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ABSTRACT

Admissible curved space backgrounds for four-dimensional supersymmetric field theories are de-

termined by solving Killing spinor equations of four-dimensional off-shell supergravities. These

can be obtained by combining ten-dimensional type IIB supersymmetry with D-brane kappa-

symmetry and identifying auxiliary fields of the four-dimensional supergravity fields in terms of

type IIB fields. In this paper we show how to extend a number of solutions of four-dimensional

Killing spinor equations with four or less supercharges to solutions of the ten-dimensional su-

persymmetry constraints.

http://arxiv.org/abs/1710.10853v1
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1 Introduction

Much recent work was devoted to constructing supersymmetric field theories in four dimensions

on non-trivial Riemannian manifolds, with four or less supercharges [1–9]. The field theory is

generally coupled to an N = 1 off-shell supergravity which is then treated as a background.

Important constraints arise from demanding that the fermion, i.e. gravitino, variations vanish

for the supergravity. The Killing spinor equations, obtained this way, are then solved by

a specific Killing spinor, metric, and a profile for the appropriate auxiliary fields which are

determined by the choice of supergravity (generally, either old minimal or new minimal). The

number of Killing spinors with specific chirality which solve the Killing spinor equations for

given metric and auxiliary fields determines the amount of supersymmetry under which the

field theory is invariant. This procedure has lead to a list of admissible four-manifolds that

support globally supersymmetric gauge theories.

In [10] it was shown how backgrounds which simultaneously obey the supersymmetry con-

ditions for bulk type IIB theory and D3-branes imply the vanishing of the gravitino variation of

a four-dimensional N = 1 off-shell supergravity.1 However, the four-dimensional supergravity

appearing here is the so-called 16/16 formulation [13–15], and can be thought of either as old

minimal supergravity coupled to a vector multiplet or new minimal supergravity coupled to

a chiral multiplet. The four-dimensional N = 1 Killing spinor equations are thus formally

reproduced with the auxiliary fields of the supergravity being replaced by combinations of the

fluxes, the dilaton and components of the spin connection of ten-dimensional type IIB theory.

On the other hand, the desired four-dimensional Killing spinor equations form only a small

subset of the IIB closed and open string supersymmetry conditions.2

In this paper, we will consider the full set of string supersymmetry conditions, and demon-

strate how to obtain four-dimensional curved Riemannian manifolds as part of ten-dimensional

supersymmetric configurations. Given a four-dimensional background, consisting of a four-

dimensional metric and auxiliary fields, we wish to find a ten-dimensional string background

that satisfies the supersymmetry equations, such that the auxiliary fields are specified in terms

of the IIB fields. In addition, we wish to identify the supercharges preserved in the given

four-dimensional background as the four-dimensional component of the ten-dimensional Killing

spinors.

By locally splitting ten-dimensional spacetime into directions parallel and orthogonal to the

D3-brane, in the set of all string supersymmetry conditions we can separate the four-dimensional

equations from the rest. Then, introduction of a pair of D7-branes breaks the four-dimensional

supersymmetry from N = 4 to N = 1. We will see how the string supersymmetry conditions

imply the vanishing of the variations of the gravitino (see (2.9)) as well as the additional spin

1See [11] for a discussion focusing on M5-branes.
2Non-trivial worldvolume flux is associated with non-linearly realised supersymmetries of the field theory [12].

Here, we are interested in the simplest solutions and we will be setting it to zero.
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1/2 fermion of 16/16 supergravity (see (2.10)). In view of its stringy origin, we will refer to

this second equation as the (modified) dilatino equation. There are also a number of equations

which have no four-dimensional interpretation (see (2.11)), originating from the internal (six-

dimensional) gravitino variation. These three sets of equations combined are equivalent to the

IIB supersymmetry conditions, taking into account that a number of components of the fluxes

have been set to zero. As explained in section 2, all terms appearing in these equations have

explicit expressions in terms of ten-dimensional fields.

A specific known solution of the four-dimensionalN = 1 Killing spinor equations can then be

examined with the purpose of extending it to a full solution of ten-dimensional supersymmetry

conditions. This procedure will be elaborated in section 3.

The requirements imposed in ten dimensions follow the guidelines from the four-dimensional

backgrounds. In the four-dimensional analysis the equations of motion for the auxiliary fields

are not imposed, and it is not required to solve supergravity theories. Hence one does not expect

that the ten-dimensional lifts will generically involve fluxes that satisfy Bianchi identities. In

this paper we are only interested in solutions of ten-dimensional supersymmetry conditions. In

addition, while the general expectation is that the auxiliaries are real, this is no longer the case

once one considers Euclidean four-dimensional supergravities.3 Hence it is not too surprising

that the uplifting some of the four-dimensional backgrounds may lead to the appearance of the

complex formulation of ten-dimensional supersymmetry [17]. The complexified theory encom-

passes the so-called variant supergravities in ten dimensions with different spacetime signatures,

notably Euclidean type IIA (but not IIB) theory, which have been predicted by dualities [18].

An appropriate choice of the reality condition may yield all existing variants. As will be ex-

plained in section 5, for four-dimensional theories which for a given chirality preserve only a

single supercharge, the only possible ten-dimensional lifts are to the complexified theories.

Our solutions can be grouped into two classes, presented respectively in sections 4 and 5.

The first class involves solutions with at least two preserved supercharges of the same chirality,

and is based on a simple ansatz for solving the dilatino variation. All solutions in this class

satisfy the supersymmetry conditions of the standard IIB supergravity. The four-dimensional

manifolds appearing in this class are noncompact and the examples include hyperbolic spaces

(H4 and H3 × S1) and S3 × R and are reviewed in section 4. The second class, exemplified

by S4 and S3 × S1, involves solutions to the complexified supersymmetry variations. These

solutions are presented in section 5. In addition, the details of a general S4 solution can be

found in appendix C.4

In spite of recent progress in the study of gauge theory on curved spaces, many important

questions remain open [19]. Our goal was to show that ten-dimensional lifts of four-dimensional

3Four-dimensional Euclidean supergravities are not well-studied. See [16] for a study of Euclidean super-

gravity arising from a timelike reduction from five dimensions.
4Some details on Killing spinor equations in minimal and 16/16 supergravities can be found in appendix A.

Appendix B contains some useful formulae relating ten and four-dimensional spin connections.
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Killing spinor equations exist, not to be exhaustive in our search for such lifts, and we have

made several simplifying assumptions. The sampling of solutions presented here involves set-

ting to zero as many fields as possible, such as dropping half of the equations as explained

in the commentary to table 1. We have verified that not only the four-dimensional Killing

spinor equations can be found within the combination of ten-dimensional bulk and D-brane

supersymmetry variations, but that actual solutions of the former can be lifted to the solutions

of the later. A choice of ten-dimensional metric and fluxes results in a choice of an admissible

Riemann manifolds and global symmetry background for a four-dimensional supersymmetric

field theory. For a given four-dimensional Riemannian manifold, there is no unique choice of

auxiliary fields, hence one does not expect a unique uplift. Moreover, we show that even for

a given choice of auxiliary fields the uplift need not be unique. However, the ten-dimensional

perspective should hopefully prove to be useful in further study of these gauge theories.

2 The set up

In order to determine which manifolds can support globally supersymmetric field theories, a

number of four-dimensional equations need to be solved. We will first consider the derivation

of this set of four-dimensional equations in terms of ten-dimensional fields.

The type IIB supersymmetry conditions, i.e. the vanishing of the ten-dimensional gravitino

and dilatino respectively, in ten dimensions are given by

δε̂ΨM = D̂M ε̂ = ∇M ε̂+
1
8
HMNPΓ

NPP ε̂+ 1
16
eφ
∑

n

1
(2n−1)!

FM1...M2n−1Γ
M1...M2n−1ΓMPnε̂

δε̂χ = D̂ε̂ = ((∂Mφ)Γ
M ε̂+ 1

12
HMNPΓ

MNPP)ε̂− 1
8
eφ
∑

n

6−2n
(2n−1)!

FM1...M2n−1Γ
M1...M2n−1Pnε̂

(2.1)

Capital latin letters will be used to denote ten-dimensional indices, those from the beginning of

the alphabet (A,B, ... = 0, ...9) being reserved for the tangent space indices, while those from

the middle (M,N, ... = 0, ..., 9) for the curved ones.

In addition, the condition for a supersymmetric Euclidean D3-branes wrapping a manifold

S placed in a type IIB background balancing the worldvolume supersymmetry and kappa-

symmetry is given by

Γ0ε̂ = iγ(4)P1ε̂ = ε̂ . (2.2)

Here, we have defined

P =

(
1 0

0 −1

)
, Pn =

(
0 1

(−1)n 0

)
(2.3)
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as generators of the SL(2,R) S-duality. The tangent space and curved indices on S are denoted

respectively by middle of the alphabet latin (m,n, ... = 1, ..., 4) and greek (µ, ν, ... = 1, ..., 4)

letters.5 On M6, we denote tangent space indices by letters from the beginning of the latin

alphabet (a, b, ... = 0, 5, ..., 9) and curved space indices by greek letters (α, β, ... = 0, 5, ..., 9).

Note that we have taken a special form of projection in (2.2) where the worldvolume flux

Fmn = eM[me
N
n]BMN + 2πα′Fmn has been set to zero. The resulting restrictions on the allowed

values for the background NSNS three-form H will be taken into consideration. The more

general situation with non-trivial worldvolume flux has been discussed in [12]. We impose this

constraint in order to not have to deal with non-linear supersymmetry for the background since

our interest is in finding the ten-dimensional lifts of four-dimensional Riemannian manifolds S

capable of supporting globally supersymmetric gauge theories.

We think of S ⊂ M10, wrapped by the Euclidean D3-brane, as a submanifold of the ten-

dimensional spacetime. All our analysis is local, and we work with a split ten-dimensional

tangent bundle. As we shall see in our solutions the spacetime metric is a warped product

M10 = S ×M6. We can construct more complicated metrics that satisfy the supersymmetry

conditions, but for our purposes this will not be necessary; we will restrict our attention to

finding the simplest possible solutions. We will refer to S as the external space and to the

Lorentzian space M6 as the internal space.

We will denote by ε = (ε1, ε2) the pullback of the ten-dimensional Killing spinor doublet ε̂

to the brane, which we locally decompose as

ε1 = ξ+j ⊗ η+j + ξ−j ⊗ η−j + c.c. , (2.4)

with ε2 determined by the D3-brane supersymmetry condition (2.2). The pseudoreal chiral

spinors ξ±j of Spin(1, 5) will be referred to as the ‘internal spinors’, and the pseudoreal chiral

spinors η±j of Spin(4) as the ‘external spinors’. They can be considered as the spinors respec-

tively perpendicular and parallel to the brane. We should stress that there is absolutely no

guarantee that such a decomposition holds globally, nor that this is even possible for generic

S, since in general S need not admit a spin structure. Relevant examples for which globally

well-defined nowhere vanishing four-dimensional chiral Killing spinors fail to exist are generic

Kähler manifolds and S4. We refer to the literature [5] for details on how to deal with such

issues.

A priori, the index in (2.4) satisfies j ∈ {1, 2} since we have 32 supercharges. We are,

however, interested in four-dimensional backgrounds preserving four or less supercharges; the

superfluous symmetry will be removed by introducing supersymmetric D7-branes in the next

section. For the rest of this section, we will consider the more supersymmetric case.

5We work with four-component Weyl spinors. We will never write out spinor indices, except in appendix

A where we demonstrate how our conventions are related to those in the literature, where everything will be

four-dimensional; hopefully the use of α, α̇ for spinor indices there will cause no confusion.
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Equations Fields

{Dm,Γ0}
∇(4)
m ωmab Hmna Fm Fmna Fmabcd

Fabc

[Da,Γ0]
ωabm Hmna Fm Fmna Fmabcd

Habc Fabc

[D,Γ0]
∂mφ Hmna Fm Fmna

Habc Fabc

{Da,Γ0}
∇(6)
a ωamn Hmab Fa Fmab Fa1234

Fmnp Fmnabc

[Dm,Γ0]
ωmna Hmab Fa Fmab Fa1234

Hmnp Fmnp Fmnabc

{D,Γ0}
∂aφ Hmab Fa Fmab

Hmnp Fmnp

Table 1: The string field components present in the various supersymmetry equations (2.5).

The combined open and closed string supersymmetry conditions are equivalent to the van-

ishing of each of the following terms:

Lm =
1

2
{Dm,Γ0}ε Rm =

1

2
[Dm,Γ0]ε

La =
1

2
[Da,Γ0]ε Ra =

1

2
{Da,Γ0}ε

L =
1

2
[D − ΓaDa,Γ0]ε R =

1

2
{D − ΓaDa,Γ0}ε .

(2.5)

As can be seen from table 1, with the exception of the ten-dimensional metric which dictates

all four spin connection components with mixed indices, the sets of fields appearing in the L

and R terms are disjoint. Our interest lies in examining string backgrounds which in some

sense embed four-dimensional supergravity backgrounds. Such four-dimensional backgrounds

are determined by four-dimensional Killing spinor equations (we will be more specific later on),

hence it is the L-terms, which are related to ∇(4)
m , that are of interest to us. Therefore, the

simplest ansatz (which we will use throughout this paper) is to set all fields appearing in the

R-equations to zero.

An important consequence of this simplifying ansatz is that∇(6)
a acts trivially on the internal

spinors. In the situation previously described, where we can explicitly identity a six-dimensional

internal space M6, we thus require M6 to admit at least one covariantly constant spinor. Let

us assume existence of some positive-chirality spinor ξ+. Then the structure group of M6 re-

duces from SO(1, 5) to SU(2)⋉R4 [20–22]. For a Riemannian manifold, a necessary condition

for the existence of covariantly constant spinors is that the manifold is of special holonomy

and Ricci flat, in particular, the internal space would have to be a Calabi-Yau threefold in the

6



six-dimensional case. These conditions are no longer necessary for Lorentzian manifolds [23].

Nevertheless, simple examples which are of this type will suffice for our purposes, such as R1,5,

T 2 × T 4, T 2 ×K3 (potentially with a warped metric). It would be possible to consider more

sophisticated internal manifolds with non-constant spinors, which would be the analogue of

generalizing the Calabi-Yau threefold to an SU(3)-structure space. However, due to the fact

that L-terms and R-terms are disjoint, any four-dimensional background that cannot be em-

bedded by our methods is unlikely to be embeddable by considering more complicated internal

spaces.6 The most enticing reason to examine more complicated backgrounds is that allowing

more fluxes to be turned on leads to tunable parameters that one may wish to use in order to

satisfy Bianchi identities.

2.1 The N = 1 string supersymmetry equations

In order to obtain the N = 1 supersymmetry equations, we introduce a pair of Lorentzian

D7-branes, whose supersymmetry requirements will place additional constraints on the ten-

dimensional Killing spinor and thus reduce the number of supercharges preserved; we follow

along the lines of [10, 12]. In flat local ten-dimensional coordinates XA, we consider the case

where the first D7-brane wraps the submanifold {XA | A ∈ {0, ..., 7}} and the second one

wraps the submanifold {XA | A ∈ {0, ..., 5, 8, 9}}. We take both of them to have vanishing

worldvolume flux; the open string supersymmetry conditions are thus given by

γ̌0567Γ0ε = γ̌0589Γ0ε = Γ0ε = ε , (2.6)

leading to the identities

γ̌05ξ
± = ±ξ±

γ̌67ξ
± = ±iξ±

γ̌89ξ
± = ±iξ± .

(2.7)

Specifically, the D7-branes break the internal Lorentz symmetry

SO(1, 5) → SO(1, 1)× SO(2)× SO(2) . (2.8)

From the four-dimensional point of view, the internal Lorentz symmetry corresponds to the

R-symmetry. Hence by introducing the D7-branes we have reduced the R-symmetry group

to R+ × U(1) × U(1), which does not act faithfully. We will come back to this later on.

By making use of (2.7), we can construct 23 = 8 projection operators, such as for example
1
2
(1± γ̌05). So even after dropping the R-terms in (2.5), when acted upon by every possible

projection operator, the three N = 4 supersymmetry conditions L = Lm = La = 0 give rise to

6The sole reason why allowingR-terms might lead to more solutions is due to the fact that various components

of the spin connection are not independent. This has not been relevant in our examples.
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twenty-four equations. In order to reduce this to something more manageable, we will discard

as many of these as we can. Specifically, the terms that are truly of interest are the four-

dimensional Killing spinor equations. There are a number of fields appearing in these which

correspond to auxiliary fields from the point of view of supergravity. We will set to zero any

field that is algebraically unrelated to these fields. This leads to the following set of equations,

which are equivalent to the total ten-dimensional IIB supersymmetry conditions (after taking

into account that a number of components of the fluxes have been set to zero):7

The external gravitino leads to:

(∇m + iAm + iVnγ
nγm) η

+ −M+γmη
− = 0

(∇m − iAm − iVnγ
nγm) η

− −M−γmη
+ = 0 .

(2.9)

The modified dilatino leads to:
(
∂mφ−

1

2
Ωm − 2iVm − 2iBm

)
γmη+ +

(
−4M+ + 2iN+

)
η− = 0

(
∂mφ−

1

2
Ωm + 2iVm + 2iBm

)
γmη− +

(
−4M− − 2iN−

)
η+ = 0 .

(2.10)

The internal gravitino leads to:
(
iVm −

1

2
Ω+
ma + 2iVma

)
γmη+ +

(
M+ + (2iN+

a − 2M+
a )
)
η− = 0

(
−iVm −

1

2
Ω−

ma − 2iVma

)
γmη− +

(
M− + (−2iN−

a − 2M−

a )
)
η+ = 0 .

(2.11)

Let us first examine the external gravitino and the modified dilatino. We have defined the

following fields in terms of the fluxes, dilaton and spin connection:

Am =
1

2
(iωm05 + ωm67 + ωm89)

Ωm = ωabmη
ab

Bm =
1

2

(
iω[05]m + ω[67]m + ω[89]m

)

Vm = −
1

8
eφ (Fm − Fm6789 − iFm0567 − iFm0589)

M± =
1

8
ieφ (F068 − F079 + iF569 + iF578 ∓ (F568 − F579 + iF069 + iF078))

N± =
1

8
i (H068 −H079 + iH569 + iH578 ∓ (H568 −H579 + iH069 + iH078)) .

(2.12)

The fields (A, V,M±) can be identified as the auxiliary fields of the d = 4 N = 1 off-shell

supergravity known as 16/16 supergravity [13–15].8 As the name suggests, 16/16 supergravity

7The derivation of these equation is very similar to what is explained in appendix C of [12]. In comparison,

here we have taken ε+ = ε, ε− = 0, and we have shifted the dilatino equation by considering D → D − ΓaDa.
8See appendix A for the explicit identification.
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comes with 12+4 bosonic and fermionic degrees of freedom, whereas old and new minimal

supergravity both come with 12. One can view 16/16 supergravity as a generalization of the two,

either as old minimal supergravity coupled to a vector multiplet, or new minimal supergravity

coupled to a chiral multiplet. In a way, this is the most natural candidate to expect. In order

to construct field theory on curved spaces, one couples an appropriate supercurrent multiplet

to the corresponding supergravity. From the respective degrees of freedom, it follows that the

Ferrara-Zumino multiplet is coupled to old minimal supergravity, whereas the R-multiplet is

coupled to new minimal supergravity. Yet there are field theories which either do not admit

an FZ-multiplet or an R-multiplet, or admit neither. However, in all cases the non-minimal

S-multiplet [24] does exist, which couples to 16/16 supergravity.

The ten-dimensional external gravitino supersymmetry conditions are precisely of the form

of the Killing spinor equations imposed by the vanishing of the gravitino of 16/16 supergrav-

ity. However, obviously 16/16 supergravity was worked out in Lorentzian signature, whereas

here, the metric is Riemannian. As a consequence the supercharges in our cases are Spin(4)

rather than Spin(1, 3), which requires that they are pseudoreal rather than real (or symplectic

Majorana-Weyl rather than Majorana if one prefers). At the level of the supergravity action,

this implies a doubling of the amount of supercharges. Indeed, this is reflected in the auxil-

iary fields: for 16/16 supergravity, the auxiliary fields A and V are required to be real, and

(M−)∗ = M+, whereas it is evident from (2.12) that no such requirement is imposed in our

situation.

Similarly to the gravitino, the modified dilatino variation leads to the vanishing of the

remaining fermion of 16/16 supergravity (which we will refer to as the dilatino from now on).

In order to do so, one should eliminate the fields (Ωm, Bm, N
±) which are not auxiliary fields of

16/16 supergravity. The scalars N± should be fixed as ±iN± = kM± for some specific constant

k. For appropriate metrics, the field Ωm is exact and can be absorbed into dφ. The field Bm

is pure gauge and can be trivialized for any ten-dimensional metric. However, from the string

theory perspective, there is no reason to impose any conditions whatsoever.

Finally, let us identify the fields appearing in the internal gravitino equations. The fact that

some terms carry an internal index whereas others do not is a consequence of breaking internal

9



Lorentz invariance by means of the D7-branes. The three-form fluxes appear through

N±

0 =
1

8
i (H068 −H079 ∓ (iH069 + iH078))

N±

5 =
1

8
i (iH569 + iH578 ∓ (H568 −H579))

N±

6 =
1

8
i (H068 + iH569 ∓ (H568 + iH069))

N±

7 =
1

8
i (−H079 + iH578 ∓ (−H579 + iH078))

N±

8 =
1

8
i (H068 + iH578 ∓ (H568 + iH078))

N±

9 =
1

8
i (−H079 + iH569 ∓ (−H579 + iH069))

(2.13)

and

M±

a [e
φF ] = N±

a [H ] (2.14)

satisfying

N±

0 +N±

5 = N±

6 +N±

7 = N±

8 +N±

9 = N±

M±

0 +M±

5 =M±

6 +M±

7 =M±

8 +M±

9 =M± .
(2.15)

In addition, we have defined

Ω±

m0 = −ω00m ∓ ω05m

Ω±

m5 = ω55m ± ω50m

Ω±

m6 = ω66m ± iω67m

Ω±

m7 = ω77m ∓ iω76m

Ω±

m8 = ω88m ± iω89m

Ω±

m9 = ω99m ∓ iω98m .

(2.16)

and

Vm0 = Vm5 =
1

8
eφFm6789

Vm6 = Vm7 =
1

8
eφiFm0589

Vm8 = Vm9 =
1

8
eφiFm0567

(2.17)

Unlike the external gravitino and modified dilatino equations, the internal gravitino equation

has no four-dimensional interpretation. Instead, it should be considered as additional con-

straints imposed by demanding that a four-dimensional background dictated by the 16/16

supersymmetry conditions can be supersymmetrically embedded into a ten-dimensional back-

ground.
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3 Four-dimensional analysis

Having reduced the ten-dimensional supersymmetry conditions to (2.9), (2.10) and additional

constraints originating from the internal gravitino (2.11), we now wish to see to what extent

the known four-dimensional backgrounds can be lifted to solutions of the ten-dimensional su-

persymmetry constraints.

We will make use of known four-dimensional solutions to the Killing spinor equations (2.9),

leading to specific backgrounds for supersymmetric field theories, and demonstrate how these

are lifted to ten dimensions using our formalism. Such known solutions were constructed by

coupling field theories to either old minimal [2,3] or new minimal [4,5] supergravity. The only

fermionic field in both formulations is the gravitino, and hence coupling to minimal supergravity

only requires imposing the vanishing of the gravitino variation. The four-dimensional gravitino

variation of minimal supergravities can be obtained from (2.9) by imposing constraints on the

auxiliary fields, specifically, A = V for old minimal supergravity, M+ = M− = 0 for new

minimal supergravity. In contrast, coupling to 16/16 supergravity would require the (four-

dimensional) dilatino variation to vanish as well. The combined supersymmetry fermionic

variations of 16/16 supergravity are thus obtained by satisfying both (2.9) and (2.10) and by

imposing certain constraints on the auxiliary fields (see appendix A). As no four-dimensional

analysis of field theories coupled to backgrounds of 16/16 supergravity is known, we will only

examine minimal supergravity backgrounds. The lifting of these solutions to ten dimensions

might either be direct or pass via embedding into 16/16 supergravity. All solutions in this

paper satisfy the 16/16 conditions.

A number of prominent four-dimensional backgrounds are given on the topologies T 4−k×Sk

and T 4−k×Hk, whereHk is k-dimensional hyperbolic space. Generically, the specific background

auxiliary fields are not unique, and depending on which ones one chooses, a different number

of supercharges is preserved by the theory. The specifics of the preserved supercharges define

geometrical structures via the method of G-structures. Given a single nowhere vanishing chiral

spinor, one can construct an SU(2)-structure consisting of an almost complex structure J and

a (2, 0)- form Ω. Given a pair of opposite chirality, one can construct a pair of such SU(2)-

structures, the intersection of which is equivalent to a trivial structure, consisting of a pair

of complex vector fields (u, v). In the case of new minimal supergravity, the Killing spinor

equations are such that the almost complex structures determined by the SU(2)-structures are

integrable. One can introduce complex coordinates and a complex Killing vector K can be

found, by means of which the four-dimensional backgrounds can be characterized; see appendix

A for the relation between K and the trivial structure. In the case of old minimal supergravity,

it turns out to be more convenient to work with the trivial structure instead. In our case, we

will always make use of the trivial structure, even in some cases where it can only be introduced
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locally.9

We would like to find ten-dimensional lifts of some known four-dimensional backgrounds.

The four-dimensional data

(g4, A, V,M
±, u, v, |η−|/|η+|) (3.1)

are taken as input. These consist of the four-dimensional metric g4 and the auxiliary fields

(A, V,M±) associated to a solution of the Killing spinor equations (2.9) for the metric g4. As

will be explained shortly, we find it convenient to specify the trivial-structure data (u, v), as

well as the relative spinor norm.

Given this four-dimensional data, we wish to define a supersymmetric string theory back-

ground

(g10, φ,H, F1,3,5) (3.2)

such that the dilatino equations (2.10) as well as the internal gravitino equations (2.11) are

solved and, by means of (2.12), the auxiliary fields are indeed given by their specified values.

Furthermore, we insist that the ten-dimensional Killing spinors ε1,2 are related to the four-

dimensional supercharges η±. This ensures a ten-dimensional lift of a minimal supergravity

background. As mentioned already, all of our solutions can also be viewed as lifts of 16/16

supergravity backgrounds.

Note that despite the fact that the gravitino variation of 16/16 supergravity allows for more

solutions than minimal supergravity due to the presence of additional tunable auxiliary fields,

the presence of additional constraints due to the dilatino variation means that, in general, the

16/16 Killing spinor equations appear to be more strict than those of than those of minimal

supergravity.

We stress that the non-vanishing of the auxiliary fields means that the equations of motions

of the corresponding supergravity are explicitly violated. This is irrelevant, as the goal of the

procedure is to construct a new field theory Lagrangian. As a consequence, whether or not the

supersymmetric string theory backgrounds we construct below solve the type IIB equations of

motion is also beside the point. While our solutions to supersymmetry generally violate Bianchi

identities, as we will see shortly, in some examples the Bianchi identities are explicitly solved.

A supersymmetric background which satisfies the Bianchi identities solves the NSNS equations

of motions for non-mixed spacetime indices; see [25] for a short review along the lines of [26].10

Note that in all our solutions, we have set the R-terms in (2.5) to zero. By turning on the fields

9We understand that the notion of a G-structure describes global data of the underlying manifold, and that

a ‘local’ G-structure may thus appear rather ridiculous. However, this terminology is convenient to discuss local

tensors which, if they were globally well-defined, would correspond to a G-structure.
10We work in the democratic type II formalism, where the Bianchi identities incorporate the RR-flux equations

of motions.
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related to ∇(6)
a , which contribute only to the R-terms, it might be possible to find deformations

of our solutions for which the Bianchi identities are satisfied.

3.1 Local trivial structure

Many four dimensional backgrounds are characterized by an SU(2) structure and a (complex)

Killing vector, which is tantamount to a trivial structure. The condition of its existence is

equivalent to existence of a pair of nowhere vanishing spinors of opposite chirality. This con-

dition is violated by some of the known four-dimensional backgrounds, notably S4. Since all

solutions presented here are local, and the trivial structure is a rather convenient tool, we shall

make use of it to construct all our solutions. When the global conditions of existence of the

trivial structure are not satisfied, the local solutions need to be properly extended.

Let us define a trivial structure following [2]. Given two (local) normalized spinors η̂± of

Spin(4) of opposite chirality, we can construct the following complex one-forms:

vm = ˜̂η+γm(η̂−)c

um = ˜̂η+γmη̂− .
(3.3)

Fierz identities lead to the conclusion that the four one-forms v, v∗, u, u∗ are orthogonal of norm

two and trivialize the complexified cotangent bundle. Furthermore, η̂± satisfy

η̂+ =
1

2
vmγ

mη̂−

η̂− =
1

2
v∗mγ

mη̂+
(3.4)

as well as the projection equations

vmγ
mη̂+ = umγ

mη̂+ = 0

v∗mγ
mη̂− = umγ

mη̂− = 0 .
(3.5)

Generically, the Killing spinors η± that solve (2.9) need not be normalized. To compensate we

have to deal with an additional factor

α = |η−|/|η+| (3.6)

such that we have

η+ =
1

2
αvmγ

mη−

η− =
1

2
α−1v∗mγ

mη+ .
(3.7)

α is determined by the four-dimensional analysis. When S admits a global trivial structure, as

is the case with many examples, α can be eliminated altogether. When this is not the case, as

for S4, α and α−1 vanish at some points and the analysis is more involved.
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4 Non-compact backgrounds

In this section we give a number of explicit string theory backgrounds which reproduce known

four-dimensional backgrounds. As mentioned, this means solving the dilatino and internal grav-

itino equations (2.10), (2.11) for a given solution of (2.9). We will expand the four-dimensional

fields given in (2.12), (2.13), (2.16) and (2.17) in terms of the local trivial structure (v, v∗) and

use (3.5), (3.7) to reduce the problem to a set of algebraic equations. Given such a solution, we

can use the definitions of the four-dimensional fields to identify the ten-dimensional lifts. Note

that in all cases, H is such that the worldvolume flux F of the D3-brane can be set to zero,

which is consistent with (2.2).

All solutions presented in this section have two common features: they are non-compact,

and preserve at least two supercharges of similar chirality. The latter feature is not just a

technical assumption as we will explain in 5: backgrounds which for a given chirality preserve

only one supercharge require a different approach.

4.1 H4

We consider old minimal supergravity backgrounds on H4. Such backgrounds allow for (2, 2)

preserved supercharges [2]. The four-dimensional background is given by

g4 = dρ2 + e2ρ(dx21 + dx22 + dx23)

M± =
1

2

A = V = 0 ,

(4.1)

with the relevant data of the trivial structure being given by

v = dρ+ ieρdx3

|η−|/|η+| = 1 .
(4.2)

Ten-dimensional fields can be written as

g10 = g4(x) + e2∆(x)g6(y)

φ = 4∆ = 4ρ

H = 2(e568 − e579)

F3 = −2e−4ρ
(
e569 + e578

)

F1 = F5 = 0 .

(4.3)

We take the standard (warped) vielbeine for our metric, as explained in section B. This repro-
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duces the four-dimensional background auxiliary field profiles, and in addition sets

Ω±

ma =
1

6
Ωm = ∂m∆

±iN±

a =M±

a ⇒ ±iN± =M±

Vma = 0 .

(4.4)

Using these values, it follows that the dilatino equation (2.10) and the internal gravitino equa-

tion (2.11) are solved. The Bianchi identities for H and F3 are not satisfied.

4.2 H3 × S1

We consider new minimal supergravity backgrounds on H3 × S1. The four-dimensional back-

ground is given by [5]

g4 = dθ2 + l2
(
dρ2 + e2ρ/l(dx21 + dx22)

)

A =
1

2l
dθ

V = −
1

2l
dθ

M± = 0 ,

(4.5)

and the trivial structure vector v that can be deduced from the Killing vector K is given by

v = ldρ+ idθ . (4.6)

Note that there is some freedom in v, in that we have fixed an arbitrary phase. This background

allows for (2, 2) preserved supercharges.

The ten-dimensional uplift is given by

g10 = g4(x) + e2∆(x)g6(y)

φ = 4∆ = 4ρ

H = F3 = F5 = 0

F1 =
4

l
e−4ρdθ .

(4.7)

This leads to the required four-dimensional profiles for the g4 and the auxiliary field V . The

auxiliary field A is exact and is therefore generated by a gauge trasformation of the standard

vielbeine, as described in appendix B. In addition, we find

Ω±

ma =
1

6
Ωm = ∂m∆

N±

a =Ma = 0

Vma = 0 .

(4.8)
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Thus we conclude that (2.10) and (2.11) are solved. The Bianchi identities are not satisfied

due to the fact that dF1 6= 0. Reinstating the phase that we have fixed for the trivial structure

alters the flux F1, but it can be shown that no choice will lead to the Bianchi identities being

satisfied.

4.3 S3 ×R

We consider a new minimal supergravity background on S3 ×R with the standard metric and

auxiliary fields given by [5, 6]

g4 = dτ 2 + l2
(
dθ2 + sin2 θdϑ21 + cos2 θdϑ22

)

A =
i

2l
dτ

V = −
i

2l
dτ

M± = 0 ,

(4.9)

and the relevant part of the trivial structure given by11

v = dτ − il
(
cos2 θ dϑ1 + sin2 θ dϑ2

)
. (4.10)

This four-dimensional background leaves (2, 2) supercharges invariant. However, we will con-

sider a string background that preserves N = (2, 0) supersymmetry. This means that we

decompose the ten-dimensional Killing spinor as

ε1 = ξ+η+ + ξ+cη+c , (4.11)

with η, ηc the four-dimensional supercharges. Although S3 × S1 admits the existence of a

negative chirality spinors as well, these do not appear in the decomposition of our Killing

spinor ε1. We will however make use of these, by choosing an η− in such a way that we can

construct the trivial structure as given in (4.10).

Ten-dimensional fields can be written as

g10 = g4(x) + e2∆05(x)g2(y) + e2∆6789(x)g̃4(y)

φ = 6∆05 = 3∆6789 = 6
τ

l

H = F1 = F3 = 0

F5 =
1

3
d exp (−6τ) ∧

(
e0567 + e0589

)
.

(4.12)

11Technically, we have that K = dτ − il
(
cos2 θ dϑ1 + sin2 θ dϑ2

)
. However, since all auxiliary fields are

imaginary, the second external gravitino is invariant under complex conjugation up to ξ− → (ξ−)c. We thus

have that u ↔ v, up to a (global) phase, with u ∼ K. Furthermore, the external gravitino equations are

invariant under change of global phase. Hence we can identify K = v.
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The internal space is chosen such that M6 = M2×M4, with the metric g2 on M2 Lorentzian,

and bothM2, M4 allowing for covariantly constant spinors. The profiles of the fluxes reproduce

the four-dimensional background auxiliary fields (V,M). The auxiliary field A is exact and can

therefore be reproduced by taking a gauged SO(1, 1) rotation of the canonical vielbeine, as

discussed in appendix B. In addition, the following need to satisfied:

Ω±

m0 = Ω±

m5 = ∂m∆05

Ω±

m6 = Ω±

m7 = Ω±

m8 = Ω±

m9 = ∂m∆6789

Ωm =
∑

a

Ω+
ma

N±

a =M±

a = 0

Vm6 = Vm8 =
1

2
Vm

Vm0 = 0 .

(4.13)

Using these, it follows that (2.10) and (2.11) are solved. If we take M2 and M4 flat we see

that the Bianchi identities are explicitly satisfied. Lack of periodicity of the warp factors ∆05,

∆6789 as well as of the dilaton φ means that the solution cannot be compactified to S3 × S1.

It is possible to extend this background into a one-parameter family by splitting M4 into two

two-dimensional components and taking warp factors ∆67 = k∆89 for some k ∈ R, which can

be compensated by means of the ratios between Fm0567 and Fm0589.

5 Spherical backgrounds in complexified string theory

There are a number of known four-dimensional backgrounds which cannot be obtained by the

method outlined before. The most immediate reason is supersymmetry. The ten-dimensional

Killing spinor ε is restricted to be Majorana-Weyl and thus is constrained to satisfy εc = ε.

Since Spin(4) spinors do not change chirality under charge conjugation, this means that ε

can never be decomposed such that the four-dimensional part is determined solely by a single

supercharge η+, as the reality condition on ε immediately implies the necessity of also including

a second supercharge of the same chirality (η+)c. Hence, the analysis done so far can apply to

backgrounds with at least two preserved supercharges of the same chirality whereas backgrounds

which admit only (1, 1) supercharges, such as S2 × T 2 and squashed S3 × S1, are a priori not

covered.

In order to circumvent some of these problems we will use complexified ten-dimensional su-

persymmetry, which is obtained via “holomorphic complexification” as outlined in [17]. Choos-

ing a reality condition in this formulation then allows one to obtain the standard and the variant

supergravities. The idea is to rewrite the type IIB action using only ‘holomorphic’ fields, i.e.,

formally complexifying all the fields and not allowing complex conjugates to appear anywhere.
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In particular, the Dirac conjugates in any spinor bilinears should be rewritten in terms of Ma-

jorana spinors. Indeed, one may note that the supersymmetry transformations only depend on

such holomorphic quantities. As a result, one obtains a formulation of supergravity where all

reality conditions can be dropped; bosonic fields are allowed to take values in C and Majorana

spinors are replaced by Dirac spinors. Crucially for our purposes, this means we allow for

ε 6= εc.

A priori, the metric is allowed to take arbitrary complex values, while the self-duality condi-

tion of F5 depends on the signature of the metric. We will restrict our attention to backgrounds

with real ten-dimensional metric such that there are no changes to the supersymmetry condi-

tions (2.9), (2.10), (2.11) due to the complexification of the fields. In addition, reality of Γ0 is

required in order to derive (2.2).12 We also bear in mind that there exists no consistent set of

reality conditions on the fields that gives rise to a real type IIB action with (10, 0) signature

and therefore only consider ten-dimensional metrics which are Lorentzian.

Note that the complexifications of N = 1 supergravity and complex auxiliary fields have

appeared in the four-dimensional analysis, so extending the range of ten-dimensional theories

once again would mimic the four-dimensional analysis. At any rate, for backgrounds such

as S2 × T 2 and squashed S3 × S1 with (1, 1) supercharges, our method of obtaining a ten-

dimensional lift works only for the complexified theory. On the other hand, once we are willing

to consider such complexifications we may apply them to cases where this was not a priori

needed, but for which we could not find ordinary ten-dimensional lifts. Both of the backgrounds

we describe below, S4 and S3 × S1, with (2, 2) supersymmetry, fall into this category.

5.1 S4

We consider old minimal supergravity backgrounds on S4. The four-sphere allows for theories

preserving more supersymmetry, but we will only consider (2,2) supercharges, consistent with

our D7-brane setup. The metric and auxiliary fields of the background are given by

g4 = dθ2 + sin2 θ
(
dϑ23 + sin2 ϑ3

(
dϑ22 + sin2 ϑ2dϑ

2
1

))

M± =
1

2
i

A = V = 0 .

(5.1)

S4 supports a nowhere vanishing spinor. It can be written as a sum of chiral parts η+ and η−,

which however necessarily have zeros (they do not vanish simultaneously). Also there are no

nowhere vanishing vectors on S4. The relevant local trivial structure data can be written as [2]

v = −idθ + sin θ (cosϑ2dϑ3 − sinϑ3 sinϑ2 (cosϑ3dϑ2 + sinϑ3 sinϑ2dϑ1))

α = tan

(
1

2
θ

)
.

(5.2)

12 For discussion of branes in variant supergravities see [18].
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Unlike all other backgrounds considered, the norms of the Killing spinors η±, measured by

α = |η−|/|η+| are not identical. As mentioned, neither is non-vanishing, with zeroes at the

north and south pole. This is another way of seeing the four-sphere does not admit an almost

complex structure, let alone an SU(2)-structure.

For the moment we shall restrict the range of θ such that neither α not α−1 vanish, i.e.

0 < θ < π and find a local solution. Then we will extend the solution beyond this local patch.

We present here the simplest solution; more elaborate versions can be found in appendix C.

Let us write the ten-dimensional fields as

g10 = g4(x) + g6(y)

φ = 0

H = −2i
(
e068 − e079 − ie569 − ie578

)

F3 = e068 − e079 − ie569 − ie578

F1 = −
3

2 sin θ
v −

1

2
cot

(
1

2
θ

)
v∗

F5 =
1

2 sin θ
v ∧

(
e6789 − ie0567 − ie0589

)
+

1

2
cot

(
1

2
θ

)
v∗ ∧ e6789 .

(5.3)

As a result, the auxiliary fields are given by (5.1), and in addition

Ω±

ma = Ωm = 0

N±

a =
1

2
N± = ±1

M±

a =
1

2
M± =

1

4
i

Vm0 =
1

2 sin θ
vm + cot

(
1

2
θ

)
v∗m

Vm6 = Vm8 =
1

2 sin θ
vm .

(5.4)

Plugging the above into (2.10), (2.11), we find that all string supersymmetry conditions are

satisfied. It can be checked that the worldvolume flux of the brane can be set to zero. The

ten-dimensional fields do not satisfy the Bianchi identities.

With the exception of F5 and F1, the solution (5.3) appears to be fine even beyond the range

of validity 0 < θ < π. By considering a slightly more complicated solution with a warp factor

e2∆ ∼ sin2 θ, the problematic field can be tuned to be just F1 ∼ 1
sin θ

dθ + ..., with the ellipsis

referring to regular terms (see appendix C for details on more general backgrounds on S4).

The simplest way of extending it is to first introduce the spherical stereographical coordinates

(R,Θj) covering the sphere except for the north and south pole:

θ = 2 arctan
1

R

ϑj = Θj .
(5.5)
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Next, one rewrites these spherical stereographical coordinates in regular stereographical coor-

dinates YJ ∈ R4 = S4\{(1, 0, 0, 0, 0)}, J ∈ {1, 2, 3, 4}, thus covering the south pole as well and

excluding only the north pole. Finally, to complete the covering, one considers the transition

to another set of stereographical coordinates ỸJ ∈ S4\{(0, 1, 0, 0, 0)}, which cover the sphere

except for the “east” pole. The two sets of stereographical coordinates are related as

Ỹ1 =
Y 2
J − 1

1 + Y 2
J − 2Y1

Ỹj =
2Yj

1 + Y 2
J − 2Y1

.

(5.6)

It is now not hard to verify that

F1 ∼
dθ

sin θ
= −

dR

R
= −

2YJdY
J

Y 2
J

= −
2ỸJdỸ

J

Ỹ 2
J

(5.7)

where all the coordinate sets are defined. Note that locally F1 is constant, but it glues non-

trivially across the patches, so is not closed, and hence does not satisfy the Bianchi identity.

5.2 S3 × S1

Let us revisit the S3×R background as described in section 4.3 with metric and auxiliary fields

(4.9) and trivial structure (4.10). Although we derived a ten-dimensional lift with (2,0) pre-

served supercharges, the modified dilatino equation (2.10) and internal gravitino equation (2.11)

could not be satisfied if we allowed a spinor decomposition with (2,2) preserved supercharges;

i.e., in the decomposition

ε1 = ξ+ ⊗ η+ + ξ− ⊗ η− + c.c. (5.8)

we were forced to take ξ− = 0 (or ξ+ = 0). In addition, the dilatino and warp factor were

such that the background could not be compactified to S3×S1. By making use of complexified

string theory, the fluxes allow for more degrees of freedom, which turn out to be sufficient to

circumvent these issues.
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In particular, we the following ten-dimensional uplift

g10 = g4(x) + e2∆(x)g6(y)

φ = 2∆ =
1

l
ϕ(τ)

H = −
1

2l
ϕ′
(
e568 − e579 − ie069 − ie078

)

−
1

l

(
e068 − e079 − ie569 − ie578

)

F1 =
16

l
i exp

(
−
1

l
ϕ

)
dτ

F5 =
2

l
exp

(
−
1

l
ϕ

)
dτ ∧

(
ie6789 + e0567 + e0589

)

F3 = 0 .

(5.9)

Here, ϕ(τ) is a scalar field to be chosen at will; in order to have a solution on S3 × S1 rather

than S3 × R, one should take it periodic. Setting it to zero yields the most straightforward

solution. The fields have been constructed precisely such that ∀a

∂mφ = 2Ω±

ma =
ϕ′

2l
(vm + v∗m) =

1

l
∂mϕ

±iN±

a = ±
1

2
iN± =

1

4l

(
1

2
ϕ′ ± 1

)

M±

a = 0

Vma = −Vm =
i

4l
(vm + v∗m)

(5.10)

which solves both the dilatino equation (2.10) and the internal gravitino equation (2.11). Re-

gardless of choice of ϕ, the Bianchi identities are not satisfied, due to dF3+H∧F1 = H∧F1 6= 0.
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A Conventions and Killing spinor equations

Since this paper relies heavily on using known four-dimensional results, let us discuss how to

convert our four-dimensional conventions to those in the literature. In this section, and this

section only, use will be made of two-component spinor indices α, β, ... and α̇, β̇, .... Since

everything in this appendix is four-dimensional, these should not be confused with the curved

indices of the six-dimensional internal space.

In general, all our conventions are identical to those used in [12]. Let us also mention the

following identities which are needed here but not yet mentioned in [12]: in order to obtain the

N = 1 supersymmetry conditions, the following gamma-matrix (anti-)commutator identities

are needed, which can be obtained by making use of the D7-brane identities (2.7):

−
1

4
{{Xabγ̌ab, γ̌67}, γ̌89}ξ

± = ±2!i (iX05 +X67 +X89) ξ
±

−
1

4
[[Xaγ̌

a, γ̌67], γ̌89]ξ
± = 0

−
1

4
[[Xabcγ̌

abc, γ̌67], γ̌89]ξ
± = −3!

(
X068 −X079 + iX569 + iX578

∓ (X568 −X579 + iX069 + iX078)
)
γ̌068ξ

±

(A.1)

and

−
1

4
[[Xabγ̌ab, γ̌67], γ̌89]ξ

± = −2 (X68 −X79 ∓ i(X69 +X78)) γ̌0γ̌068ξ
±

−
1

4
{{Xaγ̌

a, γ̌67}, γ̌89}ξ
± = −(X0 ±X5)γ̌0ξ

±

−
1

4
{{Xabcγ̌

abc, γ̌67}, γ̌89}ξ
± = −3!i (X567 +X589 ± (X067 +X089)) γ̌0ξ

± .

(A.2)

A.1 Minimal supergravity

The Killing spinor equations of new minimal supergravity are given by [5]
(
∇m − iÃm + iṼm + iṼ nσmn

)
ηα = 0

(
∇m + iÃm − iṼm − iṼ nσmn

)
ηα̇ = 0 ,

(A.3)

with η = (ηα, η
α̇). In terms of such two-component spinors, our charge conjugation matrix and

gamma matrices are defined as

γm =

(
0 i(σm)αα̇

i(σ̃m)
α̇α 0

)
, C = −

(
i(σ2)

β
α 0

0 i(σ2)
α̇
β̇

)
, (A.4)

with (σm)αȧ = (~σ,−i) and (σ̃m)
α̇α = (−~σ,−i). The resulting gamma matrices are Hermitian

and satisfy γ1234 = −diag(1,−1), hence ηα is of negative chirality and ηα̇ is of positive chirality.
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We therefore see that the Killing spinor equations (2.9) reduce to the new minimal ones (A.3)

if we set

Vm = −
1

2
Ṽm

Am = Ãm −
1

2
Ṽm

M± = 0 .

(A.5)

Furthermore, use is often made in the literature on new minimal supergravity backgrounds of

the vector-field K♯ and associated one-form K. Generically, new minimal backgrounds require

the metric to be Hermitian, and hence one can choose local complex coordinates (w, z) in terms

of which

g4 = Λ2
[
(dw + h(z)dz)

(
dw̄ + h̄dz̄

)
+ c(z, z̄)2dzdz̄

]

−iu = Λ
(
dw̄ + h̄dz̄

)

−iv = Λcdz̄ .

(A.6)

In particular, using K♯ = ∂w, one notes that u ∼ K up to a real normalization factor.13

The Killing spinor equations of old minimal supergravity are given by [2]

(∇m + 2bm + bnγnm) η
+ +Mη− = 0

(∇m − 2bm − bnγnm) η
− − M̃η+ = 0 .

(A.7)

We therefore see that the Killing spinor equations (2.9) reduce to the old minimal ones (A.7)

if we set

Am = Vm = −ibm

M+ = −M

M− = M̃ .

(A.8)

A.2 16/16 supergravity

The Lorentzian two-component formulation of the vanishing of the gravitino and the additional

fermion of 16/16 supergravity is given by [13]

δψmα = ∇mζα −
1

2
inS̄σmαα̇ζ̄

α̇ − i

(
1

2n
Gm −

3n+ 1

4
e4nψWm

)
ζα +

1

2
i (σm · σ̄n)

β
α Gnζβ

δTα = −
1

4
Sζα +

1

2

(
1

2n
Gm −

1

4n
e4nψWm − i∂mψ

)
σmαα̇ζ̄

α̇ .

(A.9)

13Provided that M± = 0, one can always change the global phases of η± to transform the global phases of

(u, v) without changing the auxiliary fields.
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Here, n ∈ R\{[−1
3
, 1]} is a free parameter, Tα is the dynamical fermion of the theory, Gm,Wm

are one-forms, and we should stress that ψ is a scalar. We have taken the fermionic terms in

the variations to vanish. Roughly speaking, we wish to identify a ‘Euclidean version’ of (A.9)

with the supersymmetry conditions (2.9), (2.10). By this, we mean that we will allow complex

values for the auxiliary fields Gm,Wm, and will not identify S̄ with the complex conjugate of

S.

Using (A.4), we see that the gravitino variation matches (2.9) if we identify

Vm = −
1

2
Gm

Am =

(
1

2n
+ 1

)
Gm −

3n+ 1

4
e4nψWm

M− =
1

2
nS̄ .

(A.10)

The variation of the ten-dimensional modified dilatino χ as given in (2.10) contains more fields

than the variation of the four-dimensional Tα. Therefore, some of the ten-dimensional fields

have to be fixed in a certain way to ensure that the ten-dimensional modified dilatino can be

identified with the four-dimensional fermion. Ten-dimensional backgrounds for which the fields

are not fixed this way are not lifts of 16/16 backgrounds. Specifically, using (A.10), χ = kTα
for some constant k implies

−4M+ + 2iN+ = −
k

4
S

∂mφ−
1

2
Ωm − 2iBm = −

k

2

(
∂mψ + i

[(
1

2n
+

2

k

)
Gm −

1

4n
e4nψWm

])
.

(A.11)

The former equation can always be satisfied. Since the fields (Gm,Wm) can be identified with

(Am, Vm), it is not generically guaranteed that the latter equation is satisfied for an arbitrary

profile of the ten-dimensional fields. However, in all examples of backgrounds given in this

paper, (Am, Vm,Ωm) are exact (and Bm = 0), which translates to exactness of (Gm,Wm). In

such cases, the latter equation can be considered a defining equation for ∂mφ in terms of ∂mψ.

Therefore, all our backgrounds correspond to lifts of 16/16 backgrounds.

B Metrics, spin connections and R-symmetry

In this section we will outline ten-dimensional metrics that are used, the corresponding spin

connections, and the resulting profiles for the fields A, B, Ω and Ω±

ma which appear in the

supersymmetry conditions (2.9), (2.10), (2.11) and are defined in (2.12), (2.13). In essence, we

will always make use of (warped) block diagonal metric. Due to the breaking of the internal

SO(1, 5) Lorentz symmetry by the D7-branes, we occasionally break down the internal metric

to three two-dimensional pieces with different warpings. The reason is that such block diagonal
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metrics are the simplest possibility. However, it is not too much more difficult to extend this to

metrics with off-diagonal components. For the sake of completeness, we will discuss the most

general case as well.

The most general ten-dimensional metric is given by

g10 = gµν(x, y)dx
µdxν + 2Aµα(x, y)dx

µdyα + gαβ(x, y)dy
αdyβ . (B.1)

Associated to this metric, we can define the vielbein

eAM =

(
emµ (x, y) Aa

µ(x, y)

0 eαa (x, y)

)
, eMA =

(
eµm(x, y) −Aα

m(x, y)

0 eαa (x, y)

)
, (B.2)

leading to spin connections

ωµab = eα[a∂µeb]α −Aα
µe

β
[a∂αeb]β − eα[aeb]β∂αA

β
µ

ωabµ = eα(a∂µeb)α −Aα
µe

β
(a∂αeb)β − eα(aeb)β∂αA

β
µ

ωamn = eµ[m∂aen]µ − eµ[me
ν
n]eαa

(
∂µ −Aβ

µ∂β
)
Aα
ν

ωmna = eµ(m∂aen)µ + eµ[me
ν
n]eαa

(
∂µ −Aβ

µ∂β
)
Aα
ν .

(B.3)

Clearly, the above is not invariant under exchange of internal and external indices, whereas the

metric (B.1) is. This is due to the choice of the vielbein (B.2).

Let us now restrict attention to the case of interest. Setting A = 0, the components of the

spin connection reduce to

ωmab = eα[a∂meb]α

ωabm = eα(a∂meb)α

ωamn = eµ[m∂aen]µ

ωmna = eµ(m∂aen)µ .

(B.4)

Generally, we will be interested in the subcases

g10 = g4(x) + e2∆(x)05g2(y) + e2∆(x)67 g̃2(y) + e2∆(x)89 ĝ2(y) (B.5)

and

g10 = g4(x) + e2∆(x)g6(y) . (B.6)

The latter allows more freedom for the internal space, but the former, where we split the six-

dimensional metric into a block diagonal one comprised of a Lorentzian metric (in the flat 0, 5

directions) and two Riemannian metrics (respectively in the flat 6,7 and the flat 8,9 directions),

allows more freedom for the auxiliary fields, due to the various warp factors which depend
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on the external coordinates. To be precise, we should introduce different indices for all three

internal two-dimensional metrics, but to avoid cluttering the notation, we will not do so.

Given the above metrics, one may introduce diagonal vielbeine emµ (x), e
∆(a)eaα(y) which

square to the metric and simplify the spin connection (B.4) to

ωamn = ωmna = 0

ωmab = 0

ωabm = ηab∂m∆(a) ,

(B.7)

where ∆(a) = ∆05(δa0 + δa5) +∆67(δa6 + δa7) +∆89(δa8 + δa9) with no summation over a. With

respect to the supersymmetry conditions, the first line is always necessary for our ansatze to

hold (see table 1), the second line dictates the auxiliary field A, the third line determines B, Ω

and Ω±

ma (see (2.12), (2.13)).

However, the choice of vielbein is not unique; any local SO(1, 1)×SO(2)×SO(2) rotation of

the internal vielbeine eaα(y) (acting on the flat indices of the vielbein) leaves the metric invariant,

but not the spin connection. From the four-dimensional point of view, such transformations

are gauged R-symmetry transformations. As an example, let θ be a coordinate on a 1-cycle on

the Riemannian external space S. Then we see that if we consider the vielbeine

ê0α =
(
cosh k2θe

0
α − sinh k2θe

5
α

)

ê5α =
(
− sinh k2θe

5
α + cosh k2θe

5
α

)

ê6α =
(
cos k1θe

6
α − sin k1θe

7
α

)

ê7α =
(
sin k1θe

6
α + cos k1θe

7
α

)
,

(B.8)

with arbitrary k1,2 ∈ R the metric remains invariant (as well as ωabm, ωamn and ωmna), yet the

change in spin connection ωmab leads via (2.12) to

A→ A +
1

2
(k1 + ik2)dθ . (B.9)

This is, as expected, a gauge transformation for the R-symmetry gauge field A. In this way,

exact background profile for the auxiliary field A can be constructed. We shall do so frequently.

Given the spin connection (B.4), it follows from (2.12) that B = 0. In fact, this holds even

for the spin connection (B.3) which is valid for the most general metric. Therefore, the field

B is pure gauge. However, it might still be necessary for certain solutions to use a non-zero

B. This can be achieved by making use of a different choice of vielbeine for a generic ten-

dimensional metric: since the metric (B.1) does not distinguish between external and indices,

we can consider vielbeine where we have swapped the indices:

eAM =

(
eaα(x, y) Am

α (x, y)

0 emµ (x, y)

)
, eMA =

(
eαa (x, y) −Aα

m(x, y)

0 eµm(x, y)

)
. (B.10)
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The spin connection components are given by

ωαmn = eµ[m∂αen]µ −Aµ
αe

ν
[m∂µen]ν − eµ[men]ν∂µA

ν
α

ωmnα = eµ(m∂αen)µ −Aµ
αe

ν
(m∂µen)ν − eµ(men)ν∂µA

ν
α

ωmab = eα[a∂meb]α − eα[ae
β
b]eµm (∂α −Aν

α∂ν)A
µ
β

ωabm = eα(a∂meb)α + eα[ae
β
b]eµm (∂α −Aν

α∂ν)A
µ
β .

(B.11)

As a result, ω[ab]m is no longer automatically vanishing, hence such a choice of vielbein gauge

can be used to construct a non-zero auxiliary field B appearing in (2.10). None of our examples

make use of this possibility.

C More general S4 backgrounds

In this section, the procedure to find string backgrounds embedding a four-sphere wrapped by

a D3-brane is given. In order to solve (2.10), (2.11), making use of the S4 data (5.1), (5.2), we

will take the following ansätze for the N = 1 fields:

Ω±

0 =
1

2
if0 (v − v∗)∓

1

2
ig0 (v − v∗)

Ω±

5 =
1

2
if5 (v − v∗)±

1

2
ig0 (v − v∗)

Ω±

â =
1

2
ifâ (v − v∗)

Va =
1

8

(
hav + h̃av

∗

)
=

1

8

(
[h̃a +

1

2
(ha − h̃a)] (v + v∗) + +

1

2
(ha − h̃a) (v − v∗)

)

N±

0 =
1

2
N± ± α±1S±

N±

5 =
1

2
N± ∓ α±1S±

M±

a =
1

2
M±

dφ =
1

2
iϕ (v − v∗)

ϕ̃ = ϕ−
1

2

∑

a

fa

B = 0 .

(C.1)

Here, â, b̂, ... ∈ {6, 7, 8, 9}. Note that it is always possible to absorb a shift of Na into Ma, a

freedom we will not make use of. Plugging these into (2.10) and (2.11), making use of (3.5),
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(3.7) and (2.15), one ends up with the following algebraic equations:

2(N+ +N−) = −
(
α + α−1

)
f0 +

(
α− α−1

)
g0 − α

(
h̃0 + 2S+

)
−
(
h0 + 2S−

)

= −
(
α + α−1

)
fâ − αh̃â − α−1hâ

=
(
α + α−1

)
ϕ̃

2(N+ −N−) = −
(
α− α−1

)
f0 +

(
α + α−1

)
g0 − α

(
h̃0 + 2S+

)
+
(
h0 + 2S−

)

= −
(
α− α−1

)
fâ − αh̃â + α−1hâ

=
(
α− α−1

)
ϕ̃+ 4

S− = S+ − g0

f0 − f5 = 2(g0 − 2S+) .

(C.2)

We solve a number of these equations by setting f6 = f7 = f8 = f9, h6 = h8, h̃6 = h̃8. Using a

few trig identities to solve the rest leads to the following supersymmetry constraints on string

backgrounds containing a kappa-symmetric four-sphere:

1

2

(
hâ − h̃â

)
=

2

sin θ
1

2

(
h0 − h̃0

)
=

2

sin θ

ϕ = 2fâ − 2 cot

(
1

2
θ

)
− h̃0

N± = ±1 +
1

2
α±1

(
−f5 − g0 + 2S+ − 2 cot

(
1

2
θ

)
− h̃0

)

S− = S+ − g0

f0 − f5 = 2(g0 − 2S+) .

(C.3)

The parameters (h̃0, f5, f6, g0, S
+) are all free, and given any such set, it is then possible to

compute the string fields leading to such a background, and to construct a ten-dimensional

metric reproducing the right spin-connection components (notably, g0). Since both
1
2

(
h0 − h̃0

)

and 1
2

(
hâ − h̃â

)
are singular outside of θ ∈ (0, π), there is an issue when trying to extend the

solution to a globally well-defined solution. From the field definitions (2.12), (2.17) and (C.1), it

follows that Fm0567 scales as 1
sin θ

; it is possible to compensate this by taking the warp factor to

scale as ∆ ∼ log (sin θ)+ .... However, this trick cannot be played with Fm, which is constrained

in terms of F5 by Vm = 0. It thus follows that the solution is not globally well-defined.

The relatively simple solution given in section 5.1 corresponds to the choice

g0 = S+ = fa = 0

h̃0 = 2 cot

(
1

2
θ

)
.

(C.4)
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