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Abstract

The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under

field in the basal plane. An additional channel for heat transport appears below 30 mK, both

in the antiferromagnetic and paramagnetic states, respectively below and above the critical field

suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this

additional contribution to thermal conductivity. Moreover, this low temperature contribution

prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the

field-induced quantum critical point. At high temperature in the paramagnetic state, the thermal

conductivity is sensitive to ferromagnetic fluctuations, previously observed by NMR or neutron

scattering and required for the occurrence of the sharp electronic spin resonance fracture.

PACS numbers: 71.27.+a, 72.15.Eb, 74.40.Kb, 75.50.Ee
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Traditionally, heavy fermion intermetallics are viewed as systems lying close to the insta-

bility to an ordered magnetic state. The instability is driven by the competition between

Kondo screening of the local moments, and long range order of these moments, induced

by RKKY interactions. Along the past decades, experimental and theoretical studies have

endeavored to unveil the evolution of heavy fermions through the instability, focusing on the

role of quantum fluctuations around the quantum critical point (QCP) [1]. Presently, the

most prominent scenarios involve instabilities approaching the critical point from the para-

magnetic (PM) side, either on some “hot spots”, which is the so-called “spin density wave”

scenario, or extended over the whole surface, for the “local quantum critical scenario”. In

the last case, the Kondo screening mechanism would breakdown near the quantum critical

point, leading to a change from a large Fermi surface (including the local moments) in the

paramagnetic state, to a “small Fermi surface” when Kondo coupling disappears [2]. As a

consequence, it is also believed that in this last scenario, which involves a collapse of the

mechanism driving the heavy quasi-particles formation, when approaching the well-defined

QCP, the low energy excitations would not be described by quasiparticles anymore. So ex-

periments probing this local quantum critical scenario, are mainly trying to reveal a change

of Fermi surface (FS) volume across the QCP or a clear violation of predictions based on

the notion of quasiparticles.

The antiferromagnetic (AF) heavy fermion YbRh2Si2, has been a main playground for

both experimental approaches, and strongly pushed forward as an archetype of heavy fermion

driven by the local quantum criticality scenario [3, 4]. The proximity of YbRh2Si2 to AF

quantum criticality is attested by the low value of its Néel temperature TN ∼ 70 mK, far

smaller than its Kondo temperature TK ∼ 25 K [5]. Experimentally, a major appeal of this

system is that fine field tuning of the AF-PM border can be used to monitor the proximity

to the QCP [3, 5]. Due to the large anisotropy of the magnetic properties, the critical field

Hc driving the AF-PM instability is also anisotropic, respectively 0.066 T and 0.6 T in the

easy magnetization plane (a,b), and along the c axis of the body centered tetragonal crystal.

Evidence of FS reconstruction at Hc are mainly based on Hall effect measurements [6, 7].

However, heavy fermions are multiband systems, so that the interpretation of the Hall effect

is not straightforward. Other concomitant proof of the FS reconstruction in YbRh2Si2 must

be found. No convincing changes of the FS at Hc appear on the thermoelectric power [8, 9].

Recently, the debate has been focused on the detection of a breakdown of the Fermi-liquid
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regime at Hc, using thermal transport at low temperature as a probe: A violation of the

Wiedemann-Franz law (WFL) would point out a deep change of the electronic excitations

responsible for charge and heat transport [5, 11, 12]. In metallic systems, at T → 0 K,

when quasiparticle scattering is dominated by elastic mechanisms, all reported cases but

one satisfy the WFL, stating that L→ L0 in the low temperature limit, where L = κρ/T is

the Lorenz ratio and L0 = L(T → 0) is the Lorenz number (L0 = (π2/3)(kB/e)
2). The only

case reported so far that would not satisfy the WFL in this limit is CeCoIn5, for the heat

current along the c-axis [13], which has been put forward as a demonstration of breakdown

of the quasiparticle picture in a “hot spot” QCP scenario. But even in this last case, one

cannot exclude that measurements below 30 mK (the lowest temperature reached in [13])

would invalidate the violation of the WFL.

Three different groups have recently published thermal conductivity (κ) experiments

coupled with careful resistivity (ρ) experiments in YbRh2Si2, in order to study the temper-

ature dependence of the Lorenz ratio L(T ) = κρ/T . Contradictory conclusions have been

drawn by the three groups. The first one [5] claims that the WFL is violated at Hc, as

L(T → 0) ∼ 0.90L0, while the others concluded conservatively that L(T → 0) at Hc is L0

[11, 12]. However, all the experimental data of the three groups are in good agreement:

The main differences lie in the interpretation, and in the lowest temperature reached, i.e.

in the extrapolation of the zero temperature values. This last point is a very sensitive is-

sue, as an additional contribution to the electronic thermal conductivity appears at very

low temperatures (below 30 mK) in YbRh2Si2, which is very difficult to separate from the

quasiparticles contribution. The measurements we report in the present paper, were realized

down to 10 mK, twice lower than in those reported in [5], and with a strong emphasis on

the analysis of this extra contribution, notably to detect if anything specific happens at the

critical field Hc.

The single crystal investigated in the present study was grown out of In flux. It is the

same as used in Ref. [14] for the thermoelectric power and magnetoresistance studies. The

residual resistivity ratio RRR = ρ(300K)/ρ(0K) of the crystal is 65, the observation of

quantum oscillations in the resistivity indicates its high quality. The magnetic field was

applied parallel to the current (longitudinal configuration: H//jQ//[1,1,0]), up to 4 T. The

zero field measurements have been performed with a zero field cooled magnet. At low field,

a calibrated Hall sensor has been used to determine precisely the applied magnetic field.
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FIG. 1. (color online) Electrical resistivity (full squares) and thermal resistivity (open circles) of

YbRh2Si2 at 0 T (in black) and at 70 mT, close to Hc (in red) at low temperature. Clear anomalies

are observed in zero field at TN , and a new channel for heat transport appears below 30 mK (see

text). Inset : Normalized ratio L(T )/L0 in the whole temperature range at 0 T and 70 mT.

The thermal conductivity was measured using a standard two thermometers-one heater

setup, and was checked to be independent of the heat gradient applied, with ∆T/T in

the range 0.5-10 %. Calibration of the thermometers was realized in situ, against a CMN

paramagnetic salt in zero field for temperatures below 0.1K and down to 7 mK, and against

reference thermometers (calibrated with the CMN) placed in the compensated zone of the

magnet for field measurements. The electrical resistivity was measured simultaneously, with

a conventional lock-in detection at low frequency (around 2 Hz, for minimum quadrature

signal), allowing a precise determination of L(T ).

Figure 1 compares the electrical resistivity ρ, and the thermal resistivity wth = L0T
κ

,

at low temperature (below 0.15 K), for zero magnetic field (H = 0 T) and very slightly

above the critical field Hc (H = 70 mT). This is the most important result, but let us

first describe the insert which gives a broader view thanks to an extended temperature

range (from 7 mK up to 7 K). It displays the Lorenz ratio L(T )/L0 for both fields, with a

logarithmic temperature scale: There is a large temperature range, from 3 K down to 0.02 K,
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where the normalized ratio L(T )/L0 is clearly below 1, down to a value L(T )/L0 ≈ 0.87.

This is indicative of dominant inelastic scattering (the so-called “vertical processes”), which

affect more strongly thermal than electrical transport. The rather unusual feature is that

despite a large residual resistivity (the RRR is “only” 65 for our sample), inelastic scattering

has a significant contribution down to such low temperatures. But this is consistent with the

marked temperature dependence of the resistivity down to the lowest measured temperatures

(8 mK), as can be seen on the main graph. Inversely, the fast increase of the Lorenz ratio

above 2 K, overpassing 1 above 3 K, indicates additional contributions to the heat transport

(like phonons).

These “bosonic” contributions are expected to vanish rapidly below 1 K, and therefore,

the new increase of the Lorenz ratio above 1 below 20 mK is again a very unusual feature,

which could not be anticipated from the resistivity behavior. This low-temperature increase

of the Lorenz ratio has been already observed below 30 mK by Pfau et al. [5], on a slightly

more resistive sample (RRR ≈ 45 instead of 65). But we insist that this is probably the most

puzzling feature of thermal transport in YbRh2Si2: How is it that new bosonic excitations,

able to contribute as a new heat channel, appear at such low temperatures? Moreover,

contrary to the statement in [5], we observe that this increase is essentially unchanged for a

field of 70 mT, suppressing the long range AF order, and the putative magnon (long lived)

excitations expected in this ordered phase. Discussion of the origin and field evolution of

this contribution is continued later in this paper.

The main plot of Fig. 1 shows the detailed evolution of ρ and wth below 0.15 K, down

to 10 mK: In particular, one clearly observes a kink at TN in zero field on the electrical

and thermal transport. It is suppressed by an applied field of 70 mT (very close to Hc),

which also lowers both resistivities. It demonstrates that the critical fluctuations emerging

in the neighborhood of the AF transition contribute to the scattering of the quasiparticles.

However, this scattering seems to be rapidly damped below TN , as no change of wth is

observed below 50 mK, between zero field and 70 mT. Concerning now the additional low

temperature contribution, the strong decrease of wth below 30 mK appears independent of

the applied field. It already shows the difficulty to discuss the validity of the WFL: The linear

extrapolation of the data of wth between 30 and 50 mK is compatible, within the dispersion

of the points, with that of the resistivity at 0 K. The whole question is to control these

extrapolations, or to estimate the amplitude and range of the extra contribution responsible
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for the low temperature drop of wth. But in any case, on the bare data, no drastic change

is seen between zero field and Hc.

Figure 2 compares the relative temperature variation of L(T )/L0 for fields above Hc,

up to 4 T (see Supplementary Material A, figure 5 for the data of κ and ρ). It appears

that the low temperature increase of the Lorenz ratio is field sensitive above 100 mT, and

rapidly suppressed for rather weak fields (above 0.2 T). This supports a magnetic origin for

this additional heat channel, which is reasonable as we did not expect a sizable phonon

contribution at such low temperatures. In parallel, we do observe that the decrease below

one of the Lorenz ratio above 30 mK is also progressively suppressed under field, pointing

to a magnetic origin of the low temperature inelastic scattering. However under field, for

H > 0.5 T (see also insert up to 4 T), L(T → 0) seems to saturate at 0.97 L0. This small

deviation from L0 may be due to experimental precision, or related to the complex multiband

structure of the FS. In any case, the fact that this value does not change with fields much

larger than Hc means that it cannot be seen as a violation of the WFL at the QCP. In the

following, particularly to estimate the electronic contribution, the Lorenz number is taken

at this value found for T → 0 K: L(0) = 0.97L0.

As regards the question of the origin of the additional contribution to thermal transport

appearing below 30 mK (hereafter labelled κadd), all hints point to a magnetic origin: (i)

even if it survives the critical field, it is rapidly suppressed by fields of order of 0.5 T; (ii)

a new phononic contribution is completely unexpected in this temperature range: It would

require a strong lattice instability, which has not been detected so far; (iii) besides the

antiferromagnetic long range order at 70 mK, other magnetic transitions have been reported

at 12 mK [15] and/or 2 mK [16]. In reference [5], κadd has been attributed to magnons,

an assumption supported by comparison to the specific heat (Cp) data: The temperature

dependence of Cp has a bare T 3 regime below T ? = 55 mK [3, 5], which is attributed to

AF magnons. Because it exists even when the long range ordered state is suppressed, we

would rather compare κadd in YbRh2Si2 to a similar additional contribution to heat transport

observed in the ferromagnet UCoGe, both above and below TCurie, and also in a very low

temperature range (for the heat current along the b-axis) [17]. Obviously, “paramagnons” or

overdamped spin fluctuations, can also contribute to an additional heat transport channel.

Quantitatively, we will perform a similar analysis as in [17], assuming that we can separate

the electronic contribution in a quasiparticle κqp channel, which should follow (or not!) the
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WFL, and a “spin-fluctuation” contribution κadd, expected for example to be much less

sensitive to the RRR. As for the case of UCoGe, a difficulty for quantitative estimation of

κadd is that the quasiparticle contribution is badly known, due to the importance of inelastic

scattering even at 30 mK (see the Lorenz ratio in figure 1). So we assume that κqp can be

described by [18]:
κqp
T

=
L(0)

ρ0 + α(ρ− ρ0)
(1)

This expression takes into account the stronger effect of the electronic inelastic scattering

on the thermal transport (than on the electrical transport), through the factor α. ρ0 is

the residual resistivity and α = 1 + Wvert/Whor, where Wvert and Whor are respectively the

scattering rates due to vertical (small wave-vector transfer q, inelastic) and horizontal (large

q, mostly elastic) processes, assuming that Mathiessen’s rule holds. The crude simplification

is to take α constant, which can be valid for temperatures much smaller than the typical

energy of the fluctuations responsible for the inelastic scattering. This simplification has

already been widely used for the heavy fermion systems like UPt3 [19], CeRhIn5 [20] and

UCoGe [17]. The figure 3 compares the bare data with different estimates of κqp for α = 1

i.e L(T ) = L(0) and α = 2.2, at 0 T (in the AF state), 70 mT (close to Hc) and 0.27 T (in

the PM state). Clearly, α = 1 overestimates the quasiparticle contribution, whereas α = 2.2

(the best value we found) gives an estimate of κqp compatible with the data for the three

fields. It even gives a fair account of the data between 30 mK and 100 mK at 0.27 T. The

extracted extra contribution is shown in the Supplementary Material A, figure 6.

The most important information from the analysis shown on figure 3 is that little change

is observed between zero field and Hc, apart from the suppression of the anomaly at TN .

Otherwise, (i) it is possible to analyze the data of thermal transport in YbRh2Si2, assuming

that the quasiparticle contribution follows the WFL even at Hc, and with the same coefficient

α = 2.2 describing the effect of inelastic scattering; (ii) κadd is little influenced by the

suppression of the Néel temperature at Hc, and really starts to decrease only above this field

(see also figure 6 of the Supplementary Material A), pointing to a contribution of driven

(robust) short range correlations.

For point (i), it will be very difficult to reach firmer conclusions, as even lower temperature

measurements would face the problem of the dominant additional contributions, and of the

difficulty of a robust quantitative analysis, together with the regimes introduced by the

additional transitions at 12 and 2 mK [15, 16]. For point (ii), this is similar to observations
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on the thermopower, where the change of regime under field occurs far above Hc [8, 9], and

little is seen when crossing Hc.

Moreover, the question of the role of magnetic fluctuations in the heat transport in

YbRh2Si2 is not limited to the low temperature regime. Also at high temperatures, above

1K, we can detect a field dependence of wth, which (like for resistivity), points to a contri-

bution of magnetic fluctuations on the scattering mechanisms. In this temperature range,

microscopic measurements have revealed a complex situation: NMR experiments [21] have

shown that AF fluctuations with finite wavevectors compete with ferromagnetic (FM) fluc-

tuations; recent investigations by NMR [1] gives the image of interfering Fermi liquid and

non Fermi liquid component close to Hc. Neutron scattering experiments [2] down to 0.1 K

up to 10 T along the c-axis confirm that incommensurate AF correlations become dominant

on cooling against the FM correlations, while the magnetic field induces a Zeeman resonant

excitation. These FM fluctuations could be an important ingredient to understand the ob-

servation of a well defined electron spin resonance in YbRh2Si2 [24, 25]. So at least far from

TN or at high magnetic field, FM coupling may be dominant, pointing to the proximity of a

FM QCP [26, 27]. We do find (see Supplementary material B) that the thermal resistivity

above 1K behaves as predicted by Ueda and Moriya [3] when inelastic scattering is controlled

by ferromagnetic fluctuations.

To summarize we have investigated in detail the thermal transport of YbRh2Si2, in the

AF phase and in the PM phase, below and above Hc, and extended the measurements down

to 10 mK. This study clearly shows that an additional magnetic contribution to thermal

conductivity appears below 30 mK, with a gradual decrease for fields above the critical field

Hc. This has been deduced with an electronic quasiparticle contribution, which also has no

peculiar singularity at Hc, and satisfies the WFL even at Hc. To conclude unambiguously,

by direct measurements, if the WFL is satisfied or violated, would require measurements

down to the mK temperature range, where the additional contribution should eventually

disappear. But other recent experiments also challenge the “local QCP scenario”, which

could have led to the violation of the WFL at the critical field: For example, ARPES

measurements [29, 30] show that above TN , the 4f-electrons in the paramagnetic phase are

clearly itinerant, which leaves open the validity of the image of small and large Fermi surface

fluctuations developed in the Kondo breakdown scenario. A new appealing approach is the

so-called “strong coupling theory” of heavy-fermion quantum criticality, where large critical
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spin fluctuations at the AF wave-vector induce fluctuations at small wave-vectors, producing

a diverging effective mass over the entire Fermi surface [31]. It would be interesting to see

if these fluctuations could be responsible for the detected low temperature contribution, as

well as to the large inelastic scattering observed down to very low temperatures ?
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[25] E. Abrahams and P. Wölfle, Phys. Rev. B 78, 104423 (2008).

[26] G. Knebel, D. Aoki, D. Braithwaite, B. Salce, and J. Flouquet, Phys. Rev. B 74, 020501

(2006).

[27] S. Lausberg, A. Hannaske, A. Steppke, L. Steinke, T. Gruner, L. Pedrero, C. Krellner,

C. Klingner, M. Brando, C. Geibel, and F. Steglich, Phys. Rev. Lett. 110, 256402 (2013).

[3] K. Ueda and T. Moriya, Journal of the Physical Society of Japan 39, 605 (1975).
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12

http://dx.doi.org/10.1103/PhysRevLett.107.267601
http://dx.doi.org/10.1103/PhysRevLett.107.267601
http://dx.doi.org/10.1103/PhysRevB.90.045105


Supplementary Materials

SUPPLEMENTARY MATERIAL A: DETAILS ON THE TRANSPORT MEASURE-

MENTS

As a complement to figure 1 of the main paper, displaying the thermal and electrical

resistivities below 0.15 K, figure 4 presents ρ and wth at 0 T up to 7 K: This shows the strong

temperature dependence of ρ in the whole temperature range, as well as the saturation of

wth above 3 K, due to the growing contribution of bosonic excitations to heat transport.
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FIG. 4. (color online) Electrical and thermal resistivities at 0 T in the whole temperature range

from 10 mK up to 7 K.

If several (parallel) channels contribute to the thermal transport, it is better to discuss

the thermal conductivity rather than wth. It is displayed on figure 5, at low temperature

and up to 0.1 T, and the corresponding electrical resistivity is shown in the inset. The

smooth variation of the thermal conductivity through Hc is confirmed by the temperature

dependence of κ/T below 100 mK on each side of Hc for different magnetic fields.

As explained in the main paper, we could analyze the quasiparticle contribution, tak-

ing into account the peculiar effects of inelastic scattering on heat transport, and with no
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FIG. 5. (color online) Thermal conductivity of YbRh2Si2 at low temperature below 0.1 T. In inset,

the corresponding electrical resistivity. The dash line shows the Néel temperature at zero field.

detected anomaly when crossing the critical field Hc. Figure 6 presents the additional con-

tribution κadd/T for three different fields H = 0, H ∼ Hc and H ∼ 4Hc, subtracting this

calculated value of κqp(T ). As announced, there is little change of κadd at Hc, whereas its

collapse is noticeable for a field of 0.27 T. For even higher field values, κadd rapidly falls

bellow the error bars of the analysis, an effect reinforced by the increase of the bottom

temperature of the measurements due to prohibitive equilibrium relaxation times. But as

regards the direct test of the validity of the WFL, the strong “divergence” of κadd/T at low

field at 10 mK sets the level of the experimental challenge: Probably temperatures of order

a few mK at most, are required to observe the downturn of this contribution?

SUPPLEMENTARY MATERIAL B: DETAILS ON THE HIGH TEMPERATURE

ANALYSIS

As underlined, evidences exist that the main magnetic intersite interaction is tempera-

ture dependent. As the “average” effective mass increases drastically on cooling, the rela-

tive weight of the different outbands may change and produce a feedback on the magnetic
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FIG. 6. (color online) Estimation of the very low temperature extra contribution to the thermal

conductivity at 0 T, 70 mT and 0.27 T. No significant changes are seen between 0 T and 70 mT,

indicating that κadd has certainly the same origin at both fields. κadd exists for fields higher than

Hc, but with a decreasing amplitude. Lines are guides to the eyes.

coupling itself. Due to evidences for FM fluctuations above 1 K [1, 2], we investigated if

YbRh2Si2 could be seen, far above TN , as a weak ferromagnet above its Curie temperature

from the point of view of thermal transport? In this case, if only the quasiparticle-magnetic

fluctuations interactions are taken into account, Ueda and Moriya have predicted that the

thermal resistance should behave as [3]:

wth = ρ+BT (2)

So, even if the electrical resistivity has no real simple temperature dependence (see figures

3-4 of reference [3], the additional thermal resistance for weak ferromagnets above TCurie

or near ferromagnets at high enough temperatures is roughly linear in temperature (with

our definition of wth): See figure 5 of [3]. Naturally, in this temperature range, we also

expect a phononic contribution, limited by electron-phonon scattering, which should follow

a quadratic temperature dependence: κph = PT 2, with P temperature and field independent.
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We obtain thus for the thermal conductivity at high temperature:

κ = κqp + κph (3)

=
L0T

ρ+BT
+ PT 2 (4)

Once the phonons are subtracted, the thermal resistance wth ≡ wqp = L0T
κqp

represents the

electronic heat channel with the scattering of quasiparticles by FM fluctuations. We call

the additional linear term in the thermal resistivity wqp−fluc = BT . Contrary to the low

temperature situation, the magnetic fluctuations above 1 K do not contribute with their own

channel to heat transport: They only have the “usual” contribution to the inelastic scattering

of the quasiparticles. The expression 4 is very simple, as ρ is determined experimentally and

the parameter P is field independent. Only the parameter B can vary with the field. Such a

decomposition of the thermal conductivity has already been successfully used for the weak

ferromagnet ZrZn2 [4].

Surprisingly, after removal of the phonon and resistivity contribution, we do find that

wqp−fluc is linear above 1 K, for fields up to 4 T, as shown in figure 7, for a field independent

parameter P = 0.022 W.K−3.m−1, close to 0.017 W.K−3.m−1 used by Pfau et al. [5]. At

lower temperatures, a deviation of wqp−fluc from linearity appears, which may be due to the

growing importance of AF fluctuations.

The evolution of the B coefficient is shown in figure 8: It increases linearly with the mag-

netic field, as if the applied field and the warming reinforce the ferromagnetic fluctuations.

This behaviour is quite singular and may be related to the intermediate valent character of

YbRh2Si2. In Ce compounds, like in the CeRu2Si2 family, ferromagnetic fluctuations are

just enhanced at the metamagnetic field where simultaneously the AF interactions drops [6].
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FIG. 7. (color online) Electronic thermal resistivity wqp−fluc up to 5 K after subtraction of the

electrical resistivity. For clarity, an offset has been added to each curve (+0.2µΩ.cm at each field

step). Dashed lines are guides to the eyes.
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