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Abstract. The Bell inequalities are based on a tacit assumption of a common probability distribution
that precludes their application to the experiments of Aspect et al. The basic ideas of this argument have
already been given in references [1,2], but the present presentation recollects them in a more clear and
concise way. The paper supersedes reference [3] which contains an error.

PACS. 03.65.-w Quantum Mechanics

1 The Bell inequalities and their application to the experiments of Aspect et al.

The subject matter of the Bell inequalities and the experiments of Aspect et al. hardly needs any introduction [4].
However, the argument has often been blurred by drawing in unnecessary issues, leading to some confusion. We
give here an elementary derivation that removes all unnecessary considerations. This will show how elementary the
argument is and how very hard it is to question the validity of the inequalities. We consider 4 variables a1 ∈ S, a2 ∈ S,
b1 ∈ S, b2 ∈ S, where S = {0, 1}. The idea is that 0 correponds to absorption in a polarizer, and 1 to transmission.
aj will correspond to polarizer settings in one arm of the set-up, bk to polarizer settings in the other arm. There are
thus 16 possible combinations for the values of (a1, a2, b1, b2). By making a table of these 16 combinations it is easy
to verify that we always have:

∀(a1, a2, b1, b2) ∈ S4 : Q = a1b1 − a1b2 − a2b1 − a2b2 + a2 + b2 ∈ S. (1)

We consider now functions aj ∈ F (V, S) and bk ∈ F (V, S). The notation means that the domain of the functions is
V , while the functions take their values in S. Here V is a set of relevant variables for the experiment. We can call the
set V the set of hidden variables, even if some of them may not really be hidden. One can imagine that V could be a
subset of a vector space R

n or of a manifold, e.g. a non-abelian Lie group like SO(3). We have then:

∀λ ∈ V : 0 ≤ Q(λ) = a1(λ)b1(λ) − a1(λ)b2(λ)− a2(λ)b1(λ) − a2(λ)b2(λ) + a2(λ) + b2(λ) ≤ 1. (2)

We can now consider a probability density p over V , i.e. p(λ) dλ. The function p belongs then to the set of functions
F (V, [0,∞[) with domain V and values in [0,∞[. We further require that

∫

V
p(λ)dλ = 1. We can now integrate Eq. 2

with p over V . Introducing the notations:

p(αj ∧ βk) =

∫

V

aj(λ) bk(λ) p(λ) dλ, p(αj) =

∫

V

aj(λ) p(λ) dλ, p(βk) =

∫

V

bk(λ) p(λ) dλ, (3)

we obtain then:

0 ≤ p(α1 ∧ β1)− p(α1 ∧ β2)− p(α2 ∧ β1)− p(α2 ∧ β2) + p(α2) + p(β2) ≤ 1. (4)

This is the CHSH Bell inequality used in the experiments of Aspect et al. It is a purely mathematical identity and
does not depend on any physical considerations. The probalities are identified with the mathematical expressions for
the outcomes of the photon polarization experiments reported by Aspect et al.:

p(αj ∧ βk) =
1

2
cos2(αj − βk), p(αj) =

1

2
, p(βk) =

1

2
, (5)
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where αj and βk are the angles of the polarizer settings in the two arms of the experiment. According to quantum
theory the mathematical expressions are the limits of the measured probabilities when the number of registered events
tends to infinity, i.e. when the statistics become perfect. For a function f ∈ F (N,R), the limit when n→ ∞ is defined
by:

lim
n→∞

f(n) = F ⇔ (∀ε > 0)(∃N ∈ N)(n > N ⇒ |f(x)− F | < ε). (6)

Here f(n) would be the measured probabilities after n detection events, F the theoretical expression 1

2
cos2(αj − βk),

and ε the statistical accuracy of the experiment required. An experimentalist has to worry about the statistical
precision (and also about instrumental precision). For practical reasons the experimentalist can only reach a reasonable
accuracy ε. But this should be well enough to establish beyond any reasonable doubt if the Bell inequality is satisfied
or otherwise. We will adopt a mathematicians viewpoint and assume that the expressions 1

2
cos2(αj − βk) are exact,

trusting that at least in principle the experimentalist could prove this to any accuracy ε, by improving the statistics.
We introduce thus the assumption (or the act of faith) that the algebra of quantum mechanics is exact. For certain
values of (α1, α2, β1, β2) ∈ [0, 2π]4, the expressions in Eq. 5 do not satisfy the inequality in Eq. 4. This violation of the
Bell inequality shows that the mathematical expressions in Eq. 5 are not compatible with Eq. 4. This seems to confirm
Bohr’s thesis that the polarizations cannot exist prior to a measurement and must be created by the measurement.
But it is then extremely puzzling that we can obtain a definite correlation 1

2
cos2(αj − βk) because the polarizers can

be separated by arbirarily large distances. It looks like the spooky action at a distance Einstein talked about and
which has been called entanglement in the aftermath of the experiments. In the experiments of Aspect this issue is
tested by ensuring Einstein separation of the detection events in both arms. The solution of this conundrum is in our
opinion summarized in the last sentence of our paper.

2 The tacit assumption

The derivation of the inequality looks unassailable. It is indeed ought to be too simple to possibly hide a logical
loophole. But it does! What is not acknowledged is that it contains a tacit assumption, namely that all four quantities
1

2
cos2(αj − βk) can be obtained from an integration over some set V with a same common distribution function p.

However, it can a priori not be excluded that in reality we can only obtain the quantities 1

2
cos2(αj−βk) from different

distributions pjk according to:

1

2
cos2(αj − βk) =

∫

V

aj(λ) bk(λ) pjk(λ) dλ (7)

rather than:

∃! p ∈ F (V, S) ‖ ∀(j, k) ∈ {1, 2}2 :
1

2
cos2(αj − βk) =

∫

V

aj(λ) bk(λ) p(λ) dλ. (8)

In other words, it is tacitly assumed that the quantities 1

2
cos2(αj − βk) can all be obtained from one single common

distribution function p rather than from different distributions pjk. In view of the importance of the subject matter,
one may ask for an existence proof of such a unique function p. For a mathematician the need of such a proof would
be imperative. But a physicist, who might have taken the assumption for self-evident, may consider the request as
futile and faultfinding nitpicking. It would be an ordeal, because such a proof looks completely beyond reach. Perhaps
one can get from this a sense of what a frustrating task it was to try to spot the error in the derivation of the Bell
inequalities, for people who were upset by their implications. It also looked an unsuperable task, especially because
we have no good understanding of how quantum mechanics works.

3 Discussion

It is not my task to prove that assumption Eq. 8 is wrong. That would be a reversal of the charge of proof. All charge
of proof is with the authors who proposed the Bell inequalities. I could stop here. However, I think it will be a more
reasonable attitude to try to provide some arguments why my objection may not be as farfetched as it may seem.
These arguments may look like a blend of physics and mathematics, but on close inspection they are all mathematical.

• Our first argument is that the contents of our objection are vindicated by quantum mechanics itself. If one wanted
to claim they are wrong, one would thus have to claim that quantum mechanics is wrong. This argument will lead us
straight into the heart of the Bohr-Einstein debate. The starting point of this debate was that when two operators do
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not commute, they will not have common eigenvectors. This is a purely mathematical truth. An example of this are
L̂x and L̂y. According to Bohr the quantities Lx and Ly do then not exist simultaneously. Einstein wanted to prove
that this cannot be true and proposed the EPR experiment for two correlated photons, whereby one would measure
Lx for one of the photons at r1 in one arm of the set-up, and Ly for the other photon at r2 = −r1 in the other arm of
the set-up. This would then demonstrate that Bohr was wrong. We know now that such a simultaneous measurement
is indeed possible, because L̂x(r1) and L̂y(r2) do commute when r1 6= r2. It is only when r1 = r2 that the operators
do not commute, with all the consequences non-commutativity may entail. In a sense, Einstain addressed thus the
wrong issue, because he no longer addressed operators that were not commuting, but he had been sidetracked by an
overinterpretation of the mathematics introduced by Bohr.

We may in fact note that we discover here that the mathematical consequence of the fact that L̂x and L̂y do
not commute is not that Lx and Ly would not exist simultaneously as Bohr claimed, but that they do not have a
common probability distribution function. Very obviously Lx and Ly can also not be measured simultaneously in
a same location. The difference with what Bohr said may look perhaps subtle but it is very important, because it
implies that Bohr has overinterpreted the mathematics. The whole issue is actually a matter that is not at all subject to
interpretation, because it is just all pure mathematics. It is the mathematics of the rotation group. These mathematics

provide the full explanation about what is going on with the operators L̂x and L̂y and their eigenfunctions. Bohr
presumably did not know this group theory. Using his physical intuition he cooked up a parallel theory by guessing
an ad hoc explanation. But physical intuition and mathematical intuition are different things. His parallel theory was
at variance with the correct mathematics. It was therefore plain wrong, but nobody knew at that time that group
theory was at stake and nobody noticed. Nobody should be blamed for this. Bohr then went on pushing his ideas
forcefully. Our rebuttal of the Bell inequality pinpoints his overinterpretation very accuractely. Bohr had a clash with
Heisenberg over a very similar overinterpretation in a discussion about the uncertainty relations, which are also tied
up with non-commuting operators.

Einstein reasoned on the overinterpretation provided to him by Bohr and was thus right with his intuition that
this overinterpretation had to be wrong. We must further point out that the correct interpretation of the consequences
of the fact that L̂x and L̂y do not commute is completely classical. The operators L̂x and L̂y exist in the group theory

of the rotation group, which is mere Euclidean geometry. Up to a number of proportionality constants L̂z corresponds
to ∂

∂φ
in polar coordinates. The operators L̂j serve thus to calculate Lie derivatives in three mutually orthogonal

directions. They are used to constitute a basis for the tangent space to the group at the identity element as they
intervene in the calculation of the infinitesimal generators and of the elements of the Lie algebra. The fact that L̂x

and L̂y do not have common eigenfunctions only means that a rotation around the x-axis cannot simultaneously be a

rotation around the y-axis (see [1]). Furthermore, one can associate an uncertainty relation with the fact that L̂x and

L̂y do not commute. But as said, L̂x and L̂y are just part of the representation theory of the rotation group and there
is absolutely no uncertainty in Euclidean geometry. In summary, the whole algebra belongs just to the theory of the
representations of the rotation group in Euclidean geometry and as such to classical mechanics. Hence, even though
we are as physicists introduced to the conceptual world of non-commuting operators and Lie groups by quantum
mechanics, this world is not quantum mechanical. And to teach us these mathematics, our best guide may perhaps
not be a quantum buff.

• Our second argument is another way of showing that the contents of our objection are vindicated by quantum
mechanics itself. It is based on one of the ways one calculates probabilities in quantum mechanics. In fact, what one
does is set up a Schrödinger equation, solve it to find the wave function ψ and then stipulate p = |ψ|2. It must be
mathematically obvious that one can in general not assume that the solution ψ1 of a first Schrödinger equation will be
equal to the solution ψ2 of a second different Schrödinger equation. One can therefore in general not carry over prob-
abilities that are valid for one set-up to another set-up. But this is exactly what the ansatz of a common probability
distribution for the four different correlation experiments does. Of course this argument is completely equivalent to
the first one. We just discover it here in a different guise.

• A third, more classical argument is that the definition of a probability depends on a full context and a protocol as one
discovers by the paradox of Bertrand. One can connect this to the previous arguments. When we solve a Schrödinger
equation, we take into account the necessity of outlining the full context by coding it into the boundary conditions,
perhaps even unwittingly. It is well known that solutions of a Dirichlet problem can heavily depend on the boundary
conditions. This third argument illustrates perhaps further the fact that the first two arguments are not quantum
mechanical, but purely classical. What would not be classical is Bohr’s overinterpretation, but we can appreciate now
that this is wrong.

• The three arguments given up to now recollect what we already developed in [2]. A fourth argument consists in
referring to Gleason’s theorem which is obviously purely mathematical. But this is of course also ultimately related to
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the previous arguments. We list these four arguments as different arguments only because they might look different
at first sight. When there is a hard nut to be cracked in order to solve a mathematical problem, one will forcedly hit
it whatever the road one takes in trying to solve the problem. Call it a conservation law for hard nuts. By changing
the approach we may only discover the hard nut in a different guise.

In summary, we have been aware of this kind of objections for a long time but they have been overlooked in deriving
the inequalities, perhaps because it was considered that the objections were quantum mechanical and not classical
such that one should not consider them in something that was supposed to represent classical thinking as opposed to
quantum mechanical thinking! But what is here associated with classical thinking is only poor mathematical thinking
based on “physical intuition” applied to problems that are purely mathematical! What is wrong and pollutes the
whole debate are the overinterpretations of the mathematics the Copenhagen interpretation is teeming with and are
supposed to define “quantum intuition”.

We must now take on a further element of intuition which is wrong. We must become aware of the fact that the
Copenhagen interpretation has brainwashed us with the idea that wrong intuition corresponds to classical mechanics
and the correct approach to quantum mechanics. The reader may have the intuition that it should be possible to
enlarge the set V in such a way that p will engulf all probabilities pjk. That intuition is contradicted by what we
pointed out above. In trying to follow that intuition and to define a common distribution function p one will run into
all kinds of difficulties, which is normal because they are there to prevent us from deriving a contradiction from the
mathematics. But as physicists we have been taught to take our strides with mathematical rigor, such that we are
prone to make some booby traps go off. Very often we get away with our lack of rigor, but not this time. This time
we have paid very dearly.

It is obvious that if we turn a polarizer, we turn a distribution of molecules. If one believes in hidden variables,
then this distribution of molecules must be part of the hidden variables. Extending generously the set V to allow
for all possible angles would render p a function of an infinite set of variables. Defining p may require the axiom of
choice, which is responsible for the Banach-Tarski paradox. It would also render the statistical weight of a single angle
zero. What one can do in physics to avoid the zero probabilities is to select a polarizer angle a by introducing a delta
measure δa. But the derivation given above is based on functions, not on distributions. To circumvent this problem,
one can introduce test functions Tu that in the sense of distributions converge to δa. An example is Tu, with u ∈ ]0, 1[:

Tu(x) =







1

2u
∀x ∈ [−u, u]

0 ∀x 6∈ [−u, u]
⇒ lim

u→+0

∫ +∞

−∞

f(x)Tu(x) dx = f(0), lim
u→+0

Tu ❀ δ0 (9)

But how do we accomodate these test functions into the derivation given above? One cannot include the test functions
for δaj

and δbk into p else we will fall back onto the original pjk. We may note in passing that the selection of an angle
is actually not a probability. We are thus forced to consider Tu(x) as outcomes of events. But the test functions cannot
be considered as outcomes of events because they do not belong to F (V, S), such that the inequality in Eq. 2 will no
longer be granted. In the limit procedure the test functions even take arbitrarily large values as limu→0+ Tu(0) = ∞.
The reparation procedure does thus not fit into the scheme for the derivation outlined above. Its putative proof is
not covered by the derivation and remains to be found. As explained above, quantum mechanics and other arguments
indicate that the putative proof will just not exist. Other scenarios must therefore lead to similar problems, because
there is also a conservation law for mathematical no-go theorems. We would finally like to point out that the angle
αj − βk is non-locally defined, without any need for signalling and without any violation of relativity, such that this
non-locality is not an issue [2]!
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