
HAL Id: cea-01789447
https://cea.hal.science/cea-01789447

Submitted on 11 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Auto-Adaptative Reconfigurable Architecture for the
Control

Nicolas Ventroux, Stéphane Chevobbe, Frédéric Blanc, Thierry Collette

To cite this version:
Nicolas Ventroux, Stéphane Chevobbe, Frédéric Blanc, Thierry Collette. An Auto-Adaptative Recon-
figurable Architecture for the Control. ACSAC ’04, 2004, Advances in Computer Systems Architec-
ture. ACSAC 2004. Lecture Notes in Computer Science, vol 3189. Springer, Berlin, Heidelberg, pp.
72-87. �cea-01789447�

https://cea.hal.science/cea-01789447
https://hal.archives-ouvertes.fr

An Auto-Adaptative Reconfigurable

Architecture for the Control

Nicolas VENTROUX, Stéphane CHEVOBBE, Fréderic BLANC and Thierry
COLLETTE

CEA-List DRT/DTSI/SARC
Image and Embedded Computers Laboratory

F-91191 Gif-Sur-Yvette - FRANCE
phone: (33) 1-69-08-66-37

contact: firstname.surname@cea.fr

Abstract. Previous works have shown that reconfigurable architectures
are particularly well-adapted for implementing regular processing appli-
cations. Nevertheless, they are inefficient for designing complex control
systems. In order to solve this drawback, microprocessors are jointly used
with reconfigurable devices. However, only regular, modular and recon-
figurable architectures can easily take into account constant technology
improvements, since they are based on the repetition of small units. This
paper focuses on the self-adaptative features of a new reconfigurable ar-
chitecture dedicated to the control from the application to the computa-
tion level. This reconfigurable device can itself adapt its resources to the
application at run-time, and can exploit a high level of parallelism into
an architecture called RAMPASS.

Index Terms - dynamic reconfiguration, adaptative reconfigurable

architecture, control parallelism

1 Introduction

The silicon area of reconfigurable devices are filled with a large number of com-
puting primitives, interconnected via a configurable network. The functionality
of each element can be programmed as well as the interconnect pattern. These
regular and modular structures are adapted to exploit future microelectronic
technology improvements. In fact, semiconductor road maps [1] indicate that
integration density of regular structures (like memories) increases faster than ir-
regular ones (Tab. 1). In this introduction, existing reconfigurable architectures
as well as solutions to control these structures, are first presented. This permits
us to highlight the interests of our architecture dedicated to the control, which
is then depicted in details.

A reconfigurable circuit can adapt its features, completely or partially, to
applications during a process called reconfiguration. These reconfigurations are
statically or dynamically managed by hardware mechanisms [2]. These architec-
tures can efficiently perform hardware computations, while retaining much of

� �

���� � ��� �		� �		
 �		� �		� �	� �

������ ���� � �	 � �	 �
	 � 		 �	 �	

���� ���������� � 	� ! � � ! " �� ! � � � ! #� � ! ��� !

��$

�����������������
�� % "	 % �# % �		 % ��	 % � " !

Table 1. Integration density for future VLSI devices

the flexibility of a software solution [3]. Their resources can be arranged to im-
plement specific and heterogeneous applications. Three kinds of reconfiguration
level can be distinguished :

– gate level: FPGA (Field Programmable Gate Array) are the most well-
known and used gate-level reconfigurable architectures [4, 5]. These devices
merge three kinds of resources: the first one is an interconnection network,
the second one is a set of processing blocks (LUT, registers, etc.) and the
third one regroups I/O blocks. The reconfiguration process consists in using
the interconnection network to connect different reconfigurable processing
elements. Furthermore, each LUT is configured to perform any logical oper-
ations on its inputs. These devices can exploit bit-level parallelism.

– operator level: the reconfiguration takes place at the interconnection and
the operator levels (PipeRench[6], DREAM [7], MorphoSys [8], REMARC
[9], etc.). The main difference concerns the reconfiguration granularity, which
is at the word level. The use of coarse-grain reconfigurable operators pro-
vides significant savings in time and area for word-based applications. They
preserve a high level of flexibility in spite of the limitations imposed by the
use of coarse-grain operators for better performances, which do not allow
bit-level parallelism.

– functional level: these architectures have been developed in order to imple-
ment intensive arithmetic computing applications (RaPiD [10], DART [11],
Systolic Ring [12], etc.). These reconfigurable architectures are reconfigured
in modifying the way their functional units are interconnected. The low
reconfiguration data volume of these architectures makes it easier to imple-
ment dynamic reconfigurations and allows the definition of simple execution
models.

These architectures can own different levels of physical granularity, and what-
ever the reconfiguration grain is, partial reconfigurations are possible, allowing
the virtualization of their resources. Thus for instance, to increase performances
(area, consumption, speed, etc.), an application based on arithmetic operators
is optimally implemented on word-level reconfigurable architectures.

Besides, according to Amdahl’s law [13], an application is always composed
of regular and irregular processings. It is always possible to reduce and optimize
the regular parts of an application in increasing the parallelism, but irregular
code is irreductible. Moreover, it is difficult to map these irregular parts on

2

reconfigurable architectures. Therefore, most reconfigurable systems need to be
coupled with an external controller especially for irregular processing or dynamic
context switching. Performances are directly dependent on the position and the
level of this coupling. Presently, four possibilities can be exploited by designers:

– microprocessor: this solution is often chosen when reconfigurable units are
used as coprocessors in a SoC (System on Chip) framework. The micropro-
cessor can both execute its own processes (and irregular codes) and configure
its reconfigurable resources (PACT XPP-/Leon [14], PipeRench [15], Mor-
phoSys [8], DREAM [7], etc.). These systems can execute critical processings
on the microprocessor, while other concurrent processes can be executed on
reconfigurable units. However, in order to only configure and execute irreg-
ular code, this solution may be considered as too expensive in terms of area
and energy consumption, and would most likely be the bottelneck due to
off-chip communication overheads in synchronization and instruction band-
width.

– processor core: this approach is completely different since the processor
is mainly used as a reconfigurable unit controller. A processor is inserted
near reconfigurable resources to configure them and to execute irregular pro-
cesses. Performances can also be increased by exploiting the control paral-
lelism thanks to tight coupling (Matrix [16], Chimaera [17], NAPA [18], etc.).
Marginal improvements are often noticed compared to a general-purpose
microprocessor but these solutions give an adapted answer for controlling
reconfigurable devices.

– microsequencer: these control elements are only used to process irregular
processing or to configure resources. They can be found in the RaPiD ar-
chitecture, for instance, [10] as a smaller programmed control with a short
instruction set. Furthermore, the GARP architecture uses a processor in or-
der to only load and execute array configurations [19]. A microsequencer is
an optimal solution in terms of area and speed. Its features do not allow
itself to be considered as a coprocessor like the other solutions, but this ap-
proach is however best fitted for specifically controlling reconfigurable units.
Nevertheless, control parallelisms can be exploited with difficulty.

– FPGA: this last solution consists in converting the control into a set of
state machines, which could then be mapped to an FPGA. This approach
can take advantage of traditional synthesis techniques for optimizing control.
However, FPGA are not optimized for implementing FSM (Finite State Ma-
chines) because whole graphs of the application must be implemented even if
non-deterministic processes occur. Indeed, these devices can hardly manage
dynamic reconfigurations at the state-level.

Reconfigurable devices are often used with a processor for non-deterministic
processes. To minimize control and configuration overheads, the best solution

3

consists in tightly coupling a processor core with the reconfigurable architec-
ture [20]. However, designing for such systems is similar to a HW/SW co-design
problem. In addition, the use of reconfigurable devices can be better adapted
to deep sub-microelectronic technological improvements. Nonetheless, the con-
troller needs other physical implementation features rather than operators, and
FPGA can not always be an optimal solution for computation. Indeed, the con-
trol handles small data and requires global communications to control all the
processing elements, whereas the computation processes large data and uses lo-
cal communications between operators.

To deal with control for reconfigurable architectures, we have developed the
RAMPASS architecture (Reconfigurable and Advanced Multi-Processing Archi-
tecture for future Silicon Systems) [21]. It is composed of two reconfigurable
resources. The first one is suitable for computation purposes but is not a topic
of interest for this paper. The second part of our architecture is dedicated to con-
trol processes. It is a self-reconfigurable and asynchronous architecture, which
supports SIMD (Single Instruction Multiple Data), MIMD (Multiple Instruction
Multiple Data) and multi-threading processes.

This paper presents the mechanisms used to auto-adapt resource allocations
to the application in the control part of RAMPASS. The paper is structured
as follows: section 2 outlines a functional description of RAMPASS. Section 3
presents a detailed functional description of the part of RAMPASS dedicated
to the control. This presentation focuses on some concepts presented in [21].
Then, section 4 depicts auto-adaptative reconfiguration mechanisms of this con-
trol part. Finally, section 5 presents the development flow, some results and deals
with the SystemC model of our architecture.

2 Functional Description of RAMPASS

In this section, the global functionality of RAMPASS is described. It is composed
of two main reconfigurable parts (Fig. 1):

– One dedicated to the control of applications (RAC : Reconfigurable Adapted
to the Control);

– One dedicated to the computation (RAO : Reconfigurable Adapted to Oper-
ators).

Even if the RAC is a part of RAMPASS, it can be dissociated to be integrated
with other different architectures with any computational grain. Each computa-
tion block can be either a general-purpose processor or a functional unit. The
RAC is a generic control architecture and is the main interest of this paper. In
this article, the RAO can be considered as a computational device adapted to
the application, with a specific interface in order to communicate with the RAC.
This interface must support instructions from the RAC and return one-bit flags
according to its processes.

4

&'(')
*+(,-.

/0.'+12'340.56)0'.
789:;

7<=

>?8;@AB

C?DE@F

GHIJ

>E8;@EB KBELM NOPQR A8S

78T;@:L;UE8 C?DE@F GHVJ

>ED9:;A;UE8 KBELM

NOPWR

&'(')
*+(,-.

/0.'+12'340./0.'+12'340.56)0'.56)0'.
789:;

7<=

>?8;@AB

C?DE@F

GHIJ

>E8;@EB KBELM NOPQR A8S

78T;@:L;UE8 C?DE@F GHVJ

>ED9:;A;UE8 KBELM

NOPWR

Fig. 1. Organization of RAMPASS

2.1 Overview

From a C description, any application can be translated as a CDFG (Control
Data Flow Graph), which is a CFG (Control Flow Graph) with the instructions
of the basic blocks expressed as a DFG (Data Flow Graph). Thus, their partition
is easily conceivable [22, 23].

A CFG or a State Graph (SG) represents the control relationships between
the set of basic blocks. Each basic block contains a set of deterministic instruc-
tions, called actions. Thus, every state in a SG is linked to an action. Besides,
every arc in a SG either connects a state to a transition, or a transition to a
state. A SG executes by firing transitions. When a transition fires, one token
is removed from each input state of the transition and one token is added to
each output state of the transition. These transistions determine the appropri-
ate control edge to follow. On the other hand, a DFG represents the overall
corresponding method compiled onto hardware.

Consequently, whatever the application is, it can be composed of two different
parts (Fig. 2). The first one computes operations (DFG) and the second one
schedules these executions on a limited amount of processing resources (CFG).

XYZ[\Y]^

_`abcd
e

_`abcd
f

_`abcd
g

_`abcd
h

ij

ik

il

im

in

opoqrs
tuvwuxwuywuzwu{|

}~r��qs
tvwxwywz|

Y��\�[Y\^

t�| t�|

XYZ[\Y]^

_`abcd
e

_`abcd
f

_`abcd
g

_`abcd
h

ij

ik

il

im

in

opoqrs
tuvwuxwuywuzwu{|

}~r��qs
tvwxwywz|

Y��\�[Y\^

XYZ[\Y]^

_`abcd
e

_`abcd
f

_`abcd
g

_`abcd
h

ij

ik

il

im

in

opoqrs
tuvwuxwuywuzwu{|

}~r��qs
tvwxwywz|

Y��\�[Y\^

t�| t�|

Fig. 2. Partitioning of an application (a) in Control/Computation (b)

5

The first block of our architecture can physically store any application de-
scribed as a CFG. States drive the computation elements in the RAO, and events
coming from the RAO validate transitions in the SG. Moreover, self-routing
mechanisms have been introduced in the RAC block to simplify SG mapping.
The RAC can auto-implement a SG according to its free resources. The RAC

controls connections between cells and manages its resources. All these mecha-
nisms will be discussed in future sections.

2.2 Mapping and running an application with RAMPASS

In this part, the configuration and the execution of an application in RAMPASS

are described. Applications are stored in an external memory. As soon as the SG
begins to be loaded in the RAC, its execution begins. In fact, the configuration
and the execution are simultaneously performed. Contrary to microprocessor,
this has the advantage of never blocking the execution of applications, since the
following executed actions are always mapped in the RAC.

The reconfiguration of the RAC is self-managed and depends on the applica-
tion progress. This concept is called auto-adaptative. The RAC Net has a limited
number of cells, which must be dynamically used in order to map larger applica-
tions. Indeed, due to a lack of resources, whole SGs can not always be mapped in
the RAC. Dynamic reconfiguration has been introduced to increase the virtual
size of the architecture. In our approach, no pre-divided contexts are required.
Sub-blocks implemented in the RAC Net are continuously updated without any
user help. Figure 3 shows a sub-graph of a 7-state application implemented at
run-time in a 3-cell RAC according to the position of the token.

���������
����������� �� ���
��� �� ��� ��������

���������
����������� �� ���
��� �� ��� ��������

Fig. 3. Evolution of an implemented SG in the RAC Net

Each time a token is received in a cell of a SG implemented in the RAC,
its associated instructions are sent to the RAO. When the RAO has finished its
processes, it returns an event to the cell. This event corresponds to an edge in

6

the SG mapped in the RAC. These transitions permit the propagation of tokens
in SGs. Besides, each block has its synchronization mechanisms. In this globally
asynchronous architecture, blocks are synchronized by 2-phase protocols [24].

It is possible to execute concurrently any parallel branches of a SG, or any
independant SGs in the RAC. This ensures SIMD, MIMD, and multi-threading
control parallelisms. Besides, semaphore and mutex can be directly mapped in-
side the RAC in order to manage shared resources or synchronization between
SGs. Even if SGs are implemented cell by cell, their instantiations are concurrent.

3 Functional description of the control block: the RAC

As previously mentioned, the RAC is a reconfigurable block dedicated to the
control of an application. It is composed of five units (Fig. 4). The CPL (Configu-

ration Protocol Layer), the CAM (Content Addressable Memory) and the Leaf-

Finder are used to configure the RAC Net and to load the Instruction Memory.

3.1 Overview

The RAC Net can support physical implementation of SGs. When a cell is con-
figured in the RAC Net, its associated instructions are stored in the Instruction

Memory as well as the address of its description in the CAM. Descriptions of
cells are placed in a central memory and each description contains the instruction
of the associated cell and the configuration of cells, which must be connected

�
�
�

Input from RAO Output to RAO

Input from the Central Memory

�
�
�
�
¡¢
£
�
¤

¥¦§ ¨©ª

«¨¬ª®¯ª°±¨

²©²±³

´µ¶· ¸¹º »¹¼¸½¾¿ºÀÁ½¹¼

´µ¶· ¸¹º ¶Â¶»¿Á½¹¼

§ÃÄ

�
�
�

Input from RAO Output to RAO

Input from the Central Memory

�
�
�
�
¡¢
£
�
¤

¥¦§ ¨©ª

«¨¬ª®¯ª°±¨

²©²±³

´µ¶· ¸¹º »¹¼¸½¾¿ºÀÁ½¹¼

´µ¶· ¸¹º ¶Â¶»¿Á½¹¼

§ÃÄ

�
�
�

Input from RAO Output to RAO

Input from the Central Memory

�
�
�
�
¡¢
£
�
¤

¥¦§ ¨©ª

«¨¬ª®¯ª°±¨

²©²±³

´µ¶· ¸¹º »¹¼¸½¾¿ºÀÁ½¹¼

´µ¶· ¸¹º ¶Â¶»¿Á½¹¼

§ÃÄ

Fig. 4. The RAC block

7

(daughter cells). In order to extend SGs in the RAC Net, the last cells of SGs,
which are called leaf cells, are identified in the LeafFinder. These cells allow the
extension of SGs. When a leaf cell is detected, a signal is sent to the CAM and
the description of this cell is read in the central memory. From this description,
the daughter cells of this leaf cell are configured and links are established be-
tween the cells in the RAC Net. The CAM can also find a cell mapped in the
RAC Net thanks to its address. This is necessary if loop kernels try to connect
already mapped cells. Finally, the propagation of tokens through SGs, thanks
to events from the RAO, schedule the execution of instructions stored in the
Instruction Memory. In the next section, the details of each block are given.

3.2 Blocks description

RAC Net, this element is composed of cells and interconnect components.
SGs are physically implemented thanks to these resources. One state of a SG is
implemented by one cell. Each cell directly drives instructions, which are sent
to the RAO. The RAC Net is dynamically reconfigurable. Its resources can be
released or used at the run-time according to the execution of the application.
Moreover, configuration and execution of SGs are fully concurrent. RAC Net

owns primitives to ensure the auto-routing and the managing of its resources
(cf §4.1). The RAC Net is composed of three one-hot asynchronous FSMs (5 ,8
and 2 states) to ensure the propagation of tokens, its dynamical destruction and
the creation of connections. It represents about one thousand transistors in ST
0.18µm technology.

Instruction memory, the Instruction Memory contains the instructions, which
are sent by the RAC Net to the RAO when tokens run through SGs. An instruc-
tion can eventually be either configurations or context addresses. As shown in
figure 5, the split instruction bus allows the support of EPIC (Explicitly Paral-
lel Instruction Computing) and the different kinds of parallelism introduced in
the first section. Each column is reserved for a computation block in the RAO.
For instance, the instructions A and B could be sent together to different com-
putational blocks mapped in the RAO without creating conflicts, whereas the
instruction C would be sent alone. A bit of selection is also used to minimize
energy consumption by disabling unused blocks.

Furthermore, each line is separately driven by a state, e.g. each cell of the
RAC Net is dedicated to the management of one line of this memory. This mem-
ory does not require address decoding since its access is directly done through
its word lines. We call this kind of memory a word-line memory.

CPL, this unit manages SG implementation in the RAC Net. It sends all the
useful information to connect cells, which can auto-route themselves. It drives
either a new connection if the next state is not mapped in the RAC net, or
a connection between two states already mapped. It also sends primitives to
release resources when the RAC Net is full.

8

ÅÆÇÈÉÊËÌÈ ÍÎÇÏ ÐÑÒ

ÅÆÇÈÉÊËÌÈ ÍÎÇÏ ÓÔÕ

Ö×ØÙÚÛÜÙÝÞ× ßàáÞÚâ

ãäå ×àÙ

Ö×ØÙÚÛÜÙÝÞ× æ

çèé êëìëíéèîï

Ö×ØÙÚÛÜÙÝÞ× ä

ÅÆÇÈÉÊËÌÈ ÍÎÇÏ
ÇÏÈ ÐÑÒ

ðñòóôõöóð÷ñ øõò

ù

ú

û Ö×ØÙÚÛÜÙÝÞ× å

ÅÆÇÈÉÊËÌÈ ÍÎÇÏ ÐÑÒ

ÅÆÇÈÉÊËÌÈ ÍÎÇÏ ÓÔÕ

Ö×ØÙÚÛÜÙÝÞ× ßàáÞÚâ

ãäå ×àÙ

Ö×ØÙÚÛÜÙÝÞ× æ

çèé êëìëíéèîï

Ö×ØÙÚÛÜÙÝÞ× ä

ÅÆÇÈÉÊËÌÈ ÍÎÇÏ
ÇÏÈ ÐÑÒ

ðñòóôõöóð÷ñ øõò

ù

ú

û Ö×ØÙÚÛÜÙÝÞ× å

Fig. 5. Relation RAC Net/Instruction Memory

CAM, this memory links each cell of the RAC Net used to map a state of a
SG, with its address in the external memory. Again, it can be driven directly
through its word lines. It is used by the CPL to check if a cell is already mapped
in the RAC Net. The CAM can select a cell in the RAC Net when its address
is presented by the CPL at its input. Besides, the CAM contains the size of cell
descriptions to optimize the bandwidth with the central memory.

LeafFinder, this word-line memory identifies all the leaf cells. Leaf cells are
in a semi-mapped state which does not yet have an associated instruction. The
research is done by a logic ring, which runs each time a leaf cell appears.

4 Auto-adaptative reconfiguration Control

The first part of this section deals with the creation of connections between cells
and their configuration. A cell, which takes part in a SG, must be configured in
a special state corresponding to its function in the SG. Finally, the second part
focuses on the release of already used cells.

4.1 Graph creation and configuration

New connection To realize a new connection e.g. a connection with a free
cell, the CPL sends a primitive called connection. This carries out automatically
a connection between an existing cell (the source cell), which is driven by the
LeafFinder, and a new cell (the target cell), which is a free cell chosen in the
neighborhood of the source cell. Thus, each daughter in the neighborhood of the
source cell are successively tested until a free cell is found. The RAC Net and its
network can self-manage these connections. In fact, carrying out a connection
consists of validating existing physical connections between both cells. Finally,
the path between the two cells can be considered as auto-routed in the RAC

Net.

9

Connection between two existing cells When the RAC finds the two cells,
which must be connected, two primitives called preparation and search are suc-
cessively sent by the CPL to the RAC Net. The first one initializes the research
process and the second one executes it. The source cell is driven by the LeafFinder

via the signal start and the target cell by the CAM via the signal finish. Ac-
cording to the application, the network of the RAC Net can be either fully or
partially interconnected. Indeed, the interconnection network area is a function
of the square of the number of cells in the RAC Net. Thus, a fully connected
network should be used only in highly irregular computing application.

If the network is fully interconnected, the connection is simply done by the
interconnect, which receives both the signals start and finish. On the other hand,
if cells are partially interconnected, handshaking mechanisms allow the source
cells to find the target. Two signals called find and found link each cells together
(Fig. 6). On the reception of the signal search, the source cell sends a find signal
to its daughters. The free cell receiving this signal sends it again to its daughters
(this signal can be received only one time). So, the signal find spreads through
free cells until it reaches the target cell. Then this cell sends back the signal
found via the same path to the source cell. Finally, the path is validated and a
hardware connection is established between the two cells. The intermediate and
free cells, which take part in the connection, are in a special mode named bypass.

Configuration The dynamic management of cells is done by a signal called ac-

cessibility. This signal links every cell of a SG when a connection is done. Each
cell owns an Up Accessibility (UA) (from its mother cells) and a Down Accessi-

bility (DA) (distributed to its daughter cells). At the time of a new connection,
a cell receives the UA from its mother cells and stores its configuration coming
from the CPL. In the case of multiple convergences (details on SG topologies
have been presented in [21]), it receives the UA as soon as the first connection
is established. Then, a configured cell is ready to receive and to give a token.
After its configuration, the cell transmits its accessibility to its daughters.

ü

ý
þþ

þ
þ

þ

þ

þ

þ

þ

þ

þ
þ

ü

ý
ÿþ

þ
þ

þ

þ

ÿ

þ

þ

þ

þ
þ

ü

ý
ÿþ

ÿ
þ

þ

þ

ÿ

ÿ

þ

þ

þ
þ

ü

ý
ÿÿ

ÿ
ÿ

þ

þ

ÿ

ÿ

þ

þ

þ
þ

���� ����
	��� ����
��
� �����
���
� �����

����������� ý�����

ü

ý
þþ

þ
þ

þ

þ

þ

þ

þ

þ

þ
þ

ü

ý
ÿþ

þ
þ

þ

þ

ÿ

þ

þ

þ

þ
þ

ü

ý
ÿþ

ÿ
þ

þ

þ

ÿ

ÿ

þ

þ

þ
þ

ü

ý
ÿÿ

ÿ
ÿ

þ

þ

ÿ

ÿ

þ

þ

þ
þ

���� ����
	��� ����
��
� �����
���
� �����

����������� ý�����

Fig. 6. Connection between the source cell (S) and its target cell (T)

10

When the connection has succeeded, the RAC Net notifies the CPL. Conse-
quently, the CPL updates the CAM with the address of the new mapped state,
the LeafFinder defines the new cell as a leaf cell, and the Instruction Memory

stored the correct instructions.
When a connection fails, the RAC Net indicates an error to the CPL. The

CPL deallocates resources in the RAC Net and searches the next leaf cell with
the LeafFinder. These two operations are repeated until a connection succeeds.
Release mechanisms are detailed in the next paragraph.

4.2 Graph release

A cell stops to deliver its accessibility when it no more receives an UA and does
not own a token. When a cell loses its accessibility, all the daughter cells are
successively free and can be used for other SG implementations. In order to
prevent the release of frequently used cells, which may happen in loop kernels,
a configuration signal called stop point can be used.

Due to resource limitations, a connection attempt may fail. For this reason,
a complete error management system has been developed. It is composed of
three primitives, which can release more or less cells. The appearing frequency
of connection errors is evaluated by the CPL. When predefined thresholds are
reached, adapted primitives are sent to the RAC Net to free unused resources.
The first one is called test acces. It can free a cell in a stop point mode (Fig. 7).
Every cell between two stop point cells are free. Indeed, a stop point cell is free
on a rising edge of the test acces signal when it receives the accessibility from
its mothers.

����������

� !��"## !

$

%

%

%
%

� !��"## !

$

$

$

%
%

����������

� !��"## !

$

%

%

%
%

� !��"## !

$

$

$

%
%

Fig. 7. Releasing of cells with test access

The second release primitive is named reset stop point. It can force the liber-
ation of any stop point cells when they do not have any token. This mode keeps
cells implied in the implementation of loop kernels and reduces the release. In
some critical cases (when resources are very limited), it can become an idle state.

Finally, the last primitive called reset idle state guarantees no idle state in
the RAC. This is done by freeing all the cells, which do not own a token. This

11

solution is of course the more efficient but is very expensive in time and energy
consumption. It must only be used in case of repeated desallocation errors.

No heuristics decide how many cells must be reclaimed or loaded. This is
done automatically even if the desallocation is not optimal. That is why stop

point cells must be adequately placed in SGs to limit releases.
Non-deterministic algorithms need to make decisions to follow their pro-

cesses. This can be translated as OR divergences, e.g. events determine which
branch will be followed by firing transitions. To prevent speculative construc-
tion and to configure too many unemployed cells, the construction of SGs is
blocked until correct decisions are taken. This does not slow the execution of the
application since the RAC Net contains always the next processes. Moreover,
we consider that execution is slower than reconfiguration, and that an optimal
computation time is about 3ns. Indeed, we estimate the reconfiguration time of
a cell equals to 7.5ns and the minimum time between two successive instructions
for a fully interconnected network of 3ns+1.5ns, where 1.5ns is the interconnect
propagation time for a 32-cell RAC.

5 Implementation and performance estimation

An architecture can not be exploited without a development flow. For this rea-
son, a development flow is currently a major research concern of our laboratory
(Fig. 8). From a description of the application in C-language, an intermediate
representation can be obtained by a front-end like SUIF [22, 23]. Then, a paral-
lelism exploration from the CDFG must be done to assign tasks to the multiple
computing resources of the RAO. This parallelism exploration under constraints

&'()'**&'()'** +,-./01-23+,-./01-23

(1453 456.708/01-(1453 456.708/01-

99*:6/5;<*:6/5;<==

< 456.708/01- 1>< 456.708/01- 1> /?5/?5 28830.2/01-28830.2/01-

@ABCDEFG HGAIJKFIL

M-/57-23 7587565-/2/01-M-/57-23 7587565-/2/01-N <O+PN <O+P

QRGREEFEDSB TUJGRVJDAI

WEEAVRJDAI

<1-/713<1-/713

7587565-/2/01-7587565-/2/01-N <+PN <+P

<1;8,/2/01-<1;8,/2/01-

7587565-/2/01-7587565-/2/01-N O+PN O+P

XYIJZFSDSQRGSFG

&'()'**&'()'** +,-./01-23+,-./01-23

(1453 456.708/01-(1453 456.708/01-

99*:6/5;<*:6/5;<==

< 456.708/01- 1>< 456.708/01- 1> /?5/?5 28830.2/01-28830.2/01-

@ABCDEFG HGAIJKFIL

M-/57-23 7587565-/2/01-M-/57-23 7587565-/2/01-N <O+PN <O+P

QRGREEFEDSB TUJGRVJDAI

WEEAVRJDAI

<1-/713<1-/713

7587565-/2/01-7587565-/2/01-N <+PN <+P

<1;8,/2/01-<1;8,/2/01-

7587565-/2/01-7587565-/2/01-N O+PN O+P

XYIJZFSDSQRGSFG

Fig. 8. RAMPASS Development Flow Graph

12

increases performances and minimizes the energy consumption and the memory
bandwidth. The allocation of multiple resources in the RAO can also increase
the level of parallelism. From this optimized CDFG, DFGs must be extracted in
order to be executed on RAO resources. Each DFG is then translated into RAO

configurations, thanks to behavioral synthesis scheme. This function is currently
under development through the OSGAR project, which consists in designing
a general-purpose synthesizer for any reconfigurable architectures. This RNTL

project under the ward of the French research ministry, associates TNI-Valiosys,
the Occidental Brittany University and the R2D2 team of the IRISA. On the
other hand, a parser used to translate a CFG into the RAMPASS description
language, has been successfully developed.

Besides, a functional model of the RAC block has been designed with Sys-
temC. Our functional-level description of the RAC is a CABA (Cycle Accurate
and Bit Accurate) hardware model. It permits the change of the size and the
features of the RAC Net and allows the evaluation of its energy consumption.
The characteristics of this description language easily allows hardware descrip-
tions, it has the flexibility of the C++ language and brings all the primitives for
the modelization of hardware architectures [25, 26].

A lot of different programming structures have been implemented in the
RAC block, e.g. exclusion mechanisms, AND convergence and divergence, syn-
chronizations between separated graphs, etc. Moreover, an application of video

7

8 9

10
11

12

13

14

15

16 17

18

20 21

27

28

30

29

32

31

2

1

24

25 26

19

22 23

3

4 5 6

[[

[

[

[

[[

[

[

Event table:

0 – ‘1’

10 – Angle MB

11 – Side MB

12 – Core MB

20 – End RAO Config

30 – End Memory loading

40 – SAD <= Min

41 – SAD > Min

42 – SAD <= Min

43 – SAD > Threshold

50 – NumMB > NbmaxMB

51 – NumMB > NbmaxMB

\\ \]\[

][

^[

_[_\

`[`\ `[`\

_] _^

][

^[

7

8 9

10
11

12

13

14

15

16 17

18

20 21

27

28

30

29

32

31

2

1

24

25 26

19

22 23

3

4 5 6

[[

[

[

[

[[

[

[

Event table:

0 – ‘1’

10 – Angle MB

11 – Side MB

12 – Core MB

20 – End RAO Config

30 – End Memory loading

40 – SAD <= Min

41 – SAD > Min

42 – SAD <= Min

43 – SAD > Threshold

50 – NumMB > NbmaxMB

51 – NumMB > NbmaxMB

\\ \]\[

][

^[

_[_\

`[`\ `[`\

_] _^

][

^[

Fig. 9. Motion estimation graph

13

processing (spinal search algorithm for motion estimation [27]) has been mapped
(Fig. 9). The latency overhead is insignificant without reconfiguration when the
RAC owns 32 cells, or with a 15-cell RAC when the whole main loop kernel
can be implemented (0.01%), even if we cannot predict reconfigurations. Finally
with a 7-cell RAC (the minimal required for this application), the overhead
raises only 10% in spite of multiple reconfigurations, since the implementation
of the SG must be continuously updated.

Besides, hardware simulations have shown the benefits of release primitives.
Indeed, the more cells are released, the more the energy consumption increases
since they will have to be re-generated, especially in case of loops. Simulations
have shown that these releases are done only when necessary.

Some SG structures implemented in the RAC Net need an imperative number
of cells. This constraints the minimal number of cells to prevent dead-locks. For
instance, a multiple AND divergence has to be entirely mapped before the token
is transmitted. Consequently, an 8-state AND divergence needs at least nine
cells to work. Dynamic reconfiguration ensures the progress of SGs but can not
prevent dead-locks if complex structures need more cells than available inside
the RAC Net. On the contrary, the user can map a linear SG of thousands of
cells with only two free cells.

6 Conclusion and future work

New paradigm of dynamically self-reconfigurable architecture has been proposed
in this paper. The part depicted is dedicated to the control and can physically
implement control graphs of applications. This architecture brings a novel ap-
proach for controlling reconfigurable resources. It can answer future technology
improvements, allow a high level of parallelism and keep a constant execution
flow, even for non-predictible processing.

Our hardware simulation model has successfully validated static and dy-
namic reconfiguration paradigms. According to these results, further works will
be performed. To evaluate performances of RAMPASS, a synthesized model and
a prototype of the RAC block is currently designed in a ST 0.18µm technology.

Moreover, the coupling between the RAC and other reconfigurable archi-
tectures (DART, Systolic Ring, etc.) will be studied. The aim of these further
collaborations consists in demonstrating the high aptitudes of the RAC to adapt
itself to different computation architectures.

7 Acknowledgements

We thank Dominique Lavenier (IRISA, France), Laurent Letellier and Raphaël
David (CEA, France) for helpful discussions and comments on this work.

References

1. Semiconductor Industry Association. International Technology Roadmap for Semi-
conductors. Technical report, 2003.

14

2. K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems and
Software. ACM Computing Surveys, 34(2):171–210, June 2002.

3. R. Hartenstein. A Decade of Reconfigurable Computing: a Visionary Retrospec-
tive. In IEEE Design Automation and Test in Europe (DATE), Munich, Germany,
March 2001.

4. Xilinx, http://www.xilinx.com.

5. Altera, http://www.altera.com.

6. S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.R. Taylor.
PipeRench: A Reconfigurable Architecture and Compiler. Computer: Innovative
Technology for Computer Profesionals, 33(4):70–77, April 2000.

7. J. Becker, M. Glesner, A. Alsolaim, and J. Starzyk. Fast Communication Mech-
anisms in Coarse-grained Dynamically Reconfigurable Array Architectures. In
Workshop on Engineering of Reconfigurable Hardware/Software Objects (ENRE-
GLE), Las Vegas, USA, June 2000.

8. H. Singh, M.-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M. Chaves
Filho. MorphoSys: An Integrated Reconfigurable System for Data-Parallel
and Computation-Intensive Applications. IEEE Trans. on Computers, Vol.49,
No.5:465–481, May 2000.

9. T. Miyamori and K. Olukotun. REMARC: Reconfigurable Multimedia Array Co-
processor. In ACM/SIGDA Field Programmable Gate Array (FPGA), Monterey,
USA, February 1998.

10. D. Cronquist. Architecture Design of Reconfigurable Pipelined Datapaths. In
Advanced Research in VLSI (ARVLSI), Atlanta, USA, March 1999.

11. R. David, S. Pillement, and O. Sentieys. Low-Power Electronics Design, chapter
20: Low-Power Reconfigurable Processors. CRC press edited by C. Piguet, April
2004.

12. G. Sassateli, L. Torres, P. Benoit, T. Gil, G. Cambon, and J. Galy. Highly Scalable
Dynamically Reconfigurable Systolic Ring-Architecture for DSP applications. In
IEEE Design Automation and Test in Europe (DATE), Paris, France, March 2002.

13. G.M. Amdahl. Validity of the Single-Processor Approach to Achieving Large Scale
Computing Capabilities. In AFIPS Conference Proceedings vol.30, Atlantic City,
USA, April 1967.

14. J. Becker and M. Vorbach. Architecture, Memory and Interface Technology Inte-
gration of an Industrial/Academic Configurable System-on-Chip (CSoC). In IEEE
Computer Society Annual Workshop on VLSI (WVLSI), Florida, USA, February
2003.

15. Y. Chou, P. Pillai, H. Schmit, and J.P. Shen. PipeRench Implementation of the
Instruction Path Coprocessor. In Symposium on Microarchitecture (MICRO-33),
Monterey, USA, December 2000.

16. B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins. Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case Study. In
Design Automation and Test in Europe (DATE), Paris, France, February 2004.

17. Z. Ye, P. Banerjee, S. Hauck, and A. Moshovos. CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled RFU. In the 27th Annual International Sym-
posium on Computer Architecture (ISCA), Vancouver, Canada, June 2000.

18. C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. Arnold, and
M. Gokhale. The NAPA Adaptive Processing Architecture. In IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM), Napa Valley,
USA, April 1998.

15

19. J.R. Hauser and J. Wawrzynek. GARP: A MIPS Processor with a Reconfigurable
Coprocessor. In IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), Napa Valley, USA, April 1997.

20. D. Rizzo and O. Colavin. A Video Compression Case Study on a Reconfigurable
VLIW Architecture. In Design Automation and Test in Europe (DATE), Paris,
France, March 2002.

21. S. Chevobbe, N. Ventroux, F. Blanc, and T. Collette. RAMPASS: Reconfig-
urable and Advanced Multi-Processing Architecture for future Silicon System. In
3rd International Workshop on Systems, Architectures, Modeling and Simulation
(SAMOS), Samos, Greece, July 2003.

22. G. Aigner, A. Diwan, D.L. Heine, M.S. Lam, D.L. Moore, B.R. Murphy, and C. Sa-
puntzakis. The Basic SUIF Programming Guide. Technical report, Computer
Systems Laboratory, Stanford University, USA, August 2000.

23. M.D. Smith and G. Holloway. An Introduction to Machine SUIF and its Portable
Libraries for Analysis and Optimization. Technical report, Division of Engineering
and Applied Sciences, Harvard University, USA, July 2002.

24. I.E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
1989.

25. J. Gerlach and W. Rosenstiel. System level design using the SystemC modeling
platform. In the 3rd Workshop on System Design Automation (SDA), Rathen,
Germany, 2000.

26. S. Swan. An Introduction to System Level Modeling in SystemC 2.0. Technical
report, Cadence Design Systems, Inc., May 2001.

27. T. Zahariadis and D. Kalivas. A Spiral Search Algorithm for Fast Estimation of
Block Motion Vectors. In the 8th European Signal Processing Conference (EU-
SIPCO), Trieste, Italy, September 1996.

16

