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Abstract. In the Monte Carlo simulation of particle transport, and especially for shielding applications,
variance reduction techniques are widely used to help simulate realisations of rare events and reduce the
relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting (AMS) is
one of these variance reduction techniques that has recently appeared in the literature. In the present paper,
we propose an alternative version of the AMS algorithm, adapted for the first time to the field of particle
transport. Within this context, it can be used to build an unbiased estimator of any quantity associated with
particle tracks, such as flux, reaction rates or even non-Boltzmann tallies like pulse-height tallies and other
spectra. Furthermore, the efficiency of the AMS algorithm is shown not to be very sensitive to variations of its
input parameters, which makes it capable of significant variance reduction without requiring extended user

effort.

1 Introduction

The challenge in using Monte Carlo particle transport
simulations for shielding applications is to minimize the
computation time required to attain a reasonable variance
on the quantity of interest, called score.

The basic approach of variance reduction techniques is
to modify the simulation behaviour so as to increase rare
events occurrence while keeping an unbiased estimator of
the score.

In this view, multilevel splitting techniques were intro-
duced to the field of particle transport by Kahn and Harris
[1]. The principle of these techniques is to increase the
number of simulated particles when approaching areas of
interest of the geometry. Practically, the simulated space is
divided into regions of importance delimited by so-called
splitting levels, and the particles that pass from a less
important to amoreimportant region are duplicated. Each of
theduplicated particlesis given half the weight of the original
to ensure that the simulation remains unbiased. Thus, more
computation time is spent to simulate interesting particles
rather than new particles from the source.

The downside of these techniques is that they require a
fair knowledge of the system in order to accurately define
the importance regions. More recently, a new method
called Adaptive Multilevel Splitting (or AMS) has been
proposed by Cérou and Guyader [2], and studied in a more
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general setting by Bréhier et al. [3]. This method also aims
to duplicate the interesting particles of the simulation, but
does not use an a priori definition of importance regions.
Instead, the splitting levels are determined on the fly,
following a selection mechanism based on the classification
of the simulated particle histories.

One of the most interesting features of AMS, which will
be illustrated in this work through various numerical
simulations, is that it yields very robust results even if the
importance function only reflects a poor knowledge of the
system. The efficiency of the AMS in Monte Carlo
simulations and its properties makes it attractive for
computational physics problems that require precise rare
event simulation. To this end, AMS was successfully
extended to the simulation of path-dependent quantities
and applied to molecular dynamics simulations by Aristoff
et al. for the resampling of reactive paths [4].

In this paper, we aim to apply the AMS algorithm to
Monte Carlo particle transport and demonstrate its
efficiency for rare event simulations. In Section 2, we will
describe a mathematical version of the AMS algorithm
specifically designed to fit the requirements of particle
transport. We introduce in Section 3 the context of the
study, which is neutral particle transport with the Monte
Carlo method. The core of this work is presented in
Section 4, in which we introduce for the first time a
practical implementation of AMS within a Monte Carlo
particle transport simulation. This version of the AMS
algorithm was implemented in the development version of
the Monte Carlo particle transport code TRIPOLI-4". In
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the last section of this paper, we present some of the
results obtained using AMS within TRIPOLI- 4. These
examples illustrate the wvalidity of the algorithm as
described in Section 4, as well as the efficiency of AMS
as a variance reduction technique.

2 Mathematical setting

We present in this section a specific mathematical setting of
the AMS algorithm, which will be afterwards fairly easy to
adapt to the context of particle transport. This version of the
AMS is a variant of the algorithm that perfectly fits the
theoretical frame from [3], so that the estimator of the rare
event occurrence probability introduced in the following is
unbiased.

2.1 Objective and setup

Let X = (XtJtEN be a discrete-time Markov chain with
values in R deN*. We define P as the path space,
containing all possible realisations of the Markov chain X.

Given D a subset of R?, we define the entrance time of the
Markov chain X in D:

tp =inf{t€(0; 4] : X, € D},

where 7;is an almost surely finite stopping time of the
Markov chain X such that

XtZ‘[f = X‘[f

In the context of particle transport, this stopping time
is the number of collisions after which a particle is
absorbed. An absorbed particle is obviously not trans-
ported anymore, which results in its state being the same at
any time after absorption.

Given an observable ¢p : P — R such that ¢p(X) =0
on the event 7;<tp, we would like to estimate the
average E(¢pp(X)) of ¢p. Let us suppose now that the
probability for X to enter D before 7;is very small, so that
estimating E(¢p(X)) requires to sample the event 7 < 7.
In such a case of rare event simulation, the AMS
algorithm proposes to reduce the variance on the
estimation of E(¢p(X)) by increasing the number of
Markov chains reaching the subset D. AMS is an iterative
algorithm that consists of several steps. The first step is a
basic Monte Carlo simulation of multiple replicas of the
Markov chain X. Each of the following steps consists in
the resampling of the less interesting Markov chains
amongst the replicas. Each resampled replica is a
duplicate of a more interesting one up to a certain time,
defined using the information on the system gathered
during the initial simulation.

2.2 AMS algorithm
2.2.1 Importance function
In order to define which replicas are of interest to the

simulation, the AMS algorithm has to be associated to a
function quantifying the importance of a given Markov

chain. We define a so-called importance function, mapping
RY to R:

£: R - R,

which is used to quantify the proximity of a point in R¢ to
the subset of interest D. The only requirement imposed on
& is that there exists a constant I,,x €R such that

if €D
if z¢D’

é(x) > Imax
‘i:(x) < Imax

We further define the importance of a Markov chain
X = (Xy),en as the supremum of & along the chain:

(1)

I(X) = sup &(Xy).

tG[O;Tf]

(2)

The & function is probably the most important
ingredient of the AMS algorithm, since it is used to
quantify the proximity of a path to the subset D. It is
therefore important to choose a good function & with regard
to the rare event we are trying to simulate. Even if the AMS
algorithm is proven to yield an unbiased result regardless of
&, the choice of an optimized importance function is
expected to improve the variance reduction efficiency. We
will discuss further the issue of the quality of the function &
in Section 5.

2.2.2 Initialization

The AMS algorithm consists of an interacting system of
weighted replicas. Given n > 0, we simulate n i.i.d. replicas
of the Markov chain X, denoted by X} (XOt)teN,
j€{l,...,n}. For each j, the initial state X 00 is a point
located out81de of D. We then define the initial importance
level Z; as:

Zy = inf (§(X},)),

JE([Lsn]

so that every replica has an importance greater or equal to
ZO.

Let us now denote by geN the current iteration
number, and by k the number of replicas resampled at
each iteration. Within an iteration of the AMS algorithm,
every replica has the same weight. The common weight at
iteration ¢ will be denoted W,, with W, set to 1.

For the sake of simplicity, we present in the following
the case where distinct paths cannot have the same
importance. The general case is discussed in Section 2.3.
Now we can start iterating on ¢>0.

2.2.3 lterations

— For each je {1, ..., n}, denote by v ,.; the stopping time of
the Markov cham X}, and by S] its importance (see Eq.

(2)):

S7=1(X)). (3)
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— Sort the sample (Sé7 ., 8;) in increasing order:

1) (k) (n)
Sq <...<Sq <...<Sq.

— Denote by Z,,, the kth order statistics szk)
Zq+1 = Sl(]k)

—If Z,.1 > Lyax, stop iterating and go to the final step (see
Sect. 2.2.6).

— For each je€ {1, ..., n}, denote by X/ U) the Markov chain
for which 1mportance is S q])

— For all je {1, ..., k}, resample the replica X/ () according
to the resamphng kernel described in Sectlon 2.2.4, and
denote it by X

~ For all je {k+i’ ,n}, define X7, = X0,

— Update the common weight:

n—=k

Wq+1 - Wq

— Increment ¢ and go to step (i).

2.2.4 Resampling process

At each iteration of the AMS algorithm, k replicas are
resampled. Let us denote the current iteration number by ¢
and the associated resampling level by Zgia.

For each of the k replicas X(J ,je{l,...,k} to be
resampled, one of the remalmng rephca X((I),z' >k is
randomly selected for duplication. We know for sure that
the Markov chain (Xf])) te 0 contains at least a state
whose importance is greater tlihn Z,.1 (otherwise it would

have been resampled). We can therefore define
rfli) = inf {t € [0; r[(;)f] : E(X((Izg) > ZQH},

as the first time at which the replica X has an importance
greater than Z,

The resampled Markov chain (Yt)t>0 is defined as a
copy of X< ) for all te [0, r((])], and is then completed
mdependently using the original Markov kernel, up to the
stopping time 7. This resampled Markov chaln replaces
the original one for the next iteration of AMS.

2.2.5 Stopping criterion

The iterating process terminates at iteration geither if Z,
is greater than I,,, or if all paths have the same
importance.

Given that the probability of reaching the target is
non-zero, there is always a possibility for the simulated
Markov chains to reach the subset D (even directly from
their source point). Since any replica that reaches D has an
importance greater than any other replica in the
simulation, they are never resampled and may be used
as base for the resampling of all the others.

Consequently, the values of the resampling levels and
splitting levels will keep rising until the stopping criterion
is met. It maybe however possible that no replica ever
reaches D during the simulation. Since the simulated space
is finite, it is also impossible to have resampled replicas
whose importance values keep growing at each iteration. In
pathological situations, the resampling points will ulti-
mately be the highest rated in the duplicated Markov
chain, and the algorithm is doomed to stop when all
replicas have the same importance. In that case, the
algorithm is simply interrupted and goes straight to the
final step, eventually yielding a null contribution.

2.2.6 Final step

Once the algorithm stops iterating, we denote by @ the
number of completed iterations. Given the bounded
observable ¢p introduced in Section 2.1, we define

¢p = ZW $p(X7) (4)

as an unbiased estimator of E(¢p(X)) [3].

2.3 Interpretation of the replicas weights

In this section we provide a practical interpretation of the
AMS weights to give an intuition on the estimator (4). The
mathematical proofs of the unbiasedness and consistency of
the AMS estimator are not presented in this paper. We
refer the reader to [2] and [3] for theoretical support.

At each iteration ¢> 0, the level Z,; is chosen in such a
way that the probablhty for a path X’ to have an
importance greater than Z, ., (i.e. P(S] > Z41(5) > Z )
since the 1mportance of every paths at this 1terat10n is
greater than Z,), is estimated by

. k
pg=1 o

Keeping that in mind, we can see that the weights of the
replicas at iteration ¢g+1 are nothing more than an estimate
of the probability P(I(X) > Zg11).

In other words, the AMS algorithm provides us at each
iteration ¢ with a set of paths X}, j€ {1, ..., n}, carrying a
common weight, which can be mterpreted as an estimate of
the probability to have this particular set of paths instead
of the paths sampled at iteration 0.

2.4 About the number of resampled replicas

The algorithm presented in Section 2.2 is an ideal case. In
reality, it may occur that multiple replicas have the same
importance. In that case, the number of replicas having an
importance less or equal to the kth lowest importance may
very well be greater than k. When such a situation arises,
every path whose importance is less or equal to the level
has to be resampled.

This modification has to be taken into account in the
replicas weights. If the current iteration is the ¢th and the
number of replicas to be resampled is K,>k, then the
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weight update at step (viii) of the algorithm has to be
changed to:

3 Monte Carlo neutral particle transport
3.1 Neutron transport theory

The transport theory describes the mathematical frame-
work needed to solve the equations governing the behavior
of a gas of non-interacting particles (e.g. neutrons and
photons) in different materials, under different assump-
tions (spins are not taken into account, relativistic effects
are neglected, etc.). It has been discussed at length in [6] or
[7]. In fissile materials, neutrons (and photons) can induce
fissions, which results in the production of more particles.
The modelling of such systems is achieved using the so-
called critical linear Boltzmann equation. When the
materials are not fissile, the standard linear Boltzmann
equation can be used to describe the particle transport.

It is assumed that the neutral particles in an
homogeneous medium are transported along straight lines
between collisions points and are randomly reoriented at
each interaction (possibly with change of energy) [8]. As the
flight lengths are exponentially distributed, the underlying
stochastic process governing the neutral particle transport
is called ezponential flights. We refer the interested reader
to [9,10] for recent developments on this topic.

3.2 Monte Carlo simulation of neutral particle
transport

Numerically, transport problems may be stochastically
solved using Monte Carlo transport codes [11]. Those codes
simulate directly the particles’ trajectories according to
laws of probability provided by the so-called nuclear data
(cross sections, energetic and angular transfers, secondary
particles emission spectrums, etc.), which are available in
international libraries. The flight lengths between inter-
actions are randomly sampled, as well as the outgoing
direction and energy of the particle after each collision with
the medium.

Every Monte Carlo transport code relies on the particle
tracking routine, which simulates the random trajectories
of the particles by transporting them from one interaction
to another, until they are absorbed or leak out of the
geometry.

Within a Monte Carlo simulation, the trajectory of each
transported particle is build step by step, which means that
the state of the particle at a given time is determined
exclusively from the knowledge of its state after the
previous interaction. This makes the random process of
particle transport a discrete-time markovian process.
Therefore, the sequence of the phase-space coordinates
of the particle (namely position, direction and energy) at
the successive interactions is a Markov chain, so that the
AMS algorithm described in Section 2 can be implemented.

4 Neutral particle transport with AMS

The goal of this section is to present a practical
implementation of the AMS algorithm in the context of
Monte Carlo particle transport.

4.1 Definitions and notations

Before going any further, let us introduce some definitions
and notations that will be used throughout the following.

We define the position of a particle in the 6-dimensional
phase space S as the set of coordinates (X, Q, F), where X
denotes the particle position in the 3-dimensional space, £2
its direction, and F its energy.

A particle is considered alive while it is transported
from an interaction to the next. When an interaction
results in the capture of the particle, the transport stops
and the particle is referred to as killed. We call track of a
particle the sequence of its interaction points.

We call geometry the subspace of the phase space in
which the simulation takes place. If a particle is trans-
ported to a point of the phase space that is not included in
the geometry, this particle is considered leaking out of the
geometry and is instantly killed.

The aim of the simulation is to estimate a score
(typically a flux or a reaction rate) in a particular volume of
the geometry we will refer to as detector or simply target.

4.2 Importance map

As we saw in Section 2.2.1, the geometry has to be provided
with an importance function, so as to determine the regions
of the system that are of interest to the simulation.
Technically, we will use a function that maps any point of
the phase space to an importance value, which is related to
the probability for a particle located at this point to
contribute to the final score. We will refer to this function
as the importance function or the importance map, and
denote it by

§X,Q, E).

In order to satisfy the requirement (1), it is sufficient to
define an importance I,,,, larger than any other value of the
map, and to assign this value to any point within the target
volume. As the importance value is only used to sort tracks
with respect to one another, it is strictly equivalent to
choose for I, the maximum value of the importance
function or any value greater than that. This is why
TRIPOLI-4” sets I.: to numerical infinity (i.e. the
maximum representable floating-point number in the
code) regardless of the importance map.

4.3 The AMS algorithm

As described previously, the AMS algorithm is an iterative
method. Each iteration includes the definition of a single
splitting level alongside with the corresponding splitting
process.
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4.3.1 Initialization (step g=0)

Let n be the initial number of simulated particles, and & the
minimal number of particles that are resampled at each
iteration of the algorithm. Notice that n, k& and the
importance function & are numerical parameters that can
be chosen by the user, and that the estimator of E(¢(X)) is
unbiased whatever these choices.

The initial particles are simulated using an analog Monte
Carlo simulation (i.e. without variance reduction), and the
track of each transported particle is kept in memory.

In practice, each point of the saved track is a set of
coordinates (X, €, E) representing the particle at an
interaction point, where X is the position of the interaction,
and (Q, E) the direction and energy of the particle after the
collision.

The global weight at iteration gis denoted by w,, and wj
is set to 1. We can now start iterating on ¢> 0.

4.3.2 lterations (g>0)
Each track T is given an importance value, defined as the
maximum importance of the points of its track:

I(T) = max &(X;, ;, E;).

i€track (5)

The n tracks are sorted according to their importance,
and the kth smallest track importance defines the splitting
level Z 1.

If Z,. ;1 is greater than I,,,,, the iterating process stops.
Otherwise, all the tracks that have an importance less or
equal to the level Z,. ; are suppressed, and the same number
of tracks are randomly selected (with replacement) amongst
the remaining tracks. The selected tracks are duplicated at
their first collision point of importance greater than Z,,, ,
according to the resampling kernel presented in Section 2.2.4.
The global weight is then updated:

n— K,
Wet1 = Wy
q K.
=[] (1~ _’)7
=0 n

where K, is the number of resampled particle tracks at
iteration ¢ (see Sect. 2.3).

4.3.3 Final step and scoring

As soon as a splitting level Z, is greater or equal to 4, or
when all tracks importances are equal, the algorithm stops
iterating. We then define @ as the total number of
completed iterations. The score ¢4, in the target is then
computed using the standard estimators of Monte Carlo
particle transport, as for an analog simulation, but using
the last set of tracks.

An unbiased estimator of the flux in the target is built
by weighting the estimated flux ¢4, by the probability of
reaching the last splitting level (see Sect. 2.2.6):

o~

o= wQ¢ta7’get'

4.4 Strengths of the AMS
4.4.1 Number of contributions to the score

In order to reduce the variance when simulating rare
events, it is interesting to have multiple small contributions
to the score rather than a few large contributions and many
Zeroes.

The stopping criterion of the AMS algorithm offers a
guarantee that at least n— k+ 1 particles will reach the
target and contribute to the score with a small weight w,
except for pathological cases. However, the cases of
extinction are rare and caused by the use of a very
inadequate importance function, such as an importance
function favouring particles that are obviously going the
wrong way, or an overly coarse discretized map yielding to
several particles having the same importance.

4.4.2 Robustness with regard to the importance function

The estimator constructed as described in Section 4.3 is
unbiased regardless of the parameter % [2]. The same
holds true for any importance map under the single
constraint [3]:

Imax > ISOUT'C@) (6)
where ;... is the minimal possible importance value for a
particle at its source point. The purpose of this condition is
to ensure that the importance of particle track entering the
target volume is greater than any particle coming from the
source point and not reaching the target. That way, the
tracks having an importance I,,,,.. can be resampled while
the tracks that have reached the target remain in the
simulation, yielding the same results as an analog
simulation.

In our implementation of the AMS algorithm, this
condition is always verified, as we set the importance of the
target to numerical infinity regardless of the importance
map (see Sect. 4.2). This allows us to use any function as
importance. However, if the map does not properly describe
the system, the result, though unbiased, may be plagued by
a large variance.

Although the AMS algorithm is adaptive, the obtained
estimator of the quantity of interest is always unbiased.
Therefore, one can ensure the quality of the result by
running multiple AMS simulations with different impor-
tance functions until the confidence intervals overlap.

4.4.3 Usability

In addition to the usual parameters of any Monte Carlo
particle transport simulation, AMS introduces only two
free parameters: the number of duplicated particles &, and
the importance map &(X, Q, E).

As we already pointed out, any choice of k and & yields
an unbiased result. The parametrization of the AMS
algorithm is therefore quite simple. It is sufficient to define
a purely geometric importance function, such as the inverse
to the distance to the target for deep penetration problems,
or a path from the source to the detector for streaming
configuration, and to set any value for k less than n to
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Detector

He*

(]
Source

Fig. 1. Bypass simulation configuration.

reduce the variance. More efficiency can be achieved
through the use of a precise importance map, taking into
account the direction and energy of the particles as well as
the subtleties of the geometry.

4.4.4 Parallelization

A Monte Carlo simulation performed with AMS yields a
single value as estimation of the quantity of interest. In
order to obtain a precise result, multiple independent
simulations are required. The arithmetic mean of the
estimations over all simulations is computed together with
the associated variance, in the same way as in usual Monte
Carlo, which requires multiple independent simulations.

As the simulations remain totally independent until
their output is gathered to compute the average results, a
straightforward way of parallelizing AMS Monte Carlo is to
run independent simulations (initialization, iterations and
scoring) simultaneously, each on a distinct processor. That
way the algorithm does not need any modification to
achieve parallelism.

5 Validation and results

The AMS algorithm was implemented in the development
version of the Monte Carlo particle transport code
TRIPOLI-4" [5]. This 3D continuous-energy Monte Carlo
code is developed by the Service d’Etudes des Réacteurs et
de Mathématiques Appliquées (SERMA) at CEA Saclay.

In the following, we present some preliminary results
obtained with TRIPOLI-4” using AMS and compare them
to simulations with no variance reduction. The Monte
Carlo simulations that do not use any variance reduction
techniques are usually called analog, because they are
directly analogous to the natural transport of the particles.

We aim to validate the AMS algorithm implementation
and to estimate its efficiency as a variance reduction
technique by comparlng its results and performances to
analog TRIPOLI- 4" simulations.

5.1 Figure of merit

In a Monte Carlo simulation, the flux is estimated for several
statistical independent groups of particles (or batches). The
average flux and its associated variance are estimated from a
series of batches. The purpose of variance reduction is to

reduce the variance of the result for a given computation
time. The efficiency of a variance reduction technique lies on
two factors. On one hand, the relative error o of the average
flux, and on the other hand the simulation time T. If we
denote by Npzthe total number of simulated batches, we have

1
o
VNp
We use the Figure Of Merit (or FOM) to evaluate the

efficiency of a Monte Carlo simulation. The FOM is defined
as

and TN . (7)

1

FOM = T (8)
and should remain relatively constant as Np increases
according to (7). For different simulations of the same
system, the simulation producing the largest FOM is either
proportionally faster or more precise than the others.
Therefore, the FOM can be used as a performance
measurement for variance reduction.

5.2 Importance map calculation

The AMS algorithm implemented in TRIPOLI-4” can use
several functions as importance maps.

The user can define a purely geometrical importance,
such as the distance between a point and the particle source
or the invert of the distance between a point and the AMS
target.

Most of the time though, a more precise importance
function is required to take into account the direction and
energy of the simulated particles. To that end, the AMS has
been linked to the so-called INTPOND module of TRIPO-
LI—4®, which is used for other variance reduction
techniques in this code and to automatically pre-compute
an importance map (see [5]).

5.3 Bypass simulation

The first system consists of an extruded box filled with
helium. The dimensions of the box are 10 cm x 10cm X +
0. A neutron flux is produced from a 2MeV isotropic
neutron source at one corner of the box and detected inside
an infinite cylinder of 1cm in diameter placed at the
opposite corner. In between is a massive infinite cylinder
composed of highly concentrated Bore. The mean free path
of neutrons in the Bore slab is less than 0.5cm. The
geometry for this problem is shown in Figure 1

The results obtained using TRIPOLI 4” without
variance reduction and TRIPOLI-4" using the AMS
algorithm are presented in Table 1. Several AMS
simulations with 10* initial particles were performed, with

different values for the parameter k, from 1 duplicated
particle (0.01%) per iteration up to 5 x 10° (50%). Two
distinct importance maps were used in this study:
— the “Spatial” importance map, defined using the recipro-

cal of the distance to the target;

— the importance map computed by INIPOND.
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Table 1. Comparison of TRIPOLI-4” with and without AMS for flux estimation in the bypass geometry (48h

calculations).
Simulation k(%) Number of batches Mean Relative error FOM Gain
Analog N/A 58 634 3.8554 x 10 13.50 6.9954 x 10~ 01
0.01 68 4.3179 x 10710 4.45 6.3347 x 1077 09
0.05 793 4.1640 x 1071° 2.37 2.2742 x 107 32
0.1 1999 4.2156 x 10719 1.74 4.1893 x 107 59
AMS 0.5 5378 4.1874 x 107" 1.28 7.7867 x 107" 111
(Spatial) 1 6123 4.2000 x 10~"° 1.25 8.1607 x 10~ 116
5 7910 4.1821 x 1071° 0.99 1.3139 x 107 187
10 7682 4.1321 x 10719 1.04 1.1701 x 107 167
50 8661 4.1620 x 1071° 1.09 1.0657 x 107% 152
0.01 105 4.2411 x 10719 1.80 3.9036 x 107¢ 55
0.05 818 4.1417 x 1071° 0.83 1.8636 x 107 266
0.1 2007 4.1624 x 1071° 0.62 3.3366 x 107 476
AMS 0.5 4859 4.1509 x 107" 0.38 8.8830 x 10~ 1269
(INIPOND) 1 4572 41685 x 107" 0.36 9.6031 x 107 1372
5 6029 4.1727 x 10710 0.37 9.4906 x 107 1356
10 5970 4.1671 x 1071° 0.36 9.6938 x 107%° 1385
50 7690 4.1747 x 10710 0.37 9.5076 x 107 1359

i M
-0 8 6 4 -2 0 2 4 6 8 10

Fig. 2. INIPOND importance map for the bypass problem.

The values and gradient of the INIPOND map are
represented in Figure 2, on which we can see that the
automated module was able to determine the preferential
pathways around the Bore cylinder. Every simulation was
performed at the same time on the same machine, each of
them on a single processor.

We observe that the AMS yields an unbiased result for
any combination of k£ and importance function. What is
more, the algorithm always improves the FOM. Even
though the AMS using the spatial importance as classifying
function is interesting in terms of FOM, compared to the
analog result, the use of the INIPOND map taking into
account the energy and direction of the neutrons allows for
a great improvement in the algorithm efficiency.

Concerning the impact of the & parameter, both
importance functions show the same comportment. First
of all, the number of independent simulations completed
increases with k. This is understandable, as the number of
iterations required to reach the detector decreases when &
increases, so that the computation time per simulation is
smaller.

The smallest relative error for a given number of
independent simulations is obtained with k=1 (0.01%) for
both importance maps. However, this configuration requires
a very large number of iterations for the AMS to complete,
which has a strong impact on the computation time. It is
therefore more interesting (regarding the FOM gain) to
chose a greater k in order to speed up the simulation. The
balance between estimation precision and computational
speed seems to be reached for a value of k between 1% and
50% of the initial particles. In this range, the variations in
FOM gain are stochastic. Below this range, the overall
efficiency of the algorithm drops quite abruptly.

The study of the bypass problem puts into light the
robustness of the AMS efficiency with regard to the
parameter k and the importance, as the result is always
unbiased. However, it is to be noted that the geometry of
the bypass configuration is quite simple.

We may find cases in which the number of splittings per
iteration has a greater impact on the algorithm efficiency,
such as streaming configurations containing preferential
pathways with very small entrances, or any other problem
where spatial details have a strong impact. If the number of
splittings per iteration is too high, such details may be
overlooked by the AMS algorithm, because the distance
between the splitting levels would be more important.
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Fig. 4. Flux attenuation in the Water box.

5.4 Neutron flux attenuation in water

The source of the second problem is a directional neutron
point source, emitting neutrons according to a Watt
spectrum and placed at the entry of a straight box filled
with water. The detector is placed at 3 m from the source,
and the neutron flux is estimated in 10-cm-thick slices
between the source and the detector (Fig. 3).

The neutron flux attenuation was estimated using both
analog and AMS TRIPOLI-4” simulations. In a first
realization, the importance function used for the AMS was
the distance from the source point. The AMS was
performed using 10° initial particles per batch and
k =10% splittings per iteration. Data were collected for
both simulations during 65h. Both simulation were
performed at the same time, on the same machine, each
one on a single processor. Figure 4 presents the estimated
flux with respect to the distance in the box, and the
associated 99.7% confidence intervals. The FOM for these
simulations are shown in Figure 5.

It can be seen in Figure 4 that the analog simulation is
unable to estimate a flux farther than 160cm from the
source, because of the strong attenuation of neutrons in
water. However, the AMS simulation is able to accurately
determine the neutron flux all the way from the source to
the detector. Near the source point, the analog simulation
is more efficient than the AMS, as shown in Figure 5. The
neutron flux in this part of the box is high enough for
TRIPOLI-4” not to need variance reduction, which places
the AMS at a disadvantage due to its impact on runtime.

10°
2o
10 O Analog
o
10 O AMS (geometrical)
0o o
1 o
- m}
E 107" @[] o
° o "og o
5 102
L% 0 ° o Op
] Onq
10° o “og
o) o Og
m}
4 o oo
10 °
o
107° °
1076....I....I....I....I....I....
50 100 150 200 250 300
Depth (cm)
Fig. 5. FOM comparison in the Water box.
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Fig. 6. Flux attenuation in the Water box.

The AMS mechanism starts to be interesting at a depth
of 70 cm. The gain in FOM increases up to 10° in favor of
AMS at 160 cm, from which point the analog simulation
fails to estimate the flux.

In order to illustrate the role of the importance map
within the AMS algorithm, the deep-penetration simula-
tion was performed a second time, using the same
parameters for AMS except for the geometrical importance
function, which was replaced by the importance estimated
using the INIPOND module. The fluxes obtained with both
importance maps are shown in Figure 6, and the associated
FOM in Figure 7.

We observe that the use of the INTIPOND map over the
geometrical importance significantly improves the AMS
efficiency up to a factor 4 at the target. We can notice that
the FOM obtained with both maps are equivalent for
depths below 160 cm. However, we have to keep in mind
that the parametrization of the INIPOND module required
to get an accurate map can be far more complex than the
input of a simple geometrical function.
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Fig. 8. Gamma spectrometry setting.

5.5 Gamma spectrometry

During an AMS iteration, the particle transport is analog.
This feature lets us hope to use AMS to reduce the variance
on non-Boltzmann scores, i.e. scores that cannot be
described by the Boltzmann transport equation. For
example, the scores for which the whole particle history
has to be recorded are non-Boltzmann. The most common
of those scores is the so-called pulse-height tally, Wthh is
designated as “deposited spectrum” in TRIPOLI- 4%,

The deposited spectrum score records the total energy
deposited in the detector by a source particle from its
emission at the source to the termination of all progeny. This
implies that the entire history of the primary particle has to
be memorized, and that all secondary tracks are correlated. If
a photon passes through the detector while deposing 1 MeV
of its energy in it, and later on re-enters the detector region
and deposes once again 1 MeV before being killed, the whole
process registers as a single event of 2 MeV.

3,29 (2017) 9

—e— Analog
—-— AMS

Deposited spectrum

. 2 2.
Energy (MeV)

Fig. 9. Deposited spectrum in the HPGe detector.
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Fig. 10. Ratio of the AMS FOM over the analog FOM as a
function of energy for the deposited spectrum.

Consequently, the use of weight-based variance reduc-
tion schemes such as MCNP’s Welght Windows or
Exponential Biasing in TRIPOLI- 4% is troublesome, as
it requires to construct particle history trees retaining all
events between the emission of the particle and the
termination of all progeny with the associated weight
modifications, and then to adequately take into account the
various weight to compute the score [12].

The AMS algorithm offers the possibility of reducing
the variance on deposited energy spectra without altering
the algorithm. This is made possible by two properties of
AMS. First of all, the particle transport between splitting
events is analog. Therefore, the computation of a
particle’s contribution, if restricted to a single iteration,
is performed the same way as for analog Monte Carlo.
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The second property is that a particle that has reached
the detector is never resampled. Therefore, its contribution
remains unchanged in all the iterations following the
scoring. At the end of the simulation, each contribution is
weighted by the AMS global weight, which represents the
occurrence probability of the final set of tracks.

The problem considered to test AMS efficiency for
deposited energy spectrum is a gamma spectrometry
problem. The setting is shown in Figure 8. A sodium
source is placed in an air environment encased in lead. At
50cm of the source, a realistic high-purity germanium
(HPGe) detector is simulated. We aim to estimate the
energy spectrum deposited in the detector by the photons
coming from the sodium source.

These results are from photon-only simulations, as the
coupled photons/electrons/positrons AMS is not yet fully
operational. We present in Figure 9 the pulse-height tally
obtained by simulating the response of the HPGe detector
for a given computation time. Both simulations ran for 6 h,
each on a single processor of the same machine. The
importance used for the AMS simulation is the importance
map calculated by INIPOND.

We can see that both spectra are in perfect accordance,
although the spectrum coming from the AMS simulation
seems much more converged. In order to quantify this
effect, we computed the FOM gain, defined as the ratio of
FOM 4 pz5 over FOM 4y,404- 1t is represented in Figure 10.

On the far right side of the deposited spectrum shown in
Figure 9, we observe that the AMS simulation is even able
to simulate events leading to high-energy depositions that
were simply not visible on the analog spectrum. It is really
interesting to see how easy it is to use the AMS algorithm in
configurations for which other variance reduction schemes
need to be adapted. The parametrization of AMS for
photons and for deposited spectra remains unchanged and
as simple as for other cases.

6 Conclusion

The results presented in this paper prove that the Adaptive
Multilevel Splitting algorithm is a viable variance reduc-
tion scheme for Monte Carlo particle transport codes. Its
implementation in TRIPOLI-4” and its connection to the
importance map calculation module enables us to use
advanced parametrizations for the importance. The
guarantee to have an unbiased result regardless of the
importance map or the number of particles resampled at
each iteration makes the AMS algorithm a robust variance
reduction scheme. It seems to be a good alternative to
existing variance reduction techniques in the most severe
configurations. Furthermore, it can also be used for
deposited scores without need to alter the algorithm, as
seen in Section 5.5, and allows TRIPOLI-4” to use variance
reduction for those scores.

In the future, we plan to implement AMS variance
reduction on deposited scores using coupled photons/
electrons/positrons simulations as well as coupled neu-
trons/gamma problems. Another point of interest is the
simulation of larger-scale problems, such as full-core
simulations for ex-core neutron flux estimations. The
challenge for AMS at such scales is the same as for other
variance reduction: the definition of a proper importance
map or function, sufficiently precise to reduce the variance,
but at the same time not too detailed to prevent memory and
storage issues. However, the robustness of AMS with regard
to the importance function lets us hope for efficient variance
reduction even with roughly estimated importances.
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