 tensors [4] utilizes 

basis tensors that are p-way outer-products of the same vector (referred to as rank-1 

symmetric tensors) [10, 14]: 

' =  
 ���(��
���            (3) 

where uop denotes the p-way outer-product of the vector u. 

Tensor decomposition problem is fundamental to the extension of subspace analysis 

techniques in signal processing that arise from the study of second order statistics of vector-

valued measurements to higher order statistics. Existing examples of such applications 

include blind source separation. For instance, an exponential multivariate family as a 

signal model can be factorized using a sum-of-rank-1 tensor decomposition; consider an 

n-variate order-p polynomial 

*(+) =  ' . +(� = 
 …�
���,   
 '��…�&  . +�� … +�&

�
�&�,  

where x0 = 1. If the (symmetric) tensor A containing these polynomial coefficients is 

decomposed into the desired form, then the polynomial can be written as 

' .  +(� =  
 �� (�-
�

��� +)�      
and an exponential density eq(x) can be factorized into a product of univariate 

exponentials. Other applications are reviewed by Kolda and Bader [10] and include 

finding polynomial factorizations [5, 6]. 

3.1 Order-2 n-dimensional symmetric tensors 

A symmetric n-dimensional order-2 tensor is a symmetric matrix. Eigenvector bases for 

symmetric matrices are orthogonal, and can always be made into an orthonormal basis. 

Fig. 4 illustrates the eigendecomposition of a matrix. Thus, a real n-dimensional 

symmetric matrix can be decomposed as:  

' =  
 ���(��
���            (4) 

where  

U = [u1,... , un] 

is the matrix which columns form an orthogonal frame in n-dimensional space. 

  



Fig. 4 Decomposition of order-2 n-dimensional symmetric tensor 

 

For numerical decomposition of A, we can use, for instance, the Jacobi algorithm [7] 

that tries to find * =  /022 rotation  angles {θk ,  k = 1, . . . , q}, such   that we can construct 

a rotation matrix R(θk) in plane (i, j) (i = 1, . . .  ,n 1, j = i + 1,... , n) with angle θk 

(with a one-to-one correspondence between the indices k and (i, j) in this Givens angle 

parametrization). This eigendecomposition solution consists of q rotation angles and n 

eigenvalues. The number of free elements of a symmetric n-dimensional matrix A, 

34 (0, 2) =  0 (0 + 1)2  

equals the sum n+q. Consequently, eigendecomposition is simply a reparametrization 

procedure. Solving for the rotation matrices R(θk), we can get orthonormal eigenvectors 

given by U : 

� =  6 7(89):
9�� ,    �;� = ��; =  <              (5)  

Due to orthonormality of U, the eigenvalues are uniquely identified by the Frobenius 

inner-product vector between the target matrix and the basis matrices [10]: 

��  =   〈�(�, '〉@  =  
 �� �
���

〈�(�, �(�〉@ =  
 �� �
���

(�- �)�          (6) 

3.2 Order-p 2-dimensional symmetric tensors 

Let A be a 2-dimensional order-p symmetric tensor. In a 1-1 reparametrization, the number 

of linear combination coefficients r, plus the number of parameters that characterize r 

corresponding vectors s, must be equal to the number of free elements in the tensor1) 

(i.e., its dimensionality); that is, 

r + s = p + 1, 

since order-p 2-dimensional symmetric tensors have p + 1 free entries. 

 

 

1) We do not refer to these coefficients and vectors as eigen until some suitable invariance property is 

proven. 

  



Incorporating these conditions into the design of the rank-1 sum decomposition on the right-

hand side of (3), we obtain that real-symmetric, 2-dimensional order-p tensor A has the 

following decomposition: 

' =  
 ���(� ,      � =
⎢⎢
⎢⎢
⎡cos FG +  (# − �)I% J
sin FG +  (# − �)I% J⎥⎥

⎥⎥
⎤  �

���            (7) 

Fig. 5 shows a graphical illustration of the decomposition of order-3 2-dimensional 

symmetric tensor A. 

Fig. 5 Decomposition of order-p (p = 3) 2-dimensional symmetric tensor 

 

In this case, a simple line search for θ in the interval [0, π/p) is sufficient to optimally fit 

the decomposition to the tensor with zero error. Employing Gram-Schmidt 

orthogonalization, the linear combination coefficient vector λ is uniquely identified by 

the inner-product matrix between the basis rank-1 symmetric tensor pairs and the inner-

product vector between the target tensor and the basis tensors; i.e., at the optimal 

decomposition, 

λ = diag(Λ) = B−1 c(θ)            (8) 

Here, the matrix B (invariant with respect to θ, since the pairwise angles between the 

basis vectors leading to the basis rank-1 symmetric tensors are fixed by the frame) and 

the vector c are defined elementwise as follows, assuming Frobenius tensor inner 

product as in (6): 

P�Q  =   〈�(�, Q(�〉@  = 〈� , R〉@�  =  S�- RT�,    U� (8) = 〈�(�, �〉@       (9) 

where i, j = 1,... , p. Specifically, note that each entry of B reduces to the following: 

P�Q = cos�   (W − X)YZ  

For symmetric matrices, this matrix is simply identity, B = I. 

  



3.3 Order-p n-dimensional symmetric tensors 

The number of free elements of a symmetric n-dimensional order-p tensor is given by 

34 (0, Z) =  [0 + Z − 1Z \ 

General structure of vector frames for order-p n-dimensional tensor is presented in the next 

section, but based on the two special cases examined above, we can conclude that the 

decomposition of any symmetric tensor can consist of some fixed frame of vectors 

rotated in n-dimensional space and any angle between pairwise vectors can be constant 

and depends on order p. As in matrices, we need q rotation angles to decompose any 

symmetric n-dimensional order-p tensor as a finite sum of rank-1 tensors as in (3). The 

number of vectors in this decomposition is 

] =  3� (0, Z) =  [0 + Z − 1Z \ −  /022 

In Fig. 6, we present a graphical illustration for decomposition of order-3  

n-dimensional symmetric tensor A. 

 

Fig. 6 Decomposition of order-p n-dimensional symmetric tensor 

To obtain the decomposition numerically, we construct a frame of r initial vectors placed 

in columns of a matrix F and optimize the q rotation angles θ such that the Frobenius 

norm of the error tensor is minimized (to zero). In the spirit of block coordinate descent 

and fixed point algorithms, for a given candidate frame orientation, the linear combination 

coefficients are always obtained using (9) and (8). The optimization is done iteratively 

and in a fixed point manner, updating the linear combination coefficients and updating 

the rotation matrix for the frame of vectors in order to minimize the error tensor 

Frobenius norm. At each optimization iteration, basis vectors are expressed as follows 

(all rotations multiply from left): 

� = ^6 7(89):
9�� _  `                (10) 

  



4. Vector frames for symmetric tensors 

The assumption that angle between neighbor vectors in n-dimensional space must be 

equal π/p is not true in general and can be utilized just for order-2 n-dimensional and 

order-p 2-dimensional tensors. Even for 3-dimensional space, there are exactly 5 convex 

polyhedra (called Platonic solids) with equal distances between neighbor vectors (or 

vertices) [18]. For the case of dimensionalities n > 3, there are just three solids with equal 

distance between neighbor vertexes: cube, octahedron, and simplex. 

The vector frame F consists of r vectors fi, i = 1,... , r, defined as its n-dimensional 

columns. Based on the cases of vector frames for order-2 n-dimensional and order-p  

2-dimensional symmetric tensors, where separation angles between closest vectors are π/2 

and π/p, respectively, we can conclude that structure of any vector frame F must 

maximize minimal distance between vectors (packing procedure) [16]. There is no 

analytic solution for this task so we propose to solve this problem by iteratively 

minimizing the squared error (SE):  

b2 =  〈P − <, P − <〉@    =  
 
SP�R − < �RT2]
X=1

]
W=1                      (11) 

where, as in (9), 

P�R  =  S�;  RT� =  Sc�;  cRT�  
Vectors fi in frame F can be defined, for instance, in hyperspherical coordinate system 

with constant radial values equal 1. Thus, all diagonal entries in B equal 1 and all non-

diagonal entries describe distances between vectors or distance between points on 

hypersphere of unit radius. So minimization of (11) leads to maximization of minimal 

distances between vectors. Fig. 7 presents results of proposed algorithm for vector frames 

of different dimensionalities and orders. 

We can note that proposed algorithm gives us Platonic solids (convex polyhedra with 

maximal possible constant distance between nearest vectors) as particular cases of vector 

frames and empirically, we figured out that for any vector frame planes exist such that 

frame vectors on those planes separated by π/p radian. This optimization procedure for 

frame construction gives us r vectors, which yields a full-rank B in (9), and does not 

engage an elimination procedure as in our previous work that used an overcomplete 

frame [11]. 



◦

 

Fig. 7 (a) Vector frames for 2-dimensional order-3 tensor with 3 unique vectors; 

(b) 3-dimensional order-2 tensor with 3 unique vectors;  
(c) Platonic solid (icosahedron with 6 unique vectors, which does not correspond to 
any order-p 3-dimensional tensor); 
and (d) 3-dimensional order-4 tensor with 12 unique vectors 

5. Decomposition of a non-symmetric tensor 

The decomposition of a non-symmetric tensor A into a sum of rank-1 tensors utilizes 

basis tensors that are p-way outer-products of different vectors (referred to as rank-1 non-

symmetric tensors) [10, 14]: 

� =  
 ���(�) o  �(�) o ···  o �(�)�
���         (12) 

 where u(1) o u(2) o … o u(p) denotes the p-way outer product and upper index (i), i = 

1 , . . .  , p, denotes the way of product. 

5.1 Order-2 (n1, n2)-dimensional non-symmetric tensors 

A non-symmetric (n1,n2)-dimensional order-2 tensor is a non-symmetric matrix and we have 

to deal with the common case of SVD. Singular vector bases for non-symmetric 

matrices are always selected orthogonal, and can always be made into an orthonormal 

basis. Thus, a full-rank (n1, n2)-dimensional non-symmetric matrix can be decomposed 

as 

� =  
 ���(�) o  �(�) �
���         (13) 



where r = min (n1, n2), and 

�(�) = ��(�), . . . , �(�) ,      �(�) = ��($), . . . , �($)  

are the matrices where columns form orthogonal frames in n1- and n2-dimensional 

spaces, respectively, see Figure 8. 

Fig. 8 Decomposition of order-2 (n1, n2 )-dimensional non-symmetric tensor 

 

For numerical determination of A, we can use, as in symmetric case, the Jacobi 

algorithm [7] for each vector frame that tries to find q = q1 + q2 rotation angles 

d89�(�) , 89�(�),    e� = 1, . . . , *� ,     e� = 1, . . . , *�  f 

such that we can construct rotation matrices R(89�(�)
) with angle 89�(�)

 and R(89�(�)
) with 

angle 89�(�)
, respectively. Due to cross influence of rotation matrices, 

*� =  /0�2 2 − /0� −  0�2 2 ,     *� =  /0�2 2 − /0� −  0�2 2 

where /0e2 = 0 if k > n. This singular decomposition solution consists of  

q = q1 + q2 rotation angles and r singular values. The number of free elements of a non-

symmetric (n1, n2)-dimensional matrix A equals the product of its dimensionalities so  

r = n1 . n2 - q that satisfies definition of the rank in linear algebra, where r = min(n1, n2). 

Again, we can see that singular decomposition is simply a reparametrization procedure. 

Solving for the rotation matrices R(89�(�)
) and R(89�(�)

), we can get the orthonormal 

singular vectors given by U(1) and U(2) as in (5): 

�(�) =  6 7/89g(�)2,       S�(�)T-�(�) =  �(�) S�(�)T- = h,     W = 1, 2          (14):g

9g��  

Due to orthonormality of U(i), the singular values are uniquely identified by the 

Frobenius inner-product vector between the target matrix and the basis matrices [10]: 

��  =   〈�(�) i �(�), '〉@  =  
 �� �
���

〈�(�) i  �(�), �(�) i  �(�)〉@          (15) 

  



Described combination of vectors d(1 o 1), (2 o 2),... ,(r o r)f in (13) is not unique [8]. 

We can construct r! combinations of vectors on the basis of permutation matrices [1], 

and any of them can be utilized for (n1, n2)-dimensional order-2 non-symmetric tensor 

decomposition. Two possible combinations of singular values based on 2-dimensional 

order-2 permutation matrices are 

[�11 00 ���\ , [ 0 ������ 0 \ 

Here, the permutation matrix is an order-2 r-dimensional binary-matrix that has exactly 

one entry of 1 in each row and column and 0’s elsewhere. In case of symmetry,  

n-dimensional order-2 tensor vectors can be arranged only in ascending order. 

In general, decomposition of an order-2 (n1, n2)-dimensional tensor A, Fig. 8, can consist of 

(n1, n1)-dimensional matrix U(1), (n2, n2)-dimensional matrix U(2), and (n1, n2)-

dimensional matrix of singular values Λ. Where singular elements in Λ are located by 

selecting a permutation  matrix. All  possible combinations of singular values based in 

(3,2)-dimensional order-2 matrix Λ are 

j�11 00 ���0 0 k , j�11 00 00 �l�
k , j 0 ������ 00 0 k, 

j 0 0��� 00 �l�
k , j 0 ���0 0�l� 0 k , j 0 00 ����l� 0 k 

5.2 Order-p 2-dimensional non-symmetric tensors 

Let A be a 2-dimensional order-p real non-symmetric tensor. As for the case of 

symmetric 2-dimensional order-p tensor, we need r linear combination coefficients plus p 

rotation angles. Since the number of free elements in order-p 2-dimensional non-symmetric 

tensors equals to product of dimensionalities, the rank of such a tensor is r = 2p- p, where  

r ≥ p. We also know that for each way of tensor, we can construct just p vectors. 

Incorporating these conditions into the design of the rank-1 sum decomposition on the 

right-hand side of (12), we obtain that basis frames for this case of tensor A can be 

expressed as 

�(�) =  
⎣⎢
⎢⎢
⎢⎢
⎡cos ^8(�)  +  /e�(�)  − 12 YZ _ 

sin ^8(�)  +  /e�(�)  − 12 YZ _ ⎦⎥
⎥⎥
⎥⎥
⎤

  ,     W = 1, … , Z,   e�(�) ∈ (1, … , Z)        (16)  

  



Based on the cases of symmetric 2-dimensional order-p tensors and non- symmetric 

(n1, n2)-dimensional order-2 tensors examined above, we conclude that the 

combinations of vectors d(e�(�), e�(�), … , e�(�)f for rank-1 tensors in (12) must be 

chosen on the basis of a permutation tensor, see Fig. 9. Here, the permutation tensor is an 

order-p p-dimensional binary-tensor that has exactly one entry of 1 in each way and 0’s 

elsewhere. 

 

Fig. 9 Decomposition of order-3 (2, 2, 2)-dimensional non-symmetric tensor 

 

The decomposition gives us λ = B−1 c(Θ) , where Θ = [θ(1), θ (2), ... , θ(p)].  

Here, the matrix B and the vector c are defined elementwise follows, assuming Frobenius tensor 

inner product as in (9): P�Q  =   〈�(�) i �(�) i … i �(�), Q(�) i Q(�) i … i Q(�) 〉@            (17) p� (q) =  〈�(�) i �(�) i … i �(�), � 〉@ 

where i, j = 1,... , r. 

5.3 Order-p (n1, n2, … , np)-dimensional non-symmetric tensors 

The number of free elements of a non-symmetric (n1, n2 ,  . . . , np)-dimensional order-p 

tensor is given by 

34 (r, Z) = 0� 0� … 0� 

where r = w0�, 0�, … , 0�x  
Based on the two special non-symmetric cases examined above, we conclude that the 

decomposition of any non-symmetric tensor can consist of some fixed frames of vectors 

rotated along each way in their dimensionality spaces and any angle between pairwise 

vectors must be a constant and depends on the order p. As in the case of non-symmetric 

matrices, we need 

* = *� + *�  + ⋯ + *� 

rotation angles. Due to cross influence of rotation matrices, 

*� = /0�2 2 −  /0z�2 2 , 0z� =  0� −  6 0Q�{Q{�,Q|�            (18) 

  



and therefore, we can decompose any non-symmetric order-p (n1, n2 , . . .  , np)- 

dimensional tensor as a finite sum of rank-1 tensors as in (12), see Fig. 10. The rank of 

the tensor in this decomposition is 

] = 3� (r, Z) = 34 (r, Z) − * 

 

Fig. 10 Decomposition of order-3 (n1 , n2 , n3 )-dimensional non-symmetric tensor 

 

To obtain the decomposition numerically, we construct p frames each of mr(ni, p) initial 

vectors F(i), i = 1 , . . .  , p, and optimize the rotation angles θ(i) such that the Frobenius 

norm of the error tensor is minimized (to zero). In the spirit of block coordinate descent 

and fixed point algorithms, for a given candidate frame orientation, the linear 

combination coefficients are always obtained using (17) and λ = B−1c(Θ), basis initial 

frames are expressed as in Section 4. As in the previous case, we need to choose 

r vectors on the basis of an order-p (r1, r2,... , rp)-dimensional permutation tensor, where 

]� = 3� (0�, Z) ,   W =  1, . . . ,   Z  
Therefore, at each iteration, basis vectors are expressed as 

�(�) = ^6 7(89(�)):
9�� _ `(�)           (19)  

6. Nonnegative non-redundant tensor decomposition 

One of the most awkwardness part of the classical nonnegative CP and Tucker models is 

the operation of taking nonnegative value, [u]+ = max(0, u) [3]. On each iteration of that 

approach, we have to lose some data and try to get new ones without negative entries. It 

is similar to fitting the model with adjusted random walk. In this section, we present our 

approach and its analysis for non-redundant tensor decomposition transformed to 

nonnegative form. The main idea of it is the same as for the described non-redundant 

one but with one restriction: all linear coefficients λ as well as all entries of the vector 

frame U must be nonnegative, i.e., stand in positive sector of coordinate system. We do 

not employ the operator [u]+ and perform optimization procedure as for the general non-

redundant case. 

  



Let an order-p (n1 ,... , np)-dimensional nonnegative tensor A be given, i.e.,  

ai1,...,ip ≥ 0, which is decomposable as a rank-r tensor with nonnegative values in U(i), i = 

1 ,  . . . , p, and λ. With respect to an order-p (r1 , ..., rp)-dimensional permutation tensor, 

Q, we can write an approximate decomposition of A as 

� =  
 ��:g(�)(�)  o ···  o :g(&)(�)�
��� + ~               (20) 

where the tensor E denotes decompose error. The tensor E can contain any possible 

factors of A with negative inclusions. 

As in the case of non-redundant decomposition, we will start to examine an order-p 2-

dimensional nonnegative symmetric tensor and then we will extend our approach to the 

general case of the nonnegative tensor. 

Let A be an order-3 2-dimensional nonnegative symmetric tensor. From the non-

redundant decomposition of such a tensor, we know that all neighbor vectors are 

separated by π/3 radian. The range of such a vector frame is from 0 to Y − �l radians and 

solution is a rotation angle θ that lies in the range [0, π/3) radians, see Figure 11 (a). 

Fig. 11 Frame vector reorganization for nonnegative non-redundant decomposition 

 

We see that such vector frame, along with its negative part, - F, uniformly covers a unit 

circle, i.e., all range of ℝ. To restrict our solutions to nonnegative form, ℝ+, we propose to 

bound the range of the vector frame, F, in half, i.e., from 0 to 
�� − ��, see Fig. 11 (b). 

Thereby, we have a vector frame that consists of 3 vectors and is invariant to rotation 

angle π/6, and the rotation angle θ lies in the range [0, π/6) radians. New nonnegative 

vector frame is the half of the general model frame for an order-6 2-dimensional tensor. 

Now, we implement nonnegative decomposition of an order-2 3-dimensional tensor A. Involving the idea from the previous example, we need to build the vector frame for an order-4 3-dimensional tensor and utilize the vectors from positive sector only. For the case of an order-4 3-dimensional tensor, the vector frame consists of 12 vectors. The full hypersphere, along with negative form of F, consists of 24 vectors. 

The 3-dimensional hypersphere has 8 sectors with unique sign of coordinate coefficients. 

Therefore, in the positive sector, we have 3 required vectors for nonnegative 

decomposition. 



Generalizing these two types of tensors, we can conclude that to get the vector frame, F, 

for an order-p n-dimensional nonnegative symmetric tensor, we utilize vectors for an 

order-(2p) n-dimensional common symmetric tensor. Such an approach always gives us 

the exact number of required vectors, r, in positive sector of n-dimensional space and 

neighbor vectors are separated by π/(2p) radian. 

Till the vector frame stays in positive sector, any projection of A on the vectors ui,  

i = 1 ,  . . . , r, 〈�, �(� 〉 is a nonnegative value. To get linear coefficients λ, we also utilize 

normalizing matrix B−1, where B = (F FT).p. Some of entries in B−1 are negative, so the 

final values of λ can be negative. 

Actually, for the Monte Carlo experiments (which randomly generate positive entries of 

the nonnegative tensor) discovered that in the case when the tensor A in not absolutely 

factorizable in nonnegative form, we have non- zero residual value E in (20). 

The general case of nonnegative non-redundant decomposition of an order-p  

(n1, ..., np)-dimensional tensor is a combination of the expressed nonnegative symmetric 

case and the non-symmetric decomposition which is presented above. 

Optimization process for such a problem is implemented in the same way as for general 

case of the tensor. Performing nonnegative decomposition, we involve both vector frame 

F and its inversion -F such that any moment we always have the required number of 

vectors,  r, in positive sector of n-dimensional space. 

In Fig. 12, we show the average SE (per tensor entry) for a generated symmetric order-3 

2-dimensional tensor. We apply a general vector frame, i.e., angle between neighbor 

vectors is π/3, and nonnegative one, i.e., angle between neighbor vectors is π/6. For the 

general vector frame, the decomposition error is periodic with π/3 radians. In the case of 

the nonnegative vector frame, we cannot decompose tensor at the half of the rotational 

angle range, π/2, that satisfies to the proposed vector frame squeezing from [0, π) to  

[0, π/2) radians. 

 

Fig. 12 Symmetric nonnegative order-3 2-dimensional tensor decomposition SE 
versus rotational angle in range [0, π):  

(a) by a frame for general decomposition;  

(b) by a frame for nonnegative decomposition 

 



7. Numerical experiments 

Bellow, we present evaluation of the proposed tensor model and show numerically that 

the upper bound of the tensor rank satisfies the defined non- redundant case. We apply 

nonnegative form and show how it can be used for image segmentations. Matlab code 

can be downloaded from website [12]. 

Figure 13 shows how decomposition results for non-symmetric order-3 different-

dimensional tensors depend on rank for best rank-r CP1) ‘ ’, incremental recursive 

rank-1 CP1) ‘+’, Tucker2) ‘o’, and proposed ‘*’ models. When proposed model uses 

frames of bases with the correct number of vectors, the decomposition error drops to 

almost zero (with numerical error remaining). Here, on the basis of our definition of the 

tensor rank, for the data in Fig. 13, we have in case (a), the rank is equal to 5, (b) -14, (c) 

-18, (d) -46, and decomposition errors are zero. Proposed approach gives us the upper 

bound of CP-rank for tensors. 

 

rank rank 

 

Fig. 13 Non-symmetric tensor decomposition SE and corresponding tensor rank for rank-r  
CP ‘ ’, incremental rank-1 CP ‘+’, Tucker ‘◦’, and proposed ‘∗’ models. 

(a) (2,2,2)-, (b) (2,3,4)-, (c) (3,3,3)-, (d) (4,4,4)-dimensional tensor 

 
1) All parameters of such a decomposition model are adjusted independently and simultaneously. 

  



Figure 14 shows how decomposition results for the same non-symmetric order-3 

different-dimensional tensors from Fig. 13 depend on cardinality for best rank-r CP ‘Z’, 

incremental recursive rank-1 CP ‘+’, Tucker ‘o’, and proposed ‘*’ models. Evaluation of 

the tensor cardinality was performed in the estimated ranks of the tensors. The proposed 

non-redundant tensor model utilizes the least numbers of parameters to reparametrize 

tensors. Here, on the basis of our definition of the tensor rank and rotated vector frames, 

we have in case (a), the cardinal number is equal to 8, (b) -24, (c) -27, (d) -64, i.e., the 

product of tensor’s dimensions. Proposed approach gives us the lower bound of 

cardinality. The rank-r CP tensor model decomposes data sets with lower tensor rank but 

utilizes more parameters than cardinality of tensors so it is redundant decomposition. 

The incremental rank-1 CP and Tucker models are redundant as well. 

  

cardinality cardinality 

 

Fig. 14 Non-symmetric tensor decomposition SE and corresponding cardinality for rank-r 
CP ‘Z’, incremental rank-1 CP ‘+’, Tucker ‘◦’, and proposed ‘∗’ models. 

(a) (2,2,2)-, (b) (2,3,4)-, (c) (3,3,3)-, (d) (4,4,4)-dimensional tensor 

1) By incremental rank-1 CP, we mean iterative reduction of error by successive best- rank-1 
approximation of residual error after deflation of tensor using previously found rank-1 tensor. This is 

suboptimal compared to doing best rank-r approximation using CP model. In the case of an order-2 tensor 

(matrix), both best rank-r and incremental rank-1 CP models proved identical results. 

2) The rank for such a tensor model is evaluated as a product of dimensions of its core tensor. 



Application of the proposed nonnegative tensor model to image segmen- tation 

tasks is shown in Figs. 15 and 16. For both the binary and the color datasets, we 

recover rank-1 structures that satisfies the simplest data entries. For the color 

image, its factors are presented without any transformation. For the binary dataset, 

where each image is a slice in the order-3 tensor, its factors are presented as a sum 

over the third direction. 

 

 

(a) 

 

 

(b) 

Fig. 15 Application of nonnegative tensor to image structure analysis:  

(a) initial binary images with corner elements; (b) recovered rank-1 nonnegative 

elements 

 

 

(a) (b) (c) (d) (e) (f) 

 

Fig. 16 Application of nonnegative tensor decomposition to image segmentation 

problem: 

(a) image-initial data set; (b)–(f) images-nonnegative rank-1 segments 

8. Conclusion 

We proposed a geometrically constrained basis vector frame that yields a set of 

rank-1 tensor bases. It is able to attain a sum-of-rank-1 decomposition of any non-

symmetric tensor. We described the upper-bound of rank for tensors and used 

permutation tensors to choose vectors for non-symmetric rank-1 tensor bases from 

vector bases for symmetric ones. The number of variables that parameterizes the 

proposed decomposition is equal to the number of free elements in the tensor. We 

proposed an extension the general non-redundant case of tensor decomposition to 

its nonnegative form. Numerical evaluation and application of tensor decomposition 

for image segmentation problems are shown. Future work will decrease complexity 

and evaluate the properties of the presented decomposition. 
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