
HAL Id: cea-01795779
https://cea.hal.science/cea-01795779v1

Submitted on 18 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharpening Constraint Programming approaches for
Bit-Vector Theory

Zakaria Chihani, Bruno Marre, François Bobot, Sébastien Bardin

To cite this version:
Zakaria Chihani, Bruno Marre, François Bobot, Sébastien Bardin. Sharpening Constraint Program-
ming approaches for Bit-Vector Theory. CPAIOR 2017. International Conference on AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Jun 2017, Padova,
Italy. �cea-01795779�

https://cea.hal.science/cea-01795779v1
https://hal.archives-ouvertes.fr


Sharpening Constraint Programming approaches for

Bit-Vector Theory*

Zakaria Chihani, Bruno Marre, François Bobot, Sébastien Bardin
CEA, LIST, Software Security Lab, Gif-sur-Yvette, France

(first.last@cea.fr)

Abstract

We address the challenge of developing efficient Constraint Programming-based
approaches for solving formulas over the quantifier-free fragment of the theory of
bitvectors (BV), which is of paramount importance in software verification. We
propose CP(BV), a highly efficient BV resolution technique built on carefully cho-
sen anterior results sharpened with key original features such as thorough domain
combination or dedicated labeling. Extensive experimental evaluations demonstrate
that CP(BV) is much more efficient than previous similar attempts from the CP
community, that it is indeed able to solve the majority of the standard verification
benchmarks for bitvectors, and that it already complements the standard SMT
approaches on several crucial (and industry-relevant) aspects, notably in terms of
scalability w.r.t. bit-width, theory combination or intricate mix of non-linear arith-
metic and bitwise operators. This work paves the way toward building competitive
CP-based verification-oriented solvers.

1 Introduction

Context. Not so long ago, program verification was such an ambitious goal that even
brilliant minds decided it was “bound to fail” [37]. At the time, the authors concluded
their controversial paper saying that if, despite all their reasons, “ verification still seems
an avenue worth exploring, so be it”. And so it was. Today, software verification is a
well established field of research, and industrial adoption has been achieved is some key
areas, such as safety-critical systems.

Since the early 2000’s, there is a significant trend in the research community toward
reducing verification problems to satisfiability problems of first-order logical formulas
over well-chosen theories (e.g. bitvectors, arrays or floating-point arithmetic), leverag-
ing the advances of modern powerful SAT and SMT solvers [30, 43, 38, 6]. Besides
weakest-precondition calculi dating back to the 1970’s [19], most major recent verification
approaches follow this idea [15, 25, 29, 35].

*Work partially funded by ANR under grants ANR-14-CE28-0020 and ANR-12-INSE-0002. The CP
solver COLIBRI is generously sponsored by IRSN, the French nuclear safety agency.

1



The problem. While SMT and SAT are the de facto standard in verification, a few
teams explore how Constraint Programming (CP) techniques can be used in that setting
[33, 16, 26, 42, 27]. Indeed, CP could in principle improve over some of the well-known
weaknesses of SMT approaches, such as non-native handling of finite domains theories
(encoded in the Boolean part of the formula, losing the high-level structure) or very
restricted theory combinations [39].

Yet, currently, there is no good CP-based resolution technique for (the quantifier-free
fragment of) the theory of bitvectors [30], i.e. fixed-size arrays of bits equipped with
standard low-level machine instructions, which is of paramount importance in verification
since it allows to encode most of the basic datatypes found in any programming language.

Goal and challenge. We address the challenge of developing efficient Constraint
Programming-based approaches for solving formulas over the quantifier-free fragment of
the theory of bitvectors (BV). Our goal is to be able to solve many practical problems
arising from verification (with the SMTCOMP challenge 1 as a benchmark) and to be
at least complementary to current best SMT approaches. The very few anterior results
were still quite far from these objectives [44], even if preliminary work by some of the
present authors was promising on conjunctive-only formulas [1].

Proposal and contributions. We propose CP(BV), a highly efficient BV resolution
technique built on carefully chosen anterior results [1, 36] sharpened with key original
features such as thorough domain combination or dedicated labeling. Extensive experi-
mental evaluations demonstrate that CP(BV) is much more efficient than previous similar
attempts from the CP community, that it is indeed able to solve the majority of the
standard verification benchmarks for bitvectors, and that it already complements the
standard SMT approaches on several crucial (and industry-relevant) aspects, notably in
terms of scalability w.r.t. bit-width, theory combination or intricate mix of non-linear
arithmetic and bitwise operators. Our main contributions are the following:

� We present CP(BV), an original framework for CP-based resolution of BV problems,
which built on anterior results and extend them with several key new features
in terms of thorough domain combination or dedicated labeling. This results
in a competitive CP-based solver, excelling in key aspects such as scalability
w.r.t. bitwidth and combination of theories. A comparison of CP(BV) with previous
work is presented in Table 1.

� We perform a systematic and extensive evaluation of the effect of our different
CP improvements on the efficiency of our implementation. This compares the
options at our disposal and justifies those we retained, establishing a firm ground
onto which future improvements can be made. It also shows the advantage of our
approach relative to the other CP approaches applied to BV, and that our approach
is able to solve a very substantial part of problems from the SMTCOMP challenge.

� Finally, we perform an extensive comparison against the best SMT solvers for BV
problems, namely: Z3 [8], Yices [20], MathSAT [14], CVC4 [4] and Boolector [11].

1smtcomp.sourceforge.net

2



This comparison exhibits the strenghts of CP over SMT approaches on particular
instances. Specifically, our implementation surpasses several (and sometimes all)
solvers on some examples involving large bit-vectors and/or combination with
floating-point arithmetic.

Table 1: Overview of our method

Bardin et al [1] Michel et al [36] CP(BV)
bitvector domain + ++ ++ [36]

arithmetic domain ++ + ++ [1]
domain combination + + ++

simplifications + x ++
BV-aware labeling x x ++

implemented yes no yes
benchmark conjunctive formulas arbitrary formulas

≈ 200 formulas ≈ 30,000 formula

Discussion. Considering that our current CP(BV) approach is far from optimal com-
pared to existing SMT solvers (implemented in Prolog, no learning), we consider this work
as an important landmark toward building competitive CP-based verification-oriented
solvers. Moreover, our approach clearly challenges the well-accepted belief that bitvector
solving is better done through bitblasting, opening the way for a new generation of
word-level solvers.

2 Motivation

The standard (SMT) approach for solving bit-vector problem, called bit-blasting [7],
relies on a boolean encoding of the initial bitvector problem, one boolean variable
being associated to each bit of a bitvector. This low-level encoding allows for a direct
reuse of the very mature and ever-evolving tools of the SAT community, especially
DPLL-style SAT solvers [38, 43]. Yet, crucial high-level structural information may be
lost during bitblasting, leading to potentially poor reasoning abilities on certain kinds
of problems, typically those involving many arithmetic operations [12] and large-size
bitvectors. Following anterior work [1, 36], we propose a high-level encoding of bitvector
problems, seen as Constraint Satisfaction Problems (CSP) over finite (but potentially
huge) domains. Each bitvector variable of the original BV problem is now considered as
a (CSP) bounded-arithmetic variable, with dedicated domains and propagators.

Now illustrating with concrete examples, we show the kind of problems where our
approach can surpass existing SMT solvers. Consider the three following formulas:

x× y = (x & y)× (x | y) + (x & y)× (x & y) (A)

x1 < x2 < · · · < xn < x1 (B)

(
n−2∧
i=1

xi < xi+1 & xi+2) ∧ (xn−1 < xn & x1) ∧ (xn < x1 & x2) (C)

3



where · (resp. · & ·, · | ·) is the bit-wise negation (resp. conjunction, disjunction), ∧ is
the logical conjunction, < is an unsigned comparison operator, n was chosen to be 7. As
an example, the SMT-LIB language [5] encoding of formula A is:

(assert (= (bvmul X Y) (bvadd (bvmul (bvand X Y) (bvor X Y))

(bvmul (bvand X (bvnot Y)) (bvand (bvnot X) Y)))))

Table 2 shows the time in seconds according to bit-vector size, both for the satisfiability
proof of the valid formula A and the unsatisfiablity of B and C. CP(BV) is the name of
our technique, and TO means that the solver was halted after a 60-second timeout.

Table 2: Comparison of performance (time in sec.) for different solvers

Formula size(bits) Z3 Yices MathSAT CVC4 Boolector CP(BV)

A
512 TO 1.60 6.04 17.28 20.55 0.24
1024 TO 7.25 26.72 TO TO 0.23
2048 TO 31.83 TO TO TO 0.23

B
512 0.53 0.82 1.37 0 2.75 0.26
1024 1.75 4.89 4.23 0 7.39 0.22
2048 5.73 16.15 22.76 0 16.81 0.21

C
512 0.15 0.85 1.55 0.76 3.15 0.25
1024 0.33 1.25 4.53 3.49 3.81 0.22
2048 0.70 5.55 19.57 8.82 14.73 0.25

On these examples, CP(BV) clearly surpasses SMT solvers, reporting no TO and
a very low (size-independent) solving time. In light of this, we wish to emphasize the
following advantages of our CP(BV) high-level encoding for bitvector solving:

� Each variable is attached to several and complementary domain representations, in
our case: intervals plus congruence, bitlist [1] (i.e. constraints on the possible values
of specific bits of the bitvector) and global difference constraint (delta). Each domain
representation comes with its own constraint propagation algorithms and deals with
different aspects of the formula to solve. We will call integer domains or arithmetic
domains those domains dealing mainly with high-level arithmetic properties (here:
intervals, congruence, deltas), and BV domains or bitvector domains those domains
dealing with low-level aspects (here: bitlist).

� These domains can freely communicate between each other, each one refining the
other through a reduced product (or channeling) mechanism [41]. For example, in
formula B, adding the difference constraint to the delta domain does allow CP(BV)
to conclude unsat directly at propagation. Having multiple domains also allows
to search for a solution in the smallest of them (in terms of the cardinality of the
concretization of the domain abstraction).

� In the case of formula C, a reduced product is not enough to conclude at propagation.
Here, a BV constraint itself refines an arithmetic domain: indeed, with the simple
observation that, if a & b = c then c 6 a and c 6 b, the bit-vector part of CP(BV)
not only acts on the bit-vector representation of the variables, but also “informs”
the global difference constraints of a link it could not have found on its own.

4



3 Background

This section lays down the ground on which our research was carried out, both the
theoretical foundations, anterior works and the COLIBRI CP solver [33].

3.1 BV theory

We recall that BV is the quantifier-free theory of bitvectors [30], i.e. a theory where
variables are interpreted over fixed-size arrays (or vectors) of bits along with their
basic operations: logical operators (conjunction “ & ”, disjunction “|” and xor “⊕”,
etc.), modular arithmetic (addition +, multiplication ×, etc.) and other structural
manipulations (concatenation :: , extraction b.ei.j , etc.).

3.2 CP for Finite-Domain Arithmetic

A Constraint Satisfaction Problem [18] (CSP) consists in a finite set of variables ranging
over some domains, together with a set of constraints over these variables – each constraint
defining its own set of solutions (valuations of the variables that satisfy the constraint).
Solving a CSP consists in finding a solution meeting all the constraints of the CSP, or
proving that no such solution exists. We are interested here only in the case where
domains are finite. Constraint Programming [18] (CP) consists in solving a CSP through
a combination of propagation and search. Propagation consists mainly in reducing the
potential domains of the CSP variables by deducing that some values cannot be part
of any solution. Once no more propagation is possible, search consists in assigning a
value to a variable (taken from its reduced domain) and continue the exploration, with
backtrack if required.

The CP discipline gets its strenght from global constraints and capabilities for dense
interreductions between domain representations, along with constraint solving machinery.
We present in this section standard domains and constraints for bounded arithmetic.

Union of intervals. A simple interval [a; d], where a, d ∈ N represents the fact that a
given variable can take values only between a and d. A natural extension of this notion is
the union of intervals (Is). As a shortened notation, if x ∈ {a} ] [b; c] ] {d}, one writes
[x] = [a, b··c, d].

Congruence [31]. If the division remainder of a variable x by a divisor d is r (i.e.,x
satisfies the equation x%d = r), then 〈x〉 = r[d] is a congruence and represents all values
that variable x can take, e.g., 〈x〉 = 5[8] means x ∈ {5, 13, 21, . . .}.

Global difference constraint (Delta) [23]. A global difference constraint is a set
of linear constraints of the form x− y � k where � ∈ {=, 6=, <,>,6,>}. Tracking such
sets of constraints allows for better domain propagation and early infeasibility detection,
thanks to a global view of the problem compared with the previous (local) domains.

5



3.3 The COLIBRI Solver for FD Arithmetic

The COLIBRI CP solver [33] was initially developped to assist CEA verification tools [9,
47, 2, 17]. COLIBRI supports bounded integers (both standard and modular arithmetic
[28]), floating-points [34] and reals. Considering arithmetic, COLIBRI already provides
all the domains described in Section 3.2, together with standard propagation techniques
and strong interreductions between domains. Search relies mostly on a standard fail-
first heuristics. COLIBRI is implemented in ECLiPSe Prolog, yielding a significant
performance penalty (compared with compiled imperative languages such as C or C++)
but allowing to quickly prototype new ideas.

3.4 Former CP(BV) approaches

Two papers must be credited with supplying the inspiration for this work, written by
Bardin et al [1] and by Michel and Van Hentenryck [36]. Put together, these two papers
had good ideas, which we adopted, unsatisfactory ideas which were disgarded, and finally
ideas that were not advanced enough which we extended.

The first paper [1] introduces the bitlist domain, i.e. lists of four-valued items ranging
over {0, 1, ?,⊥} – indicating that the ith bit of a bitvector must be 0, 1, any of these two
values (?), or that a contradiction has been found (⊥) – together with its propagators
for BV operators. Moreover, the authors also explain how arithmetic domains (union
of intervals and congruence) can be used for BV, and describe first interreduction
mechanisms between bitlists and arithmetic domains.

The second paper [36] introduces a very optimized implementation of bitlists, using
two BVs 〈1x, 0x〉 to represent the bitlist of x, where 1x (resp. 0x) represents bits known to
be set (resp. cleared) in x. The efficiency comes from the use of machine-level operations
for performing domain operations, yielding constant time propagation algorithms for
reasonable bitvector sizes.

Basically, we improve the technique described in [1] by: borrowing the optimized bit-
vector domain representation from [36] (with a few very slight improvements), significantly
improving inter-domain reduction, and designing a BV-dedicated search labeling strategy.

As improving inter-domain reduction is one of our key contributions, we present
hereafter the reductions between BV domains and arithmetic domains described in [1]:

With congruence: the BV domain interacts according to the longest sequence of
known least significant bits. For example, a BV domain J10?00?101K of a variable
b indicates that b satisfies the equation b[8] = 5, which therefore constrains the
congruence domain using 5[8]. Conversely a known congruence of some power of 2
fixes the least significant bits.

With Is: for a variable x, the union of intervals can refine the most significant bits of
the BV domain by clearing bits according to the power of two that is immediately
greater than the maximum extremum of the Is. And the BV domain influences
Is by (only) refining the extrema through the maximum and minimum bit-vectors
allowed, and by removing singletons that do not conform to the BV domain.

6



Figure 1: Enlarging the gaps in the Is according to the BV domain

4 Boosting CP(BV) for Efficient Handling of Bit-Vectors

In this section, we delve into the specificities of our approach, leaving complex details to
a technical report2. We first start by presenting a significantly improved inter-domain
reduction, followed by new reductions from BV constraints to other domains, then we
show some simplifications and factorisations at the constraint level, and we finish by
presenting our BV-dedicated labeling strategy.

4.1 Better interreduction between BV- and arithmetic- domains

We present here several significant improvements to the inter-domain reduction techniques
proposed in [1] between bitlists and unions of intervals. Our implementation also borrows
the inter-reduction between bitlists and congruence from [1].

Is to BVs. Let m and M be respectively the minimal and the maximal value of a union
of intervals. Then, the longest sequence of most-significant bits on which they “agree” can
also be fixed in the bit-vector domain. For example, m = 48 and M = 52 (00110000 and
00110100 in binary) share their five most-significant bits, denoted J00110???K. Therefore,
a bit-vector bl = J0??1???0K can be refined into J00110??0K. For comparison, the technique
in [1] only reduces bl to J00?1???0K.

BV to Is. Consider a variable b with a Is domain [b] = [153, 155, 158··206, 209], and
a bit-vector domain LbM = J1??1??01K = {· · · , 153, 157, 177, 181, 185, 189, 209, · · · }, as
illustrated in Figure 1. The inter-domain reduction from [1] can refine the extremum
of the Is (here: nothing to do, since 153 and 209 both conforms to LbM) and removes
the singletons that are not in LbM (here: 155), yielding [b] = [153, 158··206, 209]. We
propose to go a step further by refining each bound inside a Is , such that after reduction
each bound of [b] conforms to LbM. Here, 158 (resp. 206) is not allowed and should be
replaced by its closest upper (resp. lower) value in LbM, i.e. 177 (resp. 189), yielding
[b] = [153, 177··189, 209].

We have designed such a correct and optimal reduction algorithm from bitlist
to Is. Since we work on the 〈1x, 0x〉 representation of bitlists, the algorithm re-
lies on machine-level operations and is linear in the size of the bitvector (cf. techni-
cal report). We describe the procedure for increasing a lower bound in Alg. 1; de-

2sites.google.com/site/zakchihani/cpaior

7



creasing the upper bound (symmetrically) follows the same principle (cf. technical
report). In order to calculate a new bound r accepted by the bit-vector domain LbM,
we start by imposing on the lower bound l what we already know, i.e.,set what is
set in 1b and clear what is cleared in 0b (line 1 of Alg 1). Then flag the bits that
were changed by this operation, going from cleared to set and from set to cleared.

Algorithm 1 Increasing the lower bound l
according to LbM
1: r := 1b | l & 0b
2: set2cl := l & r
3: cl2set := l & r
4: if cl2set > set2cl then
5: size:=log2(cl2set)
6: mask0 := −1� size
7: can-cl := mask0 | 1b
8: r := r & can-cl
9: else

10: size:=log2(set2cl)
11: cl-can-set := r & 0b
12: next-to-set := left-cl-can-set-of(size, cl-can-set)
13: r :=set(r,next-to-set)
14: mask0 := −1�next-to-set
15: can-cl := mask0 | 1b
16: r := r & can-cl
17: end if

To refine the lower bound, we must raise
it as much as necessary but not one bit
higher, i.e.,we should look for the small-
est amount to add to the lower bound
in order to make it part of the concreti-
sation of LbM. This entails two things: a
cleared bit can only become set if all bits
of lower significance get cleared. For ex-
ample, to increase the binary represented
integer 010 exactly until the left-most bit
gets set, we will pass by 011 and stop at
100 : going to 101 would increase more
than strictly necessary. Similarly, the
smallest increase that clears a set bit i is
one where the first cleared bit on the left
of i can be set (line 12 of Alg 1, function
left-cl-can-set-of). For example, to
clear the third most significant bit (in
bold) in 011011, one needs to increase
to 011100, 011101, 011110, 011111 then
reach 100000. Doing so clears not only the target bit i but all the bits of lower significance.

Drilling the Is according to BV. If the Is contains only one interval, then our
technique does not improve over [1], and is only slighly superior to the channeling
method of [36]. For this reason, we force the bit-vector domain to create at least one
gap in the union of intervals. Consider for example a domain bl = J0?10?1?K. When
observing the concretisation {18, 19, 22, 23, 50, 51, 54, 55}, the largest gap is between 23
and 50, i.e.,0010111 and 0110010, obtained by fixing the most significant unknown bit
(msub). More generally, for a variable x the largest gap is created by intersecting [x] with
[1x··a, b··0x], where a is obtained by clearing the msub and setting all other unknown
bits, and b is obtained by setting the msub and clearing all other unknown bits. One can
of course enforce more gaps, but there is a tradeoff between their propagation cost (as
Is) and their benefits. In this work, using one gap was satisfactory.

4.2 BV constraints reducing arithmetic domains

Our CP(BV) approach strives to keep each of its domains as aware as possible of the other
domains. We now show how non-BV domains can be reduced through BV constraints.
In the following, we recall that [x] denotes the union of intervals attached to variable x.

8



4.2.1 BV constraints on Is

It turns out that most BV constraints can influence unions of intervals.

Bitwise binary operands: a disjunction x | y = z can refine [z] in more than one
way, but experimentation showed a notable effect only when [x] and [y] contain only
singletons, at which case [z] can be refined by the pairwise disjunction of those singletons.
Similar refinements can occure through the bitwise conjunction and exclusive disjunction.
For the latter, one can also refine in the same manner the Is of the operands, since
x⊕ y = z implies the same constraint for all permutation of x, y, z.

Negation: from a negation constraint x = y, one can refine the Is of one variable from
that of the other. By mapping each singleton {c} ∈ [x] and interval a··b ∈ [x] to {c} and
b··a, we build a Is to populate [y]. The symmetric construction populates [x].

Shifts: from a right shift x � y = z, which is equivalent to a natural division
(i.e.,x/2y = z), one can refine [z] simply by right-shifting all elements of [x] (single-
tons and bounds of internal intervals) by y. The left-shift constraint is treated mostly in
the same way but requires extra care as it is a modular multiplication and it can overflow.

Sign-extension: when extending the sign of x by i positions to obtain z, the method
consists in splitting the [x] by the integers that are interpreted as negative, most significant
bit is 1, and the one interpreted as positive, most significant bit is 0 and to apply the
sign extention separately, disjunction with 2i − 1� i for the firsts and identity for the
seconds.

Extractions: when extracting from the left-most to any position, it’s the same as a
right logical shift. The more general case is tricky. Take bxei.j = y to mean the extraction
from bit i to j of x to obtain y (with ‖x‖ > i > j > 0), then a singleton in for an interval
xa··xb,

� If (xb � j)− (xa � j) > 2i−j , then the interval necessarily went through all integer
coded on i bits, so the integer domain cannot be refined.

� else, if (xb⊕ xa) & 2i = 0, then no power of 2 was traversed, the bounds can simply
be truncated and stay in that order: (bxaei.j)··(bxbei.j)

� else, 2i was traversed, then the Is is [0··(bxbei.j), (bxaei.j)··(2(i−j) − 1)]

For example, using the binary representation for the integer bounds of a union of intervals,
an extraction of the 3 rightmost bits of a variable whose union of intervals contains
01110··10011 would not produce the invalid interval 110··011 because its lower bound is
greater than its upper bound. This falls in the third case above, and would generate the
two intervals 000··011 and 110··111.

9



Concatenation: for a concatenation x :: y = z, the inner structure of [z] can be
refined from [x] and [y]. Let v�x be v | (x � ‖y‖) and (a··b)�x be a�x

··b�x. For
example, if [x] = [xa··xb] and [y] = [y1, y2··y3, y4··y5], then [z] can be refined by
[(y1)�xa , (y2··y3)�xa , (y�xa

4 )··(y
�xb
1 ), (y2··y3)�xb , (y4··y5)�xb ]. The algorithm is described

in the technical report. One can also refine [x] and [y] from [z].

4.2.2 BV constraints on deltas

As seen in the motivation section, keeping the deltas informed of the relationship between
different variables can be an important factor for efficient reasoning.

Bitwise operations: a constraint x | y = c implies that that (c−y 6 x 6 c)∧ (c−x 6
y 6 c). Symmetric information can be derived for conjunction. Exclusive disjunction,
however, does not derive knowledge regarding deltas. The bitwise negation has limited
effect and can only impose that its argument and its result be different.

Extraction: regardless of the indices, the result of an extraction is always less than or
equal to its result. As a matter of fact, an extraction bxei.j = (x%2i)/2j and can enjoy
the same propagations on the non-BV domains.

More generally: many BV constraints can be mapped to an integer counterpart and
propagate on non-BV domains. For example, a concatenation x :: y can have the same
effect as the (overflowless) integer constraint z = x× 2‖y‖ + y would.

4.3 Factorizations and simplifications

In the course of solving, a constraint can be simplified or become duplicate or a subsump-
tion of another constraint. These shortcuts can be separated in two categories.

Simplifications. Neutral and absorbing elements provide many rewriting rules which
replace constraints by simpler ones. In addition to these usual simplifications one can
detect more sophisticated ones, such as if z � y = z and y > 0 then z = 0 (without
restricting the value of y), and when z is x rotated i times, if the size of x is 1 or if
i%‖x‖ = 0, then z = x. Furthermore, if i and ‖x‖ are coprimes, and x = z, then x = 0
or x = 2‖x‖ − 1.

Factorizations. The more constraints are merged or reduced to simpler constraints,
the closer we get to a proof. Functional factorization allows to detect instances based on
equality of arguments, but some other instances can be factored as well, for example:

� from x⊕ y = z and x⊕ t = y, we deduce that t = z, unifying the two variables and
removing one of the constraints, now considered duplicates

� when x � y1 = z1 and x � y2 = z2 and y1 < y2, and z1 is a constant, then one
can infer the value of z2. A similar operation can be carried out for �.

10



� two constraints x & y = 0 and x | y = 2‖x‖ − 1 can be replaced by x = y

� a constraint x & y = z (resp. x | y = z) is superfluous with the constraint x = y
once z is deducted to be equal to 0 (resp. 2‖x‖ − 1).

� the constraints x = y and x & z = y (resp. x | z = y) can both be removed once
deducted that x = 2‖x‖ − 1, y = z = 0 (resp. x = 0, y = z = 2‖x‖ − 1).

4.4 BV-dedicated labeling strategies

A labeling strategy (a.k.a. search strategy) consists mainly of two heuristics: variable
selection and value selection. For variable selection, we rely on the fail-first approach
implemented in COLIBRI [33]. Basically, the variable to be selected is the one with
the smallest domain (in terms of concretization). Adding the BV domain allows here to
refine the notion of smallest. For value selection, in the event that BV is the smallest
domain, our strategy is the following:

� First, we consider certain values that can simplify arithmetic constraints. In
particular, we start by trying 0 (for +,−,×, /, & , |,⊕), 1 (for ×, /) and 2s − 1
where s is the bitvector size (for & , |);

� Second, we fix the value of several most significant and least significant unknown
bits (msub, lsub) at once, allowing to strongly refine all domains thanks to inter-
reduction, and to fix early the sign of the labeled variable (useful for signed BV
operations). Currently, we fix at each labeling step one msub and two lsub, yielding
8 possible choices. We choose whether to set first or clear first in an arbitrary (but
deterministic) way, using a fixed seed.

5 Experimentation

We describe in this section our implementation and experimental evaluation of CP(BV).

Implementation. We have implemented a BV support inside the COLIBRI CP solver
[33] (cf. Section 3.3). Modular arithmetic domains and propagators are treated as
blackbox, and we add the optimized bitlist domain and its associated propagators from
[36], as well as all improvements discussed in Section 4. Building on top of COLBRI did
allow us to prototype our approach very quickly, compared with starting from scratch.

Because it is written in a Prolog dialect, the software must be interpreted at each
run, inducing a systematic 0.2 second starting time. This obstacle is not troubling for us
because any real-world application would execute our software once and feed its queries
in a chained manner through a server mode. Yet, the SMTCOMP rules impose that the
software be called on command line with exactly one .smt2 file, which excludes a “server
mode”.

11



Experimental setup and caveats. We experiment CP(BV) on the 32k BV-formulas
from the SMTCOMP benchmark, the leading competition of the SMT community. These
formulas are mostly taken from verification-oriented industrial case-studies, and can be
very large (up to several hundreds of MB). The first set of experiments (Section 5.1) has
been run on the StarExec server3 provided by SMTCOMP, they are made public 4. The
second set of experiments (Section 5.2) is run on a Intelr CoreTM i7-4712HQ CPU @
2.30GHz with 16GB memory. Two points must be kept in mind.

� We fix a low time-out (60s) compared with the SMTCOMP rules (40 min), yet
we argue that our results are still representative: first, such low time-outs are
indeed very common in applications such as bug finding [25] or proof [19]; second,
it is a common knowledge in first-order decision procedures that “solvers either
terminate instantly, or timeout” – adding more time does not dramatically increase
the number of solved formulas;

� SMT solvers such as Z3 and CVC4 are written in efficient compiled languages
such as C/C++, with near-zero starting time. Hence, we have a constant-time
disadvantage here – even if such a burden may not be so important in verification:
since we are anyway attacking NP-hard problems, we are looking for exponential
algorithmic improvements ; constant-time gains can only help marginally.

5.1 Evaluation against state-of-the-art benchmark

Absolute performance. Our implementation solved 24k formula out of 32k (75%).
While it would not have permitted us to win the SMTCOMP, it is still a significantly
more thorough comparison with the SMT community than any previous CP effort on
bitvectors, demonstrating that CP can indeed be used for verification and bitvectors.

Comparing different choices of implementation. Improvements offered by our
different optimizations are very dependent on the type of formulas, and these details
would be diluted if regrouping all of the benchmarks. The reader is invited to consult our
detailed results on the StarExec platform. Yet, as a rule of thumb, our extensions yield a
significant improvement on some families of examples, and do not incur any overhead on
the other, proving their overall utility. For example :

� On the family of formulas named stp samples(' 400 formulas), when deactivating
the reductions from BV constraints to other domains (Section 4.2), the solver is
unable to solve a quarter less formulas that it did with the full implementation.
Removing the interreduction with the Is (Section 4.1), the loss rises to half ;

� Solving the spear family suffers little from deactivating BV/Is inter-reductions,
but half (200) formulas are lost without the BV constraints reducing other domains
(Section 4.2);

3www.starexec.org
4 www.starexec.org/starexec/secure/explore/spaces.jsp?id=186070

12



� On some other families, such as pspace and dwp formulas, there is no tangible
effect (neither positive nor negative) to the deactivation of improvements.

5.2 Comparison to state-of-the-art SMT solvers

We demonstrate in the following that CP(BV) is actually complementary to SMT
approaches, especially on problems with large bitvectors or involving multi-theories. As
competitors, we select the five best SMT solvers for BV theory: Z3, Yices, MathSAT,
CVC4 and Boolector.

SMTCOMP: large formulas. To study the effect of our method on scalability, we
show here the results on three categories of formulas, regrouped according to the (number
of digits of the) size of the their largest bit-vectors: 3-digit (from 100 to 999), 4-digit
and 5-digit, respectively having 629, 298 and 132 formulas. Results in Table 3 show on
the one hand the scalability of CP(BV) – the larger BV sizes, the greater impact the CP
approach has) – and on the other hand its complementarity with SMT. In particular,
it shows the result of duels between CP(BV) and each of the SMT solvers : a formula
is considered a win for a solver if it succeeds (TO = 60 seconds) while the other solver
does not. We report results on a format Win/Lose (Solve), where Win and Lose are
from CP(BV) point of view, and Solve indicates the number of formulas solved by the
SMT solver. For example, MathSAT could solve 17 of the 132 5-digit formulas – all of
which being solved by CP(BV), while CP(BV) could solve 63 formulas – 46 of which were
unsolved by MathSAT. Here, CP(BV) solves the higher number of 5-digit size formulas
(equality with CVC4), and no solver but Boolector solves formulas that CP(BV) does not.
On other sizes, CP(BV) solves less formulas, but it can still solve formulas that SMT
solvers do not.

Table 3: Comparing CP(BV) with five state-of-the-art solvers on large formulas

sz #f CP(BV) Z3 Yices MathSAT CVC4 Boolector
#solved w/l (s) w/l (s) w/l (s) w/l (s) w/l (s)

5 132 63 63/0 (0) 53/0 (10) 46/0 (17) 0/0 (63) 32/10 (41)
4 298 44 34/153 (163) 40/87 (91) 43/68 (69) 42/150 (152) 43/204 (205)
3 629 35 24/496 (507) 23/262 (274) 23/419 (431) 23/511 (523) 25/507 (517)

sz: size (#digits) - #f: # of formulas
w/l (s): #win/#lose for CP(BV), s: #formulas solved by SMT solver

SMTCOMP: hard formulas. We define hard formulas by separating 5 classes of
difficulty, with class i regrouping the formulas on which i SMT solvers out of 5 spend
more than 5 seconds. We compare CP(BV) to SMT solvers on these hard problems.
Results are presented in Table 4, where we report for each class i the number of formulas
from this class that CP(BV) solves quickly. Especially, the 5th column (All-fail) shows
that 61 formulas are solved only by CP(BV) in less than 5 seconds.

Mixing bitvectors and floats. Considering multi-theory formulas combining BV and
FP arithmetics, COLIBRI has been tested on 7525 industrially-provided formulas (not

13



Table 4: Overall comparison on hard examples

Category 1-fail 2-fail 3-fail 4-fail All-fail

#benchs 1083 382 338 1075 873

CP(BV) under 5s 139 108 10 68 61

publically available). It was able to solve 73% of them, standing half-way between Z3
/ MathSAT and CVC4 (Table 5). Considering now the last SMTCOMP QF BVFP
category (Table 6), even with the 0.2 seconds starting time, CP(BV) would have won the
competition – admittedly, there are only few formulas in this category.

Table 5: Industrial formula with bitvectors and floats

CP(BV) Z3 MathSAT CVC4

#solved 5512 7225 7248 2245
ratio 73% 96% 96% 29%

Total: 7525 formulas

Table 6: SMTCOMP, QF BVFP category

Z3 MathSAT CP(BV)

int to float complex 2.smt2 1.04 0.13 0.25

int to float simple 2.smt2 2.17 0.22 0.21

int to float complex 1.smt2 0.95 0.08 0.25

int to float simple 1.smt2 0.02 0.02 0.25

nan 1.smt2 0 0 0.26

incr by const.smt2 8.20 30.50 0.26

int to float complex 3.smt2 1.89 0.44 0.25

quake3 1.smt2 TO TO TO

6 Related work

CP-based methods for BV. This work strongly stands upon the prior results of Bardin
et al. [1] and Michel et al. [36]. Our respective contribution is already discussed at length
in Sections 2 and 3. Basically, while we reuse the same general ideas, we sharpen them
through a careful selection of the best aspects of each of these works and the design of
new mechanisms, especially in terms of domain combination and labeling strategies. As
a result, experiments in Section 5 demonstrate that our own CP(BV) approach performs
much better than previous attempts. Moreover, we perform an extensive comparison
with SMT solvers on the whole SMTCOMP benchmark, while these previous efforts
were either limited to conjunctive formulas or remain only theoretical. The results by
Michel et al. have been applied to a certain extent [46] as an extension of MiniSat [21],
yet with no reduced product, to a limited set of BV operations and on BV sizes no
larger than 64 bits. Older word-level approaches consider straightforward translations of

14



bit-vector problems into disjunctive or non-linear arithmetic problems [10, 22, 40, 45,
48, 49] (including bitblasting-like transformation for logical bitwise operators), and then
rely on standard methods from linear integer programming or CP. Experimental results
reported in [44, 1] demonstrate that such straightforward word-level encoding yield only
very poor results on formulas coming from software verification problems.

SMT-based methods for BV. While state-of-the-art methods heavily rely on bit-
blasting and modern DPLL-style SAT solvers [38, 43], the community is sensing the
need for levels of abstraction “where structural information is not blasted to bits”[12].
Part of that need comes from the knowledge that certain areas, arithmetic for example,
are not efficiently handled by bit-level reasoning tools. As a mitigation, SMT solvers
typically complement optimized bitblasting [12, 13, 32] with word-level preprocessing
[3, 24]. Compared to these approaches, we lack the highly-efficient learning mechanisms
from DPLL. Yet, our domains and propagations yield more advanced simplifications,
deeply nested with the search mechanism.

7 Conclusion

This work addresses the challenge of developing efficient Constraint Programming-based
approaches for solving formulas over (the quantifier-free fragment of) the theory of
bitvectors, which is of paramount importance in software verification. While the Formal
Verification community relies essentially on the paradigm of SMT solving and reduction
to Boolean satisfiability, we explore an alternative, high-level resolution technique through
dedicated CP principles. We build on a few such anterior results and sharpen them in
order to propose a highly efficient CP(BV) resolution method. We show that CP(BV) is
much more efficient than the previous attempts from the CP community and that it is
indeed able to solve the majority of the standard verification benchmarks for bitvectors.
Moreover CP(BV) already complements the standard SMT approach on several crucial
(and industry-relevant) aspects, such as scalability w.r.t. bit-width, formulas combining
bitvectors with bounded integers or floating-point arithmetic, and formulas deeply
combining non-linear arithmetic and bitwise operators.

Considering that our current CP(BV) approach is far from optimal compared with
existing SMT solvers, we believe this work to be an important landmark toward building
competitive CP-based verification-oriented solvers. Moreover, our approach clearly
challenges the well-accepted belief that bitvector solving is better done through bitblasting,
opening the way for a new generation of word-level solvers.

15



References

[1] S. Bardin, P. Herrmann, and F. Perroud. “An Alternative to SAT-Based Approaches
for Bit-Vectors”. In: TACAS. 2010.

[2] S. Bardin and P. Herrmann. “OSMOSE: Automatic Structural Testing of Executa-
bles”. In: Softw. Test. Verif. Reliab. 21.1 (2011).

[3] C. Barret, D. Dill, and J. Levitt. “A decision procedure for bit-vector arithmetic”.
In: DAC 98. 1998.

[4] C. Barrett et al. “CVC4”. In: CAV. 2011.

[5] C. Barrett et al. The SMT-LIB Standard: Version 2.0. Tech. rep. 2010.

[6] C. W. Barrett et al. “Satisfiability Modulo Theories”. In: Handbook of Satisfiability.
2009.

[7] A. Biere et al. “Symbolic Model Checking without BDDs”. In: Tools and Algorithms
for the Construction and Analysis of Systems. 1999.

[8] N. Bjørner. “Taking Satisfiability to the Next Level with Z3”. In: Proceedings of
the 6th International Joint Conference on Automated Reasoning. 2012.

[9] B. Blanc et al. “Handling State-Machines Specifications with GATeL”. In: Electr.
Notes Theor. Comput. Sci. 264.3 (2010).

[10] R. Brinkmann and R. Drechsler. “RTL-datapath verification using integer linear
programming”. In: 15th Int. Conf. on VLSI Design. 2002.

[11] R. Brummayer and A. Biere. “Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays”. In: TACAS. 2009.

[12] R. Bruttomesso et al. “A Lazy and Layered SMT(BV) Solver for Hard Industrial
Verification Problems”. In: Computer Aided Verification (CAV). 2007.

[13] R. E. Bryant et al. “Deciding Bit-Vector Arithmetic with Abstraction”. In: Tools
and Algorithms for the Construction and Analysis of Systems TACAS. 2007.

[14] A. Cimatti et al. “The MathSAT5 SMT Solver”. In: TACAS. 2013.

[15] E. M. Clarke, D. Kroening, and F. Lerda. “A Tool for Checking ANSI-C Programs”.
In: TACAS. 2004.

[16] H. Collavizza, M. Rueher, and P. Hentenryck. “CPBPV: A Constraint-Programming
Framework for Bounded Program Verification”. In: CP2008. 2008.

[17] R. David et al. “BINSEC/SE: A Dynamic Symbolic Execution Toolkit for Binary-
Level Analysis”. In: SANER 2016. 2016.

[18] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., 2003.

[19] E. W. Dijkstra. A discipline of programming. Vol. 1. Prentice-Hall Englewood Cliffs,
1976.

[20] B. Dutertre. “Yices 2.2”. In: Computer-Aided Verification (CAV). Vol. 8559. 2014.

16



[21] N. Eén and N. Sörensson. “An Extensible SAT-solver”. In: Theory and Applications
of Satisfiability Testing (SAT). 2003.

[22] F. Ferrandi, M. Rendine, and D. Sciuto. “Functional verification for SystemC
descriptions using constraint solving”. In: Design, Automation and Test in Europe.
2002.

[23] T. Feydy, A. Schutt, and P. J. Stuckey. “Global Difference Constraint Propagation
for Finite Domain Solvers”. In: PPDP. 2008.

[24] V. Ganesh and D. L. Dill. “A Decision Procedure for Bit-Vectors and Arrays”. In:
CAV 2007. 2007.

[25] P. Godefroid. “Test Generation Using Symbolic Execution”. In: FSTTCS. 2012.

[26] A. Gotlieb. “TCAS software verification using Constraint Programming”. In: Knowl-
edge Engineering Review 27.3 (2012).

[27] A. Gotlieb, B. Botella, and M. Rueher. “Automatic Test Data Generation Using
Constraint Solving Techniques”. In: ISSTA. 1998.

[28] A. Gotlieb, M. Leconte, and B. Marre. “Constraint Solving on Modular Integers”.
In: 2010.

[29] T. A. Henzinger et al. “Lazy abstraction”. In: POPL. 2002.

[30] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View.
1st ed. Springer Publishing Company, Incorporated, 2008.

[31] M. Leconte and B. Berstel. “Extending a CP Solver with Congruences as Domains
for Program Verification”. In: Trends in Constraint Programming. 2010.

[32] P. Manolios and D. Vroon. “Efficient circuit to CNF conversion”. In: SAT 2007.

[33] B. Marre and B. Blanc. “Test Selection Strategies for Lustre Descriptions in GaTeL”.
In: ENTCS. Vol. 111. 2005.

[34] B. Marre and C. Michel. “Improving the Floating Point Addition and Subtraction
Constraints”. In: Principles and Practice of Constraint Programming - CP 2010.
2010.

[35] K. L. McMillan. “Lazy Abstraction with Interpolants”. In: CAV. 2006.

[36] L. D. Michel and P. Van Hentenryck. “Constraint Satisfaction over Bit-Vectors”.
English. In: Principles and Practice of Constraint Programming. Vol. 7514. 2012.

[37] R. A. D. Millo, R. J. Lipton, and A. J. Perlis. “Social Processes and Proofs of
Theorems and Programs”. In: Communications of the Association of Computing
Machinery 22.5 (1979).

[38] M. W. Moskewicz et al. “Chaff: Engineering an Efficient SAT Solver”. In: Design
Automation Conference, DAC. 2001.

[39] G. Nelson and D. C. Oppen. “Simplification by Cooperating Decision Procedures”.
In: ACM Trans. Program. Lang. Syst. 1.2 (1979).

17



[40] G. Parthasarathy et al. “An efficient finite-domain constraint solver for circuits”.
In: 41th Design Automation Conf. 2004.

[41] M. Pelleau et al. “A Constraint Solver Based on Abstract Domains”. In: VMCAI
2013. 2013.

[42] J. D. Scott, P. Flener, and J. Pearson. “Bounded Strings for Constraint Program-
ming”. In: ICTAI. 2013.

[43] J. P. M. Silva and K. A. Sakallah. “GRASP: A Search Algorithm for Propositional
Satisfiability”. In: IEEE Trans. Computers 48.5 (1999).

[44] A. Sülflow et al. “Evaluation of SAT like proof techniques for formal verification of
word level circuits”. In: 8th IEEE Workshop on RTL and High Level Testing. 2007.

[45] R. Vemuri and R. Kalyanaraman. “Generation of design verification tests from
behavioral VHDL programs using path enumeration and constraint programming”.
In: IEEE Transactions on VLSI Systems, 3(2), pp. 201-214. 1995.

[46] W. Wang, H. Søndergaard, and P. J. Stuckey. “A Bit-Vector Solver with Word-Level
Propagation”. In: CPAIOR. 2016.

[47] N. Williams, B. Marre, and P. Mouy. “On-the-Fly Generation of K-Path Tests for
C Functions”. In: ASE 2004. 2004.

[48] Z. Zeng, M. Ciesielski, and B. Rouzeyre. “Functional test generation using Con-
straint Logic Programming”. In: 11th Int. Conf. on Very Large Scale Integration
of Systems-on-Chip. 2001.

[49] Z. Zeng, P. Kalla, and M. Ciesielski. “LPSAT: a unified approach to RTL satisfia-
bility”. In: 4th Conf. on Design, Automation and Test in Europe. 2001.

18


