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Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often mod-

eled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evalua-
tion of such integrals obtained using the method of steepest descent leads to the classical 
Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is 
inapplicable when the integrand’s stationary phase point coalesces with its pole, explaining why 
GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To over-
come this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed 
previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In 
this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane 
wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform 
Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agree-
ment between the two methods is obtained in the far field. 

I. INTRODUCTION

The scattering of elastic waves from an obstacle is of

great interest in ultrasonic non-destructive evaluation

(NDE), the main scattering phenomena being specular

reflection and diffraction. When both the wavefront of an

incident wave and the boundary of the scattering object can

be modeled as locally plane, the scattered field is usually

simulated using the Kirchhoff Approximation (KA). This

represents the field as an integral over the scattering surface.1

KA gives a reliable and continuous description of specular

reflections and fictitious fields compensating the incident

field in the obstacle shadow, which together form the so-

called Geometrico-Elastodynamic (GE) field. However, the

diffracted fields are not always well described.2,3 In the

absence of interaction with other waves, the best description

of diffracted fields is obtained via the Geometrical Theory of

Diffraction (GTD).4 This postulates existence of rays dif-

fracted from the structure irregularities such as edge or tip,

additional to the incident and reflected rays and also gives a

recipe for calculating the amplitudes carried by these rays.

In elastodynamics the underlying canonical problem is the

scattering of a plane wave by a stress-free half-plane. Its

solution is represented in the form of the Sommerfeld inte-

gral5,6 and the classical GTD solution is obtained using the

steepest descent method. The resulting contribution of the

stationary phase points represents the diffracted waves in the

far field using the so-called diffraction coefficients, other-

wise known as the directivity patterns.

It is well known that the method of steepest descent is

inapplicable when the stationary phase point of the integrand

coalesces with its pole, explaining why the classical GTD fails

in the zones where edge diffracted waves interfere with inci-

dent or reflected waves. For this reason the classical GTD so-

lution is said to be non-uniform. Several uniform extensions

of GTD have been developed in electromagnetism, such as

the Uniform Asymptotic Theory (UAT)7–9 based on the Van

Der Waerden method,10 the Uniform Theory of Diffraction

(UTD)11,12 based on the Pauli–Clemmow method13 and the

Physical Theory of Diffraction (PTD),1,2,14 which combines

GTD and Kirchhoff Approximation (KA) and applies to arbi-

trary large locally plane scatterers.

The elastodynamic versions of UAT (Ref. 6) and PTD

(Ref. 3) have been reported before; in the leading order

when the scatterer is a half-plane PTD is identical to UAT.3

Due to the integral nature of the method, PTD appears to be

computationally expensive, especially when the scatterers

are large. A procedure similar to PTD has been confusingly

called by its author the Uniform Theory of Diffraction.15 It

relies on another integral method, which is difficult to imple-

ment. Whenever applicable, ray methods are often preferred
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to integral methods since highly optimized and therefore

extremely fast ray tracing algorithms have become available.

Both UAT and UTD are ray methods, producing continuous

approximations to total fields. However, UAT involves artifi-

cial extension of the scattering surface and fictitious reflected

rays (see Fig. 3 and the end of Sec. III), while UTD does not.

For this reason, UTD is more used than UAT in acoustics16

and electromagnetism.17

The paper is structured as follows: in Sec. II, the exact

solution of the canonical problem of a plane wave scattering

from a stress-free half-plane is presented in the form of the

Sommerfeld integral and its non-uniform asymptotics are

given in the form convenient for use in the UTD recipe. In

Sec. III, uniform asymptotics of the integral are derived

using the Pauli–Clemmow procedure. As a result, the elasto-

dynamic UTD is obtained, with the total field involving no

fictitious rays and with diffraction coefficients, which are a

simple modification of the GTD diffraction coefficients.

Comparison of UTD and UAT is carried out in Sec. IV.

II. SCATTERING OFA PLANE ELASTIC WAVE BYA
HALF-PLANE CRACK: NON-UNIFORM ASYMPTOTICS

In the following, the symbols a and b are used to denote

the wave type, i.e., a; b ¼ L, TV, or TH (longitudinal, trans-

verse vertical, or transverse horizontal, respectively). In gen-

eral, a is used for the incident wave and b for reflected and

diffracted waves. Scalar quantities are generally labelled by

taking a and b as subscripts, while a is used as superscripts

for vectors related to the incident wave and b as subscripts

for vectors related to scattered waves.

The geometry of the problem is presented in Fig. 1,

using the Cartesian system based on an orthonormal basis

fe1; e2; e3g and the origin O at the crack edge. The crack is

embedded in an elastic homogeneous and isotropic space

and its face lies in the half-plane fx2 ¼ 0; x1 � 0g. The edge
coincides with the x3 axis and is irradiated by a plane wave

uaðxÞ ¼ A daeið�xtþka�xÞ; (1)

where A is the wave displacement amplitude; da is its polar-

ization; ka is its wave vector defined thanks to the angles Xa

and ha (described in Fig. 1), whose magnitude ka ¼ x=ca,
with x, the circular frequency and ca, the speed of the corre-

sponding mode; t is time; and x is the position vector, which

is expressed in the Cartesian coordinates as ðx1; x2; x3Þ and

in the cylindrical coordinates as ðr; h; x3Þ. The exponential

factor expð�ixtÞ is implied but omitted everywhere.

The exact scattered field generated when a plane elastic

wave irradiates a stress-free half-plane crack is expressed by

Achenbach6 as an angular spectral decomposition. The scat-

tered field at the observation point uabðxÞ can be rewritten as

the Sommerfeld integral

uabðxÞ ¼ eika cosXax3

ð

C

fb½�qb cos k; sgnðsin hÞ� eif cos ðk�
�hÞ

� db½�qb cos k; sgnðsin hÞ� dk; (2)

where fb½�qb cos k; sgnðsin hÞ� is

fb �qb cos k; sgn sin hð Þ� �

¼ i
qbjb

2p
sin k

gb �qb cos k; sgn sin hð Þ� �

qa cos ha � qb cos k
; (3)

with the subscript b denoting the scattered wave mode,

qb ¼ kb sinXb; jb ¼ cL=cb—the dimensionless slowness of

the scattered wave, and gb½�qb cos k; sgnðsin hÞ�, the numer-

ator of the scattered wave potential being an analytical func-

tion defined in Ref. 6 (see sections 5.1 to 5.4 for definition of

all the involved terms). The integrand fb½�qb cos k;
sgnðsin hÞ� has then two poles k ¼ hb and k ¼ 2p� hb
where hb 2 ½0; p� is defined as

qb cos hb ¼ qa cos ha: (4)

In Eq. (2), f is the far-field parameter

f ¼ kbLb; (5)

where Lb, the distance parameter, can be written as

Lb ¼ r sinXb; (6)

with Xb being the angle of the diffraction cone (see Fig. 1)

linked to the incidence angle Xa by the Snell’s law

kb cosXb ¼ ka cosXa; �h is related to the position vector x

(see Fig. 1) by

�h ¼ h if 0 � h � p

�h ¼ 2p� h if p � h � 2p
;

(

(7)

db is the polarization vector of the scattered wave and C is

the integration contour in the complex k-plane depicted in

Fig. 2. The resulting total field is

utotðxÞ ¼ uaðxÞ þ
X

b

uabðxÞ: (8)

FIG. 1. A plane wave of propagation

vector ka incident on a semi-infinite

stress free crack. Thick black arrow,

direction of the incident wave; thick

gray arrow, direction of the diffracted

wave (kb).
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In the high frequency approximation, f � 1, the integral

Eq. (2) can be evaluated asymptotically. The main contribu-

tions are due to the integral critical points such as singular-

ities of the amplitude (poles or branch points) and the

stationary points of the phase function. The contributions are

easy to calculate in the so-called geometrical regions where

the critical points are isolated (far apart), so that the resulting

asymptotics are non-uniform. The only integrand singular-

ities considered below are the poles.

A. Contributions of isolated poles: GE

To evaluate the integral Eq. (2) asymptotically, the inte-

gration contour ðCÞ is deformed to the steepest descent con-

tour ðcÞ which passes through the phase stationary point
�h 2 ½0; p�. Among the two poles k ¼ hb and k ¼ 2p� hb,

only the isolated pole k ¼ hb (with 0 � hb � p) can lead to a

non-zero contribution to the integral (2) since it might be

crossed when deforming the contour. It is only crossed when

0 � �h � hb ðsee Fig: 2Þ: (9)

Therefore, its contribution must be taken into account for

the asymptotic evaluation of the integral Eq. (2). The GE

field is the sum of this pole contribution and of the incident

field. Combining Eqs. (7) and (9), this pole k ¼ hb gives

rise to two different physical contributions depending on

the observation angle h. When �h ¼ 2p� h [i.e., when p

� h � 2p according to (7)], the pole k ¼ hb is only crossed

when 2p� hb � h � 2p and its contribution then leads to

the reflected field. For �h ¼ h, the pole hb is crossed when

0 � h � hb. It gives rise to the so-called compensating

field. This cancels the incident field when b ¼ a and is zero

otherwise. Equation (9) ensuring non-zero pole contribution

is checked when the observation point lies in irradiated

areas of the GE field: i.e., in the insonified zone of the

reflected field (2p� hb � h � 2p and �h ¼ 2p� h) and in

that of the compensating field (0 � h � hb and �h ¼ h).

Then, applying the residue theorem to integral Eq. (2) and

using the clockwise contour around the pole (see Fig. 2),

give the amplitudes of the reflected and compensating

fields,

lim
k ! hb

h 2 ½2p� hb; 2p�

�2pi fb½�qb cos k; sgnðsin hÞ�ðk� hbÞ ¼ jb gbð�qb cos hb;�1Þ ¼ Ra
b;

(10)

lim
k ! hb

h 2 ½0; hb�

�2pi fb½�qb cos k; sgnðsin hÞ�ðk� hbÞ ¼ jb gbð�qb cos hb; 1Þ ¼ �1; a ¼ b; (11)

lim
k ! hb

h 2 ½0; hb�

�2pi fb½�qb cos k; sgnðsin hÞ� ¼ jb gbð�qb cos hb; 1Þ ¼ 0; a 6¼ b;
(12)

where Ra
b is the reflection coefficient in terms of displace-

ment. Therefore, adding the incident field to the poles contri-

bution results in the Geometrico-Elastodynamic field

uðGEÞðxÞ ¼ HðgaÞuaðxÞ þ
X

b

HðgbÞu
aðrefÞ
b ðxÞ; (13)

where Hð:Þ is the Heaviside function, and where

u
aðrefÞ
b ðxÞ ¼ ARa

b dbð�qb cos hb;�1Þ ei kb pb�x (14)

is the reflected field; the compensating field has been com-

bined with the incident field to produce the first term of Ref.

13. In Eq. (14), pb ¼ ðsinXb cos hb;�sinXb sin hb; cosXbÞ
is the unit reflected wave vector and dbð�qb cos hb;�1Þ its

polarisation vector. The arguments ga ¼ sgnðh� haÞ and gb
¼ sgnðh� 2pþ hbÞ of the respective Heaviside functions

determine whether the observation point is in the illuminated

region or shadow of incident and reflected waves (see Fig. 3).

B. Contributions of isolated stationary points: GTD

The contribution of each isolated stationary point ks ¼ �h

can be found by applying the steepest descent method to

Eq. (2), producing the classical GTD recipe

u
a GTDð Þ
b xð Þ ¼ ua xab

� �

Da GTDð Þ
b Xa; ha; hð Þ

� db �qb cos h; sgn sin hð Þ� � eikbSb
ffiffiffiffiffiffiffiffiffi

kbLb
p ;

(15)

where uaðxabÞ ¼ uaðxabÞ � da; xab ¼ ð0; 0; x3 � Sb cosXbÞ is

the diffraction point on the scattering edge (see Fig. 1); Sb is

the distance between the diffraction point xab and the obser-

vation point x. Also,

Da GTDð Þ
b Xa; ha; hð Þ

¼ qbjb
ffiffiffiffiffiffi

2p
p gb �qb cos h; sgn sin hð Þ� �

qa cos ha � qb cos h
j sin hjeip=4 (16)

are GTD diffraction coefficients. They contain poles h ¼ hb
and h ¼ 2p� hb, which describe the shadow boundaries

(see Fig. 3).

Note that at the incident and reflected shadow bounda-

ries the total GE field Eq. (13) is finite while the GTD dif-

fracted field is infinite. Therefore, the approximate GTD-

based total field
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utotðGTDÞðxÞ ¼ uðGEÞðxÞ þ
X

b

u
aðGTDÞ
b ðxÞ; (17)

is not spatially uniform.

III. SCATTERING OFA PLANE ELASTIC WAVE BYA

HALF-PLANE CRACK: UTD

To overcome the non-uniformity of the approximate

total field Eq. (17), UTD is derived in this section in elasto-

dynamics. When the phase stationary point ks ¼ �h in Eq. (2)

coalesces with the simple pole k ¼ k0ðsÞ ¼ hb (hb � p), Eq.

(2) can be approximated using the Pauli–Clemmow proce-

dure.18,19 Note that the integral Eq. (2) has the form

Iðf; sÞ ¼
ð

c

hðk; sÞ ef qðkÞdk; (18)

where f � 1 and s is a complex-valued parameter, hðk; sÞ and
qðkÞ are k holomorphic functions, and c is the steepest descent

path. Note too that �h cannot coalesce with the simple pole

k ¼ 2p� hb, because �h is always smaller than p, while 2p

�hb is always larger than p. Therefore the Pauli–Clemmow

approximation to the scattered field is

u
aðUTDÞ
b ¼ FðkbLb aÞuaðGTDÞb ; (19)

where a is the phase difference between the rays propagating

in direction �h and hb

a ¼ 2 sin2
hb � �h

2

� �

; (20)

and F is a transition function

F Xð Þ ¼ �2i
ffiffiffiffi

X
p ffiffiffiffiffi

ip
p

e�iX �F
ffiffiffiffi

X
p� �

; �p

2
< argX <

3p

2
;

(21)

with �F being the Fresnel function,

�F Xð Þ ¼ 1
ffiffiffiffiffi

ip
p

ðþ1

X

eit
2

dt: (22)

The transition function is the complex conjugate of the

Kouyoumjian function.12 Due to the presence of
ffiffiffiffi

X
p

, F(X) is

multivalued and can be rendered single-valued in a standard

manner, using, e.g., the branch cut along the negative imagi-

nary axis fImX < 0;ReX ¼ 0g.
Using Eq. (19), a UTD diffraction coefficient can be

defined as

D
aðUTDÞ
b ¼ FðkbLb aÞDaðGTDÞ

b : (23)

Substituting Eqs. (15) and (23) in Eq. (19), the UTD dif-

fracted field can be expressed as

u
a UTDð Þ
b ¼ ua xab

� �

D
a UTDð Þ
b

exp ikbSbð Þ
ffiffiffiffiffiffiffiffiffi

kbLb
p

� db �qb cos h; sgn sin hð Þ� �

: (24)

It has the same form as the GTD diffracted field and the

UTD diffraction coefficient differs from the GTD one by the

transition function. When the observation point is far from

the shadow boundaries the approximation Eq. (24) is

FIG. 2. C and the steepest descent path c in the complex plane k¼rþ s. hb
is the real pole of the integral [Eq. (2)] and �h is its phase stationary point.

FIG. 3. Interaction of a plane wave with a semi-infinite crack embedded in

an elastic homogeneous solid. Thick arrows, incident waves; dash arrows,

reflected waves.
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equivalent to GTD. Indeed, the asymptotic value of the

Fresnel function in the illuminated region given by

Borovikov20 permits to find

FðkbLb aÞ !
j�h�hbj!þ1

1: (25)

Since �Fð0Þ ¼ 1=2, near the shadow boundaries,

F kbLb að Þ 	 e�i p=4ð Þ sgn�ð Þ �
ffiffiffi

p

2

r

ffiffiffiffiffiffiffiffiffi

kbLb
p

; (26)

where � ¼ �h � hb is a small number (j�j 
 1). One can use

Eqs. (26), (10)–(12) in the asymptotics of Eq. (23) to obtain

D
a UTDð Þ
b 	

0 if h � p and a 6¼ b

� sgn �

2

ffiffiffiffiffiffiffiffiffi

kbLb
p

; if h � p and a ¼ b

Ra
b

2
sgn �ð Þ

ffiffiffiffiffiffiffiffiffi

kbLb
p

; if h > p:

8

>

>

>

>

<

>

>

>

>

:

(27)

The UTD diffraction coefficients do not diverge at shadow

boundaries as the GTD coefficients do, however the sign

function makes them discontinuous. It follows that near the

shadow boundaries, the leading-order asymptotics of the dif-

fracted field Eq. (24) are

u
a UTDð Þ
b xð Þ 	

0; if h � p and a 6¼ b

�A
sgn �

2
eika cosXa x3�Sa cosXað Þ eikaSada; if h � p and a ¼ b

A
Ra
b

2
sgn �ð Þeika cosXa x3�Sb cosXbð Þ eikbSbdb �qb cos hb;�1ð Þ; if h > p;

8

>

>

>

<

>

>

>

:

(28)

where the exponential term exp ½ika cosXaðx3 �Sa;b cosXa;bÞ�
is the phase of the incident wave at the diffraction point xab.

Near the incident shadow boundary, when a 6¼ b the UTD

diffracted field does not exist and due to the presence of

the sign function when a ¼ b, it is discontinuous. The UTD

diffracted field is discontinuous at the reflected shadow

boundary too.

However, since the approximation UTD Eq. (24) works

in the vicinity of shadow boundaries and describes diffracted

fields outside them, adding to it the GE field produces the

UTD approximation to the total field,

utotðUTDÞðxÞ ¼ u
aðGEÞ
b ðxÞ þ

X

b

u
aðUTDÞ
b ðxÞ: (29)

It is easy to show that this approximate total field is continu-

ous. Indeed, since r ¼ Sa;b sinXa;b, Eq. (13) can be rewritten as

uGEðxÞ ¼ AðHðgaÞeika½SaþcosXaðx3�Sa cosXaÞ� cosðh�haÞ

� eika cosXax3ð1�cosðh�haÞÞda þ HðgbÞRa
b

� eikb½SbþcosXbðx3�Sb cosXbÞ� cosðhþhbÞ

� eika cosXbx3½1�cosðhþhbÞ� dbð�qb cos hb;�1ÞÞ;
(30)

where the arguments of the Heaviside functions are,

respectively,

ga ¼ sgnðh� haÞ (31)

gb ¼ sgnðh� 2pþ hbÞ: (32)

Therefore near the shadow boundaries, the GE filed can be

approximated using

uGEðxÞ �
Aeika½SaþcosXaðx3�Sa cosXaÞ�Hð�Þda if h � p

ARa
be

ikb½SbþcosXbðx3�Sb cosXbÞ�Hð��Þ dbð�qb cos hb;�1Þ þ uað�haÞ if h > p:

(

(33)

Finally, expressing the Heaviside function as

H �ð Þ ¼ 1

2
1þ sgn �ð Þ; (34)

it can be seen that near both the incident and reflected

shadow boundaries the GE field (13) is discontinuous and its

discontinuities cancel those of the UTD diffracted field.

Thus, the UTD total field Eq. (29) is continuous.

The contribution of coalescing stationary phase point and

pole can also be calculated by UAT (Ref. 6) (see Appendix). It

is well understood in electromagnetism21 that unlike UAT, the

UTD asymptotics do not include all terms of the order

ðkbLbÞ�ð1=2Þ
.

IV. COMPARISON OF UTD AND UATAND DISCUSSION

Let us first discuss the difference in analytical properties

of various UTD and UAT fields. When comparing the UTD

5



total field Eq. (29) to the GTD-based non-uniform approxima-

tion Eq. (17), the GE field is unchanged while the diffraction

coefficient is multiplied by the transition function Eq. (21).

The argument kbLb a of the transition function describes the

proximity of the observation point to a shadow boundary.

When the observation point moves away from such boundary

kbLb a increases, the transition function approaches 1 [see Eq.

(25)] and UTD diffraction coefficient approaches the GTD

diffraction coefficient. When the observation point moves

towards such boundary, kbLb a and the transition function

both vanish but as shown in Sec. III the UTD coefficient is

discontinuous and the UTD total field continuous.

By contrast, when UAT is presented in the form Eq.

(A1), it is the diffracted field that remains the same as in the

GTD-based non-uniform approximation Eq. (17), while the

GE field is modified. In UAT both the modified GE fields

and GTD fields diverge at shadow boundaries, but the corre-

sponding singularities cancel each other, and the total UAT

field is again continuous. Since in Eq. (A1) the incident and

reflected fields are defined on the whole space, both incident

and reflected fields have to be extended to their correspond-

ing shadow region. This can be achieved by tracing the inci-

dent rays through the obstacle as if it was absent. Moreover,

the reflected field has to be extended to the shadow region of

the reflected field too. This can be achieved by extending the

illuminated face beyond the crack edge and tracing the

resulting fictitious reflected rays (see Fig. 4).

While reliance on the fictitious rays is a definite disad-

vantage, it has been mentioned above that, unlike UTD,

UAT is more consistent in that it contains all terms of order

ðkbLbÞ�ð1=2Þ
. In electromagnetism, the terms missing in UTD

are small. Therefore we move on to a numerical comparison

of UTD and UAT to establish whether the same is true in

elastodynamics. Note that the elastodynamic UAT has been

tested before, using the finite difference numerical method

(see section 2.3.1 in Ref. 22).

To compare UAT and UTD, both two-dimensional (2D)

and three-dimensional (3D) configurations are considered

below, with Xa ¼ 90� and Xa 6¼ 90�, respectively. In a 2D

configuration, the incident wave is normal to the edge crack

and thus the diffracted waves have cylindrical fronts, while

in a 3D configuration the incidence is oblique and the dif-

fracted waves have conical fronts. The numerical results are

presented in the ðe1; e2Þ plane, which is perpendicular to the

edge crack, since the problem is invariant in the x3 direction

(see Fig. 1). The observation is specified using the cylindri-

cal coordinates ðr; hÞ associated with the ðe1; e2Þ plane. In all

simulations, the solid material is ferritic steel with Poisson’s

ratio � ¼ 0:29, longitudinal speed cL¼ 5900m s�1 and trans-

versal speed cT¼ 3230ms�1.

In far field from the flaw, the scattering patterns exhibit

a lot of oscillation lobes. We present first results for r¼ 2ka
and 3ka and then at r¼ 8ka (ka being the wavelength of the

FIG. 4. Extension of the reflected field to its shadow zone using fictitious

rays (a) half-plane (thick line) illuminated by a plane wave and– (b) curved

face (thick line) illuminated by a spherical wave.

FIG. 5. Directivity pattern of the total field predicted by different models

(GTD, UAT, and UTD) at r ¼ 2kL; XL ¼ 90�; hL ¼ 30�. (a) UTD model is

the one found using Pauli–Clemmow method. (b) Modified UTD model.

Each circle represents amplitude of the total field normalized by the incident

amplitude.
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incident wave) so that the patterns have less lobes and lend

themselves to a clear interpretation (see Figs. 5, 6, and 9). In

Figs. 5 and 6 all approximate total fields are calculated using

all scattered modes, with the GTD-based non-uniform

asymptotics given by Eq. (17), UAT given by Eq. (A1), and

UTD given by (29). In Figs. 5 and 6 the (a) configurations

are 2D and in Fig. 6, the (b) configuration is 3D. As

expected, both UTD and UAT are continuous at shadow

boundaries and practically coincide far away from the

shadow boundaries. Near the shadow boundaries they differ

but not by much. There are three shadow boundaries in

Fig. 5, the incident L shadow boundary h ¼ 30�, reflected
TV shadow boundary h � 300� and reflected L shadow

boundary h ¼ 330�. The peaks near critical angles hc �
56:8� and 2p� hc � 303; 2� are due to the interference of

the diffracted T wave with the corresponding head waves

generated by diffraction at the edge (see Fig. 7). The head

waves are contributions to the exact solution Eq. (2) of the

integrand’s branch points.23 The coalescence between the

stationary phase points and branch points lies outside the

scope of this paper. However, it is worth noting that while

GTD and its uniform corrections are not valid near the criti-

cal angle, since the head wave attenuates with the distance,

in far-field the spikes observed in the diffraction coefficient

Da
TV at the critical angles are physical in nature. In Fig. 5(a),

UAT reproduces the critical GTD peak exactly, while UTD

has a smaller amplitude. The discrepancy can be explained

by noting that each UTD diffraction coefficient has four

poles, one at the incident angle ha, one at the reflection angle

2p� ha, one at the reflection angle 2p� hb, and one at the

reflection angle hb. When b 6¼ a; 2p� hb is the propagation

angle of a mode-converted reflected wave and hb is an angle

associated with a non-physical mode-converted transmitted

wave. It is non-physical, because the residue at this pole is

zero and the diffraction coefficient Da
b; b 6¼ a does not

diverge (see Figs. 4.5 and 4.6 in Ref. 24). In the vicinity of

this pole, the transition function tends to 0 [see Eq. (26)] and

the UTD diffraction coefficient differs from the correspond-

ing GTD diffraction coefficient. In Fig. 5(a), such pole

hTV � 61:70� is close to the critical angle hc � 57� and

therefore near this critical angle the peak amplitude is

reduced. The performance of UTD can be improved by tak-

ing into account that since the residue of the pole hb; b 6¼ a

is zero and therefore there is no need to consider its coales-

cence with the stationary points, it is possible to introduce

the following modified UTD (MUTD):

FIG. 6. Directivity pattern of the total field predicted by different models

(GTD, UAT, and UTD) at r ¼ 3kTV for hTV ¼ 30�. (a) XTV ¼ 90�, (b)

XTV ¼ 60�. Each circle represents amplitude of the total field normalized by

the incident amplitude.

FIG. 7. Waves diffracted from a crack edge: L stands for longitudinal wave,

TV for transversal, and H for head wave; hc is the longitudinal critical

angle.

FIG. 8. Reflection of a transversal wave by a half-plane crack. An incident

transversal wave gives rise to reflected transversal and longitudinal waves,

which respect the Snell’s law ðhL < hTVÞ. For a transversal incidence below
the longitudinal critical angle hc (hTV < hc), the longitudinal waves are no

more reflected but laid on the crack surface.
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for b 6¼ a,

if ha � p;
D

a UTDð Þ
b ¼ Da GTDð Þ

b if 0 � h � p

D
a UTDð Þ
b ¼ F kbLb sin2

hþ hb

2

� �� �

Da GTDð Þ
b if p < h � 2p

8

>

<

>

:

(35)

and

if ha > p;
D

a UTDð Þ
b ¼ F kbLb sin2

h� hb

2

� �� �

Da GTDð Þ
b if 0 � h � p

D
a UTDð Þ
b ¼ Da GTDð Þ

b if p < h � 2p:

8

>

<

>

:

(36)

The UTD curve in Fig. 5(b) confirms that the Modified UTD

reproduces the GTD critical peaks

In Figs. 6(a) and 6(b), there are only two shadow boun-

daries, the incident TV shadow boundary h ¼ 30� and

reflected TV shadow boundary h ¼ 330�. Since the inci-

dence angle hTV is subcritical there are no reflected longitu-

dinal waves. In the configuration used in Fig. 8 the incident

angle hTV is supercritical.

The simulations reported in Fig. 9 have been performed

using parameters similar to Fig. 5(b) but for a larger far-field

parameter f ¼ 16p sinXb (so that r ¼ 8kL). The resulting

UAT and UTD fields are much closer than in Fig. 6(b). As

the observation point moves away from the crack, near the

shadow boundaries the error between the approximations

decreases [see Figs. 10(a), 10(b), and 10(c)]. The modified

UTD produces a much smaller error near the critical angle

hc � 57� than UTD.

The above results are envisaged as particularly useful in

NDT of cracks in materials. Indeed, UTD has already proved

an efficient method for simulating the scattering of an elastic

plane wave by a half-plane. In NDT, the flaws are usually

inspected in the far field of the used probes or else in their

focal areas if they are focused. Consequently, often, at each

point of the meshed flaw the incident wave-fields can be

approximated by a wave that is locally plane25,26 and GE ray

methods and GTD-based models can be easily applied in the

probes far field.27 Since the proposed UTD model relies on

the same high-frequency assumptions as GTD, it should

prove to be efficient in the far field of the flaw. If inspection

is carried out in the near or intermediate field, the approxi-

mation of the locally plane wave for the incident field can be

withdrawn, as has been shown in the recent report on the

new promising GTD-based NDT system model which uses

each incident ray as an input of the flaw scattering model.28

The proposed UTD model can be used to model scat-

tered echoes from any locally plane flaw, since according to

the GTD locality principle, a curved edge of the flaw contour

can be approximated by the edge of the half-plane, which is

tangent to it. In modelling specular reflections, the finite size

of the flaw is routinely accounted for in the GE ray method:

only the incident rays impacting on the finite flaw surface

are reflected. In modelling edge diffraction, the finite extent

of the edge is accounted for by using incremental methods.29

The limits of validity of GTD-based NDT system models are

described, e.g., in Ref. 27 for a rectangular flaw. It has been

shown that GTD predictions are valid for flaw heights of

more than one wavelength for longitudinal waves and more

than two wavelengths for shear waves (whether incident and

diffracted). The NDT models based on UTD can be extended

to employ solutions of canonical problems of wedge diffrac-

tion to model 3D multi-facetted or branched flaws (which

comprise planar facets).

V. CONCLUSIONS

The elastodynamic UTD has been derived to describe

the scattering of a plane wave from a stress-free half-plane.

Unlike GTD, at the shadow boundaries, each UTD diffracted

field contains no singularities, only discontinuities, and each

such discontinuity cancels the discontinuity in the corre-

sponding GE field. Just like the total UAT field, the total

UTD field is continuous. In the far field UTD practically

coincides with UAT and the modified version of UTD,

FIG. 9. Directivity pattern of the total field predicted by different models

(GTD, UAT, and UTD) at r ¼ 8kL; XL ¼ 90�; hL ¼ 30�. Each circle repre-

sents an amplitude of the total field normalized by the incident amplitude.
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MUTD, proposed in this paper, reproduces the critical peaks

in UAT too.

In ray tracing implementations UTD is more convenient

than UAT, because unlike UAT, it does not rely on fictitious

rays. It is well understood that, unlike UAT, UTD misses

terms of the same order it includes, however the numerical

comparisons carried out in this paper confirm that near the

shadow boundaries, where the missing terms play a part, the

resulting differences do not appear to be significant for prac-

tical applications (see, for example, Ref. 30).

APPENDIX: THE ELASTODYNAMIC UAT

The total field in elastodynamic UAT can be presented

in different ways. Here we present it in the same form as in

Ref. 6,

utot UAT
ð Þ

xð Þ ¼ A �F nað Þ � �̂F nað Þ
h i

eik
a�x da

þ
X

b

ARa
b

�F nb
� �� �̂F nb

� �

h i

eikb pb�x

� db qb cos hb; sgn sin hð Þ� �

þ
X

b

ua xab
� �

Da GTDð Þ
b

eikbSb
ffiffiffiffiffiffiffiffiffi

kbLb
p

�db qb cos h; sgn sin hð Þ� �

; (A1)

where

�̂F Xð Þ ¼ ei p=4ð Þ eiX
2

2X
ffiffiffi

p
p ; (A2)

and the parameters

na ¼ �sgn h� hað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kaLa sin
2 ha � h

2

� �

s

and

(A3)

nb ¼ �sgn hþ hb � 2pð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kbLb sin
2 hb þ h

2

� �

s

(A4)

are the detour parameters.8
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