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Abstract. The Bell inequalities are based on a tacit assumption of a common probability distribution
that precludes their application to the experiments of Aspect et al. The basic ideas of this argument have
already been given in references [1,2], but the present presentation recollects them in a more clear and
concise way. The paper supersedes reference [3] which contains an error.

PACS. 03.65.-w Quantum Mechanics

1 The Bell inequalities and their application to the experiments of Aspect et al.

The subject matter of the Bell inequalities and the experiments of Aspect et al. hardly needs any introduction [4].
However, the argument has often been blurred by drawing in unnecessary issues, leading to some confusion. We
give here an elementary derivation that removes all unnecessary considerations. This will show how elementary the
argument is and how very hard it is to question the validity of the inequalities. We consider 4 variables a1 ∈ S, a2 ∈ S,
b1 ∈ S, b2 ∈ S, where S = {0, 1}. The idea is that 0 correponds to absorption in a polarizer, and 1 to transmission.
aj will correspond to polarizer settings in one arm of the set-up, bk to polarizer settings in the other arm. There are
thus 16 possible combinations for the values of (a1, a2, b1, b2). By making a table of these 16 combinations it is easy
to verify that we always have:

∀(a1, a2, b1, b2) ∈ S4 : Q = a1b1 − a1b2 − a2b1 − a2b2 + a2 + b2 ∈ S. (1)

We consider now functions aj ∈ F (V, S) and bk ∈ F (V, S). The notation means that the domain of the functions is
V , while the functions take their values in S. Here V is a set of relevant variables for the experiment. We can call the
set V the set of hidden variables, even if some of them may not really be hidden. One can imagine that V could be a
subset of a vector space Rn or of a manifold, e.g. a non-abelian Lie group like SO(3). We have then:

∀λ ∈ V : 0 ≤ Q(λ) = a1(λ)b1(λ) − a1(λ)b2(λ)− a2(λ)b1(λ) − a2(λ)b2(λ) + a2(λ) + b2(λ) ≤ 1. (2)

We can now consider a probability density p over V , i.e. p(λ) dλ. The function p belongs then to the set of functions
F (V, [0,∞[) with domain V and values in [0,∞[. We further require that

∫

V
p(λ)dλ = 1. We can now integrate Eq. 2

with p over V . Introducing the notations:

p(αj ∧ βk) =

∫

V

aj(λ) bk(λ) p(λ) dλ, p(αj) =

∫

V

aj(λ) p(λ) dλ, p(βk) =

∫

V

bk(λ) p(λ) dλ, (3)

we obtain then:

0 ≤ p(α1 ∧ β1)− p(α1 ∧ β2)− p(α2 ∧ β1)− p(α2 ∧ β2) + p(α2) + p(β2) ≤ 1. (4)

This is the CHSH Bell inequality used in the experiments of Aspect et al. It is a purely mathematical identity and
does not depend on any physical considerations. The probalities are identified with the mathematical expressions for
the outcomes of the photon polarization experiments reported by Aspect et al.:

p(αj ∧ βk) =
1

2
cos2(αj − βk), p(αj) =

1

2
, p(βk) =

1

2
, (5)
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where αj and βk are the angles of the polarizer settings in the two arms of the experiment. According to quantum
theory the mathematical expressions are the limits of the measured probabilities when the number of registered events
tends to infinity, i.e. when the statistics become perfect. For a function f ∈ F (N,R), the limit when n→ ∞ is defined
by:

lim
n→∞

f(n) = F ⇔ (∀ε > 0)(∃N ∈ N)(n > N ⇒ |f(n)− F | < ε). (6)

Here f(n) would be the measured probabilities after n detection events, F the theoretical expression 1

2
cos2(αj − βk),

and ε the statistical accuracy of the experiment required. An experimentalist has to worry about the statistical
precision (and also about instrumental precision). For practical reasons the experimentalist can only reach a reasonable
accuracy ε. But this should be well enough to establish beyond any reasonable doubt if the Bell inequality is satisfied
or otherwise. We will adopt a mathematician’s viewpoint and assume that the expressions 1

2
cos2(αj − βk) are exact,

trusting that at least in principle the experimentalist could prove this to any accuracy ε, by improving the statistics.
We introduce thus the assumption (or the act of faith) that the algebra of quantum mechanics is exact. For certain
values of (α1, α2, β1, β2) ∈ [0, 2π]4, the expressions in Eq. 5 do not satisfy the inequality in Eq. 4. This violation of the
Bell inequality shows that the mathematical expressions in Eq. 5 are not compatible with Eq. 4. This seems to confirm
Bohr’s thesis that the polarizations cannot exist prior to a measurement and must be created by the measurement.
But it is then extremely puzzling that we can obtain a definite correlation 1

2
cos2(αj − βk) because the polarizers can

be separated by arbirarily large distances. It looks like the spooky action at a distance Einstein talked about and
which has been called entanglement in the aftermath of the experiments. In the experiments of Aspect this issue is
tested by ensuring Einstein separation of the detection events in both arms. The solution of this conundrum is in our
opinion summarized in the last sentence of Section 3.

2 The tacit assumption

The derivation of the inequality looks unassailable. It is indeed ought to be too simple to possibly hide a logical
loophole. But it does! What is not acknowledged is that it contains a tacit assumption, namely that all four quantities
1

2
cos2(αj − βk) can be obtained from an integration over some set V with a same common distribution function p.

However, it can a priori not be excluded that in reality we can only obtain the quantities 1

2
cos2(αj−βk) from different

distributions pjk according to:

1

2
cos2(αj − βk) =

∫

Vjk

aj(λ) bk(λ) pjk(λ) dλ (7)

rather than:

∃V, ∃! p ∈ F (V, S) ‖ ∀(j, k) ∈ {1, 2}2 : 1

2
cos2(αj − βk) =

∫

V

aj(λ) bk(λ) p(λ) dλ. (8)

In other words, it is tacitly assumed that the quantities 1

2
cos2(αj − βk) can all be obtained from one single common

distribution function p rather than from different distributions pjk. In view of the importance of the subject matter,
one may ask for an existence proof of such a unique function p. For a mathematician the need of such a proof would be
imperative. Unfortunately, a physicist may remain unfazed by a request for an existence proof. He might have taken
the assumption for self-evident and consider the request as futile and faultfinding nitpicking. It would be an ordeal,
because such a proof looks completely beyond reach. Perhaps one can get from this a sense of what a frustrating task
it was to try to spot the error in the derivation of the Bell inequalities, for people who were upset by their implications.
It also looked an unsuperable task, especially because we have no good understanding of how quantum mechanics
works.

3 Discussion

It is not my task to prove that assumption Eq. 8 is wrong. That would be a reversal of the charge of proof. All charge
of proof is with the authors who proposed the Bell inequalities. I could stop here and wish them ironically good luck.
However, I think it will be a more reasonable and respectful attitude to try to provide the physicists in the audience
with some arguments why my objection may not be as farfetched as they may think. These arguments may look like
a blend of physics and mathematics, but we will show that on close inspection they reveal to be all purely mathematical.

• Our first argument is that the contents of our objection are vindicated by quantum mechanics itself. If one wanted
to claim they are wrong, one would thus have to claim that quantum mechanics is wrong. This argument will lead us
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straight into the heart of the Bohr-Einstein debate. The starting point of this debate was that when two operators do
not commute, they will not have common eigenvectors. This is a purely mathematical truth. An example of this are
L̂x and L̂y. According to Bohr the quantities Lx and Ly do then not exist simultaneously. Einstein wanted to prove
that this cannot be true and proposed the EPR experiment for two correlated particles, whereby one would measure
Lx for one of the particles at r1 in one arm of the set-up, and Ly for the other particle at r2 = −r1 in the other arm of
the set-up. This would then demonstrate that Bohr was wrong. We know now that such a simultaneous measurement
is indeed possible, because L̂x1

= y1
∂

∂z1
− z1

∂
∂y1

and L̂y2
= z2

∂
∂x2

− x2
∂

∂z2
do commute when r1 6= r2. It is only when

r1 = r2 that the operators do not commute, with all the consequences non-commutativity may entail. In a sense,
Einstein addressed thus the wrong issue, because he no longer addressed operators that were not commuting, but he
had been sidetracked by an overinterpretation of the mathematics introduced by Bohr.

We may in fact note that we discover here that the mathematical consequence of the fact that L̂x and L̂y do not
commute is not that Lx and Ly would not exist simultaneously as Bohr claimed, but that they do not have a common

probability distribution function. In fact, we use the eigenfunctions ψj of L̂jψj = Ljψj to define the probability
distributions pj = |ψj |2 for a set-up used to measure Lj , based on the Born rule. We will explain below in Section 4
that the Born rule is not something specifically quantum mechanical but a very general result of group theory and
therefore completely classical. It is not because Lx and Ly cannot be measured simultaneously in a same location that
they would not exist simultaneously in the same location. The difference with what Bohr said may look perhaps subtle
but it is very important, because it implies that Bohr has overinterpreted the mathematics. The whole issue is actually
a matter that is not at all subject to interpretation, because it is just all pure mathematics. It is the mathematics
of the rotation group. These mathematics provide the full explanation about what is going on with the operators L̂x

and L̂y and their eigenfunctions. Bohr presumably did not know this group theory. Using his physical intuition he
cooked up a parallel theory by guessing an ad hoc explanation. But physical intuition and mathematical intuition are
different things. His parallel theory was at variance with the correct mathematics. It was therefore plain wrong, but
nobody knew at that time that group theory was at stake and nobody noticed. Nobody should be blamed for this.
Bohr then went on pushing his ideas forcefully. Our rebuttal of the Bell inequality pinpoints his overinterpretation
very accuractely. Bohr had a clash with Heisenberg over a very similar overinterpretation in a discussion about the
uncertainty relations, which are also tied up with non-commuting operators.

Einstein reasoned on the overinterpretation provided to him by Bohr and was thus right with his intuition that
this overinterpretation had to be wrong. We must further point out that the correct interpretation of the consequences
of the fact that L̂x and L̂y do not commute is completely classical. The operators L̂x and L̂y exist in the group theory

of the rotation group, which is mere Euclidean geometry. Up to a number of proportionality constants L̂z corresponds
to ∂

∂ϕ
in spherical coordinates (r, θ, ϕ) in R3 or polar coordinates (r, ϕ) in the Oxy plane. The operators L̂j serve

thus to calculate Lie derivatives in three mutually orthogonal directions. They are used to constitute a basis for the
tangent space to the group at the identity element as they intervene in the calculation of the infinitesimal generators
and of the elements of the Lie algebra. To obtain the Lie derivatives one must use one-parameter sets. These are just
completely different for Lx and Ly. The fact that L̂x and L̂y do not have common eigenfunctions only means that
a rotation around the x-axis cannot simultaneously be a rotation around the y-axis (see [1]). In fact, Lx is not the
expression for the x-component of the angular momentum, but the expression for the angular momentum when it is
aligned with the x-axis. This is illustrated by the fact that if we call R the rotation around the z-axis that rotates ex
to ey, then L̂y = RL̂xR

−1. Hence L̂y is just the same Lie derivative as L̂x but in another direction, i.e. for another

one-parameter set. Furthermore, one can associate an uncertainty relation with the fact that L̂x and L̂y do not com-

mute. But as said, L̂x and L̂y are just part of the representation theory of the rotation group and there is absolutely no
uncertainty in Euclidean geometry. In summary, the whole algebra belongs just to the theory of the representations of
the rotation group in Euclidean geometry and as such to classical mechanics. Hence, even though we are as physicists
introduced to the conceptual world of non-commuting operators and Lie groups by quantum mechanics, this world
is not “quantum-mechanical” in the sense of non-classical. And to teach us these mathematics, our best guide may
perhaps not be a quantum guru.

• Our second argument is another way of showing that the contents of our objection are vindicated by quantum
mechanics itself. It is based on one of the ways one calculates probabilities in quantum mechanics. In fact, what one
does is set up a Schrödinger equation, solve it to find the wave function ψ and then stipulate p = |ψ|2, according to
the Born rule (which is not non-classical as we will discuss in Section 4). It must be mathematically obvious that one
can in general not assume that the solution ψ1 of a first Schrödinger equation will be equal to the solution ψ2 of a
second different Schrödinger equation. One can therefore in general not carry over probabilities that are valid for one
set-up to another set-up. But this is exactly what the ansatz of a common probability distribution for the four different
correlation experiments does. Of course this argument is completely equivalent to the first one. We just discover it
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here in a different guise.

• A third argument which one may consider as more classical (see below) because it does not depend on the Born
rule is that the definition of a probability depends on a full context and a protocol as one discovers by the paradox
of Bertrand. One can connect this to the previous arguments. When we solve a Schrödinger equation, we take into
account the necessity of outlining the full context by coding it into the boundary conditions, perhaps even unwittingly.
It is well known that solutions of a Dirichlet problem can heavily depend on the boundary conditions. This may be
used to illustrate the profound impact boundary conditions may have. This third argument illustrates perhaps further
the fact that the first two arguments are not quantum mechanical, but purely classical. What would not be classical
is Bohr’s overinterpretation, but we can appreciate now that this is wrong.

• The three arguments given up to now recollect what we already developed in [2]. A fourth argument consists in
referring to Gleason’s theorem which is obviously purely mathematical (and also does not depend on the Born rule).
But this is of course very similar to the previous arguments. We list these four arguments as different arguments only
because they might look different at first sight. When there is a hard nut to be cracked in order to solve a mathematical
problem, one will forcedly hit it whatever the road one takes in trying to solve the problem. Call it a conservation law
for hard nuts. By changing the approach we may only discover the hard nut in a different guise.

In summary, we have been aware of this kind of objections for a long time but they have been overlooked in deriving
the inequalities, perhaps because it was considered that the objections were quantum mechanical and not classical
such that one should not consider them in something that was supposed to represent classical thinking as opposed to
quantum mechanical thinking! But what is here associated with classical thinking is only poor mathematical thinking
based on “physical intuition” applied to problems that are purely mathematical! What is wrong and pollutes the
whole debate are the overinterpretations of the mathematics the Copenhagen interpretation is teeming with and are
supposed to define “quantum intuition”.

We must now take on a further element of intuition which is wrong. We must become aware of the fact that the
Copenhagen interpretation has brainwashed us with the idea that wrong intuition corresponds to classical mechanics
and the correct approach to quantum mechanics. The reader may have the intuition that it should be possible to
enlarge the sets Vjk to a set V in such a way that p will engulf all probabilities pjk. That intuition is contradicted by
what we pointed out above. In trying to follow that intuition and to define a common distribution function p one will
run into all kinds of difficulties, which is normal because they are there to prevent us from deriving a contradiction
from the mathematics. But as physicists we have been taught to take our strides with mathematical rigor, such that
we are prone to make some booby traps go off. Very often we get away with our lack of rigor, but not this time. This
time we have paid very dearly.

It is obvious that if we turn a polarizer, we turn a distribution of molecules. If one believes in hidden variables,
then this distribution of molecules must be part of the hidden variables. Extending generously the set V to allow
for all possible angles would render p a function of an infinite set of variables. Defining p may require the axiom of
choice, which is responsible for the Banach-Tarski paradox. It would also render the statistical weight of a single angle
zero. What one can do in physics to avoid the zero probabilities is to select a polarizer angle a by introducing a delta
measure δa. But the derivation given above is based on functions, not on distributions. To circumvent this problem,
one can introduce test functions Tu that in the sense of distributions converge to δa. An example is Tu, with u ∈ ]0, 1[:

Tu(x) =







1

2u
∀x ∈ [−u, u]

0 ∀x 6∈ [−u, u]
⇒ lim

u→+0

∫ +∞

−∞

f(x)Tu(x) dx = f(0), lim
u→+0

Tu ❀ δ0 (9)

But how do we accomodate these test functions into the derivation given above? One cannot include the test functions
for δaj

and δbk into p else we will fall back onto the original pjk. We may note in passing that the selection of an angle
is actually not a probability. We are thus forced to consider Tu(x) as outcomes of events. But the test functions cannot
be considered as outcomes of events because they do not belong to F (V, S), such that the inequality in Eq. 2 will no
longer be granted. In the limit procedure the test functions even take arbitrarily large values as limu→0+ Tu(0) = ∞.
The repair procedure does thus not fit into the scheme for the derivation outlined above. Its putative proof is not
covered by the derivation and remains to be found. As explained above, quantum mechanics and other arguments
indicate that the putative proof will just not exist. Other scenarios must therefore lead to similar problems, because
there is also a conservation law for mathematical no-go theorems. We would finally like to point out that the angle
αj − βk is non-locally defined, without any need for signalling and without any violation of relativity, such that this
non-locality is not an issue [2]!
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4 The Born rule

We may think that the Born rule is eminently non-classical. But the Born rule is an unavoidable consequence of the
fact that vectors and four-vectors are “quadratic” rank-2 expressions in terms of spinors in the Lorentz group and
in the rotation group [5]. It is just group theory. Let us give the reader some feeling for this idea. For the idea that
the unit vectors ex, ey and ez of R3 are quadratic expressions of the spinors of the rotation group SU(2), we refer
the reader to reference [5], more specifically to Eqs. 30-32 in this working document. These equations tell us that for
ex = (x1, y1, z1), ey = (x2, y2, z2), ez = (x3, y3, z3), we have:

x1 = 1

2
(ξ20 − ξ21 + ξ∗20 − ξ∗21 ), y1 = ı

2
(ξ20 + ξ21 − ξ∗20 − ξ∗21 ), z1 = −(ξ0ξ1 + ξ∗0ξ

∗
1),

x2 = ı
2
(−ξ20 + ξ21 + ξ∗20 − ξ∗21 ), y2 = 1

2
(ξ20 + ξ21 + ξ∗20 + ξ∗21 ), z2 = (ξ0ξ1 − ξ∗0ξ

∗
1 ),

x3 = ξ0ξ
∗
1 + ξ∗0ξ1, y3 = ı(ξ0ξ

∗
1 − ξ∗0ξ1), z3 = ξ0ξ

∗
0 − ξ1ξ

∗
1 .

(10)

By covariance, any vector r ∈ R3 is a quadratic expression in terms of spinors. To generalize Eq. 10 to vectors r
that are not unit vectors, we must use generalized spinors ψ =

√
r ξ. This can be generalized to Minkowski space-

time. The four basis vectors of Minkowki space time are quadratic expressions of Lorentz spinors, and four-vectors in
general quadratic expressions of spinors. The reader can get a feeling for this generalization from reference [5] where
we generalize the results for the rotation group in R3 to rotation groups in Rn.

We know from relativity that charge and current density ρ and j are part of a charge-current density four-vector
(cρ, j) for electric charges. A probability density is part of an anologous four-vector for “probability charges”. We can
call this the probability charge-current density four-vector. To stress the analogy, we will write this four-vector in what
follows also as (cρ, j), such that we will use both ρ and p to refer to the probability density.

In the representation SL(2,C) of the Lorentz group a four-vector (cρ, j) is expressed as cρ1+ j·σ (see e.g. reference
[1], Chapter 4). It transforms under Lorentz transformations L ∈ SL(2,C) according to:

cρ1+ j·σ =

[

cρ+ jz jx − ıjy
jx + ıjy cρ− jz

]

→ L

[

cρ+ jz jx − ıjy
jx + ıjy cρ− jz

]

L† (11)

Four-vectors are bilinear covariants, i.e. quadratic expressions in terms of spinors, which transform linearly: ξ → Lξ

under Lorentz transformations. The quadratic transformation law Eq. 11 is just another manifestation of the fact that
four-vectors are quadratic expressions of spinors. One therefore often states that a spinor is the “square root of a
vector”.

The ultimate non-relativistic limit corresponds to v = 0. We have then j = 0 and L becomes a rotation R0, as the
Lorentz group reduces to the rotation group SU(2), which is embedded within SL(2,C). The four-vector reduces then
to a scalar, because it becomes (cρ,0). For probability charges this scalar has to be positive-definite and of degree 2
in terms of a spinor ξ, because, as said, four-vectors are quadratic expressions of spinors. The most simple quadratic
expression for such a positive-definite scalar that comes to one’s mind is p [ ξ†ξ ]. Here:

ξ =

[

ξ0
ξ1

]

, (12)

is the spinor corresponding to the SU(2) rotation matrix:

R0 =

[

ξ0 −ξ∗1
ξ1 ξ∗0

]

. (13)

We have then ψ =
√
p ξ, and p = ψ†ψ. Well, to be quite honest, the solution is not unique. We could actually also

propose L†ψ†ψL, for some L ∈ SL(2,C), but this would only correspond to a change of basis: ψ → Lψ by a group
transformation. The argument given here is only a sketch of what would be a mathematically complete and rigorous
derivation. The full derivation within the context of the Lorentz group would be quite involved and represent several
pages of tedious algebra. But we think the idea is already clear from this. In fact, it seems obvious that there is no
other alternative when we ask for a quadratic expression of ψ that should be positive-definite. What the expression
should be for v 6= 0 must forcedly be a generalization of this concept. The wave function ψ is thus a spinor field,
that takes the values ψ(r, t). The derivation above is valid within the context of the Schrödinger equation, where we
neglect the relativistic effects of boosts. In a moving frame, we would have ρ → γρ, but as γ ≈ 1, its expression will
not change in a non-relativistic context. We will only have also a current density j 6= 0 when v 6= 0.

In the Schrödinger equation we actually only treat the phase of ψ, considering the other components to be constant,
such that we can drop them tacitly from the formalism. In other words, we replace:
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ξ = eıϕ
[

1
0

]

→ ξ = eıϕ, ξ†ξ→ ξ∗ξ. (14)

such that ψ → ψ =
√
p eıϕ with p = ψ∗ψ. Within the Dirac theory, the definitions must be adjusted, but the

expressions always follow from group theory.
In quantum mechanics one shows that the probability charge-current four-vector obeys a continuity equation. The

expression for this continuity equation is fully covariant, because it is expressed in terms of the “scalar product” in
Minkowki space-time of the four-gradient and the probability charge-current four-vector. From this continuity equation
we can derive the Born rule by inductive reasoning. This may look more familiar and persuasive to a physicist. But
even if it resonates better, it is less rigorous and less all-encompassing than the deductive argument given here and
which is purely mathematical. In fact, the feeling among physicists would be that there is no watertight proof of
the Born rule, that the rule is highly plausible and that it has been confirmed by experiment. This is because they
have tried to derive the rule inductively using physical intuition, ignoring that the rule is a purely mathematical
result which can be proved deductively. It is the same story as with Bohr’s interpretations we denounced above. We
are not exaggerating when we say that the Copenhagen is teeming with ersatz physical pseudo-derivations of purely
mathematical facts. Many quantum paradoxes are just dreadful off-shoots of bogus “physical intuition” that has been
spilled all over the place. It is an absolute disaster as the debacle of the Bell inequalities painfully illustrates. Group
theory contains special little traits, like the use of automorphism groups [5], that are beyond physical guessing and
render it impermeable to layman intuition. The Born rule is thus pure group theory and pure classical mechanics.

Epilogue. We noted that we could have stopped our rebuttal of the Bell inequalities at the end of Section 2. All
the additions are just forced upon us by physicists, who are not receptive to mathematical rigor, such that we are
forced to anticipate that they could pooh-pooh the objection in Section 2 despite the fact that it is a completely
pertinent, terrible blow to the derivation of the Bell inequalities. Because the algebra agrees with experimental data,
they fail to conceive that their textbook dogma could be wrong. But that the algebra is exact does not exclude that
the dogma with all its over-interpretations of that algebra could be wrong, turning their science into a religion. They
would scream blue murder that they do not understand quantum mechanics but schizophrenically reject papers out
of hand without reading them when they do not comply with that religion, the very religion they are complaining
about, the religion that is a conceptual swamp due to its over-interpretations of the algebra.
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