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Abstract: The ion-induced long-range orientational order between water molecules recently 

observed in second harmonic scattering experiments and illustrated with large scale molecular 

dynamics simulations is quantitatively explained using the Ornstein-Zernike integral equation 

approach of liquid physics. This general effect, not specific to hydrogen-bonding solvents, is 

controlled by electroneutrality condition, dipolar interactions and dielectric+ionic screening. As 

expected, all numerical theories recover the well-known analytical expressions established 40 

years ago. 
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 The existence of long range orientational correlations among water molecules induced by 

the addition of dilute salts has been the subject of recently renewed interest. Experimentally, 

femtosecond elastic second harmonic scattering exhibits an increase in particular angular 

correlations, compared to pure water, for salinity range starting from 10M
 1

. This generic effect, 

reproduced for different salt compositions and ionic valences, depends only on the ionic strength.  

Numerically, molecular dynamics simulations were performed for NaCl aqueous solutions in the 

10mM concentration range using simulation cells of size 10-20nm containing hundreds of 

thousand water molecules
 1 2

. They revealed the existence of very low but long-range correlations 

in the simulation box.  
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 The theoretical study of correlations in ionic solutions with an explicit treatment of the 

molecular solvent on an equal statistical mechanical footing with the ions (as opposed to the 

primitive model picture of continuous dielectric solvent) has a long history in the literature since 

the late 1970's. Analytical limiting laws valid at low salinity and large separation
 3 4

 as well as 

systematic numerical resolutions of the liquid physics Ornstein-Zernike (OZ) approach with 

standard Mean Spherical Approximation or HyperNetted Chain (HNC) integral equation 

approximations have covered various types of molecular solvent, from the pure dipolar case 
5 6

 
7
 

up to the more realistic site-site representation 
8 9 10 11 12

. In the present context, it is fruitful to 

recall right away the limiting law for the solvent-solvent (ss) orientational correlations 

established by Hoye and Stell in 1978
 3 4

 that seems to have been forgotten in the recent 

literature: 
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 (1.1) 

where s is the number density of the solvent,  its dielectric constant, 24

9
s s By L


   the 

standard dimensionless parameter which characterizes the strength of the dipolar coupling (se is 

the solvent dipole, 
2

04
B

e
L

kT
  the Bjerrum length at temperature T in vacuum), and 

8 /D BL I   the usual Debye screening constant in that electrolyte of ionic strength I. The 

angular dependence of the pair distribution function in (1.1) involves the first rotational 

invariants or spherical harmonics 1 2
ˆ ˆ(12) .    and 12 1 12 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ(12) 3( . )( . ) .D r r      (the hat 

symbol defines unitary vectors). The coefficient in front of (12) can be directly identified with 

the quantity 3<cos(r)> recently accumulated during numerical simulations
 1 2

 where  is the 
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angle between two solvent dipole vectors and <cos(r)> is defined as 

12 12 12 12 12( , )cos /g r d d     . The law (1.1) has been established for pure dipolar solvents 

and spherical ions but is in fact valid in the general case, provided that the Debye screening 

length D=1/D is much larger than any characteristic distance in the solvent. In particular, the 

hydrogen-bonding and tetrahedral structure of real water play a role only implicitly through the 

dielectric constant value . At this point, we draw the reader's attention to the fact that the 

corresponding gss(12) correlation in pure solvent is dominated by a well-known 1/r
3
 asymptote in 

the D(12) component (see eq.5 below), so is overall comparatively much longer range than in 

dilute electrolyte. We will now illustrate and explain this behavior by playing with the HNC 

solution for the realistic SPC/E model of water mixed with different salts, bridging the gap 

between analytical limiting laws and brute-force numerical simulations involving one million 

atoms. 

Ornstein-Zernike + HNC integral equation 

 The formalism and the numerical resolution of the OZ equation with approximate integral 

equations for molecular liquids and mixtures are well documented in the literature 
8 9 10

. It is 

sufficient here to remind that the angular dependence of the different correlation functions like 

the pair distribution function ( , )ijg r   which couples pairs of particles belonging to species i and 

j is expressed as an expansion onto rotational invariants defined by 5 indices in the general case
 

13 14
: 

 ˆ( , ) ( ) ( , )mnl mnl

ij ij

mnl

g r g r r 


     (1.2) 

The expansion (1.2) is nothing but a generalization of (1.1) with 000

00 =1, 
110

00 3    , 

112 3
1000 D  ,… (Blum's normalization) and may involve hundreds of projections for highly 
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anisotropic angular couplings like those existing in water. Symmetries in molecular shape reduce 

the number of independent terms: the expansion contains a single term 000

00 ( ) ( )g r g r  for 

spherically-symmetric correlations like between atomic ions, =00 for linear particles like pure 

dipoles, and  are even for C2v molecules like H2O… The OZ equation which couples total 

h≡g-1 and direct c correlation functions through spatial+angular convolution products is better 

expressed in the Fourier q-space and benefits from the expansion representation. First, each 

( )mnl

ijf r  is Fourier-Hankel transformed to ˆ ( )mnl

ijf q  and normalized by the cross density 

1/2( )i j  . Then, the OZ equation which becomes an algebraic product between q-projections is 

greatly simplified by privileging the intermolecular frame (that linked to the q  vector) and 

introducing the new projection sets ;
ˆ ( )mn

ijf q   derived from the previous ones using the so-called 

Blum's -transform, ;
ˆ ˆ( ) ( )

0

mn mnl

ij ij

l

m n l
f q f q  

 

 
  

 


 14
. Finally, for any mixture of 

anisotropic particles, the OZ equation reads
 9

: 

 ; ; ; ;

, ,

ˆ ˆˆ ˆ( ) ( ) ( 1) ( 1) ( ) ( )mn mn mp pn

ij ij ik kj

k p

h q c q h q c q 

       


     (1.3) 

where  indices don't mix. Equation (1.3) is the key to extract and understand the low q or long 

range r behavior of the total correlations hij from that of the direct ones cij, known as being –

vij/kT where vij is the pair potential between species i and j.   

The exact OZ equation must be combined with a second, usually approximated relation 

coupling h's and c's in the r-space, a so-called integral equation. We use here the HNC closure 

relation which, despite its well documented underestimation of the H-bonding effect and 

dielectric constant  15 16
, is sufficient in the present communication because it verifies the 

correct long-range behavior cij=-vij/kT and accounts qualitatively for the different coupling 
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effects in electrolytes. The technical details are described in the Supplementary Information (SI) 

in addition to ref.
 11

. The following data correspond to NaCl electrolytes in the mM to M range. 
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Figure1. First solvent-solvent projections 110 112 011

00 00 00, ,  of the total correlation function h in q-space 

(a) and in r-space (b) derived with the HNC integral equation for pure H2O and for NaCl 

aqueous electrolytes at different salinities. The value of the screening constant D for the two 

extreme salinities is marked on the q horizontal axis. The insert in (a) magnifies the 011

00
projection 

(more precisely, its imaginary part). The insert in (b) plots 
2 110 21

003
cos ( ) ( )r r h r r      for 

the 8mM salt, to be advantageously compared to figure 1 of ref. 
2
. The dotted curves refer to the 

asymptotic laws (1.1), hardly distinguishable from the HNC curves at low salinity. 

Figure 1a presents the first relevant projections of the solvent-solvent total correlation in the q-

space. It clearly exhibits different behaviors at low q between pure solvent and dilute, even very 

dilute, salt solutions. The salt curves deviate from the pure solvent ones for q below D, so at 

lower and lower q values as the dilution increases. At zero q, all the 110

00  projections converge to 

an almost common value, independent of the salinity for the more dilute cases, while all 112

00  

curves converge to exactly 0, in opposition to what happens in the pure solvent reference. These 

coupled behaviors simply illustrate the standard electrostatic screening due to presence of the 

ions and the well-known discontinuous behavior  
0 0 0 0

lim lim lim lim
salt saltq q    

  17
. The corresponding 

curves in r space are presented in figure 1b. The short-range 110

00 ( )ssh r and well-known 1/r
3
 tail of  

112

00 ( )ssh r  in pure solvent are replaced by screened-coulombic behaviors in presence of salt, in 

perfect agreement with the analytical laws (1.1). In order to be able to compare these results 

quantitatively with the recent simulation data of the literature, we have plotted in the insert of 

figure 1b and in figure 2 the quantity <cos(r)>r
2
 where 

1101
003

cos ssh    , for the same 

salinities as in ref.2. The agreement is again spectacular (it happens coincidentally that the HNC 
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 value of the SPC/E model, around 59, is very close to the true value of the TIP4P/2005 model 

used in ref.2). An apparent plateau in such plot results from the flat maximum of the function 

Drre  (according to (1.1)), not from an hypothetical behavior of <cos(r)> in 1/r
2
. A new 

projection 011

00
, absent in the pure dipolar case and present in the more realistic SPC/E water 

model, displays similar qualitative salt-dependence, see figure 1. The same type of observation 

concerns the ion-solvent correlations as well, see SI.  

 

Figure 2. Solvent-solvent 110

00  projection of the total correlation function h plotted as 

2 110 21
003

cos ( ) ( )r r h r r      vs r for different NaCl salinities. Solid lines: HNC; Dotted 

lines: asymptotic laws (1.1). This figure should be advantageously compared to the numerical 

simulation data in figure 4 of ref.
 2

. For the 17mM NaCl case, the implicit corrections which are 

expected in a cubic simulation box of edge 10nm used in ref.2 are calculated as prescribed in 

ref.18. 
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Analytical laws 

 It is fruitful to understand the origin of the long-range asymptotes. It seems that the 

standard analysis has been somewhat ignored in the recent literature, so we take this opportunity 

to briefly recall its main steps. Everything starts from the OZ equation in q-space (1.3) which can 

be viewed as a matricial relation, for each  value, between ĥ  and ĉ  projections
 8 9

. Focusing on 

the low q region, matrix inversion provides ĥ  from the known behavior ˆ ˆ /c v kT  , independent 

of the density and salinity.  

Let us first treat the pure solvent case. In the limit of zero q, the OZ equation couples 000 110 112

00 00 00, ,  

projections. The dipole-dipole 1/r
3
 contribution of the potential between H2O molecules leads to 

the finite, non-zero value 
112

00
ˆ (0) 30ssc y  . In pure solvent, and only in pure solvent, the 

Kirkwood relation expresses the dielectric constant  in terms of the 
110

00
ˆ (0)ssh projection through: 

  1101
pure 003

( 1)(2 1) ˆ3 1 (0)
3

ssy h
 



 
   (1.4) 

These two relations combined with the two OZ equations (one for =0, one for =1) lead to: 
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112 11210 10
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1 1ˆ ˆ(0) 1 ; (0) 1
3 3

( 1) ( 1)ˆ (0) ; ( )
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ss ss

ss ss
r

s

h h
y y

h h r
y y r

 



 

  

 
   

 
  

 (1.5) 

This already mentioned r
-3

 asymptote of 
112

pure 00 ( )ssh r  , present in pure solvent only, perfectly 

fits the tail of the HNC curve in figure 1b. 

How is the OZ equation modified in presence of dilute salt? As the salt concentration goes to 

small values, ions play a role only through the long range 1/r ion-ion and 1/r
2
 ion-dipole 

potentials. That means that the only relevant ionic contributions to the direct correlation 

functions are the following divergences at low q: 
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000
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011 101

00 00

ˆ ( )

3
ˆ ˆ( ) ( ) i

i j

ij

i

is si

q q
c q

q

q y
c q c q

q

 

  

 (1.6) 

where  4i B i iq L Z   is proportional to the valency Zi of ion i . The screening constant in 

vacuum reads simply 2

i

i

q    and is related to that in solvent by 2 2 /D   . Since in that 

limit the ions are considered as (point-like) spherically-symmetric particles, only the =0 OZ 

relation is perturbed by the presence of ions. OZ matrix inversion leads to the Debye-Hückel ion-

ion correlations 
2 2

/
ˆ ( )

i j

ij

D

q q
h q

q




 


, as expected, and to the new solvent-solvent correlations (see 

technical details in SI): 
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 (1.7) 

The new, ion-induced lorentzian contributions, independent of the salinity at zero q, perfectly 

fit the HNC curves in figure 1a, except for the highest salinity. One notes in particular that the 

new 112

00  term exactly balances the pure solvent value (1.5) at q=0. This automatically implies the 

disappearance, due to ionic screening, of the corresponding 1/r
3
 in r space and the replacement 

by screened coulombic behaviors, both for 110

00  and 112

00 projections, in perfect agreement with the 

original limiting laws (1.1). Similar laws can be found for the ion-solvent correlations as well (
 3

 

and SI). 
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In conclusion, the present work, mixing integral equation theory and analytical treatment, 

explains the recent large scale numerical simulation data in terms of well-established screened 

coulombic generic effects. Focusing solely on the <cos> projection is somewhat misleading: as 

regards to the solvent orientational correlations, the main effect of ions consists in killing the 

long range 1/r
3
 

112
 dipolar contribution, and thus in decreasing the solvent-solvent correlation 

range in that symmetry which indeed dominates the long-range interactions.

We would like to add a few remarks: 

1) Going through the q space is the natural and practical way to resolve the OZ equation but 

may prevent one from understanding the physical picture behind the mathematics. It is possible 

to stay in the r space and solve pertubatively the OZ equation to get the correction to the solvent-

solvent correlation <cos(r)> to first order in the salt concentration, namely, summing over ion 

types: 

 
2 2 2 1 1 2 2

1 1 2 2 2 2

1 2

ˆ ˆ ˆ ˆ. .
( , ) ( , ) i i

i i si i is i B s i i i

i i i i

r r
drc r c r L Z dr

r r

 
  

  
     

  
    (1.8) 

Thus, this extra correlation comes from two solvent molecules 1 and 2 feeling the Coulombic 

interaction with the same ion. Performing analytically the 3D convolution leads to the 1/r 

solvent-solvent correlation  
2 2

1 2 12 1 12 2

12

ˆ ˆ ˆ ˆ ˆ ˆ. ( . )( . )
2

B sL
r r

r

 
     which recovers the limiting law 

(1.1) expanded to first order in salt (second order in D) with -1 replaced by its ideal quantity 

3y<<1. The correct factor in (-1)
2
/ appearing in (1.1) means that solvent 1 should be first 

convoluted to one, two… intermediate solvent neighbors through the pure solvent correlations 

before reaching the ion (same for solvent 2) while the screening factor exp(-Dr) results from 

Debye-Hückel ion-ion correlations through standard chain diagrams
 3

. Along a similar route, we 
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note a recent attempt to derive the ion-induced solvent correlations using a dipolar gas model for 

the solvent
 19

. This approach does yield the correct exp(-r)/r behavior for <cos(r)>, but with a 

wrong prefactor suffering from the same ideal gas approximation of the dielectric constant, -

1=3y; this approximation was somehow compensated in the paper by the ad-hoc addition of an 

"Onsager local field factor". 

2) While the Kirkwood formula (1.4) is valid for ion-free solvents, the corresponding formula 

for electrolytes reads  1101
003

ˆ1 3 1 (0)ssy h     6
. Since  is a continuous function of the 

salinity, comparison of both expressions automatically implies a discontinuous step of 
110

00
ˆ (0)ssh  

going from pure solvent to infinitely dilute electrolyte, illustrated in figure 1a. 

3) From the previous remark, one would conclude that if an experiment really measures the 

Fourier transform of <cos(r)>  at exactly zero q (integral of <cos(r)> *r
2
), the result would 

present a discontinuous step from pure solvent to electrolyte. If, more realistically, the 

experiment measures the Fourier transform at low but finite q, as in light scattering techniques, 

one would get a continuous behavior in 
2

2 2

D

Dq




. At 90° scattering angle, the 50% onset at D≈q 

would fall in the 50M salinity range. This could be advantageously compared to the recent 

femtosecond elastic second harmonic scattering data
 1

. 

4)  An attentive reader may have detected a small but clear disagreement between figure 2 and 

the corresponding original figure 4 in reference 
2
 about the 17mM NaCl case. This illustrates the 

presence of implicit finite-size corrections in the numerical simulation data due to the 

environment around the images in the neighboring cells within the periodic boundary conditions. 

That happens when the cubic cell size L is not large enough compared to the characteristic 

correlation length (here, L=10nm while D=2nm). Recently, it has been shown how to evaluate 
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such corrections with great precision in dipolar solvents
 18

. Here, the simple asymptotic law 

makes the calculation analytical. If <cos(r)> behaves as Aexp(-Dr)/r, the influence of the 

first 6 neighbors adds the extra term 
sinh

6 DLD

D

r
A e

rL





 , see SI. When this expression is added to 

the HNC/limiting law curve in order to emulate raw simulation data corrupted with such finite-

size corrections, one recovers, this time very nicely, the curve of ref.
 2

, see figure 2. The apparent 

1/r
2
 behavior (plateau in fig.2) that was observed is therefore an artefact. 

Supporting Information: HNC integral equation and limiting law computing details; ion-ion and 

ion-solvent correlations (PDF file) 
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Expansion in rotational invariants 
Using Blum's notation and normalization

 1 2
, the expansion (eq.2 of the main text) reads: 
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where the rotational invariants, independent of the choice for the reference frame, are:  
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 is the usual 3-j-symbol; fm=(2m+1)
1/2

. The ' ( )mR    are Wigner generalized spherical 

harmonics (definition and notation from Messiah
 3
). Comparison with the historical notation as in eq.1 

of the main text: 
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means that 
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HNC integral equation 
The Ornstein-Zernike equation has been solved with the HNC closure for mixtures of spherical Na

+
, 

Cl
-
 ions and SPC/E water molecules. The Lennard-Jones parameters for the ions are +=2.583Å, -

=4.401Å, +=-=0.4165kJ/mol but we repeat that in the present context of limiting laws valid at low 

salinity, the precise values are irrelevant. The basis of invariants has been truncated at m,n≤nmax with 

nmax=0  for the ions and =4 for H2O, corresponding to 1, 9 and 250 independent projections for each 

ion-ion, each ion-water and water-water sets, respectively. The numerical resolution follows the 

powerful technique described in 
4
. The HNC dielectric constant of this pure SPC/E water model is 59 

(while the exact  is around 72). It is fortuitous that this value is close to that of the TPIP4P/2005 



model used in the numerical simulations
 5
. Since the limiting laws depend on the ionic strength and  

only, that allows for direct, quantitative comparison.   

In a few cases, we have added a small dipole to the ions in order to illustrate the general character of 

the limiting laws. With nmax=1 for the ions, the new number of independent projections becomes 4 for 

++ and --, 5 for +- and 30 for each ion-H2O.  

Ornstein-Zernike inversion and limiting laws 
The OZ equation couples total h and c direct correlation functions. The idea of the present analytical 

treatment consists to extract the long distance r or low q behavior of h from that of c or of the pair 

potential v since c≈-v/kT in that regime. The OZ convolution product becomes in Fourier space an 

algebraic product between the Blum's -projections, see eq.3 in the main text. In practice, that 

consists, for each value of the indices  to inverse a matrix of the form 
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.  

Pure solvent: 

For pure solvent, at exactly zero q, the projections like mn=01 vanish as iq and the projections mn=00 

and 11 are coupled via 2*2 and 1*1 matrices for =0 and 1, respectively (q=0 implicit): 
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The dipole-dipole contribution to the pair potential implies 
112

00
ˆ 30ssc y  and the -

transforms 
11 1101
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ˆ ˆ 2ss ssc c y   and 
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ˆ ˆ
ss ssc c y  . Using the Kirkwood equation 

(eq.4 of the main text) which relates dielectric constant  and 
110

00
ˆ (0)ssh  projection leads to the 

final result (eq.5 of the main text): 
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Dilute electrolyte: 

The presence of ions induces at low q diverging terms in 1/q
2
 for ion-ion and i/q for ion-

solvent direct correlations (eq.6 of the main text), which concern the =0 OZ equation. In the 

limit of low salt concentration and small q, these are the only adding terms which affect the 

OZ equation. For a binary salt, each line and column of S=0 contains successively 
0 0 0 1, , , .m

i s s   The OZ matrix becomes (the indices  and =00 are dropped for clarity): 
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As usual in charged systems, the effect of the divergences is neutralized by … the 

electroneutrality condition 0Z Z      . The matrix inversion is straightforward.  For 

ion-ion, one gets: 
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which is nothing but the standard Debye-Hückel law. In Fourier space, the correlation 

disappears as soon as q>>D while it reaches a constant, independent of the salinity, at q=0. 

For a symmetrical electrolyte like NaCl, S++=S+-=S--=1/2! That just means that the osmotic 

pressure follows the perfect gas law, ( ) 2 saltkT kT      
 7

.  

As for the new solvent-solvent total correlations, eq.(0.6) leads in q space to eq.7 of the main text. An 

inverse Fourier-Hankel transform yields the Hoye and Stell's limiting law (eq.1 of the main text), in 

particular: 
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Finally, the orientation of the water molecules around the ions is described by the 011

00ish  

projection: 
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The limiting law in r space has been given by Hoye and Stell (note that 
011

00
ˆ ˆ.s i sr    ). The 

agreement with the HNC numerical data is illuminating, see figure S1. Note that the slope at the origin 

in q-space diverges at infinite dilution: in the case of one single ion immersed in bulk water, the ion-

solvent orientational total correlations become unscreened and behave as 1/q or 1/r
2
. 



 

Figure S1: HNC curves (solid lines) and asymptotic laws (dotted lines) for the ion-ion and ion-solvent 

total correlation functions. The 011 curves must be understood as the imaginary part of the 

corresponding functions. 

 

The SPC/E site-site model for the water molecules used in the present HNC theory goes beyond the 

simple dipolar picture. In particular, it involves the first extra projection 
011

00ssh  for the solvent-solvent 

correlations. Since this one vanishes as iq at low q, the direct correlation matrix in (0.6) must be 

enriched with so far neglected 
00

îsc  and 
01 01ˆ ˆ( ) 'ss ssc q iqc  contributions. The final expression for 

symmetrical salt reads: 
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As seen in the insert of fig.1 of the main text, this original limiting law reproduces very nicely the 

numerical HNC curves for the different low salinities.  

Non-symmetrical ions: 

We have added here small dipoles to the ions, +=0.2Å and -=0.15Å, in order to illustrate the non-

sensitivity of the long-range limiting laws on the details of the ions. The HNC solution is given in 

figure S2 for 8mM NaCl. New ion-solvent projections like 
011

 or 
110

 now appear, which were 

completely absent in the case of spherical ions. They illustrate the change in the orientation of the 

water molecules relative to the ions inside the solvation layers. Despite this clear effect, the solvent-

solvent orientational order <cos(r)> is almost identical to the reference case, see the insert. 





Figure S2: HNC solution for 8mM NaCl in presence of ionic dipoles, +=0.2Å and -=0.15Å. Main 

figure: New ion-solvent projections 
101

 and 
110

illustrate the change in the orientation of the water 

molecules inside the solvation layer. Insert: the long distance solvent-solvent orientational order is 

unchanged. 

 

Implicit finite-size corrections in numerical simulation 
Within the periodic boundary conditions, the pair distribution function measured inside the central cell 

of edge L is perturbed by the environment around the neighboring images. The systematic and detailed 

treatment of such corrections for molecular systems has been described recently
 8
. Here, we are 

interested in the solvent-solvent 
110

 or <cos> projection in figure 2 of the main text. Within the 

superposition approximation, the first 6 neighbors add an extra, undesired correction
 8
: 
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When the true correlation takes a screened coulombic Yukawa form Ae
-Dr

/r, the integration can be 

performed analytically: 
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When this correction is added to the bare limiting law for the case L=10nm, salt=17mM, the 

agreement with the numerical simulation data becomes spectacular (figure 2 in the main text and 

figure 4 of 
5
). 
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