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Abstract

The Geometrical Theory of Diffraction (GTD) is one classical method used for modelling edge diffraction. GTD is theoretically

valid for canonical infinite edges and diverges around the direction of specular reflection. To deal with finite flaws, 3D incremental

models using both GTD and secondary sources have been developed. Experimental validation of these models has been performed.

A GTD uniform correction, the UTD (Uniform Theory of Diffraction), has also been developed in elastodynamics in the view of

designing a generic model able to correctly simulate both specular reflection and diffraction. Some UTD numerical results are

presented.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

The scattering of elastic waves by an obstacle involves phenomena such as specular reflection and diffraction.

Specular reflection can be modelled by Geometrical Elastodynamics (GE), a ray model which just considers incident

and reflected waves. The Kirchoff Approximation (KA) [1, Ch. 3] which is an integral method can model both

specular reflection and diffraction. However, the diffraction amplitude produced by KA is not accurate as the one of

GTD (Geometrical Theory of Diffraction), a ray method, initially developed in electromagnetism [2] which models

only diffraction.

GTD is an extension of GE. Indeed, it adds diffracted rays to usual incident and reflected rays. These diffracted

rays propagate in shadow regions. The GTD diffracted field is the product of the incident field with a diffraction

coefficient and a divergence factor. GTD can be obtained only for canonical configurations as infinite half-planes or

wedges. Therefore, GTD does not take into account the finite length of the diffracting edges. Furthermore, GTD fails

in the zones where edge diffracted waves interfere with incident or reflected waves. For this reason, GTD solution is

said to be non-uniform.
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To overcome these limitations of GTD, in a first step, incremental methods have been developed in electromag-

netism to take into account the finite edge size: Incremental Theory of Diffraction (ITD) [3], Incremental Length

Diffraction Coefficient (ILDC) [4] and Equivalent Edge Currents (EEC) [5]. In such approachs, the points of the

scatterers are considered as secondary sources generating a spherical wave, called “incremental field”. In this paper, it

is shown that ITD can be extended from electromagnetism to elastodynamics and another incremental model based on

Huygens’ principle has been developed.To avoid the second GTD drawback (failure at specular direction), a uniform

GTD correction, the Uniform Theory of Diffraction (UTD) developed in electromagnetism by [6] based on the Pauli-

Clemmow process, has been extended to elastodynamics. UTD is preferred to UAT (Uniform Asymptotics Theory of

diffraction) [7], another uniform GTD correction, because UAT requires artificial extension of the scattering surface

and fictitious reflected rays contrary to UTD [8, Ch. 3, pp. 265].

This paper focuses on the development of incremental models and of UTD in elastodynamics. In section 2, the two

incremental models, ITD and Huygens-based, are developed in elastodynamics. They are validated by experimental

results. In section 3, UTD is developed in elastodynamics and some numerical results are presented. Conclusions are

provided in section 4.

2. Elastodynamic incremental models

In the following, the symbols α and β are used to denote the wave type, i.e. α, β = L, TV or TH (Longitudinal,

Transverse Vertical or Transverse Horizontal, respectively). α is used for the incident wave and β for reflected and

diffracted waves.

The geometry of the problem is presented in Fig. 1. A stress-free obstacle is irradiated by a plane wave

uα(x) = A dαei(−ωt+kα·x), (1)

where A is the wave displacement amplitude, dα its polarization, kα its wave vector, whose magnitude is kα = ω/cα,
with ω - the circular frequency and cα - the speed of the corresponding mode; t is time and x is the position vector.

The exponential factor exp(−iωt) is implied but omitted everywhere.

At the diffraction point xαβ , the crack is locally approximated by a canonical shape, a half-plane in the case of Fig. 1,

tangent to the crack. The diffraction point xαβ is the origin of the orthonormal basis vector {e1, e2, e3} associated to the

half-plane. (s, φ, θ) are the spherical coordinates of the position vector x and (kα,Ωα, θα) are similarly the spherical

coordinates of the incident wave vector kα. The diffraction angle Ωβ is linked to the incidence angle Ωα by the Snell’s

law of diffraction

kβ cosΩβ = kα cosΩα. (2)

Incremental methods supposed that points of the diffracting edge are fictive sources of a field called incremental

field Fβ(xαβ , x). Thus, the field diffracted by the contour L at an observation point is

uαβ (x) =

∫
L

Fβ(xαβ , x) dl. (3)

This incremental field has been found hereafter using ITD or the Huygens’ principle.

Fig. 1. A plane wave of propagation vector kα incident on a stress free obstacle (in gray) of contour L. Thick black arrow - direction of the incident

wave; thick gray arrow - direction of the wave (kβ) scattered by the tangential half-plane at the flash point xαβ .
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2.1. ITD in elastodynamics

ITD has been developed in electromagnetism by [3]. It has just been extended to elastodynamics [10]. The ITD

incremental field is

Fβ(xαβ , x) =
uα(xαβ )√

2iπ
sin φDα(GTD)

β (θ,Ωα(φ), θα)
eikβ s

s
dβ
(
−qβ cos θ

)
(4)

where uα(xαβ ) = uα(xαβ ) · dα with xαβ being the position vector of the diffraction point. In (4), Dα(GTD)
β is the diffraction

coefficient [9, Ch. 5], Ωα(φ) is the incidence angle which would lead to the diffraction angle φ (see Fig. 1) when

using the Snell’s law kβ cos φ = kα cosΩα(φ), dβ is the polarisation vector of the scattered wave and qβ = κβ sinΩβ,

κβ = cL/cβ - the dimensionless slowness of the scattered wave. This incremental field, valid in far field kβs � 1, is a

spherical wave weighted by a coefficient. It has been checked that ITD gives back the GTD solution in the case of the

plane wave scattering from a half-plane. Another incremental model based on the Huygens’ principle is developed in

next section.

2.2. Huygens method

The second developed method based on the Huygens’ principle, also supposes that points on the diffracting edge

are fictive sources of spherical waves. The Huygens incremental field [10] is

Fβ(xαβ , x) =
uα(xαβ )√

2iπ
sinΩβ Dα(GTD)

β (θ,Ωα, θα)
eikβ s

s
dβ
(
−qβ cos θ

)
. (5)

It depends on the diffraction angle Ωβ linked to the incidence angle Ωα by the Snell’s law (2) of diffraction whereas

ITD incremental field (4) depends on the angle φ between the observation point and the discretization point (see

Fig. 1). These incremental models can be applied to GTD and also to uniform GTD corrections. They have been

validated against experiments in the following.

2.3. Experimental validation

Diffracted echoes generated by the top tip (edge) of a 40 mm large and 10 mm high backwall breaking planar notch

simulated by incremental methods are compared to experimental results for various flaw orientations with respect to

the probes incidence plane.

Diffraction echoes have been measured in the TOFD (Time Of Flight Diffraction) inspection of a ferritic steel

component (see Fig. 2) using two 6.35 mm diameter mono-element probes emitting P45 waves at 2.25 MHz with

a 60 mm PCS (Probe Centre Spacing). The defect is initially perpendicular to x−axis so that it is inspected in a

2D configuration. Then, the skew angle (angle between the flaw top edge and the z axis) is increased from O˚(2D

configuration) to 50˚(see Fig. 2) in order to be in a 3D configuration by rotating the specimen around the z-axis. The

echo generated by a 2 mm diameter and 40 mm length side-drilled hole (see Fig. 2) is employed for calibration.

The results of measurements and of simulation using ITD and Huygens models are presented in Table 1. In this

table, ITD and Huygens give the same results. The errors between ITD/Huygens simulations and experimental results

are at most or around 1dB and are less than the measurements incertitudes (around 2dB).

Fig. 2. TOFD simulation configuration. Dash points - position of the top tip when the defect is skewed.
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Table 1. Amplitude of the top tip diffracted echoes in dB.

Skew angle(˚) experiments ITD Huygens

0 -13.1 -12.9 -12.9

10 -12.6 -13.0 -13.0

20 -14.2 -13.1 -13.1

30 -13.3 -13.3 -13.3

40 -13.7 -13.7 -13.7

50 -13.6 -14.3 -14.3

3. Uniform Theory of Diffraction (UTD) in elastodynamics

The classical edge-diffracted GTD ray field is not valid at the vicinity of shadow boundaries (directions of specular

reflection and direct transmission). Indeed GTD evaluates asymptotically the exact solution of the scattering from

a half-plane which is a Sommerfeld integral [11, Ch. 3] and just takes into account the contribution of the integral

stationary phase point. The contribution of this point corresponds to the diffracted field whereas the integrand’s poles

contribution corresponds to the geometrical field. To handle the coalescence of stationary phase points and integrand’s

poles which corresponds to the interference of diffracted waves with incident or/and reflected waves, uniform methods

are used such as the Van Der Waerden one which gives rise to UAT and the Pauli-Clemmow one which gives rise to

UTD.

Applying the Pauli-Clemmow process to the exact scattering solution [9, Ch. 5], the approximate UTD-based total

field [12] in elastodynamics is expressed as

utot(UTD)(x) = uα(GE)
β (x) +

∑
β

F(kβLβ a) uα(GTD)
β (x) (6)

where uα(GE)
β (x) is the geometrical field at the position vector x, F is a transition function, Lβ = s sin2Ωβ is a distance

parameter and the parameter a describes the proximity of the observation point to a shadow boundary. When the

observation point is far away from the shadow boundaries, the transition function tends to 1 and then, UTD is equal

to GTD. When the observation point is close to the shadow boundaries, the transition function tends to 0 and removes

the singularity of the GTD diffraction coefficient; it also introduces a discontinuity which is cancelled by the GE one

so that the total UTD field is continuous at SB contrary to GTD.

The UTD just modified the amplitude of the diffracted rays. It does not require fictitious rays as UAT and is

consequently simpler to implement. UTD asymptotics do not include all terms of the order (kβLβ)−1/2 as UAT [8, Ch.

3]. Therefore, it is theoretically less accurate than UAT.

Simulations of the scattering from a half-plane using GTD, UAT and UTD are presented in Fig. 3 in the (e1, e2)

plane, which is perpendicular to the edge, since the problem is invariant in the x3 direction. The observation point is

specified using the polar coordinates (r, θ) The solid material used for simulations is ferritic steel with Poisson’s ratio

ν = 0.29, longitudinal speed cL = 5900 m.s−1 and transversal speed cT = 3230 m.s−1.

In Fig. 3, the used configuration is 3D since the incidence is oblique to the edge crack (Ωα � 90˚) . The incident

wave is a longitudinal wave. There are three shadow boundaries in Fig. 3, the incident L shadow boundary (ISB)

θ = 45˚, reflected L shadow boundary (RSB) θ = 330˚ and reflected TV shadow boundary θ ≈ 290˚. As expected,

UTD is continuous at all shadow boundaries and gives back the GTD solution far away from the shadow boundaries.

Moreover, UTD leads to very satisfying results similar to UAT ones.

4. Conclusion

This paper focuses on recent advances in modelling the scattering of elastic waves from an obstacle. The GTD

ray method, classically used to model edge diffraction, is valid for an infinite edge and not for a finite size scatterer.

Moreover, GTD is discontinuous for observation directions of specular reflection and direct transmission (called

shadow boundaries). To overcome these limitations of GTD, two incremental models and a uniform correction of the
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Fig. 3. Scattering of a plane wave from a half-plane: directivity pattern of the total field predicted by different models (GTD and UTD) a ΩL = 60˚,

θL = 45˚ and kTV r = 4π. Each circle represents amplitude of the total field normalized by the incident amplitude.

GTD have been derived in elastodynamics. The two developed ITD and Huygens models allow to take into account

the finite size of the scatterer edges. These two models give back the GTD solution in the case of a straight infinite

edge. They have also been both successfully validated against experimental results. The UTD uniform correction of

GTD has been developed and allows to simulate a continuous total field even at shadow boundaries. UTD is simpler

to implement than UAT, another GTD uniform correction, which requires the determination of fictitious rays and leads

to results close to UAT ones. Incremental methods can be coupled with UTD to build a generic model both uniform

and for finite size flaws.
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