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Abstract. Semi-analytical models developed at Cea List for the simulation of Eddy current non-destructive
testing are currently based on the volume integral equation formalism. This method is very effective for
canonical geometries such as planes or cylinders since the analytical expressions of Green’s dyads are
known. This approach requires three steps: the computation of the quasi-static fields induced by the probe
in the workpiece without flaw, the determination of the interaction between the primary field and the defect
and finally, the calculation of the response of the eddy current sensor, resulting from this interaction. In
order to generalize this approach to more complex configurations, in this paper, we focus on the first
step: the computation of quasi-static fields induced by an eddy current probe in a conductor with a rough
surface. The semi-analytical model we generalize here is based on Maxwell’s equations, written in a non-
orthogonal coordinate system resulting in the writing of the boundary conditions at the interface by using
a simple analytical expression. Starting from the second-order vector-potential formalism dedicated to
non-orthogonal curvilinear coordinate systems, two scalar potentials are expressed as a modal expansion,
satisfying the outgoing wave condition. Finally, the coefficients of the modal expansion are determined
by applying boundary conditions at the complex interface. First numerical results, obtained considering a
specific configuration, are compared to other Finite Element data.

Introduction

During the last decades, fast semi-analytical models, based
on volume integral equations and Green’s dyads formal-
ism, have been developed for the simulation of the Eddy
current non-destructive testing (ECNDT) of conductive
pieces. The advantage of such approaches lies in the fact
that the analytical expressions of the dyads are well known
for canonical geometries like planes or cylinders and for
stratified media. Besides, corresponding boundary condi-
tions are directly included in the expression of the dyads.
As a matter of fact, the computation times in these par-
ticular configurations are smaller than those obtained by
a standard finite element method (FEM).

However, the analytical expression of the Green’s dyads
is not known for complex geometries, so if one wants to
avoid the use of a purely numerical method in such cases,
it is necessary to focus on another approach for an effi-
cient simulation. Although the use of a boundary element
method [1] can give the solution of such complex prob-
lems, we propose in this paper to generalize an original
method based on a differential formalism.

� Contribution to the Topical Issue “Numelec 2012”, Edited
by Adel Razek.

a e-mail: francois.caire@cea.fr

The Curvilinear Coordinate Method or “C method”
is widely used in the community of Applied Optics since
it has been introduced by Chandezon et al. [2,3], and re-
mains one of the most efficient methods for the computa-
tion of fields scattered by a diffraction grating enlightened
by a plane wave. We propose here an extension of the con-
figurations solved by this method, as we transpose it for
the computation of quasi-static fields induced in a conduc-
tive material with a non-periodical rough surface, which
is excited by an eddy current air-core probe (see Fig. 1).
This extension has already been implemented for a pure
2D configuration [4], which has highlighted the accuracy
and efficiency of the C method for solving eddy-current
problems.

The main idea of the C method is to choose a coor-
dinate system, such that the boundary concurs with the
coordinate fitting the locally perturbated shape. As a con-
sequence of this change of coordinate system, the ana-
lytical equation of the surface becomes more simple and
allows us to treat the boundary conditions analytically.
Maxwell’s equations appear under the covariant form [5]
in this new coordinate system and a new metric must be
considered, as we shall see. Then, a proper decomposition
of these equations [6] and the introduction of two scalar
potentials yield an eigenvalue problem which is the direct
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Fig. 1. General configuration considered: a coil inspecting
a conductive half-space presenting an uneven surface varying
along the x direction.

transcription of covariant Maxwell’s equations without
source terms. Thus, the unknown potentials are expanded
as linear combinations (one in each medium) of eigen-
vectors in which the weight coefficients remain unknown.
To determine them, we introduce the field created by the
probe in air and we apply the boundary conditions on the
surface. From the potentials, it is then easy to reconstruct
the fields everywhere and to compute the impedance of
the probe.

In this paper, we consider a conductive piece with a
surface varying along a single direction. We will first de-
scribe the change of coordinate system and the covariant
Maxwell’s equations thus obtained. Then, the computa-
tional method in the Fourier domain is described. In the
last section, the numerical results are presented, discussed
and compared with those given by using a finite element
software.

1 Formalism

1.1 Change of coordinate system

Let us consider the configuration of Figure 1 where a piece
with a bosselated surface is represented and is enlightened
by a circular coil. The depth of the interface varies with
respect to the x-coordinate and we assume that its ana-
lytical equation z = a(x) is known. Let us now apply the
following change of variables:

⎧
⎨

⎩

x1 = x
x2 = y
x3 = z − a(x).

(1)

In this non-orthogonal coordinate system, although the
equation of the interface is simplified, as it becomes x3=0,
Maxwell’s equations become slightly more complicated.
Indeed, in order to write them in the new system, we have
to introduce the corresponding metric tensor G = (gij).

G takes the following form in our particular coordinates:

G =

⎡

⎣
1 + (ȧx)2 0 ȧx

0 1 0
ȧx 0 1

⎤

⎦ ,

where ȧx =
da

dx
(x).

The inverse tensor, denoted by G−1 = (gij), is

G−1 =

⎡

⎣
1 0 −ȧx

0 1 0
−ȧx 0 1 + (ȧx)2

⎤

⎦ .

1.2 Physical equations

1.2.1 Covariant Maxwell’s equations

Thus, we obtain the so-called covariant Maxwell’s equa-
tions in each medium (the probe is excluded) which link
the covariant components Ec and Hc with the contravari-
ant components Db and Bb of the electro-magnetic fields:

⎧
⎪⎪⎨

⎪⎪⎩

∂bB
b = 0

∂bD
b = 0 (no source)

ξabc∂bEc = +jωBa

ξabc∂bHc =
(
Ja

p + σpE
a
)

, a, b, c = 1, 2, 3. (2)

These equations are written with the time convention
e−jωt and the Einstein’s convention which are used
throughout this paper.

Ja
p denotes the source term in the medium p which is

zero in the conductive part and corresponds to the excita-
tion of the probe in air. The terms ξabc stand for the Lévi-
Cività symbol, σp is the conductivity of the medium p, ω
is the angular frequency, ∂b stand for the partial derivative
with respect to xb and j =

√−1. In addition, given the
range of frequencies used for ECNDT (10 kHz to 10 MHz)
and the usual values of the conductivity (�1 MS/m), the
displacement current is neglected.

1.2.2 Constitutive relations of the media

The remaining equalities to be written in the new sys-
tem are the constitutive relations. They take the following
form:

Ba = μp Ha = μp
√

g gab Hb = μab
p Hb,

Ja = σp Ea = σp
√

g gab Eb = σab
p Eb,

Da = εp Ea = εp
√

g gab Eb = εab
p Eb,

(3)

where (gab) is the inverse metric tensor, g = det(gab),
μp is the magnetic permeability and εp is the electrical
permittivity of the medium p.

Here, we can notice that the introduction of the metric
tensor can be seen as an artificial anisotropy, because the
initial scalar physical constants have all been replaced by
tensors. On the other hand, we have seen that the equation
of the surface becomes a plane verifying x3 = 0. Thus, the
change of coordinate has replaced the complexity of the
geometry by complexity of physical properties.
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1.2.3 Impedance of the probe

In this NDT configuration (see Fig. 1), we are interested in
the computation of the electromagnetic field and the vari-
ation ΔZ of the electrical impedance of the probe during
a scan over the locally deformed surface. Although other
approaches exist, we chose to compute this quantity us-
ing the formula derived by Auld and Moulder [7] from the
Lorentz reciprocity relation [8]. In the following, ΔZ is the
difference of the coil impedance between a reference state
(the coil in air for example, or any other configuration...)
which can be chosen arbitrarily and the state of interest.
We have:

I2ΔZ =
�
SF

(Ea × Hb − Eb × Ha) · n ds, (4)

where I is the amplitude of the driving current, the sub-
script a refers to the field generated by the driving coil
in the absence of the workpiece (or in a particular config-
uration of reference as we shall see later), b denotes the
field generated by the coil system in the presence of the
perturbated workpiece. SF is an arbitrary closed surface
bounding the interface but excluding the coil (see Fig. 2)
and n is the unit outward normal vector, with respect to
the closed surface SF .

For this geometry, SF is the surface fitting the interface
air-conductor. It is closed by a half-cylinder of radius R
in the workpiece. Then, let R tends toward infinity. We
can now assume that the fields are zero on the cylindrical
part of SF if we are far enough from the coil. Thus, the
only remaining term in (4) is the integral on the wavy
surface defined by x3 = 0 which will be denoted by S in
the following.

1.3 Decomposition and differential formalism

1.3.1 Covariant Helmholtz equations

As it is commonly done when facing a classical electro-
magnetic problem, we presently work on the covariant
Maxwell’s equations in order to obtain the Helmholtz

Fig. 2. Definition of the closed surface SF used in equation (4).

equations for both fields E and H. For this purpose, a
proper axis decomposition is chosen and we separate the
component along x2 of the two fields from the others. Af-
ter some tedious calculi, we are finally able to express the
remaining components in terms of E2 and H2 only and we
obtain four coupled partial differential equations in each
medium p [6]:
������
�����

�
∂2
2 + k2

cp

�
Ep

1 = ∂1∂2E
p
2−jkcp

� �
1 + ȧ2

x

�
∂3 − ȧx∂1

�
ZpHp

2�
∂2
2 + k2

cp

�
Ep

3 = ∂3∂2E
p
2−jkcp (ȧx∂3 − ∂1)ZpHp

2�
∂2
2 + k2

cp

�
ZpHp

1 = ∂1∂2ZpHp
2 + jkcp

� �
1 + ȧ2

x

�
∂3 − ȧx∂1

�
Ep

2�
∂2
2 + k2

cp

�
ZpHp

3 = ∂3∂2ZpHp
2 + jkcp (−∂1 + ȧx∂3)E

p
2 ,

(5)
with kcp =

√
jωμpσp, the wave number and Zp =ωμp/kcp ,

the characteristic impedance. Also, the unknowns are re-
duced to the two components E2 and H2 in each medium
but we can see in equation (5) that the reconstruction of
the other components requires the inversion of the oper-
ators

(
∂2
2 + k2

ci

)
. This operation can be avoided by the

substitutions proposed in the next section.

1.3.2 Scalar potentials and final equation

For this purpose, we replace E2 and H2 by two scalar
potentials and by doing so we remove the inconvenient
operator. The two potentials are denoted by Γ and Π
and we can define them using E2 and H2 as follows:

Ep
2 = −jωμp

(
∂2
2 + k2

cp

)
Γ p,

Hp
2 =

(
∂2
2 + k2

cp

)
Πp.

(6)

Finally, we are able to express directly the components
along x1 and x3 in terms of Γ and Π [9] and we obtain
the following expressions where the index p of the medium
has been removed for clarity:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E1 = −jωμ

(

∂1∂2Γ +
(

− ȧx∂1 +
(
1 + ȧ2

x

)
∂3

)
Π

)

E3 = −jωμ
(
∂3∂2Γ + (−∂1 + ȧx∂3) Π

)

H1 = ∂1∂2Π + k2
c

(
− ȧx∂1 +

(
1 + ȧ2

x

)
∂3

)
Γ

H3 = ∂3∂2Π + k2
c (−∂1 + ȧx∂3) Γ.

(7)
Finally, these expressions are injected into the covariant
Maxwell’s equations which can be written in terms of the
potentials exclusively. After some calculi, it appears that
both potentials verify independently the same equation:
[
cx∂2

3 − (∂1ȧx + ȧx∂1) ∂3 + ∂2
1 + ∂2

2 + k2
c

]
Γ = 0, (8)

where cx = 1 + ȧ2
x.

Then, if we consider not only Γ and Π in each medium
as the unknowns but also ∂3Γ and ∂3Π, which will be
denoted by Γ ′ and Π ′ in the following, equation (8) can
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be written:
[
cx 0
0 1

]

∂3

[
Γ

′

Γ

]

=
[
(∂1

.
ax +

.
ax ∂1) −(∂2

1 + ∂2
2 + k2

c )
1 0

] [
Γ

′

Γ

]

. (9)

As we will see, from this equation, it is possible to deduce a
modal decomposition of the two potentials and their deriv-
atives with respect to x3. Indeed, providing some restric-
tive hypotheses on the solutions, it is possible to turn (9)
into an eigenvalue problem.

Besides, at this point it is important to remind the
reader that equation (9) is the direct transcription of the
Maxwell equations without any source term. As a con-
sequence, once we will be able to compute the proper
decomposition of the unknowns, it will depend on the an-
alytical expression of the interface and on the frequency
only and it will not be necessary to calculate it again for
a displacement of the probe, provided that it is seen as a
current source with no interacting part like shielding or
ferrite core.

2 Numerical resolution

2.1 Restrictive hypotheses

The first step to solve numerically (9) consists in obtaining
numerical operators for all the partial derivatives ∂k. To
do so, we will first apply a 2D-Fourier transform along the
axes x1 and x2. The corresponding spatial frequencies will
be denoted by u and v, respectively, and by doing so we
obtain the Fourier transforms Γ̂ and Π̂ of each potential
Γ and Π:

Γ̂ (u, v, x3) =
�

Γ (x1, x2, x3) e−jx1ue−jx2v dx1 dx2.

(10)
Then, in order to obtain a numerical operator for ∂3, we
assume that the solutions are separable and that their
dependency along x3 is an exponential one, i.e. we focus
on solutions taking the form:

⎧
⎨

⎩

Γ̂ (u, v, x3) = Ψ̂(u, v)exp(jλx3)
∂Γ̂

∂x3
(u, v, x3) = Φ̂(u, v)exp(jλx3).

(11)

With all these hypotheses, we are able to re-write
equation (9) and we obtain the following eigenvalue sys-
tem in Fourier domain:
[
Ĉ 0
0 1

]

λ

[
Φ̂(u, v)
Ψ̂(u, v)

]

=
[
(uÂ + Âu) jβ2

−j 0

] [
Φ̂(u, v)
Ψ̂(u, v)

]

,

(12)
where β2 = k2

c − u2 − v2.
The matrices Â and Ĉ stand for the convolution oper-

ator with TF (ȧx) and TF (cx), respectively, as a product
in the spatial domain is transformed into a convolution in
the spectral domain.

2.2 Modal decomposition

The eigenvalue system (12) is solved once for each value
of the spatial frequency v (corresponding to the direction
x2). The resolution of (12) allows us to express the two po-
tentials and their derivatives as linear expansions of eigen-
vectors in each medium p and for each v:

Γ̂ (p) =
∑

q

ψ+
q,pΓ

+
q,pe

jλ+
q,px3

+
∑

q

ψ−
q,p Γ−

q,p ejλ−
q,px3

,

∂Γ̂ (p)

∂x3
=
∑

q

φ+
q,p Γ+

q,p ejλ+
q,px3

+
∑

q

φ−
q,p Γ−

q,p ejλ−
q,px3

,

Π̂(p) =
∑

q

ψ+
q,pΠ

+
q,pe

jλ+
q,px3

+
∑

q

ψ−
q,p Π−

q,p ejλ−
q,px3

,

∂Π̂(p)

∂x3
=
∑

q

φ+
q,p Π+

q,p ejλ+
q,px3

+
∑

q

φ−
q,p Π−

q,p ejλ−
q,px3

,

(13)
where ψ±

q,p and φ±
q,p are the eigenvectors associated to the

eigenvalue λ±
q,p and Γ±

q,p and Π±
q,p are the unknown coef-

ficients. The ± exponents are used to separate the pro-
gressive and the regressive contributions. Indeed, we have
obtained a mathematical solution of Maxwell’s equations
but to make it physically acceptable, it is necessary to add
the outgoing wave condition. To do so, we will remove all
the terms growing as we move toward infinity. In other
words, all the eigenvectors corresponding to �m(λ) < 0
in air (x3 → +∞) and �m(λ) > 0 in the piece (x3 → −∞)
must be suppressed.

2.3 Numerical Fourier transform and truncature

Up to now, we have considered continuous spectral axes
u and v (the modal decomposition has an infinite num-
ber of terms). However, in order to compute the Fourier
transform (10), it is necessary to discretize the 2D spec-
tral domain and to bind it. If we denote by 2Mu + 1 and
2Mv + 1 the number of discrete spatial frequencies along
the two axes, it can be shown that we will obtain exactly
N = (2Mu + 1)(Mv + 1) different eigenvalues. As it is
clear that the accuracy of the modal expansion relies on
the number of terms, we want to emphasize here the im-
portant role of these numbers for this method.

The number of frequencies or spectral modes being
fixed, it is necessary to choose the spatial sample periods
Tx and Ty. Two criteria are considered: the derivative of
the interface has to be well-represented in Fourier-domain
as well as the incident fields we will soon introduce. In
other words, the spectral parameters have to be so chosen
that the numerical TF (TF−1) operation does not affect
the profile or the source terms.

2.4 Boundary conditions and reconstruction

2.4.1 Physical boundary conditions

At this point, the coefficients Γ±
q,p and Π±

q,p of the decom-
position are to be determined by adding the boundary
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conditions on the interface. Indeed, we have to ensure the
continuity of the tangential components of the fields E
and H across the rough surface, whose equation is simply
x3 = 0, thanks to the spatial transformation operated.
The tangential components are E1, E2, H1 and H2. More-
over, we have to introduce here the incident field, i.e. the
one created by the probe in an open space which can be
evaluated analytically. We obtain the following equality:

⎡

⎢
⎢
⎢
⎣

E
(inc)
1

E
(inc)
2

H
(inc)
1

H
(inc)
2

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

E
(R)
1

E
(R)
2

H
(R)
1

H
(R)
2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
air

x3=0=

⎡

⎢
⎢
⎢
⎣

E
(T)
1

E
(T)
2

H
(T)
1

H
(T)
2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
conductor

. (14)

Although this formulation is physically correct, it has a
drawback: the fields created by a coil alone present a wide
spatial expansion and would require a large number of spa-
tial frequencies to be well represented. As a consequence,
this leads to a large eigenvalue system which deteriorates
the efficiency of the code.

The solution we have chosen consists in using a rela-
tive reference with a smaller spatial expansion. We choose
to use the fields created by the probe enlightening a plane
conductor located at the inferior depth of the rough sur-
face and to interpolate it on the effective surface. This
field is given by a semi-analytical model implemented in
the Civa platform [10,11] developed at the Cea List. The
refracted field calculated in this way stands now as a per-
turbation term. We have, for example:

E
(inc)
air + E

(R)
plane

︸ ︷︷ ︸
reference

+ ER − E
(R)
plane

︸ ︷︷ ︸
perturbation

x3=0= ET . (15)

2.4.2 Numerical implementation

Finally, by using relations (7) in the Fourier domain, we
can replace the unknown refracted and transmitted fields
by their expression in terms of the potentials in each
medium. As for the potentials Γ (p) and Π(p) and their
derivatives with respect to x3, they are replaced by
their corresponding modal expansion (see Sect. 1.3). The
boundary system is implemented for each value of the spa-
tial frequency v (and all the frequencies u at once) and
leads to four matrix equations. The numerical operators
are defined as follows:

M(p) = −jωμp [jvjuψp] ,
N (p) = −jωμp

[
−Âjuψp + Ĉφp

]
,

O(p) = −jωμp

[
(jv)2 + k2

cp

]
ψp,

P(p) = k2
cp

[
−Âjuψp + Ĉφp

]
,

Q(p) = [jvjuψp] ,
R(p) =

[
(jv)2 + k2

cp

]
ψp,

(16)

where ψp and φp are vectors containing the eigenvectors
in each medium and u is a diagonal matrix containing all

the spatial frequencies along x1. Using (6), (7), (14) and
(16), we can write the four boundary conditions in the
following form:

M(1)Γ−
1 + N (1)Π−

1 − M(2)Γ+
2 − N (2)Π+

2 = −E(ref)
1 ,

O(1)Γ−
1 − O(2)Γ+

2 = −E(ref)
2 ,

P(1)Γ−
1 + Q(1)Π−

1 − P(2)Γ+
2 − Q(2)Π+

2 = −H(ref)
1 ,

R(1)Π−
1 − R(2)Π+

2 = −H(ref)
2 ,

(17)
where the exponent (ref) stands for the fields calculated
considering a plane configuration as they were introduced
in (15) and Γ±

p and Π±
p are vectors containing all the

unknown coefficients in each medium. For each v, (17)
is a system of 4 × (2Mu + 1) equations and its inversion
leads to the determination of the 4 × (2Mu + 1) unknown
coefficients.

Once the coefficients are calculated, the tangential
components of the fields on the boundary in the media
p are easily computed using the same operators applied
to the corresponding coefficients. The normal components
are obtained in the same way since using (8) leads to the
following expression in Fourier domain:

Ep
3 = −jωμp

[
jvφpΓ±

p +
(
Âφp − juψp

)
Π±

p

]

and

Hp
3 = jvφpΠ±

p + k2
cp

(
Âφp − juψp

)
Γ±

p .

In air, the complete solution is the sum of the recon-
structed perturbation and the reference whereas, in the
piece, the reconstruction leads directly to the determina-
tion of the complete transmitted fields. From its value on
the surface, the field in both media can be easily evaluated
everywhere by multiplying the operators detailed in (16)
with a vector containing the exponential terms of the ex-
pansion (13) stored in the same order as the coefficients
and eigenvectors.

2.5 Computation of the impedance

To supplement the solution of the C method and to pre-
pare a future comparison with experimental data, it is
necessary to compute the impedance of the probe since it
is the typical signal obtained during a real scan. For this
purpose, we use the approach presented in Section 1.2.3
where we introduced the closed surface SF and the inter-
face air-conductor S.

It was shown that the closed integral over SF (4) is
equivalent to the integral over S, providing that the
bounds of the interface are sufficiently far from the source
to ensure that the fields are zero on the cylindrical part
of SF . Besides, the superscript a refers to the fields cal-
culated with a plane located at the extreme depth of the
profile, which is the configuration we used as a reference
when applying the boundary conditions (see Sect. 2.4).
b denotes the total field in the presence of the perturbated
conductor. As a consequence, ΔZ represents here the vari-
ation of the total electrical impedance in comparison with
the plane configuration (reference): ΔZ = Ztotal−Zplane.

24511-p5



The European Physical Journal Applied Physics

The cross product of the fields is calculated from the
Cartesian components and the projection on the normal
direction is then performed. Using the change of coordi-
nate system introduced in Section 1.1, it can be shown
that the normal component of any vector F is the con-
travariant component along x3, commonly denoted by F 3

(the position of the superscript does matter here). This
component can be expressed in terms of the Cartesian
components and we have: F 3 = (−ȧxFx + Fz) /

√
1 + ȧ2

x.
We can finally express this component in terms of the co-
variant components only and finally, we obtain:

(E × H)n =
E1H2
√

1 + ȧ2
x

.

To obtain the absolute impedance, it is necessary to sum
the result ΔZ with the impedance of the plane configu-
ration calculated by the same semi-analytical model used
for the computation of the reference fields.

3 Numerical results and validations

3.1 Configuration

The particular configuration considered for the validation
of the method is presented in Figure 3 and its character-
istic parameters are stored in Table 1. The wavy shape
is assumed to be a part of a cosine function, expressed
analytically as follows:

a(x) =

⎧
⎪⎨

⎪⎩

−hp

2

(

1 + cos
(

2π
x

Lp

))

,∀x ∈ [−Lp/2, Lp/2]

0, elsewhere.

This particular function has been chosen for its smooth-
ness, but any analytical function can be chosen, as long as
the Fourier transform of its first derivative is numerically
tractable. The probe considered is a cylindrical pancake
coil with a rectangular cross-section. For the first valida-
tion presented here, it has been placed directly above the
geometrical perturbation.

3.2 Results

For the validation of our method, we use a commercial FE
solver (Comsol multiphysics [12]) to calculate the fields in-
side the workpiece. This software gives us the components

Table 1. Parameters of the configuration used for the valida-
tion.

Parameter Symbol Value
Conductor
Conductivity σ 1 MS/m
Depth of the shape hp 1.2 mm
Length of the shape Lp 10 mm

Probe
Frequency f 50 kHz
Excitation current I0 1 ampere
Internal radius rint 1.0 mm
External radius rext 1.6 mm
Height H 2 mm
Liftoff l0 0.3 mm

of the fields in the Cartesian system on a predefined mesh.
Since we intend to compare the covariant components in
the workpiece, the solutions are transformed by using the
change of basis formulas presented in Section 1.1. Both so-
lutions have been computed on two surfaces x3 = constant
in the depth of the conductive piece. We present here the
most representative components, i.e. those which are the
most altered by the presence of the local perturbation.
The results presented here have been obtained with the
numerical parameters stored in Table 2.

As a consequence, we have solved 2Mv +1 = 31 eigen-
value and boundary conditions (i.e., matrix inversion)
problems of size 2Mu + 1 = 51 and 4(2Mu + 1) = 204
respectively. The time of computation with these parame-
ters and without the calculus of the reference field (which
is considered as an entry for the model) is 4.5 s on a 64-bit
platform.

In Figures 4–7 we have represented the cartographies
of the real and imaginary parts of E1, H1, E3 and H2

Table 2. Numerical parameters used for the validation.

Parameter Symbol Value

Number of modes along x1 Mu 25
Spatial bound along x1 xmax 20 mm
Sample period along x1 Tx 0.0783 mm
Number of modes along x2 Mv 15
Spatial bound along x2 ymax 20 mm
Sample period along x2 Ty 0.0783 mm

Fig. 3. Configuration for the validation.
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Fig. 4. Real and imaginary parts of the E1 component of the
magnetic field, computed on the surface x3 = −0.8 mm.

Fig. 5. Real and imaginary parts of the H1 component of the
magnetic field, computed on the surface x3 = −0.8 mm.

respectively. These solutions have been computed using
the two methods (C method and FEM) on the surface
x3 = −0.8 mm. Those components are the most altered
by the perturbation (compared to a plane geometry), par-
ticularly E3 which is zero in the case of a plane conductor.
Qualitatively, results given by the C method are close to
the FEM solution, as we can notice that they have the
same form and their amplitudes appear similar.

In order to make a more accurate comparison of the
amplitudes of the fields and to verify that they are prop-
erly calculated everywhere in the piece, we have repre-
sented the real and imaginary parts of the components
E1, E3, H1 and H2 along the most relevant sections (x =

Fig. 6. Real and imaginary parts of the E3 component of the
electric field, computed on the surface x3 = −0.8 mm.

Fig. 7. Real and imaginary parts of the H2 component of the
magnetic field, computed on the surface x3 = −0.8 mm.

constant or y = constant). These components are evalu-
ated in the conductor on two surfaces “parallel” to the
interface x3 = 0, namely x3 = −0.4 and −0.8 mm. The
plots obtained are represented in Figures 8–11.

We can notice a good agreement between the two so-
lutions which confirms that the fields are well computed
everywhere in the conductive piece. The low differences
are most likely due to the necessary bounding of the two
domains (air and conductor) for the FEM computation:
the radiation condition of the field at infinity is approx-
imated by applying Dirichlet conditions on the edges of
the box and can be a source of inaccuracy. Besides, the
density of the mesh is limited by the internal memory
of the computer we used to compute the FEM solution.
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Fig. 8. Real and imaginary parts of the component E1

represented along the section x = 0 for the two surfaces
x3 = −0.4 mm and x3 = −0.8 mm.

Fig. 9. Real and imaginary parts of the E3 component, rep-
resented along the section y = 2.5 mm for the two surfaces
x3 = −0.4 mm and x3 = −0.8 mm.

An improvement of the results is thus very likely to be
observed with a finer mesh and a larger domain.

In order to quantify the error between the simulated
datas provided by each model (method C and FEM), we
have computed the quadratic relative error defined as
follows:

ξ =

√
‖ FFEM − FCmethod ‖2

‖ FFEM ‖2 , (18)

where ‖ · ‖ stands for the euclidean norm and F refers to
one of the covariant components of the fields at the depth
of interest. The error on each component of fields E and
H has been computed for each depth of observation. The
results are presented in Table 3 for the electrical field and
Table 4 for the magnetic field.

Fig. 10. Real and imaginary parts of the H1 component,
represented along the section y = 0 for the two surfaces
x3 = −0.4 mm and x3 = −0.8 mm.

Fig. 11. Real and imaginary parts of the H2 component,
represented along the section x = 0 for the two surfaces
x3 = −0.4 mm and x3 = −0.8 mm.

Table 3. Quadratic relative error in % on the electric field.

Depth (mm) ξ(%) E1 ξ(%) E2 ξ(%) E3

0.4 2.43 2.93 5.34
0.8 2.16 2.64 6.27
1.2 1.96 2.42 4.48

First, we can remark that the errors are growing when
moving toward the interface because the fields are more
intense and their variations more significant close to the
surface. As a consequence, because the density of the mesh
remains equal when moving downward, it seems very likely
that the fields are better calculated in depth. The mean
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Table 4. Quadratic relative error in % on the magnetic field.

Depth (mm) ξ(%) H1 ξ(%) H2 ξ(%) H3

0.4 3.60 2.50 3.61
0.8 3.14 2.32 3.30
1.2 2.83 2.10 2.98

Table 5. Real part of the coil impedance calculated at differ-
ent frequencies with FEM and C method respectively and the
relative error.

Frequency (kHz) �(ZFEM) �(ZCmethod) ξ% �(Z)
50 0.449 0.453 0.89
100 1.035 1.047 1.16
150 1.60 1.62 1.25

Table 6. Imaginary part of the coil impedance calculated at
different frequencies with FEM and C method respectively and
the relative error.

Frequency (kHz) �(ZFEM) �(ZCmethod) ξ% �(Z)
50 56.39 56.29 0.18
100 112.30 112.44 0.12
150 167.97 168.50 0.31

error 〈ξ〉 on the different components is equal to 3.57% for
this configuration.

To complete the validation of the model, the imped-
ance of the sensor for three different frequencies (50, 100
and 150 kHz) has been computed with the two meth-
ods and the errors have been calculated in the same way
as before. The real parts of the impedance are stored in
Table 5 and the imaginary parts in Table 6. We can see
that the relative error is around 1% for the real part and
0.3% for the imaginary part.

All these comparisons and low errors obtained high-
light the validity of the numerical model. Moreover, the
computation time is very low.

4 Conclusion

In this paper, the validity and the efficiency of the C
method for the fields and impedance calculation above an
unflawed piece in a 2.5D configuration has been demon-
strated for the first time (the workpiece is 2D while the EC
probe is 3D). A relatively general formalism has been de-
scribed as well as its implementation in a numerical model.
This fast semi-analytical solver has been validated, for a
particular configuration, through the comparison with a
FEM commercial solver and appeared accurate. The main
purpose of this paper is to show the validity of such an

approach as well as its flexibility. Indeed, the generality of
the theory presented here proves the large number of its
applications in NDT especially for perturbated shapes as
the only theoretical hypotheses we made on the function
representing the irregularity are that its spatial Fourier
transform does exist. Besides, we have seen that the ref-
erence field is an external input to this model and can
be computed by any solver able to evaluate the fields in-
duced by a sensor in air above a plane conductor. This
important particularity shows the validity of the method
for any air-core NDT probe if we are able to compute the
fields for a plane geometry and thus enlarges the number
of applications.

Preliminary developments described in this paper may
be completed by many extensions. First of all, the influ-
ence of the spectral parameters on the convergence will
be studied. Then, a scan of the piece will be simulated by
moving the coil along the local perturbation. Afterwards,
other shapes and other probes will be tackled. Finally, the
numerical model will be extended in order to be able to
treat the very interesting cases of a plate and a stratified
conductor constituted by a number of layers with rough
interfaces.

The research leading to these results has received funding from
the European Community’s Seventh Framework Program
(FP7/2007-2013) under Grant Agreement No. 285549: SIM-
POSIUM project.
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6. K. Braham, R. Dusséaux, G. Granet, Waves Random
Complex Media 18, 255 (2008)

7. B. Auld, J. Moulder, J. Nondestr. Eval. 18, 3 (1999)
8. R. Collin, Foundations for Microwaves Engineering

(McGraw-Hill, New York, 1992)
9. D. Prémel, J. Electromagnetic Analysis and Applications

4, 400 (2012)
10. C. Dodd, W. Deeds, J. Appl. Phys. 39, 2829 (1968)
11. C. Reboud, T. Theodoulidis, Stud. Appl. Electromagn.

Mech. 36, 3 (2012)
12. Comsol multiphysics v4.2 user’s guide, http://

www.comsol.com/, 2011.

24511-p9


	1 Formalism
	2 Numerical resolution
	3 Numerical results and validations
	4 Conclusion
	References

