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Shared Nearest Neighbor Clustering in a Locality

Sensitive Hashing Framework

SAWSAN KANJ,1–5 THOMAS BRÜLS,1,3–5 and STÉPHANE GAZUT2

ABSTRACT

We present a new algorithm to cluster high-dimensional sequence data and its application
to the field of metagenomics, which aims at reconstructing individual genomes from a
mixture of genomes sampled from an environmental site, without any prior knowledge of
reference data (genomes) or the shape of clusters. Such problems typically cannot be
solved directly with classical approaches seeking to estimate the density of clusters, for
example, using the shared nearest neighbors (SNN) rule, due to the prohibitive size of
contemporary sequence datasets. We explore here a new approach based on combining
the SNN rule with the concept of locality sensitive hashing (LSH). The proposed method,
called LSH-SNN, works by randomly splitting the input data into smaller-sized subsets
(buckets) and employing the SNN rule on each of these buckets. Links can be created
among neighbors sharing a sufficient number of elements, hence allowing clusters to be
grown from linked elements. LSH-SNN can scale up to larger datasets consisting of
millions of sequences, while achieving high accuracy across a variety of sample sizes and
complexities.

Keywords: density-based methods, metagenomic data, sequence clustering, locality sensitive

hashing.

1. INTRODUCTION

Clustering is usually defined as the task of unsupervised learning, where the class labels of the

data items are unknown ( Jain and Dubes, 1988; Kotsiantis and Pintelas, 2004; Berkhin, 2006; Hastie

et al., 2009). Clustering methods aim at creating categories from the data in such a way that similar objects

will be grouped together, whereas dissimilar objects will be separated into different groups, referred to as

clusters. Important issues in clustering research focus on the effectiveness and scalability of the methods on

data of varying complexities and arising from various domains (Yeung et al., 2001; Liao et al., 2004;

Aggarwal, 2009).

Commonly used methods to cluster high-dimensional data are presented in Kriegel et al. (2009).

K-means is one of the most widely used clustering method due to its low algorithmic complexity. However,
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it has been shown in Wu (2012) that K-means tends to produce clusters of relatively uniform sizes and

globular shapes, even if the data structure is endowed with varying cluster sizes or different shapes. This

bias is known as the uniform effect of the K-means. Moreover, the number of clusters K has to be specified

a priori, which is not trivial when no prior knowledge is available. To address these problems, methods

based on estimating the density and/or the similarity among instances have been introduced ( Jarvis and

Patrick, 1973; Ester et al., 1996).

In Ertöz et al. (2004), the authors presented an effective clustering method based on two key notions:

the similarity between neighboring elements and the density around instances. This method, shared

nearest neighbors (SNN), is a density-based clustering method and incorporates a suitable similarity

measure to cluster data. After finding the nearest neighbors of each element and computing the similarity

between pairs of points, SNN identifies core points, eliminates noisy elements, and builds clusters around

the core elements. This method can yield improved performance compared with other clustering ap-

proaches with data of varying densities, and it can automatically infer the number of output clusters.

However, this method has complexity O(n2), where n is the number of instances in the dataset, arising

from the computation of the similarity matrix, which can be prohibitive when dealing with very large

amounts of data.

One interesting concept to reduce the burden of computing the similarity matrix is locality sensitive

hashing (LSH). This concept was initially introduced to find approximate near neighbor information in

high-dimensional space (Indyk and Motwani, 1998; Har-Peled et al., 2012; Wang et al., 2014a). The key

idea is to hash elements into different buckets; then for a query instance x, to use instances stored in buckets

containing x as candidates for near neighbors. This approximation reduces the query time complexity to

O( log n) instead of O(n) (O(n) is the complexity for searching nearest neighbors for one instance).

Therefore, the similarity matrix computation time can be reduced to O(n log n).

We propose here to retain the basic principle of LSH by randomly splitting the dataset into a number of

smaller-sized subsets, using a family of hashing functions, so that similar elements will be hashed together

with high probability. We then look for nearest neighbors of each element in its bucket, and construct links

among elements sharing a significant number of neighbors to generate clusters. The proposed method,

called LSH-SNN, has the advantage of reducing the complexity for computing the similarity matrix, while

maintaining the same level of clustering accuracy.

In this study, we have evaluated the performance of the LSH-SNN method on metagenomic datasets of

various sizes and complexities. We have also compared the results with another density-based clustering

algorithm and the K-means method implemented in a popular sequence clustering software called Me-

taCluster (Yang et al., 2010; Wang et al., 2014b). Many computational tools have been proposed in the

literature to analyze metagenomic sequences that are generated from microbial communities. These tools

can be grouped into two main categories: (1) supervised and (2) unsupervised methods. Supervised

methods, often relying on sequence similarities and alignments of DNA fragments to reference sequences

of known taxonomic origins, include tools such as Kraken (Wood and Salzberg, 2014), Clark (Ounit et al.,

2015), and Diamond (Buchfink et al., 2015). Unsupervised methods group metagenomic fragments based

on intrinsic features, such as the statistics of l-mer frequencies extracted from fragments. Unsupervised

methods, such as MetaCluster (Yang et al., 2010), MaxBin (Wu et al., 2014), and MetaProb (Girotto et al.,

2016), became attractive due to the lack of reference genomes for the bulk of micro-organisms identified by

culture-independent approaches.

The rest of this article is organized as follows: Section 2 surveys related work on clustering; Section 3

recalls some background on local sensitive hashing and the SNN methods; and Section 4 introduces our

method based on the combination of local sensitive hashing and SNN. Experimental results on synthetic

and real datasets are illustrated in Sections 5 and 6, respectively, whereas Section 7 concludes the article.

2. RELATED WORK

Clustering methods look for similarities within a set of instances without any need for prior data labeling.

Numerous methods have been proposed in literature to deal with clustering tasks. Existing algorithms can

be grouped into five categories as proposed in Berkhin (2006) and Kotsiantis and Pintelas (2004): parti-

tioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based

methods. Hereafter, we will describe the main characteristics of these methods.
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Partitioning methods construct K partitions of the data by grouping instances around the gravity center of

each cluster. They can be divided into two main groups: the centroid methods such as K-means (Hartigan

and Wong, 1979), and the medoids ones (Kaufman and Rousseeuw, 1987) such as the K-modes (Huang,

1998) and the K-prototypes algorithms (Huang, 1997). Partitioning methods are simple to implement;

however, the number of clusters K should be specified.

Hierarchical methods build a tree hierarchy, known as dendrogram, to form clusters in two different

manners: agglomerative (bottom-up) and divisive (top-down). The former starts with singleton clusters

and recursively merges them in a bottom-up strategy, whereas the latter breaks the dataset into smaller

clusters in a top-down strategy. They use various local criteria to join or split clusters. Hierarchical

methods have the advantage of handling any form of similarity without requiring the number of clusters

to be known in advance. However, to construct a dendrogram, they suffer from time and space com-

plexities, which are quadratic with respect to the number of clusters. Hierarchical clustering includes

methods such as: BIRCH (Zhang et al., 1996), CURE (Guha et al., 1998), and CHAMELEON (Karypis

et al., 1999).

Density-based methods generate clusters based on the density of instances in a region. These methods are

related to different concepts defining a point’s nearest neighbors, such as density, connectivity, and

boundary. Density-based methods can find arbitrary-shaped clusters; however, they output border instances,

which may be unclustered and considered as outliers. Existing methods include DBSCAN (Ester et al.,

1996), OPTICS (Ankerst et al., 1999), DENCLUE (Hinneburg and Keim, 1998), Jarvis-Patrick ( JP) ( Jarvis

and Patrick, 1973), and SNN (Ertöz et al., 2003) algorithms. SNN will be described in further detail in

Section 3.2.

Grid-based methods quantize the space into a finite number of cells that form a grid structure. Clus-

tering is then performed on the grid cells, instead of the database itself (Liao et al., 2004). The main

advantage of these methods is their fast processing time; however, they output clusters with either vertical

or horizontal boundaries (no diagonal boundary can be detected). This category includes STING (Wang

et al., 1997), WaveCluster (Sheikholeslami et al., 1998), and CLIQUE (Agrawal et al., 1998) algorithms,

among others.

In model-based clustering, it is assumed that the data are generated from K probability distributions and

the goal is to find the distribution parameters (Yeung et al., 2001). Model-based methods are charac-

terized by a small number of parameters; however, the computational burden can become significant if

the number of distributions is large. Moreover, it is difficult to estimate the number of clusters. Many

model-based clustering methods are described in the literature, such as Expectation-Maximization

(Dempster, Laird and Rubin, 1977), Self Organized Maps net (Kohonen, 2001), and AutoClass (Chee-

seman and Stutz, 1996).

None of the categories mentioned earlier can directly cluster large amounts of instances of arbitrary

shapes and at the same time automatically detect the appropriate number of clusters. The SNN algorithm

from the density-based clustering category can deal with local density variations and automatically find

clusters of different shapes. However, adapting this technique with massive data requires extensive storage

and time costs, especially for the computation of the similarity matrix.

3. BACKGROUND

In this section, we briefly review some background on locality sensitive hashing (Subsection 3.1) and

SNN algorithms (Subsection 3.2).

3.1. Locality sensitive hashing

LSH was first introduced in Indyk and Motwani (1998) as a classical geometric lemma on random

projections, to quickly find similar items in large datasets. One or many families of hash functions map

similar inputs to the same hash code. This hashing technique produces a splitting of the input space into

many subspaces, called bins or buckets, with a high probability that instances originally close in their input

space will be in the same bin or in adjacent bins within the LSH framework.

To alleviate the curse of dimensionality, each hash function projects the data to a lower-

dimensional space (h : Rd ! Z). Different techniques have been presented in the literature to generate
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hash functions. These techniques can be categorized into two families: min-hash (Broder, 1997) and

random projections (sim-hash). In document classification, min-hash is typically used when looking

for textually similar documents by processing items and generating integers from strings of charac-

ters (Leskovec et al., 2014). Random projections, on the other hand, are obtained via simple proba-

bility distributions such as p-stable distribution (Datar et al., 2004) and sign-random-projection

(Charikar, 2002).

Dealing with large datasets, LSH is typically combined with nearest neighbors techniques (Buhler,

2001) and used for data clustering (Broder, 1997; Boydell et al., 2013). To perform k-nearest

neighbors, buckets [and sometimes their adjacent buckets (Lv et al., 2007)] containing the query

element are checked and all the existing instances are ranked according to their distances to the query

element. To cluster high-dimensional data (Haveliwala et al., 2000; Koga et al., 2004), similar ele-

ments contained in the same bucket can be joined to output clusters in a hierarchical way (Rasheed

et al., 2012).

3.2. Shared nearest neighbor

SNN is a density-based clustering approach that was successfully applied for finding groups of docu-

ments sharing a strong, coherent topic or theme (Gowda and Krishna, 1978; Ertöz et al., 2004; Steinbach

et al., 2004; Berkhin, 2006; Moëllic et al., 2008; Patidar et al., 2012). SNN handles clusters of widely

differing sizes, densities, shapes, and in the presence of large amounts of noise and outliers. To exploit

space density of the data, SNN relies on the concept of similarity based on the SNN approach. The

similarity matrix is sparsified by keeping only the k-most nearest neighbors (knn). The SNN graph is then

constructed by creating links between pairs of instances having each other in their respective knn lists. The

weight of the link can be calculated either as the number of shared neighbors between two knn lists or using

the ordering of these shared neighbors.

The algorithm determines the type of each instance (core, border, or noisy) by calculating its

connectivity; that is, the number of links coming out of this instance, which will be compared with

noisy and topic thresholds. Noisy instances are discarded and will never be used in the clustering

process. Core instances form final clusters with their connected elements. The algorithm’s behavior is

controlled by four parameters: the number of nearest neighbors (noted as knn hereafter), the topic

threshold, and two other thresholds governing the addition of elements to clusters. Depending on the

parameter settings, many of the border instances can remain unlabeled because they are unconnected to

core elements.

4. OUR PROPOSAL: THE LSH-SNN ALGORITHM

We describe the key idea of our algorithm, called LSH-SNN, in Section 4.1. We then describe how to

tune the different parameters in Section 4.2.

4.1. Method description

SNN is a relatively effective unsupervised method to automatically find clusters of different shapes and

densities. For n data items and knn nearest neighbors, the computational complexity of SNN is O(n2),

whereas its space complexity is O(knn � n). Hence, SNN can face important scalability issues when the

number of instances n becomes large.

Our goal is to adapt a suitable framework for clustering large number of instances by using the SNN

principle. It is motivated by large metagenomic datasets incurring high computational costs. To help reduce

these costs, we consider the rationale of locality sensitive hashing as a framework for the development of

the SNN method. In this framework, the n data instances are randomly partitioned into a number of smaller-

sized subsets called buckets, and for each data point, we locate its approximate nearest neighbors inside its

bucket. This approach, called LSH-SNN, has an advantage over SNN since it restricts the calculation of

distances for each single item inside its bucket, whereas SNN needs to calculate n distance measures for

each point before selecting the list of nearest neighbors.

LSH-SNN begins with the extraction of features from the sequence fragments by computing the fre-

quencies of all possible l-mers (substrings of length l) in each of them (Section 4.1.1). Nearest neighbors of
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all sequences are then computed by applying the LSH technique, which involves splitting sequences into

different buckets in such a way that similar sequences end up in the same bucket with a higher probability

(Section 4.1.2). Elements stored in buckets containing a given sequence x are retrieved and ranked ac-

cording to their distances to x to compute its nearest neighbors list. Shared neighbors are linked according

to the SNN rule, and connected sequences form output clusters (Section 4.1.3). Finally, in the case of

unclustered fragments, a last step is performed to assign them to the cluster that is the most similar in terms

of l-mer distribution (Section 4.1.4).

4.1.1. l-mer frequency calculation. Sequence similarities are typically identified by comparing

occurrence patterns of relatively short DNA substrings of length l between the sequences (Yang et al.,

2010; Tanaseichuk et al., 2012).

Two broad scenarios can be used to assess l-mer-based similarities: Abundance-based methods make

use of relatively large l values (l � 20) to ensure the uniqueness of most l-mers (Tanaseichuk et al.,

2012), whereas composition-based methods rely on smaller l values. Since DNA is a combination of four

different types of nucleotides (A,T,G,C), there are at most 4l l-mer combinations forming the feature

vector. The frequency of each l-mer combination is normalized by dividing the number of occurrences by

the fragment length.

Because of nucleotide base complementarities, the size of the feature vector can be reduced by half, that

is, for a DNA sequence x of length s, the feature vector is given by: x = x1‚ x2‚ . . . ‚ xmð Þ, where xi = fi
s
, fi

is the frequency occurrence of a given l-mer combination and m represents the size of the vector (or number

of descriptive attributes), m = 4l=2 if l is odd, and (4l + 4l=2)=2 if even.

4.1.2. Locality sensitive hashing. For convenience, we briefly recall some notations. Let X

be the collection of n sequences of m-dimensional features, and let x 2 X denote an input sequence.

Let k be the number of projections. For each i 2 [k], hi(x) is given by: hi(x) = sign(x:vi), where vi is a

vector whose components are randomly generated from a Gaussian distribution, for example, N (0‚ 1).

This scalar projection gives one hash value for x. The hash code for x is then obtained by a con-

catenation of the k hash values, g(x) = (h1(x)‚ h2(x)‚ . . . ‚ hk(x)). LSH prepares r copies of g(:) to im-

prove the hashing discriminative power (Dasgupta et al., 2011, Wang et al., 2014a) (to avoid

confusion, k [in lower case] is the number of sampled bits, whereas K [in upper case] is the number of

output clusters).

The feature vectors are first normalized with zero mean and unit variance. Each input sequence x is then

indexed by a hash code g(x) = (h1(x)‚ h2(x)‚ . . . ‚ hk(x)) defining its bucket identity, and the hash code of all

sequences in X constitutes a hash table. This projection produces a new k-dimensional space (k << m).

Since the number of elements per bucket is typically much smaller than n, we need to ensure that similar

sequences share the same bucket with a higher probability while minimizing random effects. To achieve

this, r hash functions g1‚ g2‚ . . . ‚ gr are sampled independently, each generating a distinct hash table. For

each sequence x, we then identify g1(x)‚ g2(x)‚ . . . ‚ gr(x) indexing the r buckets where x is mapped in each

projection.

Note that any hash function could be applied in this step (Paulevé et al., 2010) when distances are

measured as angles between pairs of points. In this work, we demonstrate results based on random hash

functions that are generated from a Gaussian distribution.

The projection of the data items into different buckets can be summarized as follows:

Algorithm 1: Hashing

Input: Set of DNA sequences X of size n, number of repetitions r

Output: Set of matrices of hash code T corresponding to X:

1: X = (X - mean(X))=std(X);

2: k = log (n); 8k is the number of projections or axis

3: for i = 1 to r do

4: Create an m-by-k matrix Ai where rows are identical and generated from a Gaussian distribution (N (0‚ 1));

8m is the number of features

5: Ti = X:Ai;

6: end for
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For hashing the dataset, the time complexity is O(m · k · r) per sequence, since each sequence of

dimension m will be processed by k hash functions repeated r times. Therefore, for n sequences, the time

complexity of LSH is O(n · m · k · r). For a fixed l-mer (and hence of m) value, LSH has a complexity of

O(n · log (n) · r) (k = log (n); see Section 4.2).

4.1.3. Shared nearest neighbors. Once the space has been partitioned k · r times, a simple

k-nearest neighbor classifier may be considered to find the nearest neighbors of a sequence x inside

its bucket (i.e., sharing the same hash code) for all partitions. The union of r subsets of nearest

neighbors for a given sequence is treated as its neighborhood list. Since the nearest neighbor lists

are generated from sparsely populated buckets, the computational cost and runtime can be greatly

improved.

Once the sets of nearest neighbors have been defined, the SNN algorithm follows two steps: comput-

ing the strength of links and the labeling of sequences. A link is created between two sequences x1 and x2 if

they have each other in their respective neighborhood lists, and it can be weighted according to the product

of positions of shared instances between these two lists, namely:

link(x1‚ x2) =
X

(knn + 1 - p1) � (knn + 1 - p2)‚ (1)

where p1 and p2 are the positions of a shared neighbor in the lists of x1 and x2. The knn lists are then

transformed into a graph where sequences (nodes) are connected via weighted links. For each sequence x in

the graph, the sum of its total links (connx) is computed to enable the selection of a subset of representative

sequences according to a connectivity-based criterion (conn > topic threshold).

Algorithm 2 inset summarizes the SNN method. To check the nearest neighbors of a sequence x,

n0 distances need to be evaluated, where n0 is the number of elements sharing the same hash code as

x. Since we have n sequences, the time complexity for computing the nearest neighbor elements is

O(n · n0 · m + C(knn)), where C(knn) is a relatively small factor enabling the selection of knn near

neighbors for each sequence ( Jarvis and Patrick, 1973). To assess the link between two sequences having

each other in their respective knn list, two columns of size knn are selected and evaluated. The cost of this

process amounts to O(n · knn · knn).

Therefore, the total complexity of the algorithm becomes:

Complexity

= O(n · k · r + n · m · n0 + n · knn · knn)

= O(n · k · r + n · n0 + n · knn · knn) (for fixed l - mer value)

= O(n · log (n) · r + n · n0 + n · n0) knn =
ffiffiffiffi
n0
p

= O(n · log (n) · r + 2 · n · n0) n0 � n=2log (n)

�O(n · log (n) · r)

This algorithm is able to handle clusters of different densities, but it can leave a large number of non-

noisy sequences unclustered. To alleviate this problem, we define an additional step to relabel unclustered

sequences.

4.1.4. Relabeling. This relabeling step was developed to reduce the number of unclustered se-

quences. Briefly, it identifies a subset of frequencies that are characteristic of each cluster and con-

tributing most to the classifier’s accuracy, discarding less relevant features. Each unclustered

sequence is then added to the cluster that is the most closely related with respect to this subset of

frequencies.

Relabeling proceeds by computing the mean of each cluster and dividing it by the mean of the other

clusters. Discriminant l-mer frequencies, that is, those that most differentiate this cluster from others, are

selected (cf line 7 in Algorithm 3 inset). Then, for a given sequence, we compute its distance to the mean of

each cluster by using the subset of discriminant frequencies and assign it to the nearest cluster. If two

clusters are nearly equally close to a given sequence, we keep the latter unlabeled to avoid increasing the

number of misclassified instances.
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Algorithm 2: SNN computation

Input: Set of DNA sequences X of size n, set of matrices of hash code T corresponding to r projections of X, the

number of nearest neighbors knn, strong, topic, and merge thresholds

Output: Number of clusters K, predicted set of labels Ŷ corresponding to X:

1: for i = 1 to n do

2: for j = 1 to r do

3: Select Zj the bucket indexing by the same hash code of xi, Tij;

4: Compute the distances of xi to each element in Zj;

5: Select the knn nearest neighbors elements and add them to Nxi
;

6: end for

7: end for

8: for i = 1 to n do

9: for j = 1 to r · knn do

10: Select an element xj from Nxi
;

11: if xi 2 Nxj
then

12: for each element in Nxi
\ Nxj

do

13: Compute links(i‚ j) using 1

14 end for

15: end if

16: if links(i‚ j) � strong then

17: Increment connxi
and connxj

;

18: end if

19: end for

20: end for

21: Set K to zero; 8number of clusters is equal to zero;

22: for i = 1 to n do

23: if connxi
� topic then

24: if ŷi is not labeled then 8we have a representative sequence that could create a new cluster

25: Increment K;

26: Set ŷi to K;

27: end if

28: for j = 1 to r · knn do

29: if links(i‚ j) � merge then

30: Set dyNx i‚ j
to ŷi;

31: end if

32: end for

33: end if

34: end for

The implementation of this part of the algorithm is presented as a pseudo code in Algorithm 3 inset.

Relabeling requires n · K operations, hence a complexity of O(n · K). The overall complexity of the

algorithm depends on the complexity of the hashing functions and the SNN classifier. The total complexity

is � O(n · log (n) · r).

4.2. Parameters in LSH-SNN

This section discusses the configuration of the LSH and SNN parameters, which impact the method’s

performance in terms of both runtime and clustering quality. Parameters were determined by grid search

and focused on optimizing the V-measure (see Section 5.3).

LSH has two parameters, k and r: (1) The number k of bits sampled determines the number of instances

inside the buckets, which, on average, is expected to be equal to n0 = n
2k. The total number of buckets is

limited to max (n‚ 2k). If k takes a small value with respect to the number of sequences, then we would end

up with a large number of sequences per bucket (n0) and the time consumption of the SNN phase will be

very high. On the other extreme, if k = n, we would get on average one sequence per bucket and there will

be no knn lists to be constructed. In this study, we set k to log (n). (2) The number of projections r is the

second parameter. For r = 1, we take the risk that two close elements end up in distinct buckets because of

the random nature of the hashing. By increasing the number of projections, we increase the probability that

these two elements are mapped to the same bucket. The number of projections r should, thus, be increased
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Algorithm 3: Relabeling of unclustered sequences

Input: Set of DNA sequences X of size n, number of projections r, number of clusters K, predicted set of labels Ŷ

corresponding to X

Output: Predicted set of labels Ŷ:

1: for i = 1 to K do

2: Compute the mean of cluster i (mi);

3: Compute the standard deviation of cluster i (sdi);

4: for j = 1 to K do

5: Compute the mean of cluster j (mj);

6: for ind = 1 to m do

7: then if (((mi[ind]=mj[ind] � K) _ (mi[ind]=mj[ind] � 1=K)) ^ (sdi[ind] is small))

8: ind is a significant frequency;

9: end if

10: end for

11: end for

12: end for

13: for i = 1 to n do

14: if ŷi is not labeled then

15: Compute the distance of xi to each cluster by using only the significant frequencies;

16: Label xi with the cluster having the nearest distance to xi;

17: end if

18: end for

to stabilize the results. On the other hand, for large values of r, distant elements may be mapped to the same

bucket, provoking the r · knn lists to grow and ultimately leading to the same drawbacks as the initial SNN

method. In this study, r was empirically set between 300 and 1200, depending on the size of the dataset.

Four parameters determine the outcome of the SNN procedure: These are the knn, topic, merge, and

strong thresholds. (1) The size of the nearest neighbor list knn ultimately depends on the number of

elements per bucket. To construct knn lists containing a sufficiently large number of closely related

sequences that are consistent with the shared neighbors criterion, we need to choose a relatively large

number of nearest neighbors. However, increasing knn may add more distant sequences to the same

cluster, thus increasing the computational cost. On the other hand, decreasing knn will result in many

smaller-sized clusters. A simple and pragmatic approach is to set knn =
ffiffiffiffi
n0
p

or knn = log (n0), where

n0 = n
2k. In our experiments, we fixed knn to

ffiffi
(
p

n0). (2) The topic threshold determines the proportion of

highest connectivity links to be selected as representatives. This threshold ranged from 0:04 to 0:06 in our

experiments. (3) The merge threshold represents the fraction of links to be used in the cluster merging

process, and it was fixed to 0:02 in our experiments. (4) Finally, the strong threshold aims at reducing the

number of unlabeled sequences (singleton clusters) and at picking representative elements. In our ex-

periments, this parameter was set to 0:1.

5. EXPERIMENTS ON SEMI-SYNTHETIC DATASETS

In this section, we detail the experimental setup with the semi-synthetic datasets. We first describe the

datasets (Section 5.1) and provide a short reminder about the methods that we compare our algorithm with

(Section 5.2). We then detail the metrics used to evaluate the performance of our method (Section 5.3) and

present and discuss the results in Section 5.4.

5.1. Datasets

We have used synthetic datasets of increasing sizes and complexities, composed of 600 base-pair length

reads (DNA fragments) sampled from sequenced bacterial genomes that were assembled to create synthetic

communities of known composition and abundance (Gkanogiannis et al., 2016), which were then used as

ground truth to measure the clustering accuracy of the different algorithms evaluated. The mean coverage

of the datasets was fixed to 1X, which means that, on average, a given position in the genome is covered by

1 read. The number of reads derived from each organism is equal to 5000.
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To evaluate the performance of the various clustering modules on the benchmark datasets, we compared

class memberships of elements (reads) in each dataset with the memberships induced by the clustering.

Class memberships correspond to the genomes that the reads were sampled from, with the cardinality of the

class set matching the samples’ richness. For all the synthetic datasets, the read generation process was

performed by using the Mason software (Holtgrewe, 2010) with default error model parameters for Illu-

mina reads (Mason can insert position-specific sequence modifications according to empirically calibrated

and sequencing platform-dependent error models).

5.2. Benchmark methods

The LSH-SNN method is compared with MetaCluster (Yang et al., 2010), a popular compositional

binning software based on the K-means algorithm with the Spearman footrule distance, which operates on

relative rankings of the l-mer frequencies (Yang et al., 2010).

The main advantage of this approach is its simplicity, which underlies its ability to handle datasets

harboring a relatively large number of genomes. However, its behavior can be sensitive to the random

choice of initial cluster centers, and it may fail to output clusters when the data present nonglobular shapes.

Moreover, the number of clusters should be predetermined, which is not trivial in the absence of prior

knowledge (Rokach and Maimon, 2005).

The complexity of the K-means method is O(n · m · K · t), where n is the number of instances, m is the

dimension of data, K is the number of clusters, and t is the number of iterations for convergence. As l-mer is

fixed for all experiments, the overall complexity of MetaCluster becomes O(n · K · t).

We also compared our algorithm with the JP method ( Jarvis and Patrick, 1973) coupled with the

LSH indexing in a way similar to the LSH-SNN combination. JP also relies on the nearest neighbors

similarity concept, but it simply merges elements in the same cluster if they share a sufficient number of

neighbors, that is, the number of shared elements between two neighbors is greater than a user-predefined

threshold kt, which we fixed to (r � knn)2=2. The complexity of LSH-JP is O(n · k · r + n · n0 + n ·
knn · knn) � O(n · log (n) · r).

5.3. Performance evaluation

We considered the following metrics to evaluate the performance of our method: Homogeneity, Com-

pleteness, V-measure, F-measure, and the Adjusted Rand Index.

Homogeneity evaluates the class distribution within each cluster; it is highest when each cluster

contains only elements from a single class. Completeness, on the other hand, measures the distribution

of cluster assignments within each class; it is highest when elements of a given class are assigned to a

single cluster. Let C be the number of distinct organisms in a dataset of n sequences and K be the

number of output clusters. These two measures are defined as follows (Rosenberg and Hirschberg,

2007):

Homogeneity = 1 -

PK
i = 1

PC
j = 1

ni‚ j

n
log

ni‚ jPC

j = 1
ni‚ jPC

j = 1

PK

i = 1
ni‚ j

n
log

PK

i = 1
ni‚ j

n

‚ (2)

Completeness = 1 -

PC
j = 1

PK
i = 1

ni‚ j

n
log

ni‚ jPK

i = 1
ni‚ jPK

i = 1

PC

j = 1
ni‚ j

n
log

PC

j = 1
ni‚ j

n

‚ (3)

The V-measure is defined as the harmonic mean of homogeneity and completeness. It is calculated as:

V - measure =
2 � homogeneity � completeness

homogeneity + completeness
: (4)

The clustering accuracy, F-measure, is defined as:

F - measure =
XC

j = 1

nj

n
max

i
F(i‚ j) (5)
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With

F(i‚ j) =
2 · ni‚ j

ni
· ni‚ j

nj

ni‚ j

ni
+ ni‚ j

nj

(6)

where nj is the cardinality of cluster Cj.

Finally, the Adjusted Rand Index (Hubert and Arabie, 1985; Yeung and Ruzzo, 2001) computes a

similarity measure between the observed and ideal clusterings as:

ARI =

PK
i = 1

PC
j = 1

nij

2

� �
-
PK

i = 1

ni

2

� �PC
j = 1

nj

2

� �� �
=

n

2

� �
1
2

PK
i = 1

ni

2

� �
+
PC

j = 1

nj

2

� �� �
-
PK

i = 1

ni

2

� �PC
j = 1

nj

2

� �� �
=

n

2

� � (7)

These measures all take values between 0 and 1, with higher values corresponding to better clustering

accuracies.

5.4. Discussion

After tuning the parameters described in Section 4.2, we evaluated the performance of LSH-SNN as well

as of two other clustering algorithms, LSH-JP and K-means (the MetaCluster implementation), on the

different datasets (note that MetaCluster requires the number of component genomes to be provided as

input for each dataset). Clustering accuracy was quantified by using the previously described metrics. The

results are shown in Table 1 together with the rank (between parentheses) of each method, and they

highlight (in bold) the best value for each evaluation criterion. The fraction of unclustered sequences

(singleton elements) varied between 20% and 30% for LSH-SNN, 60% and 90% for LSH-JP, and between

Table 1. Performance on Synthetic Datasets

Datasets Metrics LSH-SNN LSH-JP MetaCluster

MC5 Homogeneity 0.502(2) 0.614(1) 0.302(3)

Completeness 0.504(2) 0.499(3) 0.618(1)

V-measure 0.503(2) 0.551(1) 0.406(3)

F-measure 0.642(1) 0.469(3) 0.574(2)

Adjusted Rand Index 0.645(1) 0.296(3) 0.405(2)

MC10 Homogeneity 0.512(1) 0.499(2) 0.415(3)

Completeness 0.721(1) 0.704(2) 0.632(3)

V-measure 0.598(1) 0.584(2) 0.501(3)

F-measure 0.561(1) 0.461(3) 0.522(2)

Adjusted Rand Index 0.504(1) 0.312(3) 0.417(2)

MC25 Homogeneity 0.516(1) 0.335(3) 0.443(2)

Completeness 0.548(3) 0.629(1) 0.614(2)

V-measure 0.531(1) 0.437(3) 0.515(2)

F-measure 0.320(2) 0.304(3) 0.476(1)

Adjusted Rand Index 0.349(1) 0.178(3) 0.244(2)

MC50 Homogeneity 0.492(1) 0.353(3) 0.389(2)

Completeness 0.674(2) 0.713(1) 0.594(3)

V-measure 0.569(1) 0.471(2) 0.471(2)

F-measure 0.309(2) 0.253(3) 0.372(1)

Adjusted Rand Index 0.332(1) 0.141(3) 0.167(2)

MC100 Homogeneity 0.492(1) 0.176(3) 0.249(2)

Completeness 0.674(2) 0.704(1) 0.567(3)

V-measure 0.569(1) 0.282(2) 0.346(2)

F-measure 0.309(2) 0.141(3) 0.227(1)

Adjusted Rand Index 0.332(1) 0.085(2) 0.018(3)

The name of the datasets is MCx, where x corresponds to the number of genotypes.

JP, Jarvis-Patrick; LSH, locality sensitive hashing; SNN, shared nearest neighbors.
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2% and 4% for MetaCluster. These figures underlie the lower Adjusted Rand Index and F-measure values

achieved by LSH-JP. On the other hand, the relabeling step in the LSH-SNN algorithm specifically aimed

at reducing the number of unclustered sequences.

Table 1 indicates that LSH-SNN outperforms LSH-JP and MetaCluster in terms of homogeneity and V-

measure, with the latter being the harmonic mean between homogeneity and completeness. LSH-SNN also

slightly outperforms the other methods on the F-measure in four out of seven datasets, and it consistently

yields the best performance on all the datasets in terms of the Adjusted Rand Index metric.

The LSH-SNN algorithm is implemented in the C++ programming language, and it uses the OpenMP

application programming interface to support multiprocessing. Experiments were conducted on a Linux

x86 64 server endowed with multi-core CPUs and 2 TB of RAM. The LSH-SNN and LSH-JP computations

were parallelized on 48 cores.

Overall, these results demonstrate that LSH-SNN achieves accurate binning for DNA sequences as short

as 600 bp, as compared with LSH-JP and MetaCluster’s K-means implementation, and despite the latter

being aware of the correct number of clusters (genomes) as an input parameter.

FIG. 1. The output clusters are arbitrary labeled with their identifier on the x axis. The y axis displays mutual

information of the final clusters, which reflects the correlation of the clusters (treated as variables) with metadata labels

(i.e., health status) of the individuals from the cohort.

Table 2. Performance on Real Metagenomic Data

Cluster_id

No. of pathologic

strain contigs

Total no.

of contigs

30 819 1082

406 244 324

33 9 24

1 8 7527

581 1 7

The two highest peaks in Figure 1 correspond to the first clusters (shaded) of

Table 2; these clusters contain the bulk of the pathogen genome.
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6. EXPERIMENTS ON REAL DATASETS

To assess the behavior of the LSH-SNN method on real metagenomic data, we ran our algorithm on a set

of 142,723 contigs resulting from a cross-assembly of 53 human microbiomes (Alneberg et al., 2014), 43 of

which harbored the Escherichia coli strain responsible for the 2011 Shiga toxin-producing E. coli (STEC)

outbreak in Germany. We observed that (1) the number of output clusters was consistent with species

diversity estimates derived from 16S ribosomal small subunit RNA analyses of the same samples (Alneberg

et al., 2014), (2) the pathologic E. coli strain genome was distributed among a very limited number of

homogeneous clusters (Table 2), and (3) these pathogen-bearing clusters were the most discriminant

variables to separate the individuals infected with the STEC strain from the remaining ones (Figure 1).

These observations demonstrate that the LSH-SNN algorithm performs rather decently on real-world

datasets of biomedical relevance.

7. CONCLUSION

We have proposed an unsupervised composition-based method for binning large volumes of metage-

nomic sequences, without any prior knowledge of their reference genomes or the number of distinct

genotypes present in the sample. LSH-SNN is based on two key steps: the hashing/indexing of the data

space and the linking of sequences to build clusters. After computing the l-mer distribution of each

sequence, LSH partitions the input space into buckets containing smaller subsets of sequences whose

connectivity is evaluated via the SNN rule. A third step was added to reduce the number of singletons or

unclustered sequences.

The LSH-SNN algorithm can scale to datasets containing millions of sequences, and it does not require

the number of output clusters to be predetermined. Although the presented algorithm makes use of the SNN

rule, we envision that the LSH concept could be combined with other sequence processing (including

clustering) methods dealing with large data volumes, or it could be used on its own as exemplified in Berlin

et al. (2015), where a MinHash LSH scheme was used to compute similarities between long noisy reads

generated with a new single-molecule real-time sequencing technology.

The LSH-SNN algorithm was evaluated on seven semi-synthetic metagenomic datasets of different

sizes and complexities (i.e., harboring different numbers of organisms/genotypes). We observed that

LSH-SNN performs comparably or better on these datasets than the two other clustering algorithms

tested (LSH-JP and K-means/MetaCluster). We should note, however, that, even though LSH-SNN

significantly increases the size of the datasets that can be handled as compared with what can be

achieved with the SNN method alone, its complexity does not compare favorably with Lloyd’s heuristic

underlying most K-means clustering engines. Therefore, the latter is probably more suited to the

analysis of very large datasets containing billions of sequences, which are already generated nowadays

from complex metagenomics samples (e.g., from soil) using high-throughput sequencing platforms.

Alternatively, the LSH-SNN approach could be used to cluster contigs (sets of overlapping sequences)

resulting from a preliminary (meta)genome assembly step, instead of being applied to raw (unassem-

bled) reads as in this study.
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