
HAL Id: cea-01772616
https://cea.hal.science/cea-01772616v1

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation algorithm for scheduling a chain of tasks
on heterogeneous systems

Massinissa Ait Aba, Lilia Zaourar, Alix Munier

To cite this version:
Massinissa Ait Aba, Lilia Zaourar, Alix Munier. Approximation algorithm for scheduling a chain of
tasks on heterogeneous systems. Euro-Par 2017: Parallel Processing Workshops, Aug 2017, Santiago
de Compostela, Spain. pp.353-365, �10.1007/978-3-319-75178-8_29�. �cea-01772616�

https://cea.hal.science/cea-01772616v1
https://hal.archives-ouvertes.fr


Approximation Algorithm for Scheduling

a Chain of Tasks on Heterogeneous Systems

Massinissa Ait Aba1(B), Lilia Zaourar1, and Alix Munier2

1 CEA, LIST, Computing and Design Environment Laboratory,
91191 Gif sur Yvette Cedex, France

Massinissa.aitaba@cea.fr

2 LIP6-UPMC, 4 place Jussieu, 75005 Paris, France

Abstract. This paper presents an efficient approximation algorithm to
solve the task scheduling problem on heterogeneous platform for the par-
ticular case of the linear chain of tasks. The objective is to minimize both
the total execution time (makespan) and the total energy consumed by
the system. For this purpose, we introduce a constraint on the energy
consumption during execution. Our goal is to provides an algorithm with
a performance guarantee. Two algorithms have been proposed; the first
provides an optimal solution for preemptive scheduling. This solution
is then used in the second algorithm to provide an approximate solu-
tion for non-preemptive scheduling. Numerical evaluations demonstrate
that the proposed algorithm achieves a close-to-optimal performance
compared to exact solution obtained by CPLEX for small instances.
For large instances, CPLEX is struggling to provide a feasible solution,
whereas our approach takes less than a second to produce a solution for
an instance of 10000 tasks.

Keywords: Linear chain of tasks · Makespan · Energy
Approximation algorithm

1 Introduction

Today, our daily life requires massive calculations on different computing systems
(desktop, data centers) to perform various needs such as physical simulations
or google searches. In order to improve the performance of these systems while
keeping their energy consumption reasonable, heterogeneous system has merged.
This heterogeneous architecture combines both processing elements (such as
CPUs, GPUs), and reconfigurable logic (FPGAs).

However, taking advantage of such heterogeneous systems requires efficient
use of resources to make profit from the performance of each part for applica-
tion execution. Thus efficient scheduling of task’s applications is difficult problem
often faced by designers and engineers using these complex systems. In fact, with
the complexity of applications and architectures, it becomes increasingly difficult

1



to distribute the tasks application effectively. More than a simple load balanc-
ing problem, heterogeneity leads to consider efficient scheduling techniques to
take account of the different resources specificities. The objective of this work
is to determine an efficient scheduling of a parallel application on a hetero-
geneous resources system in order to minimize both the total execution time
(makespan) and the energy consumption. For this purpose, we introduce a con-
straint on the total energy consumed by the system. We consider in this work, a
chain of tasks and communication delay. We conducted this research using the
fully heterogeneous micro-server system Christmann RECS c©|BOX [3]. The rest
of the paper is organized as follows. Section 2 discusses some previous efforts
in scheduling parallel application on heterogeneous systems, with a focus on
makespan and energy minimization. Section 3 presents a detailed description of
the mathematical model proposed. In Sect. 4, we present an optimal algorithm
for a chain of preemptive task. In Sect. 5 we describe the proposed algorithm for
non-preemptive scheduling and approximation ratio we obtain. Section 6 shows
some preliminary numerical results. The paper ends with a conclusion in Sect. 7.

2 Related Work

Due to its key importance on performance, the task scheduling problem on het-
erogeneous platform has been extensively studied and numerous methods have
been reported in the literature. They proposed various models and techniques
such as dynamical voltage scaling (DVS), list algorithms and genetic heuristics
to optimize essentially two main objectives: makespan and energy consumption.
Xie et al. [12], demonstrate that minimizing schedule length of a DAG-based
parallel application with energy consumption constraint on heterogeneous dis-
tributed systems is a nondeterministic polynomial-hard optimization problem.
They decompose the problem in two sub-problems beginning by treating the
problem of the energy constraint. At each task assignment phase, the energy
consumption constraint of the application can always be satisfied by supposing
that the unassigned tasks are assigned to the processor with the minimum energy
consumption. Then, they proceed to the minimization of makespan, assigning
tasks to processors using the earliest finish time (EFT).

Authors in [13], considered the objective of maximizing the probability of
completing tasks before a deadline D and to satisfy an energy constraint with
execution times and stochastic communications delays. Zhang et al. [15] have
treated the problem of robustness under energy constraint. The aim is to maxi-
mize system reliability by repairing runtime errors caused by various reasons such
as hardware flaws and program bugs while maintaining the energy constraint.
Authors in [16] began by giving an IP (Integer Programming) formulation of the
problem, then a three-phase algorithm is proposed using the Dynamic Power
Management (DPM) and DVS techniques. Several heuristics (iterative, Greedy,
random, . . . ) are proposed in [8] for the problem of scheduling on heterogeneous
processors that can change their frequencies among a set of possible values. The
objective is to minimize the temperature more than performance and energy of

2



the system. A three-phase list algorithm is proposed by Fard et al. [2]. They
began by analyzing and classifying the different objectives and their impacts on
the optimization process. The objective is to find a solution that minimizes up to
four objectives (energy, makespan, reliability, economic cost).

Many works have also been done using genetic algorithms. Authors in [5],
proposed the ECS heuristic (Energy Concious Heuristic) which is used in [7] to
form a hybrid approach with the multi-objective genetic algorithm. This app-
roach provides a set of Pareto solutions. More recently in [14], authors proposed
a new genetic algorithm to study both objectives at once. Authors in [9–11] also
use game theory strategies to prove the existence of Nash equilibrium and find
a Pareto point.

However, all the aforementioned works did not consider approximation tech-
niques. To the best of our knowledge, we propose the first algorithm with a
guarantee of performance. Our model is inspired by [1], where authors seek
to minimize the energy consumed during execution by imposing a Deadline D

on completion time. In addition, we consider in this work communication cost
between tasks and processing elements. Preliminary results on modeling appli-
cations and heterogeneous platforms have been presented in [6], we focus in this
work on tasks chain to determine a performance guarantee algorithm.

3 Model

This study considers a fully connected heterogeneous multiprocessor platform in
which M is a set of m heterogeneous processing elements (GPU, CPU, FPGA. . . )
noted PE. Each element PEk ∈ M is characterized by its execution frequency
fj � 1, j = 1..m. The processing elements are sorted by increasing order of their
frequencies (f1 � f2 � . . . � fm). An application A of n tasks is modeled using
a DAG graph G(V,E,w). V represents set of nodes in G, and each node vi ∈ V

represents a task ti which is characterized by its weight wi, i = 1..n. We note by
W the total sum of the weights W =

∑n
i=1 wi. E is set of communication edges.

Each edge ei,j ∈ E represents a precedence constraint between two tasks ti and
tj and refers to the volume of communication from ti to tj denoted by Cti,j
if they are not assigned to the same processing element. Communication cost
between each pair of processing elements (PEk, PEl) is denoted by Cmk,l with
Cmk,l � Maxi executi,k,∀i ∈ {1, 2, . . . , n} and ∀k, l ∈ {1, 2, . . . ,m} as in [6].

A task ti can be executed only after the execution of all its predecessors. We
do not allow duplication of tasks or preemption. A task can be executed by all
processing units. Execution of task ti on PEk generates execution time equal to
executi,k = wi

fk
and power pi,k = wi ∗ f2

k . We denote by E the allowed quantity
of energy consumed during the execution. E represents in our case an energy
bound that should not be exceeded during the execution.

We focus this work to a chain of tasks. Our problem can be modeled by
mixed integer quadratic constrained program (P ). The first constraint simply
expresses that each task must be executed only once and on a single processing
element. Constraint (2) keeps energy consumption during execution less than

3



E. The third constraint describes that the task ti+1 must be carried out after
the starting time of the task ti (i = 1..n − 1) plus the execution time of ti. The
communication cost (Cti,i+1 + Cmj1,j2) is added if both tasks are executed on
two different processing elements (PEj1 and PEj2) s.t xi,j1 = 1 and xi+1,j2 = 1.

xi,j =

{
1 if task ti is placed on the processing elementPEj , i = 1..n, j = 1..m

0 otherwise

starti = the starting time of the task ti, i = 1..n.

(P )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m
j=1 xi,j = 1,∀i = 1..n (1)∑n
i=1

∑m
j=1 xi,j ∗ pi,j ≤ E (2)

starti+xi,j1 ∗ executi,j1 +xi,j1 ∗ xi+1,j2(Cti,i+1 + Cmj1,j2) � starti+1 (3)
∀j1 = 1..m, ∀j2 = 1..m ∀i = 1..n − 1 j1 �= j2

Z(min) = startn +
∑m

j=1 xn,j ∗ executn,j

4 Optimal Scheduling Algorithm for a Chain of

Preemptive Tasks

In this section we propose an algorithm to find the optimal solution of the
preemptive scheduling without communication cost for a chain of n tasks on a
set of m processing elements.

Lemma 1. The set of schedules that saturate energy constraint is dominant.

Proof. Let Ĉmax be the makespan of a solution such that Ĉmax = P1

f1
+ P2

f2
+ . . .+

Pm

fm
, Pi � 0 is the quantity of work put on the processing element PEi, i = 1..m.∑m

i=1 Pi = W . We assume that
∑m

j=1 Pj ∗ f2
j < E. We construct another solution

such that: l = max{j ∈ {1..m},
∑j

i=1 Pif
2
m +

∑m
i=j+1 Pif

2
i < E} and P

′

1 = 0,

P
′

2 = 0, . . ., P
′

l = 0, P
′

l+1 =
E−

∑l+1

j=1
Pjf2

m−

∑m
j=l+2

Pjf2
j

f2
l+1

−f2
m

, P
′

l+2 = Pl+2, . . ., P
′

m =

Pm +
∑l

j=1 Pj +(Pl+1 −P
′

l+1). We obtain a new solution Ĉ
′

max =
∑m

j=1

P
′

j

fj
with

∑m
j=1 P

′

jf
2
j = E. Ĉ

′

max =
∑m

j=1

P
′

j

fj
=

P
′

l+1

fl+1
+

∑m
j=l+2

Pj

fj
+

∑l
j=1

Pj+(Pl+1−P
′

l+1)

fm
.

Since fm > fj , j = 1..l + 1, induces
P

′

l+1

fl+1
+

(Pl+1−P
′

l+1)

fm
�

Pl+1

fl+1
and

∑l
j=1

Pj

fm
�

∑l
j=1

Pj

fj
. Then, we obtain

∑m
j=1

P
′

j

fj
�

∑m
j=1

Pj

fj
. Finally, Ĉ

′

max � Ĉmax. ⊓⊔

Theorem 1. The following Algorithm1 gives the optimal solution for preemp-

tive scheduling without communication cost with a complexity of θ(m).

We start by finding the fastest processing element PEj , on which we can
perform all the tasks. Then we look for the weight of tasks that can be put on
the next processing element (PEj+1) in order to saturate the energy constraint.
We denote by Wj the quantity of work put on the processing element PEj , Wj+1

4



on PEj+1. The best solution is obtained when the energy constraint is saturated
s.t Wjf

2
j + Wj+1f

2
j+1 = E with Wj + Wj+1 = W . The solution of the system of

two equations with two unknowns is Wj =
E−W ∗ f2

j+1

f2
j

−f2
j+1

and Wj+1 = W −Wj . This

keeps the realizability of the solution: E − W ∗ f2
j+1 � 0 because W ∗ f2

j+1 � E

and f2
j − f2

j+1 < 0 because fj < fj+1. Then W � Wj > 0 induces Wj+1 � 0.

Algorithm 1. Preemptive scheduling (PS).

Data: Set of processing elements M = {PEj , j = 1..m} with f1 � f2 � . . . � fm,
weights of the tasks w1, w2, . . . , wn, E.

Result: Optimal preemptive scheduling.
begin

W =
∑n

i=1
wi; j = max{l ∈ {1..m}, W ∗ f2

l
� E}

if W ∗ f2
j < E then

Wj =
E−W ∗ f2

j+1

f2
j

−f2
j+1

Wj+1 = W − Wj

else

Wj = W , Wj+1 = 0

k = max{p ∈ {1..n},
∑p

i=1
wi < Wj}; w

′

k+1
= Wj −

∑k
i=1

wi

Put t1...tk and a part w
′

k+1
of tk+1 on PEj

Put tk+2...tn and the rest (wk+1 − w
′

k+1
) of tk+1 on PEj+1

We show in the following that Algorithm1 gives an optimal solution. Let
Ĉmax be the makespan of the solution obtained by the Algorithm1: Ĉmax =
Wj

fj
+

Wj+1

fj+1
due to the precedence constraint. Let Ĉ

′

max = P1

f1
+ P2

f2
+ . . . + Pk

fk

be another solution on a set of k > 2 processing elements,
∑k

i=1 Pi = W . We
distinguish three possible cases. The first case corresponds to all frequencies are
lower than fj s.t f1 � f2 � . . . � fk � fj . Hence, 1

fi
�

1
fj

induces Pi

fi
�

Pi

fj
,

∀ i = 1..k. Follows
∑k

i=1
Pi

fi
�

∑k
i=1

Pi

fj
= W

fj
. Finally, since fj < fj+1 induces

∑k
i=1

Pi

fi
�

W
fj

�
Wj

fj
+

Wj+1

fj+1
. Then, Ĉ

′

max � Ĉmax.

The second case corresponds to all frequencies are greater than fj+1 such that

fj+1 � f1 � f2 � . . . � fk. Hence,
∑k

i=1 Pi ∗ f2
i �

∑k
i=1 Pi ∗ f2

j+1 = W ∗ f2
j+1 >

E. The last case corresponds to f1 � . . . � fj < fj+1 � . . . � fk. To study this
case, we start with the following Lemma 2.

Lemma 2. Let A,B,C be three positive integers such as 1 ≤ A < B < C and

W1, W2 be two non negative integers such as W1 +W2 = W . If W1 ∗ A2 +W2 ∗
C2 = W ∗ B2 then W1

A
+ W2

C
> W

B
.

Proof. By replacing W2 by (W − W1) in W1 ∗ A2 + W2 ∗ C2 = W ∗ B2, we

obtain W1 = W (C2
−B2

C2
−A2 ). Then, by replacing W1 by (W − W2) we obtain W2 =

W (B2
−A2

C2
−A2 ). Follows, W1

A
+ W2

C
= W (C2

−B2)
A(C2

−A2) + W (B2
−A2)

C(C2
−A2) .

5



Let ∆ = W1

A
+ W2

C
− W

B
, we prove in the following that ∆ > 0.

∆ = W (C2
−B2)

A(C2
−A2) + W (B2

−A2)
C(C2

−A2) − W
B

= W
C2

−A2 (C2
−B2

A
+ B2

−A2

C
− (C2

−A2)
B

).

We set X = B
A

and Y = C
A

. Observe that X > 1 and Y > X. Follows:

∆ = W
Y 2A2

−A2 (Y 2A2
−X2A2

A
+ X2A2

−A2

Y A
− (Y 2A2

−A2)
XA

).

∆ = W
Y 2A−A

(XY 3
−X3Y +X3

−X−Y 3+Y
XY

) = W
Y 2A−A

(−(X−1)(Y −1)(X−Y )(X+Y +1)
XY

).
Since X > Y > 1 we have (Y − 1) > 0, (X − 1) > 0 and (X − Y ) < 0.

Therefore −(X−1)(Y −1)(X−Y )(X+Y +1)
XY

> 0. Furthermore, W
Y 2A−A

> 0 because

Y > 1. Finally, ∆ > 0 induces W1

A
+ W2

C
> W

B
. ⊓⊔

Proposition 1. If
∑k

i=1 Pi ∗ f2
i = Wj ∗ f2

j + Wj+1 ∗ f2
j+1 and

∑k
i=1 Pi = Wj +

Wj+1, then
∑k

i=1
Pi

fi
>

Wj

fj
+

Wj+1

fj+1
.

Proof. Let ϕ be a sequence of real such as ϕ1 = f1 and ϕi =√∑i−1

α=1
Pα ∗ ϕ2

i−1
+Pi ∗ f2

i∑
i
α=1

Pα
,

for i = 2..j. This sequence guarantees that ϕi−1 < ϕi < fi, ∀ i = 2..j. Indeed,

since ϕ1 = f1, ϕ2
2 =

P1 ∗ ϕ2
1+P2 ∗ f2

2

P1+P2
>

P1 ∗ f2
1 +P2 ∗ f2

1

P1+P2
= f2

1 .

Furthermore,
P1 ∗ f2

1 +P2 ∗ f2
2

P1+P2
<

P1 ∗ f2
2 +P2 ∗ f2

2

P1+P2
< f2

2 induces ϕ1 < ϕ2 < f2.
We assume that this is true for i = j − 1 i.e. ϕj−2 < ϕj−1 < fj−1.

ϕ2
j =

∑j−1

α=1
Pα ∗ ϕ2

j−1+Pj ∗ f2
j∑j

α=1
Pα

<
∑j−1

α=1
Pα ∗ f2

j−1+Pj ∗ f2
j∑j

α=1
Pα

<
∑j−1

α=1
Pα ∗ f2

j +Pj ∗ f2
j∑j

α=1
Pα

= f2
j .

ϕ2
j =

∑j−1

α=1
Pα ∗ ϕ2

j−1+Pj ∗ f2
j∑j

α=1
Pα

>
∑j−1

α=1
Pα ∗ ϕ2

j−1+Pj ∗ ϕ2
j∑j

α=1
Pα

induces ϕ2
j > ϕ2

j−1.

Finally, ϕj−1 < ϕj < fj . By recurrence, we deduce that ϕi−1 < ϕi < fi.
From Lemma 2 we have:
P1

f1
+ P2

f2
> P1+P2

ϕ2
,P1+P2

ϕ2
+ P3

f3
>

∑
3
i=1

Pi

ϕ3
and then, ∀ l ∈ {1..j}

∑l−1

i=1
Pi

ϕl−1
+ Pl

fl
>

∑l
i=1

Pi

ϕl
. Follows,

∑j
i=1

Pi

fi
>

∑j
i=1

Pi

ϕj
.

Let another sequence of real φ such as φk = fk and φi =

√∑
k
α=i+1

Pα ∗ φ2
i+1

+Pi ∗ f2
i∑

k
α=i Pα

for i ∈ {j+1..k−1}. In the same way, we get fi < φi < φi+1, ∀ i ∈ {j+1..k−1}.

And from Lemma 2, we obtain
∑k

i=j+1
Pi

fi
> +

∑k
i=j+1

Pi

φj+1
.

It result that
∑k

i=1
Pi

fi
>

∑j
i=1

Pi

ϕj
+

∑k
i=j+1

Pi

φj+1
.

In order to apply once again Lemma2, we have to decompose
∑j

i=1 Pi and∑k
i=j+1 Pi into 4 values WL1,WL2,WR1,WR2 such that:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

WL1 + WL2 =
∑j

i=1 Pi

WR1 + WR2 =
∑k

i=j+1 Pi

WL1 + WR1 = Wj

WL2 + WR2 = Wj+1

WL1 ∗ ϕ2
j + WR1 ∗ φ2

j+1 = Wj ∗ f2
j

WL2 ∗ ϕ2
j + WR2 ∗ φ2

j+1 = Wj+1 ∗ f2
j+1

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

WL1 = Wj ∗
(φ2

j+1−f2
j )

(φ2
j+1

−ϕ2
j
)

WL2 = Wj+1 ∗
(φ2

j+1−f2
j+1)

(φ2
j+1

−ϕ2
j
)

WR1 = Wj ∗
(f2

j −ϕ2
j )

(φ2
j+1

−ϕ2
j
)

WR2 = Wj+1 ∗
(f2

j+1−ϕ2
j )

(φ2
j+1

−ϕ2
j
)

This part of proof is illustrated by Fig. 1. Observe that the result values are all

6



positive. From Lemma 2, we obtain WL1

ϕj
+ WR1

φj+1
>

Wj

fj
and WL2

ϕj
+ WR2

φj+1
>

Wj+1

fj+1
.

Hence WL

ϕj
+ WR

φj+1
= WL1

ϕj
+ WR1

φj+1
+ WL2

ϕj
+ WR2

φj+1
> W1

fj
+ W2

fj+1
.

Follows,
∑k

i=1
Pi

fi
>

Wj

fj
+

Wj+1

fj+1
. ⊓⊔

Now, from Proposition 1, Ĉ
′

max =
∑k

i=1
Pi

fi
> Ĉmax =

Wj

fj
+

Wj+1

fj+1
.

Remark 1. The proof remains valid if
∑k

i=1 Pi ∗ f2
i � Wj ∗ f2

j + Wj+1 ∗ f2
j+1.

Indeed, from Lemma 1, we can construct another solution with P
′

1, P
′

2, . . . , P
′

k

such as
∑k

i=1 P
′

i =
∑k

i=1 Pi and
∑k

i=1 P
′

i ∗ f2
i = Wj ∗ f2

j + Wj+1 ∗ f2
j+1. Hence,

we obtain
Wj

fj
+

Wj+1

fj+1
<

∑k
i=1

P
′

i

fi
<

∑k
i=1

Pi

fi
.

Fig. 1. Resume of the first part of the proof.

5 An Approximation Scheduling Algorithm for Chain

of Non-preemptive Tasks with Communication Costs

We assume here a communication cost Cmj,j+1 between PEj and PEj+1 and
communication cost Cti,i+1 between each pair of tasks ti and ti+1 with 2 ∗
mini Cti,i+1 � maxj Ctj,j+1, ∀ i, j ∈ {1..n − 1}. We do not allow preemption
of tasks and we transform the previous solution of preemptive scheduling, using
the processing elements PEj and PEj+1 only.

Proposition 2. If only two processing elements PEj and PEj+1 are available,

the schedules with only one communication between them are dominant.

7



Proof. Let {tk+2 . . . tn} be the set of uncut tasks of the preemptive solution on
PEj+1 and S1 the sum of their weights. Let Cmax1 the makespan of a feasible
solution obtained by processing tasks {t1 . . . tk+1} on PEj and {tk+2 . . . tn} on
PEj+1. By contradiction, let suppose that there exists a feasible solution with
at least two displacements such as S1 � S2, where S2 is the sum of the tasks
weights on PEj+1 with this solution, let Cmax2 be its makespan. We prove
that Cmax2 � Cmax1. Since the second solution is feasible, S2 � Wj+1. By the
previous algorithm, Wj+1 � S1+wk+1 � S1+max wi with i ∈ {1 . . . n}, and thus
S2 � S1 + Max wi, i = 1..n. Cmax1 = W−S1

fj
+ S1

fj+1
+ Cmj,j+1 + Ctk+1,k+2 and

Cmax2 �
W−S2

fj
+ S2

fj+1
+2∗Cmj,j+1 +2 ∗ min Cti,i+1, i ∈ {1 . . . n−1}. Follows,

Cmax2 −Cmax1 = S2−S1

fj+1
− S2−S1

fj
+Cmj,j+1 +2 ∗ min Cti,i+1 −Ctk+1,k+2. Since

S2−S1

fj+1
� 0 and 2 ∗ min Cti,i+1 − Ctk+1,k+2 � 0, ∀ i = 1..n − 1, induce Cmax2 −

Cmax1 � Cmj,j+1 − S2−S1

fj
. Finally, Cmj,j+1 − S2−S1

fj
� Cmj,j+1 − Max wi

fj
,

i = 1..n. According to the hypothesis, Cmj,j+1 − Max wi

fj
� 0, ∀ i = 1..n.

Therefore Cmax2 − Cmax1 � 0 =⇒ Cmax2 � Cmax1. ⊓⊔

Theorem 2. The following Algorithm2 provides a solution for non-preemptive

scheduling starting from the preemptive scheduling solution obtained by Algo-

rithm1 with a complexity of θ(n + m).

The two variables α and β are used to determine the assignment of tasks.
In the case Wj+1 = 0, we put all the tasks on PEj . Otherwise, let Cost1(v) be
the cost of executing the first tasks (t1 to tv) on PEj with

∑v
i=1 wi � Wj , then

the rest on PEj+1. Cost1(v) = {Ctv,v+1 +
∑v

i=1
wi

fj
+

∑n
i=v+1

wi

fj+1
+ Cmj,j+1}. Let

Cost2(v) be the cost of executing the first tasks (t1 to tv) on PEj+1, then the

rest on PEj with
∑n

i=v+1 wi � Wj . Cost2(v) = {Ctv,v+1+
∑v

i=1
wi

fj+1
+

∑n
i=v+1

wi

fj
+

Cmj,j+1}.
We start by finding the tasks v1 and v2 that give the best respective schedul-

ing makespan (Cost1) and (Cost2), and keeping the best one. Finally, we check
if the cost generated by using both processing elements PEj and PEj+1 is less
than the scheduling makespan obtained by performing all tasks on PEj .

Example 1. Consider the task graph given by Figure 2. It contains ten task nodes
(n = 10) labeled from t1 to t10 with two additional nodes S and E (beginning
and end of the application). The edges are labeled with the communication cost
between tasks. The nodes are labeled with the weight of each task.
Consider a heterogeneous platform with 3 processing elements, their frequencies
are given in Table 1. The communication cost between processing elements are
given in Table 2. The maximum energy consumption is E = 1350.

The application of preemptive scheduling Algorithm2 gives PEj = PE2 and
PEj+1 = PE3 with W2 = 0, 5625 and W3 = 37, 4375. Since W3 > 0, we obtain

Cost1 = Ct1,2 + w1

f2
+

∑
10
i=2

wi

f3
+ Cm2,3 = 17, v1 = 1. Cost2 = Ct7,8 +

∑
7
i=1

wi

f2
+

∑
10
i=8

wi

f3
+ Cm2,3 = 19, v2 = 7. Cost1 < Cost2, induces Cost = Cost1 = 17,

β = 1 and α = 1. Finally, W
f2

= 38
2 = 19 > Cost. We put the task t1 on the

8



Algorithm 2. Non-Preemptive Scheduling (NPS).

Data: Weights of the tasks w1, w2, . . . , wn. Communication costs between tasks
Cti,i+1, i ∈ {1..n − 1}.

Result: Approximate solution Ĉmax for non preemptive scheduling.
begin

Find PEj , PEj+1 and Wj , Wj+1 with preemptive scheduling algorithm
if Wj = W then

β = n, α = 1

else

Cost1 = min{Cost1(v), v ∈ {1..n − 1},
∑v

i=1
wi � Wj}; let

v1 ∈ {1..n − 1} such that Costv1
= Cost1

Cost2 = min{Cost2(v), v ∈ {1..n − 1},
∑n

i=v2+1
wi � Wj}; let

v2 ∈ {1..n − 1} such that Costv2
= Cost2

if Cost1 < Cost2 then
Cost = Cost1, β = v1, α = 1

else
Cost = Cost2, β = n, α = v2 + 1

if Cost > W
fj

then

Cost = W
fj

, β = n, α = 1

Put tasks between tα and tβ on the processing element PEj

Order the rest on the processing element PEj+1, Ĉmax= Cost

5 5 3 3 3 3 5 3 3 5

S t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 E
0 2 2 2 2 3 3 2 4 4 0

Fig. 2. Task chain graph.

Table 1. Frequencies of processing
elements.

PEj PE1 PE2 PE3

fj 1 2 6

Table 2. Communication cost
between processing elements.

PEj PE1 PE2 PE3

PE1 0 7 6

PE2 7 0 7

PE3 6 7 0

processing element PE2 and tasks t2 to t10 on PE3. Ĉmax = Cost = 17. For
this instance, our approach gives the optimal solution.

Proposition 3. Let C⋆
max be the optimal solution for non-preemptive scheduling

and Ĉmax the solution obtained by Algorithm 2, then Ĉmax

C⋆
max

�
W

Wj+
fjWj+1

fj+1

.

Proof. The optimal solution C
′

max of the preemptive scheduling is given by

C
′

max =
Wj

fj
+

Wj+1

fj+1
. In the worst case for our algorithm, all tasks are

9



executed on the processing element fj , thus we get Ĉmax �
W
fj

. Follows

Ĉmax

C
′

max

�

W
fj

Wj
fj

+
Wj+1

fj+1

�
W

Wj+
fjWj+1

fj+1

. By optimality of Algorithm1, C
′

max � C⋆
max

induces Ĉmax

C⋆
max

�
Ĉmax

C
′

max

, then Ĉmax

C⋆
max

�
W

Wj+
fjWj+1

fj+1

. ⊓⊔

Remark 2. This ratio is reached, let consider an instance which generates

Wj+1 = 0 and Wj = W for the preemptive solution, then, 1 �
Ĉmax

C⋆
max

�

W

Wj+
fjWj+1

fj+1

= W
W

= 1. So, we obtain the optimal solution, Ĉmax = C⋆
max.

Remark 3. Since
fj

fj+1
< 1, W

Wj+
fjWj+1

fj+1

< W
fj

fj+1
(Wj+Wj+1)

=
fj+1

fj
, and finally,

Ĉmax

C⋆
max

<
fj+1

fj
.

6 Experimental Results

In order to measure the efficiency of our algorithm, we performed several tests
on randomly generated instances with different dimensions. For this purpose,
we developed a random instances generator in C++ adjustable with several
parameters.

General settings are number of tasks n and processing elements m. We
denote by test n m instance defined by these two parameters. The weights
of the tasks are generated randomly over an interval [wmin, wmax]. The fre-
quencies of the processing elements are randomly generated over an interval
[fmin, fmax] while ensuring the heterogeneity of the system by generating dif-
ferent values. The communication costs between tasks are generated randomly
over an interval [Ctmin, Ctmax] and between processing elements over an inter-
val [Cmmin, Cmmax] in accordance with the hypothesis described in Sect. 3. The
bound E is randomly generated with respect to W ∗ f2

1 < E < W ∗ f2
m.

Our proposed Algorithm2 were implemented in C++. The exact solution is
obtained by solving the model (P ) with CPLEX 12.5.0 [4] and the OPL script
language. The following Table 3 shows the results of tests on different instance
sizes. We have generated 30 instances for the first four rows (from instance
test 8 3 to test 20 4) and then one instance for the others due to the large
running time on CPLEX.

The PS (Preemptive Scheduling) columns present the makespan average
solution obtained by the Algorithm1. The NPS (Non-Preemptive Scheduling)
columns present the makespan average solution obtained by the Algorithm2 and
its average execution time. The CPLEX columns present the average makespan
solution of the resolution of the model (P ) with CPLEX and the average
computation cost required as well as the optimality of the solutions. Finally,
the columns GAP1 and GAP2 present the average ratio between the solution
obtained by Bound1 = CPLEX solution and Bound2 = Preemtive solution with
NPS solutions which is calculated as follow:

10



GAPi = Heuristic Solution−Boundi

Boundi
∗ 100, i ∈ {1, 2}.

Since the execution time of a quadratic model is generally too large, we have
therefore limited the running time for CPLEX to 60 min. In Table 3, we can
notice that for most of the instances with less than 30 tasks, our algorithm gives
an optimal solution with smaller running time than CPLEX. Moreover, for larger
instances, CPLEX takes much longer to find a solution, whereas NPS gives a
solution in less than one second for an instance with 10000 tasks.

Table 3. Evaluation of the NPS heuristic compared to CPLEX.

Instances PS NPS CPLEX Gap1 Gap2

Sol Time Sol Time Opt

test 8 3 15.03 19.89 0.0004 s 19.89 0.76 s X 0% 31.14%

test 12 3 24.82 32.55 0.0005 s 32.55 2.17 s X 0% 15.80%

test 15 4 29.87 34.59 0.0005 s 34.58 6.46 s X 0.02% 21.91%

test 20 4 27.51 33.54 0.0007 s 33.54 8 min 3 s X 0% 2.25%

test 30 6 24.84 25.40 0.001 s 25.40 35min X 0% 7.02%

test 50 6 40.27 43.10 0.01 s 102.24 60min / −57.84% 8.03%

test 100 9 53.78 55.39 0.02 s 843.48 60min / −93.43% 2.99%

test 200 9 123.21 128.92 0.03 s 1929.20 60min / −93.31% 4.63%

test 500 11 207.44 217.52 0.05 s 3587.39 60min / −93.93% 4.85%

test 10000 11 4814.62 4828.06 0.5 s / 60min / / 0.27%

7 Conclusion and Future Work

This paper presents an efficient approximation algorithm to solve the task
scheduling problem on heterogeneous platform for the particular case of lin-
ear chain of tasks. Our objective is to minimize both the total execution time
(makespan) and the energy consumption by imposing a constraint on the total
energy consumed by the system. This work has shown that finding an efficient
scheduling is not easy. Tests on large instances close to reality shows the limits
of solving the problem with a solver such as CPLEX.

The main contribution of this work is to give an algorithm which provides a
solution with small running time, and also guarantee the quality of the solution
obtained compared to the optimal solution. The ratio obtained depends on the
frequencies of two successive processing elements PEj and PEj+1 used in pre-

emptive scheduling. The performance ratio of our algorithm is bounded by
fj+1

fj
.

As part of the future, we will focus on the extension to more general classes of
graphs to handle real application.

11



References

1. Aupy, G., Benoit, A., Dufossé, F., Robert, Y.: Reclaiming the energy of a schedule:
models and algorithms. Concur. Comput.: Pract. Exp. 25(11), 1505–1523 (2013)

2. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective app-
roach for workflow scheduling in heterogeneous environments. In: Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID 2012), pp. 300–309. IEEE Computer Society (2012)

3. Griessl, R., Peykanu, M., Hagemeyer, J., Porrmann, M., Krupop, S., Kosmann, L.,
Knocke, P., Kierzynka, M., Oleksiak, A., et al.: FPGA-accelerated heterogeneous
hyperscale server architecture for next-generation compute clusters (2015)

4. IBM: IBM ILOG CPLEX V12.5 user’s manual for CPLEX (2013). http://www.
ibm.com

5. Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-
constrained applications using dynamic voltage scaling. In: 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid, CCGRID 2009, pp.
92–99. IEEE (2009)

6. Zaourar, L., Ait Aba, M., Briand, D., Philippe, J.M.: Modeling of applications and
hardware to explore task mapping and scheduling strategies on a heterogeneous
micro-server system (2017, to appear in IPDPSW)

7. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.G., Zomaya, A.Y., Tuyt-
tens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware schedul-
ing for cloud computing systems. J. Parallel Distrib. Comput. 71(11), 1497–1508
(2011)

8. Sheikh, H.F., Ahmad, I.: Efficient heuristics for joint optimization of performance,
energy, and temperature in allocating tasks to multi-core processors. In: 2014 Inter-
national Green Computing Conference (IGCC), pp. 1–8. IEEE (2014)

9. Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J.: Efficient and scalable
pareto front generation for energy and makespan in heterogeneous computing sys-
tems. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI,
vol. 580, pp. 161–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
12631-9 10

10. Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J., Chong, E.K.: Energy
and makespan tradeoffs in heterogeneous computing systems using efficient linear
programming techniques. IEEE Trans. Parallel Distrib. Syst. 27(6), 1633–1646
(2016)

11. Vasquez Perez, O.C.: Ordonnancement de tâches pour concilier la minimisation de
la consommation d’énergie avec la qualité de service: optimisation et théorie des
jeux. Ph.D. thesis, Paris 6 (2014)

12. Xie, G., Xiao, X., Li, R., Li, K.: Schedule length minimization of parallel appli-
cations with energy consumption constraints using heuristics on heterogeneous
distributed systems. Concurr. Comput.: Pract. Exp. (2016)

13. Young, B.D., Pasricha, S., Maciejewski, A.A., Siegel, H.J., Smith, J.T.: Heteroge-
neous makespan and energy-constrained DAG scheduling. In: Proceedings of the
2013 Workshop on Energy Efficient High Performance Parallel and Distributed
Computing, pp. 3–12. ACM (2013)

14. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems. Inf. Sci. 379,
241–256 (2017)

12



15. Zhang, L., Li, K., Xu, Y., Mei, J., Zhang, F., Li, K.: Maximizing reliability with
energy conservation for parallel task scheduling in a heterogeneous cluster. Inf. Sci.
319, 113–131 (2015)

16. Zhong, X., Xu, C.Z.: Energy-aware modeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee. IEEE Trans. Comput. 56(3), 358–372
(2007)

13


