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Abstract—This paper presents the computing model for In-
Memory Computing architecture based on SRAM memory
that embeds computing abilities. This memory concept offers
significant performance gains in terms of energy consumption
and execution time. To handle the interaction between the
memory and the CPU, new memory instruction codes were
designed. These instructions are communicated by the CPU to
the memory, using standard SRAM buses. This implementation
allows (1) to embed In-Memory Computing capabilities on a
system without Instruction Set Architecture (ISA) modification,
and (2) to finely interlace CPU instructions and in-memory
computing instructions.

I. INTRODUCTION

In-Memory Computing (IMC) represents a new concept
of data computation that has been introduced to overcome
the von Neumann bottleneck in terms of data transfer rate.
This concept aimes to reduce the traffic of the data between
the memory and the processor. Thus, it offers significant
reduction of energy consumption and execution time compared
to the conventional computer system where the computation
units (ALU) and the storing elements are separated. Hardware
security improvements can also be expected thanks to this
system architecture (e.g., side channel attacks, etc).

The IMC concept has just started to be the focus of recent
research works. The objective of our research works is to focus
on different technological layers of an IMC system: silicon
design, system architecture, compilation and programming
flow. This enables to build a complete IMC system that can
be then industrialized. In previous publications, we introduced
our novel In-Memory Power Aware CompuTing (IMPACT)
system. In [1], we presented the IMPACT concept based on
a SRAM architecture and the possible in-memory arithmetic
and logic operations. In [2], we proposed a dedicated software
emulation platform to evaluate the IMPACT system perfor-
mance. The results achieved in these papers show a significant
performance improvement of the IMPACT system compared to
conventional systems. In the present research work, we focus
on a new important step of the design of a complete IMPACT
system, in particular the communication protocol between the
memory and the Computation Processor Unit (CPU).

Fig. 1 presents a comparison of the communication protocol
for a conventional system, for a GPU system and for our
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Fig. 1. Comparison between the Communication Protocols of (a) Conven-
tional System (von Neumann), (b) System with Accelerators GPUs (von
Neumann with Single Instruction Multiple Data (SIMD)) and (c) IMPACT
Systems (non von Neumann).

IMPACT system. In a conventional system based on von
Neumann architecture, the traffic between the memory and
the CPU is very crowded. Several instruction fetches and data
transfers occupy the system buses during the computation
(Fig. 1.a). In systems that are integrating accelerators (e.g.,
GPUs), the computation is performed in parallel, whereas only
a single instruction fetch is needed. However, data transfers
are still required over the data bus (Fig. 1.b). The traffic of
our IMPACT system is completely different from the previous
systems. No data transfer over the system buses is required
since the computation is performed inside the memory. In
addition, only one instruction transfer towards the memory



is required (Fig. 1.c). Indeed, the IMPACT system presents a
new concept that completely changes the memory features by
integrating computation abilities inside the memory boundary.
Therefore, the usual communication protocol between the
memory and CPU is not fully compatible with the specific
IMPACT system architecture. Thus, it has to be redefined to
manage the new process of instruction executions.

In this paper, we push one step further our research works
on IMPACT system by:

• Introducing a novel communication protocol between the
CPU and the memory that is able to manage the transfer
of the IMPACT instructions to the memory.

• Defining the ISA that corresponds to this protocol.
The reminder of this paper is organized as follows. Sec-

tion II provides a summary of the architecture and the com-
munication protocol used in conventional system. Section III
discusses related works. Section IV introduces the IMPACT
instruction codes and the communication protocol. In sec-
tion V, we provide a possible solution to integrate the proposed
IMPACT instructions inside an existing processor ISA. Finally,
section VI concludes the paper.

II. BACKGROUND

In most traditional computer architecture, the memory and
the CPU are tightly connected. Conventionally, a micropro-
cessor presents a number of electrical connections on its pins
dedicated to select an address from the main memory, and
another set of pins to read/write the data stored from/or into
that location. The buses which connect the CPU and the mem-
ory are one of the defining characteristics of a system. These
buses need to handle the communication protocol between the
memory and the CPU. The buses transfer different types of
data between components. In particular, we distinguish, as
shown in Fig. 2, three types:

• Data bus: It has a bidirectional functionality. It enables
the transfer of data that is stored in the memory towards
the CPU, or vice versa.

• Address bus: It is an unidirectional bus that enables the
transfer of addresses from CPU to the memory. When
the CPU needs a data, it sends its corresponding memory
location via the address bus, the memory then sends back
the data via the data bus. When the processor wants to
store a data in the memory, it sends the memory location
where it will be stored via the address bus, and the data
via the data bus.

• Control bus: It is a set of additional signals defining the
operating mode, read/write, etc.
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Fig. 2. Conventional Computing System Architectures.

When the program is executed, for each instruction the
processor proceeds by the following steps:

1) Fetch the instruction from memory: The CPU transmits
the instruction address via the address bus, the memory
forwards then the instruction stored in that location via
the data bus.

2) Decode the instruction using the decoder: The decoding
process allows the CPU to determine which instruction
will be performed. It consists in fetching the input
operands and the opcode, and moving them to the
appropriate registers in the register file of the processor.

3) Access memory (in case of read/write instructions): For
’read’ instruction, this step consists in sending a memory
address on the address bus and receiving the value on
the data bus; The ’write’ instruction consists in sending
a data with the data bus. Then, this data is copied into
a memory address, sent by the address bus. The control
bus is used activate the write or read mode.

4) Execute the instruction.
5) Write-back (in case of arithmetic/logic instructions): the

ALU performs the computation and write back the result
in the corresponding register.

III. RELATED WORKS

A. In-Memory Computing
Processing in-Memory (PiM), Logic in-Memory (LiM) and

IMC architectures have been widely investigated in the context
of integrating processor and memory as close as possible,
in order to reduce memory latency and increase the data
transfer bandwidth. All these architectures attempt to reduce
the physical distance between the processor and the memory.

In Fig. 3, we represent the main differences between PiM,
LiM and IMC architectures. PiM [3] [4] [5] consists in putting
the computation unit next to the memory while keeping the
two dissociated. It is generally implemented in stand alone
memories fabricated with a DRAM process. LiM and IMC
architectures are based on embedded memories fabricated with
a CMOS process. LiM [6] enables distributing non-volatile
memory elements over a logic-circuit plane. IMC consists in
integrating computation units inside the memory boundary,
and represents a different concept that completely changes
the memory behavior by integrating some in-situ computation
functions located either before or after sens amplifiers circuits.
As a result, the communication protocol between the memory
and the processor has to be redefined. Compared to LiM,
IMC enables non-destructive computing in the memory, i.e.,
the operand data are not lost after computation. Some recent
research works start to explore and evaluate the performance
of this concept. It has been applied both on volatile memories
[7] [8] [9] and non volatile memories [10] [11].

Most of the existing IMC studies focus on the IMC hard-
ware design. The system buses have never been presented, nor
interactions between the CPU and the memory. Moreover, no
ISA to implement the IMC system architecture has already
been defined. All these points clearly limit the conception of
a complete IMC system.
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In this paper, we focus on the communication protocol
between the memory and the CPU for the IMPACT system
and we define the ISA. This study is a basic step in the devel-
opment of a complete IMC system on different technological
layers from the hardware to the software. In addition, the IM-
PACT system is able to support operations with multi-operand
selection. Thus, the classic format of instruction (opcode + two
source operand addresses + a destination address) cannot be
used due to limitations in the bus size.

B. Communication Protocols in Computing Systems

The communication protocol between the memory and CPU
has been widely presented and discussed in different works
[12] [13] [14]. This protocol is implemented and managed
using buses. Existing system buses (data bus, address bus,
control bus) are generally used to transfer the data or the
addresses, but not the instructions. For the IMPACT system,
the CPU should communicate the instruction to the memory
so that the memory executes/computes this instruction. In
the existing computer architecture, the buses are designed to
enable only read and write operations, but not arithmetic and
logic operations. This paper introduces a new communication
protocol that is able to efficiently manage the interaction
between the CPU and the IMPACT memory with a full
compatibility with the existing buses.

IV. IMPACT MEMORY INSTRUCTION CODES

In this Section, we define the different IMPACT memory
instruction codes that will be transmitted by the processor to
the memory via the system buses. The challenge is to make

the IMPACT system architecture as close as possible to a
conventional system architecture, i.e., we aim to bring the less
possible changes to the conventional system implementation
in order to facilitate the integration of the IMPACT system
to existing system architectures. In addition, it allows to
propose a system that is able to interweave the execution of
conventional CPU instructions and IMPACT instructions.

A. IMPACT Specific Operations

IMPACT system is based on the SRAM architecture to
perform operations inside the memory macro thanks to an
array composed of bitcells with dedicated read ports. The
IMPACT system circuitry enables the same logic and arith-
metic operations as a basic ALU. It also presents new specific
features that are:

• Multi-Operand Operations: The IMPACT system cir-
cuitry is able to perform logic and memory operations not
only on two operands as for conventional systems, but on
multiple operands. In fact, this feature is achieved thanks
to the multi-row selector, which enables to generate a
defined selection pattern (e.g., one line out of four, half-
top of the rows, etc).

• Long-Word Operations: The IMPACT system circuitry is
able to perform arithmetic/logic/memory operations on
words whose size can be up to the physical row size of
the memory. The operand size is no longer limited by the
register size (that is much more smaller that the maximum
memory row size).

B. IMPACT Instruction Formats

Regarding these specific features of the IMPACT operations,
we propose two new formats that enable to build the IMPACT
memory instruction codes.

(a) Multi-Operand Instruction Format:

(b) Two-Operand Instruction Format:

Opcode Address Mask SP Output SI

Opcode Address 1 Address 2 SP Output SI

Fig. 4. Description of IMPACT Instruction Formats.

1) Multi-Operand Instruction Format: The multi-operand
format enables to define the structure of the instruction that
performs a multi-operand operation. In fact, in conventional
system architecture, the instruction size is usually of 32 bits
[15]. Thus, they do not enable to encode all the addresses
of the multiple operands. Therefore, we propose to define a
pattern that enables to select the lines that store the operand
data of the given operation. This pattern is built thanks to a
pattern code (defined by both an address and a mask) driving
a specific row-selector.

To implement this instruction, we propose a multi-operand
format, as shown in Fig. 4.a, that encodes:



- The opcode of the operation. In Fig. 6, we provide
the list of the logic multi-operand operations that the
IMPACT system is able to execute.

- The row selector address.
- The row selector mask.
- The output address, where the computation result is

stored.
- A Smart Instruction (SI) bit to inform the memory

about the instruction type: an IMPACT or a conventional
instruction.

- A Select Pattern (SP) bit to enable/disable the pattern
construction using the row-selector.

In Fig. 5, we provide an example of the operating mode
of the IMPACT system when it is executing a logic ’OR’
operation with multi-operand. As input, the system take the
instruction composants (opcode, pattern code, etc). Based on
the bits of the pattern code address and mask, the specific
row selector of the IMPACT memory builds a regular pattern
to select the multiple memory lines. In this row selector, we
create a sort of path (i.e., a tree) filled regularly by ’0’ and
’1’ bits. Then, the rule consists in looking after the bits of the
mask: if the bit is ’1’, we select the two branches in the tree,
if the bit is ’0’, only the branch corresponding to the address
bit is selected. This method allows then to build regular output
patterns. These patterns can then be refined by adding/deleting
a specific line. For that, we define specific IMPACT operations
(’PatternAdd’ and ’PatternSub’). As shown in Fig. 5, the
pattern can be also stored in the pattern register in case we
require to refine it or to use it in the future. We assume that
this refinement process could take some additional clock cycles
to build the required pattern, however for certain applications
where the pattern is used several times, the gain would be
considerable. Once the pattern is build, the last step of the
instruction execution consists in selecting the lines in the
SRAM memory array that correspond to ’1’ in the pattern,
and performing the operation. The advantage of this format
consists in not explicitly encoding all the operand addresses
inside the instruction. To the best of our knowledge, there is
no computer architecture that defines such instructions using
this pattern methodology.

2) Two-Operand Instruction Format: The two-operand in-
struction format represents the conventional format of instruc-
tions with maximum two source addresses. This format is used
for the long-word operations. The source address represents
the address of the memory row on which the operation will be
performed. As shown in Fig. 4.b, the two-operand instruction
format encodes:

- The opcode of the operation. In Fig. 6, we provide the
list of all the operations that the IMPACT system is able
to execute.

- The addresses of the first and second operand.
- The output address, where the computation result is

stored.
- SI bit to inform the memory about the instruction type:

an IMPACT or a conventional instruction.
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- SP bit to activate/dis-activate the pattern construction
using the row-selector. In this format the pattern con-
struction should be disable for all the instructions.

C. IMPACT Communication Protocol

In mainstream memories, the system buses are used to
communicate between the memory and the CPU during the
execution of different instructions of the program (that are
stored in the code segment of the memory). In the IMPACT
system, the instructions are built on the fly during the com-
pilation by the processor respecting the formats defined in
Subsection IV-A. Then, they are transferred from the processor
to the memory via the standard SRAM buses (data and address
buses). The compilation aspect and communication between
the program code and the processor are not detailed in the
present paper. In this Section, we present the implementation
of the IMPACT instructions on the data and the address buses.

For the proposed communication protocol, we consider a
data bus of 32-bits size, an address bus of 32-bits size. Then,
we propose a specific encoding of the instruction elements
over the two buses.

IMPACT

SI=1 @IMPACT @Output @SRAM @Output
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Fig. 7. Example of Data and Address Buses Use to Encode IMPACT and
Conventional Instructions.

As shown in Fig. 7, we make use of the data and the
address buses to encode the opcode, the source addresses,
the output address, and additional one-bit SP and SI signals.
This implementation does not change the implementation of
conventional system. The communication protocol is able to
address both the IMPACT and the SRAM memories.

1) Data Bus: The data bus encodes the opcode on 7 bits.
In fact, the IMPACT operations are hierarchically ranked as
shown in Fig. 6. Then, the data bus encodes the source
addresses, each over 12 bits, leading to a maximum 4096
words of IMPACT memory. In case of two-operand format,
we encode successively the two operand addresses. In case of
multi-operand format, we encode the address and the mask of

the pattern code. The last bit of the data bus is occupied by
the SP signal as described in Subsection IV-B.

2) Address Bus: The address bus encodes the output ad-
dress over 12 bits in the Least Significant Bit (LSB). It also
reserves one bit, in the Most Significant Bit (MSB) for the
smart instruction signal in order to inform the memory about
the arriving of an IMPACT instruction.

V. IMPLEMENTATION AT ISA LEVEL

We propose, in this Section, a possible solution to built the
proposed IMPACT instruction codes from the instruction set
architecture (ISA) of a given processor. The solution consists
in using an existing processor ISA without integrating new in-
structions or opcodes. In particular, we use the store instruction
to monitor the IMPACT operations (arithmetic/logic). The IM-
PACT opcode, as well as its operands, will be encoded inside
the operands (i.e., registers) of the conventional instruction.
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Fig. 8. Implementation of IMPACT Store Instruction.

In Fig. 8, we provide, for an IMPACT addition operation,
the compilation process to create the corresponding IMPACT
assembly code. First, the compiler generates instructions that
encodes the addresses of the IMPACT opcode as well as
the operands inside specific registers. These instructions will
be transferred via the system buses respecting the conven-
tional communication protocol. Then, the compiler generates
the store instruction with the previously assembled specific
registers. This store instruction is then transferred to the



memory through the system buses respecting the IMPACT
communication protocol defined in Subsection IV-C.

The advantage of this solution consists in its facility to
be compatible with the processor ISA (no problem in case
of version changes). However, the compilation process will
be quite complex since it requires to generate a prelimi-
nary list of instructions needed then to generate IMPACT
instruction using the store instruction. Further solutions to
integrate the proposed IMPACT memory instruction code in
the ISA are possible. However, they require to change the
processor ISA by integrating one or more new instructions
(e.g., ’IMPACTAdd’). The compilation process will be then
simpler since it does not require to generate the preliminary
list of instructions. However, this solution could have some
problems of compatibility with future ISA versions.

VI. CONCLUSION

This paper discusses the integration of the In-Memory
Computing capabilities into a system composed of a processor
and a memory without changing the processor implementation
and instruction set. This is acheived by inverting the von
Neuman model: instead of reading instructions from memory,
the CPU communicates the instructions, in certain formats, to
the IMPACT memory via the standard SRAM buses.

The proposed approch allows to benefit from the huge
speedup in terms of execution time and energy consumption
offered by the IMPACT system, but also to easily interweave
conventional CPU instructions and in-memory computing in-
structions. One main advantage of this approach is to have
a similar data layout view on both CPU and IMPACT side.
Whereas, other conventional approaches (e.g., GPUs) need to
copy data and change the layout at run-time.

As future works, we aim to continue characterizing applica-
tions on high level, and to develop the compiler for this system.
High level optimizations of classical programming languages
or new programming paradigms are also under investigation.
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