Nicolas Ventroux

Stéphane Chevobbe

Fréderic Blanc

Thierry Collette

An Auto-Adaptative Reconfigurable Architecture for the Control

Keywords: dynamic reconfiguration, adaptative reconfigurable architecture, control parallelism

Previous works have shown that reconfigurable architectures are particularly well-adapted for implementing regular processing applications. Nevertheless, they are inefficient for designing complex control systems. In order to solve this drawback, microprocessors are jointly used with reconfigurable devices. However, only regular, modular and reconfigurable architectures can easily take into account constant technology improvements, since they are based on the repetition of small units. This paper focuses on the self-adaptative features of a new reconfigurable architecture dedicated to the control from the application to the computation level. This reconfigurable device can itself adapt its resources to the application at run-time, and can exploit a high level of parallelism into an architecture called RAMPASS.

Introduction

The silicon area of reconfigurable devices are filled with a large number of computing primitives, interconnected via a configurable network. The functionality of each element can be programmed as well as the interconnect pattern. These regular and modular structures are adapted to exploit future microelectronic technology improvements. In fact, semiconductor road maps [START_REF]International Technology Roadmap for Semiconductors[END_REF] indicate that integration density of regular structures (like memories) increases faster than irregular ones (Tab. 1). In this introduction, existing reconfigurable architectures as well as solutions to control these structures, are first presented. This permits us to highlight the interests of our architecture dedicated to the control, which is then depicted in details.

A reconfigurable circuit can adapt its features, completely or partially, to applications during a process called reconfiguration. These reconfigurations are statically or dynamically managed by hardware mechanisms [START_REF] Compton | Reconfigurable Computing: A Survey of Systems and Software[END_REF]. These architectures can efficiently perform hardware computations, while retaining much of Table 1. Integration density for future VLSI devices the flexibility of a software solution [START_REF] Hartenstein | A Decade of Reconfigurable Computing: a Visionary Retrospective[END_REF]. Their resources can be arranged to implement specific and heterogeneous applications. Three kinds of reconfiguration level can be distinguished :

-gate level: FPGA (Field Programmable Gate Array) are the most wellknown and used gate-level reconfigurable architectures [4,[START_REF]Altera[END_REF]. These devices merge three kinds of resources: the first one is an interconnection network, the second one is a set of processing blocks (LUT, registers, etc.) and the third one regroups I/O blocks. The reconfiguration process consists in using the interconnection network to connect different reconfigurable processing elements. Furthermore, each LUT is configured to perform any logical operations on its inputs. These devices can exploit bit-level parallelism.

-operator level: the reconfiguration takes place at the interconnection and the operator levels (PipeRench [START_REF] Goldstein | PipeRench: A Reconfigurable Architecture and Compiler[END_REF], DREAM [START_REF] Becker | Fast Communication Mechanisms in Coarse-grained Dynamically Reconfigurable Array Architectures[END_REF], MorphoSys [START_REF] Singh | MorphoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications[END_REF], REMARC [START_REF] Miyamori | REMARC: Reconfigurable Multimedia Array Coprocessor[END_REF], etc.). The main difference concerns the reconfiguration granularity, which is at the word level. The use of coarse-grain reconfigurable operators provides significant savings in time and area for word-based applications. They preserve a high level of flexibility in spite of the limitations imposed by the use of coarse-grain operators for better performances, which do not allow bit-level parallelism.

-functional level: these architectures have been developed in order to implement intensive arithmetic computing applications (RaPiD [START_REF] Cronquist | Architecture Design of Reconfigurable Pipelined Datapaths[END_REF], DART [START_REF] David | Low-Power Electronics Design, chapter 20: Low-Power Reconfigurable Processors[END_REF], Systolic Ring [START_REF] Sassateli | Highly Scalable Dynamically Reconfigurable Systolic Ring-Architecture for DSP applications[END_REF], etc.). These reconfigurable architectures are reconfigured in modifying the way their functional units are interconnected. The low reconfiguration data volume of these architectures makes it easier to implement dynamic reconfigurations and allows the definition of simple execution models.

These architectures can own different levels of physical granularity, and whatever the reconfiguration grain is, partial reconfigurations are possible, allowing the virtualization of their resources. Thus for instance, to increase performances (area, consumption, speed, etc.), an application based on arithmetic operators is optimally implemented on word-level reconfigurable architectures.

Besides, according to Amdahl's law [START_REF] Amdahl | Validity of the Single-Processor Approach to Achieving Large Scale Computing Capabilities[END_REF], an application is always composed of regular and irregular processings. It is always possible to reduce and optimize the regular parts of an application in increasing the parallelism, but irregular code is irreductible. Moreover, it is difficult to map these irregular parts on reconfigurable architectures. Therefore, most reconfigurable systems need to be coupled with an external controller especially for irregular processing or dynamic context switching. Performances are directly dependent on the position and the level of this coupling. Presently, four possibilities can be exploited by designers:

-microprocessor: this solution is often chosen when reconfigurable units are used as coprocessors in a SoC (System on Chip) framework. The microprocessor can both execute its own processes (and irregular codes) and configure its reconfigurable resources (PACT XPP-/Leon [START_REF] Becker | Architecture, Memory and Interface Technology Integration of an Industrial/Academic Configurable System-on-Chip (CSoC)[END_REF], PipeRench [START_REF] Chou | PipeRench Implementation of the Instruction Path Coprocessor[END_REF], Mor-phoSys [START_REF] Singh | MorphoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications[END_REF], DREAM [START_REF] Becker | Fast Communication Mechanisms in Coarse-grained Dynamically Reconfigurable Array Architectures[END_REF], etc.). These systems can execute critical processings on the microprocessor, while other concurrent processes can be executed on reconfigurable units. However, in order to only configure and execute irregular code, this solution may be considered as too expensive in terms of area and energy consumption, and would most likely be the bottelneck due to off-chip communication overheads in synchronization and instruction bandwidth.

-processor core: this approach is completely different since the processor is mainly used as a reconfigurable unit controller. A processor is inserted near reconfigurable resources to configure them and to execute irregular processes. Performances can also be increased by exploiting the control parallelism thanks to tight coupling (Matrix [START_REF] Mei | Design Methodology for a Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case Study[END_REF], Chimaera [START_REF] Ye | CHIMAERA: A High-Performance Architecture with a Tightly-Coupled RFU[END_REF], NAPA [START_REF] Rupp | The NAPA Adaptive Processing Architecture[END_REF], etc.). Marginal improvements are often noticed compared to a general-purpose microprocessor but these solutions give an adapted answer for controlling reconfigurable devices.

-microsequencer: these control elements are only used to process irregular processing or to configure resources. They can be found in the RaPiD architecture, for instance, [START_REF] Cronquist | Architecture Design of Reconfigurable Pipelined Datapaths[END_REF] as a smaller programmed control with a short instruction set. Furthermore, the GARP architecture uses a processor in order to only load and execute array configurations [START_REF] Hauser | GARP: A MIPS Processor with a Reconfigurable Coprocessor[END_REF]. A microsequencer is an optimal solution in terms of area and speed. Its features do not allow itself to be considered as a coprocessor like the other solutions, but this approach is however best fitted for specifically controlling reconfigurable units. Nevertheless, control parallelisms can be exploited with difficulty.

-FPGA: this last solution consists in converting the control into a set of state machines, which could then be mapped to an FPGA. This approach can take advantage of traditional synthesis techniques for optimizing control. However, FPGA are not optimized for implementing FSM (Finite State Machines) because whole graphs of the application must be implemented even if non-deterministic processes occur. Indeed, these devices can hardly manage dynamic reconfigurations at the state-level.

Reconfigurable devices are often used with a processor for non-deterministic processes. To minimize control and configuration overheads, the best solution consists in tightly coupling a processor core with the reconfigurable architecture [START_REF] Rizzo | A Video Compression Case Study on a Reconfigurable VLIW Architecture[END_REF]. However, designing for such systems is similar to a HW/SW co-design problem. In addition, the use of reconfigurable devices can be better adapted to deep sub-microelectronic technological improvements. Nonetheless, the controller needs other physical implementation features rather than operators, and FPGA can not always be an optimal solution for computation. Indeed, the control handles small data and requires global communications to control all the processing elements, whereas the computation processes large data and uses local communications between operators.

To deal with control for reconfigurable architectures, we have developed the RAMPASS architecture (Reconfigurable and Advanced Multi-Processing Architecture for future Silicon Systems) [START_REF] Chevobbe | RAMPASS: Reconfigurable and Advanced Multi-Processing Architecture for future Silicon System[END_REF]. It is composed of two reconfigurable resources. The first one is suitable for computation purposes but is not a topic of interest for this paper. The second part of our architecture is dedicated to control processes. It is a self-reconfigurable and asynchronous architecture, which supports SIMD (Single Instruction Multiple Data), MIMD (Multiple Instruction Multiple Data) and multi-threading processes.

This paper presents the mechanisms used to auto-adapt resource allocations to the application in the control part of RAMPASS. The paper is structured as follows: section 2 outlines a functional description of RAMPASS. Section 3 presents a detailed functional description of the part of RAMPASS dedicated to the control. This presentation focuses on some concepts presented in [START_REF] Chevobbe | RAMPASS: Reconfigurable and Advanced Multi-Processing Architecture for future Silicon System[END_REF]. Then, section 4 depicts auto-adaptative reconfiguration mechanisms of this control part. Finally, section 5 presents the development flow, some results and deals with the SystemC model of our architecture.

Functional Description of RAMPASS

In this section, the global functionality of RAMPASS is described. It is composed of two main reconfigurable parts (Fig. 1):

-One dedicated to the control of applications (RAC : Reconfigurable Adapted to the Control); -One dedicated to the computation (RAO: Reconfigurable Adapted to Operators).

Even if the RAC is a part of RAMPASS, it can be dissociated to be integrated with other different architectures with any computational grain. Each computation block can be either a general-purpose processor or a functional unit. The RAC is a generic control architecture and is the main interest of this paper. In this article, the RAO can be considered as a computational device adapted to the application, with a specific interface in order to communicate with the RAC. This interface must support instructions from the RAC and return one-bit flags according to its processes.

Overview

From a C description, any application can be translated as a CDFG (Control Data Flow Graph), which is a CFG (Control Flow Graph) with the instructions of the basic blocks expressed as a DFG (Data Flow Graph). Thus, their partition is easily conceivable [START_REF] Aigner | The Basic SUIF Programming Guide[END_REF][START_REF] Smith | An Introduction to Machine SUIF and its Portable Libraries for Analysis and Optimization[END_REF].

A CFG or a State Graph (SG) represents the control relationships between the set of basic blocks. Each basic block contains a set of deterministic instructions, called actions. Thus, every state in a SG is linked to an action. Besides, every arc in a SG either connects a state to a transition, or a transition to a state. A SG executes by firing transitions. When a transition fires, one token is removed from each input state of the transition and one token is added to each output state of the transition. These transistions determine the appropriate control edge to follow. On the other hand, a DFG represents the overall corresponding method compiled onto hardware.

Consequently, whatever the application is, it can be composed of two different parts (Fig. 2). The first one computes operations (DFG) and the second one schedules these executions on a limited amount of processing resources (CFG). The first block of our architecture can physically store any application described as a CFG. States drive the computation elements in the RAO, and events coming from the RAO validate transitions in the SG. Moreover, self-routing mechanisms have been introduced in the RAC block to simplify SG mapping. The RAC can auto-implement a SG according to its free resources. The RAC controls connections between cells and manages its resources. All these mechanisms will be discussed in future sections.

Mapping and running an application with RAMPASS

In this part, the configuration and the execution of an application in RAMPASS are described. Applications are stored in an external memory. As soon as the SG begins to be loaded in the RAC, its execution begins. In fact, the configuration and the execution are simultaneously performed. Contrary to microprocessor, this has the advantage of never blocking the execution of applications, since the following executed actions are always mapped in the RAC.

The reconfiguration of the RAC is self-managed and depends on the application progress. This concept is called auto-adaptative. The RAC Net has a limited number of cells, which must be dynamically used in order to map larger applications. Indeed, due to a lack of resources, whole SGs can not always be mapped in the RAC. Dynamic reconfiguration has been introduced to increase the virtual size of the architecture. In our approach, no pre-divided contexts are required. Sub-blocks implemented in the RAC Net are continuously updated without any user help. Figure 3 shows a sub-graph of a 7-state application implemented at run-time in a 3-cell RAC according to the position of the token. Each time a token is received in a cell of a SG implemented in the RAC, its associated instructions are sent to the RAO. When the RAO has finished its processes, it returns an event to the cell. This event corresponds to an edge in the SG mapped in the RAC. These transitions permit the propagation of tokens in SGs. Besides, each block has its synchronization mechanisms. In this globally asynchronous architecture, blocks are synchronized by 2-phase protocols [START_REF] Sutherland | Micropipelines[END_REF].

It is possible to execute concurrently any parallel branches of a SG, or any independant SGs in the RAC. This ensures SIMD, MIMD, and multi-threading control parallelisms. Besides, semaphore and mutex can be directly mapped inside the RAC in order to manage shared resources or synchronization between SGs. Even if SGs are implemented cell by cell, their instantiations are concurrent.

3 Functional description of the control block: the RAC As previously mentioned, the RAC is a reconfigurable block dedicated to the control of an application. It is composed of five units (Fig. 4). The CPL (Configuration Protocol Layer), the CAM (Content Addressable Memory) and the Leaf-Finder are used to configure the RAC Net and to load the Instruction Memory.

Overview

The RAC Net can support physical implementation of SGs. When a cell is configured in the RAC Net, its associated instructions are stored in the Instruction Memory as well as the address of its description in the CAM. Descriptions of cells are placed in a central memory and each description contains the instruction of the associated cell and the configuration of cells, which must be connected (daughter cells). In order to extend SGs in the RAC Net, the last cells of SGs, which are called leaf cells, are identified in the LeafFinder. These cells allow the extension of SGs. When a leaf cell is detected, a signal is sent to the CAM and the description of this cell is read in the central memory. From this description, the daughter cells of this leaf cell are configured and links are established between the cells in the RAC Net. The CAM can also find a cell mapped in the RAC Net thanks to its address. This is necessary if loop kernels try to connect already mapped cells. Finally, the propagation of tokens through SGs, thanks to events from the RAO, schedule the execution of instructions stored in the Instruction Memory. In the next section, the details of each block are given.

Blocks description

RAC Net, this element is composed of cells and interconnect components. SGs are physically implemented thanks to these resources. One state of a SG is implemented by one cell. Each cell directly drives instructions, which are sent to the RAO. The RAC Net is dynamically reconfigurable. Its resources can be released or used at the run-time according to the execution of the application. Moreover, configuration and execution of SGs are fully concurrent. RAC Net owns primitives to ensure the auto-routing and the managing of its resources (cf §4.1). The RAC Net is composed of three one-hot asynchronous FSMs (5 ,8 and 2 states) to ensure the propagation of tokens, its dynamical destruction and the creation of connections. It represents about one thousand transistors in ST 0.18µm technology.

Instruction memory, the Instruction Memory contains the instructions, which are sent by the RAC Net to the RAO when tokens run through SGs. An instruction can eventually be either configurations or context addresses. As shown in figure 5, the split instruction bus allows the support of EPIC (Explicitly Parallel Instruction Computing) and the different kinds of parallelism introduced in the first section. Each column is reserved for a computation block in the RAO.

For instance, the instructions A and B could be sent together to different computational blocks mapped in the RAO without creating conflicts, whereas the instruction C would be sent alone. A bit of selection is also used to minimize energy consumption by disabling unused blocks. Furthermore, each line is separately driven by a state, e.g. each cell of the RAC Net is dedicated to management of one line of this memory. This memory does not require address decoding since its access is directly done through its word lines. We call this kind of memory a word-line memory.

CPL, this unit manages SG implementation in the RAC Net. It sends all the useful information to connect cells, which can auto-route themselves. It drives either a new connection if the next state is not mapped in the RAC net, or a connection between two states already mapped. It also sends primitives to release resources when the RAC Net is full. CAM, this memory links each cell of the RAC Net used to map a state of a SG, with its address in the external memory. Again, it can be driven directly through its word lines. It is used by the CPL to check if a cell is already mapped in the RAC Net. The CAM can select a cell in the RAC Net when its address is presented by the CPL at its input. Besides, the CAM contains the size of cell descriptions to optimize the bandwidth with the central memory.

LeafFinder, this word-line memory identifies all the leaf cells. Leaf cells are in a semi-mapped state which does not yet have an associated instruction. The research is done by a logic ring, which runs each time a leaf cell appears.

Auto-adaptative reconfiguration Control

The first part of this section deals with the creation of connections between cells and their configuration. A cell, which takes part in a SG, must be configured in a special state corresponding to its function in the SG. Finally, the second part focuses on the release of already used cells.

Graph creation and configuration

New connection To realize a new connection e.g. a connection with a free cell, the CPL sends a primitive called connection. This carries out automatically a connection between an existing cell (the source cell), which is driven by the LeafFinder, and a new cell (the target cell), which is a free cell chosen in the neighborhood of the source cell. Thus, each daughter in the neighborhood of the source cell are successively tested until a free cell is found. The RAC Net and its network can self-manage these connections. In fact, carrying out a connection consists of validating existing physical connections between both cells. Finally, the path between the two cells can be considered as auto-routed in the RAC Net.

Connection between two existing cells When the RAC finds the two cells, which must be connected, two primitives called preparation and search are successively sent by the CPL to the RAC Net. The first one initializes the research process and the second one executes it. The source cell is driven by the LeafFinder via the signal start and the target cell by the CAM via the signal finish. According to the application, the network of the RAC Net can be either fully or partially interconnected. Indeed, the interconnection network area is a function of the square of the number of cells in the RAC Net. Thus, a fully connected network should be used only in highly irregular computing application.

If the network is fully interconnected, the connection is simply done by the interconnect, which receives both the signals start and finish. On the other hand, if cells are partially interconnected, handshaking mechanisms allow the source cells to find the target. Two signals called find and found link each cells together (Fig. 6). On the reception of the signal search, the source cell sends a find signal to its daughters. The free cell receiving this signal sends it again to its daughters (this signal can be received only one time). So, the signal find spreads through free cells until it reaches the target cell. Then this cell sends back the signal found via the same path to the source cell. Finally, the path is validated and a hardware connection is established between the two cells. The intermediate and free cells, which take part in the connection, are in a special mode named bypass.

Configuration The dynamic management of cells is done by a signal called accessibility. This signal links every cell of a SG when a connection is done. Each cell owns an Up Accessibility (UA) (from its mother cells) and a Down Accessibility (DA) (distributed to its daughter cells). At the time of a new connection, a cell receives the UA from its mother cells and stores its configuration coming from the CPL. In the case of multiple convergences (details on SG topologies have been presented in [START_REF] Chevobbe | RAMPASS: Reconfigurable and Advanced Multi-Processing Architecture for future Silicon System[END_REF]), it receives the UA as soon as the first connection is established. Then, a configured cell is ready to receive and to give a token. After its configuration, the cell transmits its accessibility to its daughters. When the connection has succeeded, the RAC Net notifies the CPL. Consequently, the CPL updates the CAM with the address of the new mapped state, the LeafFinder defines the new cell as a leaf cell, and the Instruction Memory stored the correct instructions.

ü ý þ þ þ þ þ þ þ þ þ þ þ þ ü ý ÿ þ þ þ þ þ ÿ þ þ þ þ þ ü ý ÿ þ ÿ þ þ þ ÿ ÿ þ þ þ þ ü ý ÿ ÿ ÿ ÿ þ þ ÿ ÿ þ þ þ þ £ ¡¢ §¡¤¤ ©¥¡¡ §¡¤¤ ¦¨ ¤ ¦ ¤ ¥¡¥ ! ý¡¥ §" ü ý þ þ þ þ þ þ þ þ þ þ þ þ ü ý ÿ þ þ þ þ þ ÿ þ þ þ þ þ ü ý ÿ þ ÿ þ þ þ ÿ ÿ þ þ þ þ ü ý ÿ ÿ ÿ ÿ þ þ ÿ ÿ þ þ þ þ £ ¡¢ §¡¤¤ ©¥¡¡ §¡¤¤ ¦¨ ¤ ¦ ¤ ¥¡¥ ! ý¡¥ §"
When a connection fails, the RAC Net indicates an error to the CPL. The CPL deallocates resources in the RAC Net and searches the next leaf cell with the LeafFinder. These two operations are repeated until a connection succeeds. Release mechanisms are detailed in the next paragraph.

Graph release

A cell stops to deliver its accessibility when it no more receives an UA and does not own a token. When a cell loses its accessibility, all the daughter cells are successively free and can be used for other SG implementations. In order to prevent the release of frequently used cells, which may happen in loop kernels, a configuration signal called stop point can be used.

Due to resource limitations, a connection attempt may fail. For this reason, a complete error management system has been developed. It is composed of three primitives, which can release more or less cells. The appearing frequency of connection errors is evaluated by the CPL. When predefined thresholds are reached, adapted primitives are sent to the RAC Net to free unused resources. The first one is called test acces. It can free a cell in a stop point mode (Fig. 7). Every cell between two stop point cells are free. Indeed, a stop point cell is free on a rising edge of the test acces signal when it receives the accessibility from its mothers. The second release primitive is named reset stop point. It can force the liberation of any stop point cells when they do not have any token. This mode keeps cells implied in the implementation of loop kernels and reduces the release. In some critical cases (when resources are very limited), it can become an idle state.

Finally, the last primitive called reset idle state guarantees no idle state in the RAC. This is done by freeing all the cells, which do not own a token. This solution is of course the more efficient but is very expensive in time and energy consumption. It must only be used in case of repeated desallocation errors.

No heuristics decide how many cells must be reclaimed or loaded. This is done automatically even if the desallocation is not optimal. That is why stop point cells must be adequately placed in SGs to limit releases.

Non-deterministic algorithms need to make decisions to follow their processes. This can be translated as OR divergences, e.g. events determine which branch will be followed by firing transitions. To prevent speculative construction and to configure too many unemployed cells, the construction of SGs is blocked until correct decisions are taken. This does not slow the execution of the application since the RAC Net contains always the next processes. Moreover, we consider that execution is slower than reconfiguration, and that an optimal computation time is about 3ns. Indeed, we estimate the reconfiguration time of a cell equals to 7.5ns and the minimum time between two successive instructions for a fully interconnected network of 3ns+1.5ns, where 1.5ns is the interconnect propagation time for a 32-cell RAC.

Implementation and performance estimation

An architecture can not be exploited without a development flow. For this reason, a development flow is currently a major research concern of our laboratory (Fig. 8). From a description of the application in C-language, an intermediate representation can be obtained by a front-end like SUIF [START_REF] Aigner | The Basic SUIF Programming Guide[END_REF][START_REF] Smith | An Introduction to Machine SUIF and its Portable Libraries for Analysis and Optimization[END_REF]. Then, a parallelism exploration from the CDFG must be done to assign tasks to the multiple computing resources of the RAO. This parallelism exploration under constraints increases performances and minimizes the energy consumption and the memory bandwidth. The allocation of multiple resources in the RAO can also increase the level of parallelism. From this optimized CDFG, DFGs must be extracted in order to be executed on RAO resources. Each DFG is then translated into RAO configurations, thanks to behavioral synthesis scheme. This function is currently under development through the OSGAR project, which consists in designing a general-purpose synthesizer for any reconfigurable architectures. This RNTL project under the ward of the French research ministry, associates TNI-Valiosys, the Occidental Brittany University and the R2D2 team of the IRISA. On the other hand, a parser used to translate a CFG into the RAMPASS description language, has been successfully developed.

Besides, a functional model of the RAC block has been designed with Sys-temC. Our functional-level description of the RAC is a CABA (Cycle Accurate and Bit Accurate) hardware model. It permits the change of the size and the features of the RAC Net and allows the evaluation of its energy consumption. The characteristics of this description language easily allows hardware descriptions, it has the flexibility of the C++ language and brings all the primitives for the modelization of hardware architectures [START_REF] Gerlach | System level design using the SystemC modeling platform[END_REF][START_REF] Swan | An Introduction to System Level Modeling in SystemC 2.0[END_REF].

A lot of different programming structures have been implemented in the RAC block, e.g. exclusion mechanisms, AND convergence and divergence, synchronizations between separated graphs, etc. Moreover, an application of video processing (spinal search algorithm for motion estimation [START_REF] Zahariadis | A Spiral Search Algorithm for Fast Estimation of Block Motion Vectors[END_REF]) has been mapped (Fig. 9). The latency overhead is insignificant without reconfiguration when the RAC owns 32 cells, or with a 15-cell RAC when the whole main loop kernel can be implemented (0.01%), even if we cannot predict reconfigurations. Finally with a 7-cell RAC (the minimal required for this application), the overhead raises only 10% in spite of multiple reconfigurations, since the implementation of the SG must be continuously updated.

Besides, hardware simulations have shown the benefits of release primitives. Indeed, the more cells are released, the more the energy consumption increases since they will have to be re-generated, especially in case of loops. Simulations have shown that these releases are done only when necessary.

Some SG structures implemented in the RAC Net need an imperative number of cells. This constraints the minimal number of cells to prevent dead-locks. For instance, a multiple AND divergence has to be entirely mapped before the token is transmitted. Consequently, an 8-state AND divergence needs at least nine cells to work. Dynamic reconfiguration ensures the progress of SGs but can not prevent dead-locks if complex structures need more cells than available inside the RAC Net. On the contrary, the user can map a linear SG of thousands of cells with only two free cells.

Conclusion and future work

New paradigm of dynamically self-reconfigurable architecture has been proposed in this paper. The part depicted is dedicated to the control and can physically implement control graphs of applications. This architecture brings a novel approach for controlling reconfigurable resources. It can answer future technology improvements, allow a high level of parallelism and keep a constant execution flow, even for non-predictible processing.

Our hardware simulation model has successfully validated static and dynamic reconfiguration paradigms. According to these results, further works will be performed. To evaluate performances of RAMPASS, a synthesized model and a prototype of the RAC block is currently designed in a ST 0.18µm technology.

Moreover, the coupling between the RAC and other reconfigurable architectures (DART, Systolic Ring, etc.) will be studied. The aim of these further collaborations consists in demonstrating the high aptitudes of the RAC to adapt itself to different computation architectures.

Fig. 1 .

 1 Fig. 1. Organization of RAMPASS

Fig. 2 .

 2 Fig. 2. Partitioning of an application (a) in Control/Computation (b)

Fig. 3 .

 3 Fig. 3. Evolution of an implemented SG in the RAC Net

Fig. 4 .

 4 Fig. 4. The RAC block

Fig. 5 .

 5 Fig. 5. Relation RAC Net/Instruction Memory

Fig. 6 .

 6 Fig. 6. Connection between the source cell (S) and its target cell (T)

Fig. 7 .

 7 Fig. 7. Releasing of cells with test access

Fig. 8 .

 8 Fig. 8. RAMPASS Development Flow Graph

Fig. 9 .

 9 Fig. 9. Motion estimation graph

Acknowledgements

We thank Dominique Lavenier (IRISA, France), Laurent Letellier and Raphaël David (CEA, France) for helpful discussions and comments on this work.