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Abstract

The accuracy of wave focusing by time reversal depends on a quantity termed ‘contrast ratio’ that measures the amplitude of a

localized peak of velocity relatively to background noise. A comprehensive expression for the contrast ratio in a lossy cavity is

derived by modal decomposition of the wave field. This expression accounts for the effects of the mechanical and the dimensional

properties of the cavity, the bandwidth of the excitation signal, the number of sources, and the duration of time reversal window. The

expression can predict the characteristics of a given process such as the long-time saturation and the single-channel time reversal

limit. The expression also models the effect of temperature variations on focusing accuracy and shows that thermal drift exhibits

two regimes. In the first regime, small temperature variations have little effect on contrast. The second regime is characterized by a

rapid deterioration of contrast. Experimental measurements show close agreement with the theory.

1. Introduction

The time reversal of a wave field is a physical process where a

discrete set of transducers emit a pre-recorded or pre-computed

wave front back to its source. It was first introduced by Fink

in 1992 [1], and has since found many applications in indus-

try, science, and medicine. A key issue with this technique

is to ensure the reliability of the wave focusing process. Fo-

cusing accuracy can be assessed by means of a single number,

termed contrast ratio, also sometimes called the signal-to-noise

or signal-to-sidelobe ratio. It is defined to be the ratio of the

amplitude of the acoustic signal at the focusing location and in-

stant divided by the root mean square of the signal value at all

other locations.

We consider the application of time reversal to the focusing

of waves in two dimensional reverberant cavities as in acoustic

imaging [2], non-destructive testing [3, 4] or human machine

interfaces [5, 6], but our results could be extended to three di-

mensional cavities. We address the question of the influence on

the contrast ratio of the number of transducers, Q, of the time

reversal window duration, T , of the vibration decay time, τ, of

the bandwidth, B, and of the cavity dimensions and mechanical

properties. Because in most applications the temperature of the

cavity can vary, we also study the thermal drift of the contrast

ratio. We derive a general closed-form expression that accounts

for all these factors and verify experimentally the validity of

this expression.

Previous studies have provided expressions aimed at quanti-

fying the influence of some of the aforementioned parameters

on the contrast ratio. The contrast ratio, C, was found to in-

crease with the square root of the product of bandwidth by the

number of transducers [7], that is, C ∝
√

BQ. Similarly, it was

found that C ∝
√

Q holds for two and three dimensional closed

cavity [8, 5, 9], and that C ∝
√

T for short time horizons but

reaches a plateau when T exceeds the inverse of the average dis-

tance between two consecutive modes, a quantity often called

the Heisenberg time, TH [10]. These studies looked at the indi-

vidual influence of the parameters that affect the contrast ratio,

but their validity either is restricted to the case when the time

reversal window duration, T , is smaller than the characteristic

decay time τ, or to the Heisenberg time, TH. Lastly, previous

expressions of the influence of the number of transducers are

not consistent with the limit case of one single transducer.

The sensitivity of the contrast ratio to temperature variations

is of high practical importance. Temperature variations induce

a variation in the wave propagation celerity possibly causing

a lack of symmetry between the forward and the backward

phases [11]. This effect violates the time reversal invariance

assumption [12, 13], leading to a loss of focusing accuracy. As

a result, it has been proposed to compensate for temperature

variations by temporal dilatation in the time reversal computa-

tional process [14]. Yet, no expression predicting the evolution

of contrast ratio as temperature changes was derived. Such an

expression would be useful to determine the acceptable amount

of temperature variation, and to identify the influence of other

parameters on temperature sensitivity.

Starting from the principle of time reversal wave focusing,

we first derive a time reversal matrix operator. This operator is

then decomposed into temporal and spatial components to yield

a comprehensive expression of contrast. This compact expres-

sion allows one to predict the fundamental properties of time

reversal in a cavity, such as the equivalence between number

of actuators and window duration, large time saturation, or the

limits of single channel time reversal. Contrast saturation due

to spatio-temporal correlation or vibration attenuation is also

made explicit.

The same matrix decomposition is then employed to provide
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an expression for contrast that accounts for thermal drift. The

time, T , above which contrast begins to fall is then related to the

fundamental mechanical properties of the propagation medium

and to temperature variations. Lastly, the experimental valida-

tion of these expressions is described. Time reversal was ap-

plied to a steel plate and contrast was measured as a function of

window duration, number of transducers and temperature varia-

tions. The experimental results were found to be in close agree-

ment with the theoretical predictions.

2. The Time Reversal Operator

Various approaches have been proposed to evaluate of the

ability of the time reversal operation to focus acoustic waves.

The original demonstration made by Fink and his collabora-

tors relied on a temporal description of the phenomenon using

the wave propagation kernel [1, 15]. A shot noise model was

used to describe quantitatively focusing quality through wave

scattering [16]. Ray-based descriptions can also be employed

to model wave scattering path and boundary reflections. Modal

descriptions are able to deal with the limit case of a single trans-

ducer [8]. Here, we also use modal description to describe wave

focusing by time reversal in a cavity. This model allows us to

derive a time reversal operator and to quantify the contrast ratio

at a focusing point.

2.1. Fundamentals of time reversal wave focusing in cavity

The solution of a wave propagation problem in a bounded

domain can be expressed as a superposition of normal modes.

Accounting for modal truncation owing to the finite bandwidth

of the measurement, the out-of-plane displacement velocity of

a two-dimensional medium at position, x, can be written,

v(x, t) =

N
∑

n=1

An(t)Φn(x),

where Φn(x) is the amplitude of the nth mode at x and where

N is number of modes considered. Impacting the surface at a

point, a, with an impulsive force, δ(x − a)δ(t), gives an ampli-

tude, An(t), for each mode number, n,

An(t) =
1

ρ
Φn(a) cos(ωnt)e−t/τn ,

where ωn is the pulsation, τn the decay time, and ρ the surface

mass density of the cavity. The expression of the impulse re-

sponse from point a to point x, hax(t), therefore is,

v(x, t) = hax(t) =
1

ρ

N
∑

n=1

Φn(a)Φn(x) cos(ωnt)e−t/τn . (1)

The first step in the time reversal focusing process is to record

the impulse responses of a set of Q transducers coupled with the

cavity at coordinates, bq, q = 1, . . . ,Q, during a time window

t ∈ [0,T ]. These impulse responses are then time-reversed and

played back by the same transducers, this time used as actua-

tors. During emission, the force simultaneously exerted by each

of the Q actuators is,

fq(t) =















v(bq,T − t), ∀t ∈ [0,T ];

0, otherwise.

The velocity of the medium at point x during the focusing step

is thus given by,

vTR(x, t) =

Q
∑

q=1

fq⊗t hxbq
=

Q
∑

q=1

∫ T

0

habq
(T−η)hbq x(t−η) dη, (2)

where ⊗t denotes the convolution operator in time domain. If

x is sufficiently far from a, then the two impulse responses habq

and hbq x are uncorrelated and the integral of their product is zero

on average. Waves at those points interfere non constructively

and correspond to background noise. In contrast, when point x

coincides with point a, at time t = T the velocity is,

vTR(a,T ) =

Q
∑

q=1

∫ T

0

h2
abq

(T − η) dη. (3)

The integrand is now a positive quantity yielding a peak of ve-

locity. Waves interfere constructively only at point a and at time

T , focusing in time and space.

2.2. Matrix representation by modal decomposition

Equation (2) can be further developed using the modal de-

composition (1) to give,

vTR(x,T ) ∝
N

∑

n=1

Φn(x)

N
∑

m=1

Φm(a)Mnm,

where,

Mnm =

















Q
∑

q=1

Φn(bq)Φm(bq)

















∫ T

0

cos (ωn(T − η)) e−t/τn cos(ωm(T − η))e−t/τm dη. (4)

Setting t = 0 in (1) gives the original field, v(x, 0), which the

time reversal process aims at reconstructing,

v(x, 0) ∝
N

∑

n=1

Φn(x)Φn(a).

The difference between the original field, v(x, 0), and the re-

constructed field, vTR(x,T ), thus is encoded in the matrix M.

In particular, these two fields are identical when M is the iden-

tity matrix. What is more, the matrix formalism expresses the

transformation from the time-reversed field vTR to the original

field v0 at a finite number, Ndof , of discrete, control points. We

have,

vTR = Φ
T

MΦ v0 = Hv0,
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where Φ is a N × Ndof matrix containing the modal shapes of

the cavity, M is a N × N matrix, v0 and vTR are Ndof vectors

respectively containing the initial and time-reversed states. Per-

fect reconstruction is achieved when H is equal to the identity

matrix. The time-reversed state is equal to the original state.

If the number of modes considered, N, is greater or equal

to the number of control points, Ndof , then H can be inverted.

Setting ṽ0 = H
−1v0 gives ṽTR = HH

−1v0 = v0, thus achieving a

perfect reconstruction at the control points. This development

captures the idea of inverse filtering described in [17].

3. Contrast Ratio

In the foregoing, when the details of the analysis must re-

fer to a particular type of cavity, these details are developed for

the case of flexural waves propagating in a thin plate. Different

types of cavities, for instance, fluid-filled cavities where pres-

sure waves dominate, would be amenable to similar analyses

but the details would differ.

3.1. Probabilistic representation of the contrast ratio

The contrast ratio, C, is defined as the ratio of the velocity

of the medium at the focus point, a, and at time, T , over the

root mean square of the velocity of all other points in the cavity.

Considering the coordinates of points in the cavity as uniformly

distributed random variables taking their values within the sur-

face boundaries, the contrast ratio at point a and time T may

be expressed probabilistically in terms of the expected values

of the velocities,

C =
E

[

vTR(a,T )
]

√

E
[

vTR(x , a,T )2
]

. (5)

The actual statistical distribution of modal amplitudes is in

general not known. However, the assumption that a Gaussian

distribution with zero mean can be employed as a good ap-

proximation is often borne out in practice for non-pathological

cases, as can be shown for the case of chaotic cavities. This

result follows from the description of a wave field as the super-

position of plane waves [18]. It is known that breaking sym-

metries in the placements of transducers, deviating from strict

right angles, or locally providing smoothly changing normals

in the cavity boundaries are sufficient measures to avoid patho-

logical cases [19], especially when dealing with large numbers

of modes [20]. A specific example of a pathological case is

discussed in Section 3.3.

The expected value of the nth mode is therefore E
[

Φn

]

=

1/S
∫∫

Φn ds = 0. Modes are normalised to have a unit stan-

dard deviation, σ2
(

Φn

)

= 1/S
∫∫

Φ2
n ds = 1. Far from focus

point, the first and second statistical moments of the velocity

are,

E
[

vTR(x , a,T )
]

=
∑

n

∑

m

Mnm

1

S

∫∫

Φn(x) ds
1

S

∫∫

Φm(a) ds

= 0,

E
[

vTR(x , a,T )2] =
1

S 2

∑

n

∑

m

M
2
nm

∫∫

Φ2
n(x) ds

∫∫

Φ2
m(a) ds

=
∑

n

∑

m

M
2
nm.

The expected value of the velocity away from the focus point

is zero, which is consistent with the considerations developed

in Section 2. Because of the orthogonal property of the normal

modes, at the focus point,

E
[

vTR(a,T )
]

=
∑

n

∑

m

Mnm

1

S

∫∫

Φn(a)Φm(a) dS

=
∑

n

Mnn

1

S

∫∫

Φ2
n(a) ds

=
∑

n

Mnn.

The contrast ratio is,

C =

∑

n Mnn
√

∑

n

∑

m M
2
nm

=
Tr(M)

Tr(M.MT)
=

Tr(M)

‖M‖
, (6)

where Tr(·) denotes the trace of a matrix and ‖ · ‖ the Euclidean

or Frobenius norm. From this expression, it becomes evident

that the contrast ratio increases when M tends to a diagonally

dominant matrix. The limit case is when M ∝ IN , that is, it is

proportional to the identity matrix. The maximum achievable

contrast is thus equal to the square root of the number of normal

modes excited by the focusing process, Cmax =
√

N.

When the modal shapes and frequency are known, either an-

alytically, by simulation or measurement, the matrix M can be

computed from (4). Equation (6) then serves as an optimization

criterion for the position of actuators, leading to the highest av-

erage contrast over the surface for a given cavity and number of

actuators.

3.2. Decomposition into spatial and temporal components

To study the factors affecting the contrast ratio, the matrix M

can be decomposed into a Hadamard, or entrywise, product of

two matrices, S and T, noted M = S ◦ T, where

Tnm =

∫ T

0

cos(ωn(T − η)) exp

(

− (T − η)
τn

)

cos(ωm(T − η)) exp

(

− (T − η)
τm

)

dη (7)

and Snm =

Q
∑

q=1

Φn(bq)Φm(bq) (8)

The roles of the time reversal window duration, T , and of the

modal frequencies, ωn, are encoded in T. On the other hand, the
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matrix S encodes the dependence of vTR on the number ,Q, and

on the positions, bq, of the actuators with respect to the modal

shapes, Φn. The spatial and temporal features of the focusing

process can thus be separated and studied independently. The

matrix M is diagonal if either S or T are diagonal. Focusing can

thus be obtained either temporally or spatially. This result cap-

tures the well-known equivalence principle between the number

of transducers, Q, and time-reversal window duration, T .

3.3. Analysis of the spatial contribution, S

The influence of the position and the number of actuators

on the contrast ratio is now investigated through the study of

the matrix S defined by (8). Considering a set of Q actuators

randomly distributed over the surface, S , the expected value of

the elements of S are,

E
[

Snm

]

= Q E
[

Φn(x)Φm(x)
]

=
Q

S

∫∫

Φn(x)Φm(x) ds =















0, if n , m,

Q, if n = m.

If Φn is Gaussian, then E
[

Φ4
n

]

= 3, therefore,

E
[

S
2
nm

]

= E



































Q
∑

q=1

Φn(bq)Φm(bq)

















2
















= E

















Q
∑

q=1

Φn(bq)2Φm(bq)2

+

Q
∑

q=1

∑

p,q∈{1,...,Q}
Φn(bq)Φm(bq)Φn(bp)Φm(bp)



















= Q E
[

Φ2
nΦ

2
m

]

+ Q(Q − 1) E [ΦnΦm]2

=















Q, if n , m,

2Q + Q2, if n = m.

The standard deviations of the elements of S therefore are,

σ (Snm) =

√

E
[

S
2
nm

]

− E [Snm]2 =















√
Q, if n , m,
√

2Q, if n = m.

On average, the diagonal entries of S increase proportionally

with the number of actuators while the off-diagonal entries are

zero. For all entries, the standard deviation is proportional to√
Q. As a result,

lim
Q→+∞

S = Q IN ,

where IN is the identity matrix of size N. We introduce

R(S) = (1/
√

N) Tr(S)/‖S‖ to quantify the closeness of S to

the identity matrix. This resemblance factor tends towards 1

as S tends to a matrix proportional to the identity matrix. By

way of example, let us consider the case of a rectangular plate

simply supported at its sides. The mode shapes can be ex-

pressed in closed form. Once normalized, they are given by

Φn(x) = Φp,q(x, y) = 2 sin(pπx/Lx) sin(qπy/Ly). Fig. 1 illus-

trates the result.

The assumption a Gaussian distribution centered on a given

mode does not necessary hold for certain pathological cases.

For instance, in a simply supported rectangular thin plate we

have Φn(x) = Φp,q(x, y) = 2 sin(pπx/Lx) sin(qπy/Ly). Thus,

E
[

Φp,q

]

= 2 (1 − (−1)p) (1 − (−1)q) /(pqπ2). The assumption

of zero mean is not verified when p and q are odd. Neverthe-

less, the mean decreases rapidly, like 1/pq. The zero mean as-

sumption is therefore still justified when high order modes are

solicited. For higher statistical moments, we have E
[

Φ2
n

]

= 1

and E
[

Φ4
n

]

= 9/4 = 2.25 when the Gaussian assumption gives

E
[

Φ4
n

]

= 3. The difference between a rectangular cavity and a

chaotic cavity is thus rather slight and the Gaussian assumption

is still a good approximation.

3.4. Analysis of the temporal contribution, T

The dependency of the contrast ratio on temporal parameters

is encoded in matrix T. In particular, the preferred choice of a

time reversal window of duration, T , is dictated by this matrix.

Developing (7) further gives,

Tnm =

∫ T

0

cos(ωn(T − η)) exp

(

− (T − η)
τn

)

cos(ωm(T − η)) exp

(

− (T − η)
τm

)

dη

= −1

4

[

2ω∗ + (−2ω∗ cos(ω+T ) − 2ω+ sin(ω+T ))e−ω∗T

ω+2 + ω2
∗

+
2ω∗ + (−2ω∗ cos(ω−T ) − 2ω− sin(ω−T ))e−ω∗T

ω−2 + ω2
∗

]

where ω+ = (ωm+ωn), ω− = (ωm−ωn) and ω∗ = (1/τn+1/τm).

As noted in [8], in most cases the sum of two modal pulsations

is much larger than their difference, that is, ω− ≫ ω+. The

elements, Tnm, simplify, up to a proportionality factor,

Tnm =
ω∗

ω2
− + ω

2
∗
+

(

−ω∗ cos(ω−T )

ω2
− + ω

2
∗
+
ω− sin(ω−T )

ω2
− + ω

2
∗

)

e−ω∗T

This expression can be further simplified by developing the ex-

pression of modal pulsation, ωn. In a two-dimensional cavity

and for high number of modes, the number of modes with fre-

quencies below a given frequency, f , obeys [21],

N = πS

(

f

c( f )

)2

, (9)

where S is the area of the cavity and c the frequency-dependent

phase velocity of flexural waves. Under Kirchhoff’s assump-

tions, the flexural wave velocity is

c =

√

√

√

2π

√

D

ρ
f , (10)

where D is the plate rigidity and ρ its surface density. Therefore,

the number of modes is

N =
S

2

√

ρ

D
f . (11)
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Figure 1: Footprint of the matrix S/Q for N = 64 modes and a varying number, Q, of transducers. The resembance factor, R, is 0.16, 0.30, 0.39, 0.84 respectively,

showing that the matrix tends to a diagonal matrix (R=1) as the number of transducers increases.

Tr

T0

0.1

0.0

0-40 40

rTc

T/Tc
0.05 0.1 0.2 1.0

0-40 40

rTc

0-40 40

rTc

0-40 40

rTc

Figure 2: Function Tr (continuous lines) and its approximation, T̃r , (dashed lines) for various ratios T/Tc and for τ = 0.1Tc.

and the frequency separation between two modes is constant on

average,

∆ f =
2

S

√

D

ρ
. (12)

Let Tc = 1/∆ f be the time constant of the cavity,

ωn − ωm = (n − m)∆ω = (n − m)
2π

Tc

.

If, in addition, we assume uniform modal decay,

∀{n,m}, τn = τm = τ, the entries Tnm simplify to a function with

a single subscript, r = m − n, and we have β = (m − n)∆ω =

r∆ω = 2πr/Tc and ω∗ = 2/τ. The matrix T is diagonal-

dominant. For n = m, we have

Tnn = Tr=0 = T0 =
τ

2

(

1 − e−2T/τ
)

.

The off-diagonal entries of the matrix T decay rapidly. To sim-

plify calculations, the entries, Tnm, can be approximated by

rectangular windows T̃r centered at r = 0, selected such that

T̃0 = T0, and such that
∫ ∞
−∞ T̃0 dr =

∫ ∞
−∞ Tr dr = Tc/2. The ap-

proximating function, T̃r, is

T̃r =



















T0 =
τ

2

(

1 − e−2T/τ
)

, |r| < Tc

4T0

=
Tc

2τ(1 − exp (−2T/τ))
,

0, otherwise.

The approximating functions are exemplified in Fig. 2 for the

case of a simply supported rectangular plate. Figure 3 shows the

evolution of T when T increase from a small value to Tc, and

this for two distinct values of τ.

Increasing the time reversal window duration, T , therefore

increases the magnitude of the diagonal terms of Tnm and re-

duces the width of the diagonal band. As time T increases, the

peak amplitude increases and normal modes of the cavity hav-

ing similar pulsations become distinguishable from each other.

Their phases and amplitudes can be adjusted independently to

achieve focusing. For T ≫ Tc, the frequency resolution is

greater than the average modal spacing, and most modes are

resolved.

Modal decay induces two effects. The diagonal terms of Tnm

are bounded by τ/2. As a consequence, the peak velocity am-

plitude reaches a plateau for times larger than τ/2. Waves are

damped out before reaching the focus point. Additionally, the

width of the diagonal band of Tnm, and hence the frequency res-

olution, is also bounded by π/(τ∆ω). Modes that are close to

each other overlap in frequency. Because of decay, they cannot

be distinguished and individually produced. The modal decay

can be considered to be negligible if T tends to a matrix propor-

tional to the identity matrix as T becomes large,

lim
T→+∞

T = T IN .

Temporally, the difference between a regular and chaotic cav-

ities lies in the variations of ωn −ωn+1 around an average value

∆ω. In a chaotic cavity, the probability distribution of ωn−ωn+1

follows a Gaussian Orthgonal Ensemble (GOE) distribution and

a Poisson distribution for a regular cavity [22]. The probability

of having ωn −ωn+1 = 0 is therefore null in a chaotic cavity but

non null in the case of a regular cavity. Equating ωn−ωn+1 with

its average value, ∆ω, is akin to ignoring this differences.

To exemplify these differences, consider again the case of a

rectangular plate with dimensions Lx and Ly simply supported

on its sides. The modal pulsations are given by ωn = ωp,q ∝
[

(p/Lx)2 +
(

q/Ly

)2
]

. When one dimension is a rational fraction

of the other, that is when Lx = aLy/b with a, b ∈ N, then dif-

ferent modes with identical pulsations appear. The off diagonal

5
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Figure 4: Evolution of the contrast ratio as a function of the number of transducers and of the duration of the time reversal window. (a) Iso-contrast contours (thick

lines) are shown for C/
√

BTc=0.1, 0.5, 0.7 and 0.9 for τ = ∞ and τ = 0.1Tc. (b) The same contrast ratio can be obtained either by increasing the time-reversal

window duration or the number of actuators, but is limited by
√

BTc. The contrast ratio reaches a plateau for T > τ/2.

terms of Tnm remain even for long time, resulting in a loss of

contrast. The number of degenerated modes decreases as a and

b increase. Degeneracy can therefore be limited by setting the

dimensions in a non-rational proportions. Asymmetries in the

boundary and in transducers placements are sufficient to limit

the amount of degenerated modes. Degeneracy is further re-

duced by the spectral overlap due to damping.

3.5. Complete expression for the contrast ratio

The numerator of (5) is evaluated by substituting S by its

expected value calculated in Section 3.3,

E
[

v(a,T )
]

∝
N

∑

n=1

Tnn Snn = NQ T0,

where T0 = τ/2
[

1 − exp(−2T/τ)
]

as defined in the previous

section. The denominator is decomposed in a sum of diagonal

and non-diagonal terms,

E
[

vTR(x , a,T )2
]

∝
∑

n

∑

m

(Smn Tnm)2

=
∑

n















∑

m=n

(Smn Tnm)2 +
∑

m,n

(Smn Tnm)2















= N

[

Q(Q + 2)T2
0 + QT

2
0

(

Tc

2T0

− 1

)]

= N

(

Q(Q + 1) T
2
0 + Q T0

Tc

2

)

.

Finally,

C =
√

N

√

2QT0

2(Q + 1)T0 + Tc

.

Substituting the number of modes, N, by its expression (9), the

expression of the contrast ratio in the general case of a damped

cavity excited by signals of bandwidth, B, becomes,

C =
√

BTc

√

Q τ
[

1 − exp(−2T/τ)
]

(Q + 1) τ
[

1 − exp(−2T/τ)
]

+ Tc

,
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When the effects of modal decay can be neglected, that is when

τ ≫ T , the contrast ratio expression simplifies to

C =
√

BTc

√

2QT

2(Q + 1)T + Tc

. (13)

Figure 4 shows the evolution of the contrast ratio for dif-

ferent numbers of transducers and time-reversal window dura-

tions, first in the case when there is no decay and then for the

case of significant decay.

3.6. Discussion

Some of the key properties of the focusing technique by time

reversal of waves propagating in a cavity are captured by (3.5)

and (13). When the effects of modal decay can be neglected,

from (13), the relationship 2(Q + 1)T + Tc < 2QT must hold

since T and Tc are positive quantities. The contrast ratio is thus

bounded above by Cmax =
√

BTc and there is saturation regime

when Q and T verify QT ≫ T+Tc/2. For a lightly damped cav-

ity and transducers of a given bandwidth, the maximum contrast

is thus achieved by verifying the latter condition.

Nonetheless, this condition cannot be met by increasing T

only. In the absence of significant damping, the contrast ob-

tained when T ≫ Tc tends to
√

BTc

√
Q/(Q + 1), where the

maximum achievable contrast could be
√

N =
√

BTc. The ac-

tual contrast ratio is thus smaller than the ideal one, even for

large time T . This effect is due to the loss of information, even

in the absence of significant damping. It is also responsible

for the limit of channel-time reversal focusing [8]. The loss of

information comes from the fact that the transducers observe

modal amplitudes from a given position. The observed ampli-

tudes are smaller than the actual modal amplitude or can even

be zero if a transducer happens to be located on a nodal line,

where Φn(bq) = 0.

The modal amplitudes are better estimated as the number

of actuators is increased, and the resulting contrast ratio tends

to
√

BTc. When the number of actuators is sufficiently large,

Q ≫ 1, the loss of information becomes negligible and the con-

trast ratio becomes a function of the product QT only. This re-

sult embodies the principle of equivalence between the time re-

versal window duration, T , and the number of actuators, Q [23].

When T is small in comparison to Tc and τ, the expression for

contrast ration simplifies to C ≃
√

2BQT , which is consistent

with expressions previously found in the literature.

When modal decay cannot be neglected, the symmetry

with respect to time breaks down, leading to a loss of

contrast. When T ≫ τ/2, the contrast ration tends to√
BTc

√
(Qτ/[(Q + 1)τ + Tc]. The waves emanating from the

transducers are damped before reaching the focus point. Modal

amplitudes and phases of are no longer accurate and the max-

imum contrast is not achieved. For a given cavity and a given

bandwidth, the number of actuators should thus be selected so

that Q ≫ (Tc + τ)/τ and time reversal window such that T ≃ τ
to achieve the highest possible contrast ratio.

Further improvement of the contrast ratio requires to either

increase the bandwidth B of the transducers and of the signal

processing, or to increase the time constant of the cavity, Tc.

Developing (12) for an homogeneous thin plate gives,

Tc =

√
3S

h

√

ρ(1 − ν2)

Y
, (14)

where Y , ρ and ν are the plate material Young’s modulus, den-

sity and Poisson’s ratio, respectively, h and S are the plate thick-

ness and the surface area. The maximum contrast therefore de-

pends on mechanical and dimensional properties of the cavity.

In particular, increasing the surface area S , while requiring to

increase the focusing time window and/or the number of actua-

tors, leads to a higher achievable contrast ratio. Physically, the

energy not confined to the peak region is distributed over a large

surface, leading to a reduction of the background noise level.

The expression of contrast represents the average contrast for

all possible focusing points of a given cavity, and with Q trans-

ducers randomly distributed. Some pathological arrangements

can deviate from this prediction such as when placing the trans-

ducers on a symmetry axis of a rectangular cavity or in the cen-

ter of a disk cavity. Thus precautions must be therefore be ex-

ercised to avoid when desiging the shape of certain cavities and

placing transducers in it [10, 18].

4. Thermal drift

4.1. Effects Due to Temperature Variation

A first main effect is due to thermal expansion that affects the

dimensions of a cavity. Given a coefficient of thermal expan-

sion, α, and a uniform variation of temperature, dθ, a distance,

l, between two points of a cavity varies according to,

dl

l
= α dθ.

Another effect is due to thermo-mechanical relaxation that is

associated with a variation of the Young’s modulus of the ma-

terial. This effect can also be modelled in terms of small varia-

tions related through a coefficient, β,

dY

Y
= β dθ.

If the dimensional changes of a cavity can be assumed to be

much smaller than the smallest wavelength considered, then the

effect of temperature variations on modal shapes are negligible.

Modal spacing however depends on phase velocity. Accounting

for the variations of the cavity dimensions and for the variations

of the mechanical properties of the material, it follows from

(14) that

d∆ω

∆ω
=

dh

h
− dS

S
− 1

2

dρ

ρ
+

1

2

dY

Y

=

(

α − 2α − 1

2
(−3α) +

1

2
β

)

dθ =
1

2
(α + β) dθ.

A variation of temperature, ∆θ, corresponds to shifted modal

pulsations, ω̃, such that the modal spacing becomes,

∆ω̃ = ∆ω +
d∆ω

dθ
∆θ = ∆ω (1 + ξ∆θ) ,

7
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where,

ξ =
1

∆ω

d∆ω

dθ
=

1

2
(α + β) . (15)

For each mode number, n, the new modal pulsation is ω̃n =

n∆ω̃ = n∆ω(1 + ξ∆θ). Any variation of temperature results in

a dilatation of modal frequencies unless α = −β.

4.2. Effect on contrast

The drift of modal frequencies affects the matrix T. Its diag-

onal entries, Tnn, now include ω− = ω̃n − ωn = nξ∆θ∆ω. These

entries are no longer equal to zero and depend on the mode

number, n. Using the same approximation as in Section 3.4 the

diagonal entries become,

T̃nn =















T0, for n < Tc/(4|ξ∆θ|T0) = N∆θ,

0, otherwise,
(16)

where, T0 = τ/2
[

1 − exp(−2T/τ)
]

as defined earlier. The

term, |ξ∆θ|,comes from the symmetry of Tnn with respect to ω−.

Temperature variations have an effect on the contrast ratio that

does not depend on their sign. If N∆θ is larger than the high-

est mode, Nmax, included in the bandwidth, temperature vari-

ations will have no effect on the focusing accuracy. Writing

Nmax = fmax/∆ f = Tc fmax, the time for which N∆θ = Nmax is,

T∆θ =
τ

2
ln

(

2|ξ∆θ| fmaxτ

2|ξ∆θ| fmaxτ − 1

)

, (17)

where fmax is the upper limit of the signal bandwidth. The

phase shift induced by thermal perturbation at focus time, T ,

is for a mode number, n, ∆ϕ = (ω̃n − ωn)T = n|ξ∆θ|∆ωT =

n2π|ξ∆θ|T/Tc. In the case of negligible decay, T∆θ simplifies

into T∆θ = 1/4|ξ∆θ| fmax. The mode number, N∆θ, corresponds

to the mode above which the phase shift induced by thermal

perturbation is larger than π/2 at focus time T . These modes

no longer contribute constructive interferences at the focusing

point. The thermal effect on the matrix T is illustrated in Fig. 5.

The approximation (16) gives

E
[

v(a,T )
]

∝
N

∑

n=1

TnnSnn = min(N,N∆θ)QT0

= NQ
τ

2
[1 − exp (−2 min(T,T∆θ)/τ)].

For T < T∆θ, the peak amplitude increases is immune to tem-

perature variations. Beyond, T = T∆θ, the amplitude of the peak

plateaus. The thermal perturbations affect the diagonal entries

of T but does not change
∫ ∞
−∞ Tr dr. The sum of non-diagonal

entries, Tnm, is unaffected. The noise level is

E
[

vTR(x , a,T )2] ∝
∑

n

∑

m

(SmnTTnm)2

∝ N

(

Q(Q + 1)

(

τ

2

(

1 − exp (−2min(T,T∆θ)) /τ
)

)2

+Q
τ

2

(

1 − exp (−2T/τ)
) Tc

2

)

.

The contrast ratio therefore remains unaffected for any T <

T∆θ. When T > T∆θ, however, the amplitude of the peak remains

constant but the noise level increases leading to a deterioration

of the contrast ratio that can be predicted as follow,

C(T > T∆θ) =
√

BTc

√

Q

(Q + 1) + 4 f 2
max|ξ∆θ|2Tcτ

(

1 − e−2T/τ
)
.

(18)

When T is larger than τ, the noise level no longer increase

and the contrast ratio remains constant. Figure 7 illustrates how

temperature variations affect the contrast ratio. For a given T ,

the condition, T < T∆θ, provides the maximum allowable tem-

perature variation, ∆θmax, that preserves the contrast ratio,

|∆θ| < ∆θmax =
1

2ξ fmaxτ
[

1 − exp (−2T/τ)
] . (19)

Above this limit, the contrast ratio is given by (18).
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Figure 6: (a) Geometry of the plate, boundary conditions, and transducers arrangement used for the experiments. (b) Experimental setup. The distance of the lamp

to the plate could be adjusted. Thermal equilibrium was monitored by a thermocouple probe in contact with the plate. A laser vibrometer could measure the velocity

of any point of the plate.
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Figure 7: Thermally perturbed evolution of contrast ratio as in Fig. 4 and iso-contrast contours at 0.1, 0.5 and 0.7. The thermal perturbation is T∆θ = 0.1Tc. (a) Case

when τ ≫ Tc. (b) Case when τ = 0.1Tc. The contrast ratio increases when T < T∆θ, decreases when T∆θ < T < τ, and plateaus when T > τ.

There are two thermal drift regimes. When |∆θ| < ∆θmax,

the contrast is unaffected by temperature variations. The limit,

∆θmax, does not depend on the number of actuators, Q, or on

the time constant of the cavity, Tc. For larger temperature varia-

tions, the contrast ratio decreases with
√

1/(1 + a|∆θ|2). The ra-

tio of contrast in presence of temperature variation over the con-

trast in the absence of temperature variation is therefore equal

to unity when |∆θ| < ∆θmax. For |∆θ| > ∆θmax,

C(|∆θ| > ∆θmax)

C(|∆θ| = 0)
=

√

τ(Q + 1)
[

1 − exp(−2T/τ)
]

+ Tc

τ(Q + 1)
[

1 − exp(−2T/τ)
]

+ 8 f 2
maxτ

2Tc|ξ∆θ|2
[

1 − exp(−2T/τ)
]2

(20)

5. Experimental verification

Measurement on an actual acoustic cavity were conducted to

verify the predictions of the expression involving the thermal

drift coefficient, ξ, and the expressions of contrast derived in

the previous sections.

5.1. Materials and methods

5.1.1. Acoustic cavity

A stainless steel plate (AISI-304) of dimensions, L = 215,

l = 135, and h = 0.25 mm was simply supported on three

points, see Fig. 6(a). Eight piezoelectric transducers (Ferrop-

erm, PZ26), 2.5 × 2.5 × 0.5 mm, were bonded with conductive

epoxy resin to the plate at a distance, d ≃ 5 mm, from the sides.

A 100 W incandescent bulb placed over the plate was used to

cause variations of temperature that were monitored by a ther-

mocouple probe in contact with the steel plate, see Fig. 6(b).

A thermal equilibrium, achieved in 15 minutes, was established

before any measurements or focusing trials.

The distribution of the transducers did not meet the uniform

distribution assumption stated in Section 3.3. Yet, the viola-

tion of this assumption was expected to have negligible impact

on the predicted values of the contrast ratio. Specifically, if

the transducers are located at the periphery of the cavity as re-

quired by many applications of time-reversal focusing, our re-

sults would still hold.

The characteristic decay time was found by fitting a decreas-

ing exponential on the experimental impulse response. The

characteristic time of the cavity, Tc = 1/∆ f , was calculated

from (12). Data given in reference [24] was used to calculate

β = −5.10−4 K−1. Other mechanical properties were taken from
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Figure 8: Typical signal recorded at the focus point. A 2 ms portion of signal used for noise level estimation.

S (m2) h (m) Y (GPa) ν ρ (kg·m−3) α (K−1) β (K−1) Tc (ms) τ (ms)

2.90.10−2 0.5 200 0.29 7800 16.10−6 -5.10−4 38 30

Table 1: Properties and characteristic times of the plate used for experimental validation [24, 25].

reference [25]. Table 1 collects all the relevant parameters of

this cavity.

The values of α and β are of opposite signs. For most met-

als, the effect of thermal relaxation dominates greatly that of

dimensional changes. From the expression of the phase veloc-

ity of flexural waves in a plate, (10), the shortest wavelength for

a maximum frequency fmax = 25 kHz is λmin = 10 mm. The

transducers were four times smaller and thus can reasonably be

considered to be punctual. From these data, ∆L = αL∆θ =

6.10−5 m≪ λ. The plate dimensional variations due to thermal

expansion were indeed much smaller than the shortest wave-

length. It is thus reasonable to consider the modal shapes to be

unchanged, as was assumed in the previous section.

5.1.2. Signal acquisition and processing

The time-reversal process requires, in a first step, to acquire

the set of impulse responses from the transducers to the focus-

ing point. In order to eliminate the need to generate precisely

calibrated impulses, we took advantage of the reciprocity prin-

ciple and used the transducers as actuators in both the acqui-

sition and in the emission step. A swept-sine signal, with fre-

quencies spanning the whole system bandwidth, was applied to

each actuator, one at a time. The plate velocity was recorded

at the location of focus by a laser vibrometer (Polytec, OFV

534). We computed the frequency response functions from the

actuator input voltage and the vibrometer output signal. The

impulse response was obtained by applying the inverse Fourier

transform to this function. During identification, the bandwidth

was B = 25 kHz and the sampling frequency Fs = 50 kHz.

The noise level, defined in Section 3 to be the RMS value of

velocity over the surface at focus time T , is difficult to measure

since it requires to measure the velocity of the whole surface

at once. Taking advantage of the ergodic nature of the cavity,

as noticed by [10], the noise level is also the RMS value of the

velocity at the focus point for t , T , as long as t ≪ τ, that is:

E
[

vTR(x , a, t = T )2] = E
[

vTR(x = a, t , T )2].

The noise level was estimated at the focus point for a period of

2 ms starting 25 µs after the focusing time, T . The peak velocity

was taken to be the largest recorded velocity. The acquisition

sampling frequency was set to fs = 200 kHz for the vibrometer

signal in the emission step to achieve a good sampling of the

focused peak. Figure 8 shows a typical signal recorded at the

focus point.

5.2. Results and discussion

5.2.1. Thermal drift

We first recorded the set of transfer functions, H( f ), be-

tween the focus point and actuators at temperatures θ =

{22, 26, 30, 35}◦C. Taking θ = 22◦ C as the reference temper-

ature, the temperature variations were thus ∆θ = {0, 4, 8, 13}
K. For each temperature, the amplitude of the transfer func-

tions for each actuators were summed to increase the signal

amplitude. Twenty modal frequencies covering the entire band-

width were then identified. For each identified mode, the vari-

ation of modal frequency as a function of temperature was es-

timated, see Fig. 9. The ratio of each modal frequency over

the reference modal frequency was found to be nearly constant

over the whole bandwidth and to vary with temperature. Pos-

ing, fn = n∆ω, from (15), ξ̂ ≈ ( f ∆θn − f 0
n )/( f 0

n ∆θ) giving a

value of −2.65 ± 0.35 10−4 K−1. For purposes of comparison,

the values given in Table 1 predict a theoretical value for ξ of

−2.4.10−4 K−1. The experimentally estimated temperature sen-

sitivity of the plate was therefore consistent with the value pre-

dicted from published material properties.

5.2.2. Contrast

The aim is to measure the contrast ratio in the presence

of temperature variation in order to compare the results to

those predicted by (13) and (18), as represented by Figs. 4

and 7. The reference impulse responses were recorded at

room’s temperature, θ = 21◦C. Refocusing was then produces

at θ = {21, 27, 35}◦ C, that is, with temperature variations,

∆θ = {0, 6, 14} K.
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Figure 11: Contrast ratio as a function of time reversal window duration for various number of actuators and temperature variations. Theoretical expression (broken

line) and experimental measurements (continuous line).

Taking ξ = −2.4.10−4, (17) gives T6K = 9 ms and T14K =

3 ms. The number of actuators was varied from one to eight,

while the time-reversal window duration, T , was varied from 0

to 50 ms by steps of 2 ms. For each configuration, the focus-

ing process was repeated ten times with the actuators randomly

selected. Contrast was estimated as the average of these ten re-
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Figure 12: Model prediction (dashed line) and measurements (circles) of the relative contrast ratio as a function of temperature variations. (a,b) For a fixed number

of actuators, the contrast was maintained for wider temperature variation, ∆θ, with small values of T . (c,d) For a given time reversal window duration T , contrast

decreased less for an increasing temperature variation if more actuators are employed.

alizations. Figure 10 shows the overall results which the reader

may compare to the values plotted in Figs. 4 and 7.

More precise comparisons can be seen in Fig. 11 that shows a

subset of these results superposed with the predicted theoretical

values, showing close agreement. At constant temperature, see

Fig. 11(a), the saturation regime is reached at T = Tc/(Q+1) for

Q = 8 and Q = 3. For a single actuator, Q = 1, we have Tc/(1+

1) = 19 ms < τ/2 = 15 ms. Saturation is thus due to vibration

damping. The time, T∆θ, at which contrast is maximized is well

predicted, see Fig. 11(c,d). As predicted theoretically this time

does not depend on the number of actuators, see Fig. 11(b), and

decreases as the temperature variation increases.

5.2.3. Contrast Sensitivity

We also verified the prediction of (20) concerning temper-

ature sensitivity. Reference impulse responses were acquired

at room temperature, θ = 22◦C. Focusing was performed with

Q = 1, Q = 8, T = 4 ms, and T = 44 ms at temperatures

θ = {22, 24, 25, 26, 27, 28, 30, 35}◦C. Please refer to Fig. 12 for

the experimental values of the contrast ratio, C∆θ, normalized

to the contrast at the reference temperature, C0. Two regimes

could be observed as predicted.

Contrast was found to decrease faster for small number of

actuators as seen in Fig. 12(a,b). The contrast was not affected

by small temperature variations but decreased after a threshold

that was independent from the number of actuators employed,

as predicted by (19). The contrast increased when T decreased

and decreased faster for small number of actuators as shown in

Fig. 12(c,d).

Conclusion

In this paper we provided a comprehensive expression for the

value of the contrast ratio that can be expected from focusing

waves by time-reversal in a two-dimensional acoustic cavity.

This compact expression relates the contrast ratio to fundamen-

tal parameters including the number of actuators, the duration

of the time-reversed signal window, the mechanical properties

and the dimensions of the cavity and the considered bandwidth.

The single channel limit and the spatio-temporal equivalence

principle can be easily retrieved from this expression. An ex-

pression of contrast accounting for thermal drift was also pro-

vided. The conditions needed to prevent loss of contrast were

given in terms of a maximum time reversal window duration

and as the largest allowable temperature variation. The pre-

dicted values and effects were borne out by experimental veri-

fication with a steel plate.

The expression can be employed to decide about the appro-

priate tradeoffs for particular implementations of time-reversal

wave focusing. In particular, we have shown that increasing the

bandwidth increases the achievable contrast ratio but also in-

creases sensitivity to temperature variations. An damped cavity

is less sensitive to temperature variations, but requires more ac-

tuators to achieve the same contrast ratio. Increasing the time

reversal window duration allows one to reduce the number of

actuators but this benefit comes at the cost of a higher tempera-

ture sensitivity.

The detailed derivations were carried out in the case of flex-

ural waves propagating in a thin plate following Kirchhoff’s as-

sumptions but the generalization if thus expression to the case

of a three dimensional cavity would requires only small adjust-

ments to account for the influence of modal spacing.
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