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A B S T R A C T

Coupons of carbon steel were corroded in situ in anoxic clay porewater under slightly alkaline conditions.
Sample damage was less than 1 μm for 9 months at 85 °C only, and corrosion interfaces were covered by a thin,
protective layer of Fe-silicate. The damage was more significant for samples exposed to room temperature
transients (up to 38 μm for two years), and the long-term surface differentiated in cathodic (Fe-silicate covered)
areas and anodic crevices filled with siderite, chukanovite, β-Fe2(OH)3Cl, and covered by tubercles. Sulfide
compounds were detected, and were related to the metabolism of sulfate-reducing prokaryotes detected by
microbiological techniques.

1. Introduction

High-level nuclear waste (HLW) is a legacy of the use of nuclear
power for peaceful or military purposes, and must now be properly
disposed of to shield the future generations from its harmful effects.
Over the years, consensus has emerged to consider disposal in deep
underground repositories as the safest solution [1–3]. For example, the
French project called CIGEO (for “Centre Industriel de stockage GEO-
logique”) has been articulated along the setup of several engineering
and natural barriers, mitigating the migration and transfer of radio-
nuclides at the Earth surface. Thus, HLW as a nuclear glass cooled in
stainless steel containers would be encapsulated in low-alloy carbon
steel (C-steel) overpacks and introduced in C-steel casings within hor-
izontal microtunnels drilled in the Callovo-Oxfordian (COx) clay of the
Paris Basin [4,5]. The casing would allow the nuclear waste to be re-
trieved from the repository, should new technologies of nuclear waste
handling be developed in the future. In 2005, the design involved the
presence of voids between the overpack and the casing and between the
casing and the clay formation. These voids were to be gradually refilled
by porewater seeping from the clay formation, leading to corrosion of
casings and overpacks in successively distinct environments (i.e. in
contact with clay, porewater, or vapour phase at equilibrium with

porewater). Under such conditions, general corrosion is expected to
predominate over long term for C-steel [6–10], however, pitting could
not be entirely ruled out, even though pits would remain metastable
and tend to close up [7]. Hence considerations on the long-term in-
tegrity of the HLW disposal have motivated a dedicated research effort
on the corrosion of C-steel under repository conditions.

Important insight into the long-term behaviour of C-steels in rock
environments has been obtained from the research work led by the oil
and gas industry [11,12]. This knowledge has been complemented by
several specific studies devoted to understand the synergy between
steel corrosion and matrix alteration in clay or clay materials [13–33].
The results of these studies have been fed into models based on a
geochemical approach to improve the long-term understanding of these
corrosion systems [34–39]. As a complementary approach, character-
ization of archaeological artifacts have been implemented to identify
corrosion mechanisms and products of likely preponderance over
timescales inaccessible to laboratory experiments or modern industry
(e.g. [40–50]). To consolidate this body of knowledge, the French
Agency for the Management of Nuclear Waste (Andra) has designed an
in situ experiment in the COx claystone. In this experiment, C-steel
coupons were in contact at 85 °C with water seeping from clay in a test
chamber under monitored and nominally reducing physico-chemical
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conditions (pH, Eh, water and gas composition). Periodically, sets of
coupons were retrieved for gravimetric assessment of corrosion rates,
and, for some of them, replaced by new sets. Analysis of the borehole
water revealed the occurrence of a pH transient attributed to oxidation
of the COx claystone after borehole drilling and before installation of
the test chamber [51]. These acidic conditions were invoked to explain
high rates of corrosion (up to 200 μm/a) observed for coupons initially
present in the test chamber [51,52]. The present study focuses on
coupons introduced in the test chamber after the acidic transient, when
the pH was back to basic values. Macroscopic measurements and mi-
croscopic characterizations were performed to unravel the relationship
between corrosion rates and the nature of Corrosion Products (CPs).

2. Material and methods

2.1. Nature of C-steel samples

Corrosion experiments were performed on coupons
(23× 16×2mm3) of A37, SA516 and P235 grade C-steel, and from a
P235 welded zone (P235s; the weld zone being in the middle of the
coupon) [51]. Metallurgical analysis showed that coupons of plain C-
steel exhibit a ferrite-pearlite microstructure with pearlite bands either
parallel or perpendicular to the smallest surface, and ferrite grains of
about 20–30 μm. The welded zone of the P235s sample displayed a
martensitic microstructure with grain diameters up to 300 μm. These
coupons were positioned on a rod-shaped, PEEK-made sample holder.

2.2. Experimental setup and physico-chemical monitoring

The “MCO” (for “Materials Corrosion”) experimental setup has been
described elsewhere [51]. Briefly, in situ corrosion was performed in a
test chamber at the bottom of a vertical descending borehole in the COx
claystone of the French Underground Laboratory (Bure). The test
chamber was initially half-filled with a synthetic clay porewater which
was gradually replaced by water seeping from the clay formation
during the experiment. The test chamber was connected to cabinets
located in the gallery of the laboratory by a series of stainless steel (SS)
lines for heating of the test chamber, on-line monitoring, and periodic
sampling of the fluids. Temperature, pH, oxidoreduction potential (Eh),
conductivity (Ec) and gas/liquid flowrates were continuously mon-
itored by appropriate sensors. The total pressure was also monitored in
situ by a sensor located at the bottom of the test chamber.

Periodically, borehole water and gas were sampled in 316 SS gas-
tight vials for analysis of pH, alkalinity, and composition. The con-
centration of dissolved Li+ ([Li]aq), Na+ ([Na]aq), K+ ([Mg]aq), Mg2+

([Mg]aq) and Ca2+ ([Ca]aq) were analysed by a Dionex ion chromato-
graph using an IonPac CG 12 A, 4×50mm guard column and a CS
12 A, 4× 250mm analytical column. The concentrations of dissolved
Cl− ([Cl]aq), SO4

2− ([SO4]aq), S2O3
2− and acetate were analysed by a

Dionex ion chromatograph ICS 1500 using an IonPac AG 22,
4× 50mm guard column and a AS 22, 4× 250mm analytical column.
NH4

+ and total sulfide (H2S, S2−, HS−) were analysed photometrically.
Dissolved Si ([Si]aq), Cr, and Fe ([Fe]aq) were analysed by inductively
coupled plasma mass spectrometry. The composition of the gas samples

was determined using a Shimadzu GC17A gas chromatograph equipped
with two capillary columns. A Swagelock system allowed a rapid and
direct connection of the sample cells with the evacuated inlet system of
the gas chromatograph (8 Port Dual External Sample Injector, Valco
Europe) without contact with atmosphere.

2.3. Corrosion experiment

For the corrosion experiments, coupons-carrying rods were inserted
in the test chamber. The samples from the rod lower level were bathed
by the seeping porewater. An initial set of seven rods (‘Series 1’) was
introduced at t0, and kept at ambient temperature for 77 days. The
borehole temperature was then ramped up to a plateau of 85 °C (at-
tained at t0+ 193 days). Rods were recovered after various reaction
times. Some of the empty slots were then filled with new rods, first at
t2= t0+ 643 days (“Series 2”) and then at t3= t0+ 1035 days (“Series
3”). The coupons investigated in this article are from “Series 2” and
“Series 3” rods (Table 1). Two heating failures occurred from t0+ 709
to t0+ 792 days, and again from t0+ 1432 to t0+ 1539 days. Rods
“Series 3-Rod 1” and “Series 3-Rod 2” were reacted at 85 °C only,
whereas the other rods were also partially corroded at 25 °C.

Recovered rods were disassembled in a glove box. Some C-steel
coupons were swabbed for microbial analysis, and then all coupons
were rinsed with ethanol and dried to prevent post-oxidation. Some
coupons were heat-sealed in aluminium bags and shipped for micro-
structural characterization [51]. Gravimetric measurements were per-
formed on the remaining coupons as previously detailed [51]. From
these measurements, the damaged thickness ecor (in μm), was calcu-
lated according to

= ▵ m
S ρ

e
.

,
Fe

cor
(1)

where S is the surface area, Δm is the weight loss, and ρFe is the iron
density (7.87 g cm−3). The time-averaged corrosion rate r is then cal-
culated as

=r e
t

,cor
(2)

where t is the full reaction time. Thus temporal fluctuations in corrosion
rates are smoothed out.

2.4. Microbial analysis

For microbiological characterisation, coupons (essentially SA516
grade) taken from the sample holder were immediately swabbed and
the swabs inserted into tubes containing a sterile, anaerobic solution
under non-growth conditions (neutral pH, saline conditions with a re-
ducing agent). Prior to characterization, the swabs were ultrasonically
treated to re-suspend and disperse microorganisms. Microbial analyses
were also performed on borehole water samples.

Total cell counting was performed by epifluorescence microscopy
using the SYBR green marker and an Olympus BH-2 microscope with
computer-controlled Lhesa 4036 camera. About 40 frames per sample
were taken, and processed using the Labview-based Micromar software.

Table 1
List of rods investigated in this study.

Rod Introduction time (days) Removal time (days) Reaction timea (days)

Series 2-Rod 1 t0+ 643 t0+ 748 104 days
Series 2-Rod 2 t0+ 643 t0+ 643 104 days
Series 2-Rod 3 t0+ 643 t0+ 643 104 days
Series 3-Rod 1 t0 +1035 t0+ 1169 134 days
Series 3-Rod 2 t0+ 1035 t0+ 13143 279 days
Series 3-Rod 3 t0+ 1035 t0+ 1783 748 days
Series 3-Rod 4 t0+ 1035 t0+ 1783 748 days
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For enumerations using the Most Probable Number (MPN) method
[53], microbial suspensions were distributed and diluted in distinct
media and incubated for seven weeks at temperatures of 30 and 60 °C
for mesophilic and thermophilic prokaryotes, respectively. Positive re-
actions were seen via turbidity, microscopic validation, acidification, or
darkening of the culture medium. The investigation focused on anae-
robic fermenting prokaryotes, strict aerobic prokaryotes, sulfate-redu-
cing prokaryotes (SRP) and thiosulfate-reducing prokaryotes (ThRP)
present per ml of solution or per cm2 of the coupon surface.

Prokaryote viability was assessed by flux cytometry (CytoFLEX,
Beckman Coulter) using SYBR Green and propidium iodide to detect
total and intact microorganisms, respectively. The method combines
the fluorescence signal from individual cells with analysis of light dif-
fusion at small angle and at 90°.

For phylogenetic analysis, DNA extraction was followed by 16s
rRNA amplification (V3 fragment) by Polymerase Chain Reaction
(PCR). The quantification of the total prokaryote content was per-
formed by quantitative PCR (qPCR) using UV-based DNA quantification
(NanoQuant technique) and Fluorescence-based DNA quantification
(Qubit technique). After extraction and amplification, the biodiversity
was studied using two molecular fingerprinting methods, based on
tracing the electrophoretic migration patterns of single-strand or
double-strand DNA. In the Single Strand Conformation Polymorphism
(SSCP) method, DNA was denatured as single strands and separated by
capillary electrophoresis using an automatic sequencer. Each SSCP
electrophoregram peak then corresponds to the contribution of at least
one species and the peak area reveals the species relative abundance. In
the Denaturing Gradient Gel Electrophoresis (DGGE) method, DNA
double strands were separated on a polyacrylamide gel. The major and
minor DGGE bands were later excised and amplified, then sequenced
for phylogenetic assignment.

2.5. Coupon preparation and microstructural characterization

Coupons of P235 and P235s steel were used for microstructural
characterization of sample surfaces and cross sections (Table 2). For
cross sections, coupons were embedded in epoxy resin (Epofix, Struers),
cut perpendicular to the smallest side, and polished to at final rough-
ness of 1 μm [52]. These operations were performed in a glove box
under N2 atmosphere to minimize oxidation during preparation.

For optical imaging and micro-Raman (μRaman) spectroscopy
(μRS), cross-sections were kept in airtight boxes with a 1mm thick glass
window. The corrosion interfaces were imaged with a Zeiss Imager
M2m microscope equipped with a CCD camera. μRaman spectra were
recorded on a LabRam HR spectrometer equipped with an Olympus
BX41 microscope and a 50× long-range objective. Lasers with wave-
lengths λ0 of 532 or 785 nm were used as excitation sources and power
outputs were kept at reasonably low values (∼500 μW/μm2) to limit
thermal degradation.

Scanning electron microscopy (SEM) was performed using a Field
Emission Gun (FEG) SEM apparatus (JEOL JSM7000-F) operated at
10 kV. Samples were brought to the microscope in an anoxic container,
and all subsequent transfers were performed quickly (less than 1min)

to minimize exposure to air. Surface images were collected in
Secondary Electron (SE) mode. Cross-sections were coated with a thin
carbon layer, and imaged in BackScattered Electron (BSE) mode with a
beam current of 2 nA. The trace of the coupon original surface was
identified as the line separating cementite-containing and cementite-
free CPs. Energy-Dispersive X-ray (EDX) spectra were collected on
Points of Interest (PI) using a silicon-drift detector (Bruker XFlash 5010)
equipped with a thin beryllium window, then corrected and quantified
[52]. Measured amounts are given in atomic percent (at.%), and, in the
text, they are rounded to two significant digits. Distribution maps of
selected chemical elements were recorded by continuous scanning of
the sample and cumulative recording of EDX signal on each pixel. Note
that high electron densities (e.g., Fe-rich areas) may locally lead to
higher X-ray backgrounds, thereby over-estimating the apparent con-
centration of light elements (Mg, Al, Si, S) on the maps. Micro X-ray
Diffraction (μXRD) was performed in transmission mode on 100 μm thin
sections held on Kapton® adhesive tapes and confined by a thin poly-
ethylene screen. X-rays from a rotating anode source (Mo Kα radiation)
were focused to 30×50 μm2 (vertical× horizontal) on the sample by a
Xenocs® FOX 2D MO 25_25P diffraction optic. Diffraction patterns were
collected with a 2D dimensional detector (GE Healthcare image plate)
and circularly integrated with the FIT2D software [54].

3. Results and interpretation

3.1. Physico-chemical evolution of the test chamber and the fluids

3.1.1. Temperature and pressure
At the time of Series 2 introduction (t0+ 643 days), the temperature

in the reaction chamber was stable and around 85 °C (Fig. 1a). After the
first breakdown of the heating system (t0+ 708 days), the temperature
dropped to 25 °C. After repair of the heating system, the temperature
was increased to 85 °C within a day, and remained stable until
t0+ 1432 days, the time of the second breakdown. Again the tem-
perature decreased asymptotically to 25 °C for 107 days. Temperature
was then restored at 85 °C (t0+ 1539 days) until the end of the ex-
periment.

The pressure in the test chamber was initially maintained at 3 bar,
but the first heating breakdown caused a tightness loss, and a decrease
in pressure down to slightly above 1 bar (Fig. 1b, PRE-01 sensor). The
tightness of the reaction chamber could not be restored, and so the
pressure remained slightly above 1 bar until the end of the experiment.
The water level in the test chamber was maintained at a constant level
by withdrawing water seeping from the host rock.

3.1.2. Borehole water composition
Ex situ chemical analyses recorded pH values of 7.36 at

t2= t0+ 643 days, 7.24 at t0+ 684 days and 7.22 at t0+ 847 days
(Fig. 2a). The measured pH then increased up to 9.36 at t0+ 1030 days.
Interestingly, part of this increase occurred when the test chamber did
not contain any coupon (between t0+ 923 and t0+ 1035 days). After
introduction of Series 3 (t3= t0+ 1035 days), the pH then steadily
decreased down to 7.96 at t0+ 1783 days, corresponding to

Table 2
List of samples investigated at the microscopic level.

Sample Rod Steel grade Introduction time (days) Removal time (days) Reaction timea (days)

A241 Series 2-Rod 1 P235 t0+643 t0+748 104 days
A261 Series 2-Rod 1 P235s t0+ 643 t0+643 104 days
A254 Series 3-Rod 1 P235 t0+1035 t0+1169 134 days
A274 Series 3-Rod 1 P235s t0+ 1035 t0+1169 134 days
A257 Series 3-Rod 2 P235 t0+1035 t0+1314 279 days
A277 Series 3-Rod 2 P235s t0+ 1035 t0+1314 279 days
A213 Series 3- Rod 4 P235 t0+1035 t0+1783 748 days
A260 Series 3-Rod 3 P235 t0+1035 t0+1783 748 days
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withdrawal time for Series 3 rods.
At t2, fully reducing conditions were established in the test chamber,

as evident from the masured Eh value near −100mV (data not shown).
These reducing conditions likely resulted from C-steel corrosion and
microorganism metabolism. At t0+ 680 days, the measured Eh sud-
denly increased up to +500mV/SHE, due to residual O2 present in
water sampling cells and diffusing to the Eh sensor. This residual O2

was promptly evacuated via the water outflow, and so never entered in
the borehole. Hence, this measured high value was not representative of
Eh in the test chamber. After the breakdown of the heating system at
t0+ 709 days and the resulting loss of gas tightness, the Eh readouts
were considered no longer reliable.

Solution analysis after t2 showed that [Fe]aq was low, between 0.05
and 3mg/L, i.e. 10−6 and 5× 10−5 mol/L (M) (Fig. 2b). Slight in-
creases in [Fe]aq were actually observed after t2 and t3, and may be
related to Fe2+ release by C-steel corrosion for the Series 2 and Series 3
coupons, respectively. The decrease observed between t0+ 845 days
and t3 coincides with the absence of C-steel in the test chamber, sug-
gesting progressive dilution of dissolved Fe by the inflow of borehole
water.

Anion analysis showed that ([Cl−]aq) decreased gradually to
2030mg/L (5.7×10−2 M) at t0+ 848 days, and then increased to
2520mg/L (7.2×10−2 M) at t0+ 1169 days (Fig. 2c). This is a pos-
sible consequence of the rising water level in the test chamber, en-
hancing leaching from the wall borehole and dissolution of salts pre-
cipitated during the drilling process. Indeed, [SO4]aq values followed a
similar trend, i.e. decrease to 1260mg/L (1.3× 10−2 M) at
t0+ 845 days followed by an increase up to 1930mg/L (2.1× 10−2 M)
at t0+ 1040 days. Both concentrations then decreased with longer re-
action time, suggesting progressive dilution. The [Na+]aq and [K+]aq
values also decreased to t0+ 848 days, increased to t0+ 1169 days,
and then decreased again. This evolution is anticorrelated with that of
[Ca2+]aq and [Mg2+]aq, which attained minimal values of 0.8 mg/L
(2× 10−5 M) and 3.5 mg/L (1.4× 10−4 M), respectively, at
t0+ 1314 days (Fig. 2d). The concentration of dissolved organic carbon

(DOC) globally followed the same trend as the two anions (Fig. 2c),
whereas Total Inorganic Carbon (TIC) fluctuated between 2.4 (re-
ference value) and 80×10−3 M. The higher TIC values coincided with
the pH increase. Finally, [Si]aq decreased almost monotonously from
t0+ 685 to t0+ 1035 days. It then increased to 6.5×10−4 M at
t0+ 1314 days, and finally slightly drifted to lower values with reaction
time.

3.1.3. Gas phase composition
Nitrogen remained the main gas in the test chamber, with a content

between 91 and 97 vol.%. Nitrogen was initially injected to reach an
overpressure of 3 bar, allowing water outflow. After the breakdown of
the heating system and the resulting partial loss in tightness, nitrogen
was injected again to sample water, thereby altering the composition of
the gas phase up to 1170 days. The second most important gas was CO2,
with a partial gas fraction close to 2–3 vol.% before the breakdown, and
increasing up to 6.6 vol.% after restauration of heating (Fig. 3). This
threefold increase actually corresponds to a constant CO2 partial pres-
sure (PCO2) of ∼0.066 bar, whatever the total pressure in the test
chamber. This value is near the lower end of the range expected for
deep clay aquifers at about 80 °C [55]. The late decrease (about 3 vol.%
at t0+ 1170 days) coincided with the increase in pH, and corresponds
to redissolution of gaseous CO2. In contrast, the H2S gas content sig-
nificantly and steadily increases after t0+ 684 days, a likely con-
sequence of SRP metabolism. The H2 partial pressure remained always
below 0.23 vol.% despite evidence for extensive corrosion of the C-steel
coupons. This is probably because H2 is highly volatile and can be easily
lost in the geologic formation, or be reduced by microorganisms. Little
oxygen (O2) was detected (< 0.08 vol.%), confirming that the test
chamber remained under (relatively) anoxic conditions. The little
amount detected could explain some residual bioactivity from aerobic
microorganisms.

Fig. 1. Evolution of temperature (a) and pressure (b) in the test chamber.
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3.2. Microbiological characterization

3.2.1. Microorganism enumeration
The surfaces of Series 2 (reaction time of 104 days) and Series 3

(reaction times of 134–748 days) coupons showed relatively negligible
prokaryote numbers (generally< 0.8 units/cm2; Table 3) compared to
prokaryote concentrations measured in the porewater (Table 4). This
suggests either that very few microorganisms are present in the CPs, or
that these microorganisms cannot be cultivated in the standard condi-
tions of MPN enumeration. In fact, it has been reported that micro-
organisms can strive on CPs or metal surfaces, but can have little affi-
nity for suspension conditions [56]. Series 1-Rods 6–7 coupons, which
were recovered after a reaction time of 870 days and between Series 2-
Rods 1–3 and Series 3-Rod 1, exhibited significantly higher surface
density of microorganisms (from 3000 to 10000 cultivable units/cm2

[51]. Higher densities of sulfurogen prokaryotes were also measured on
the Series 3-Rods 3–4 coupons.

The sessile and planktonic population are dominated by thermo-
philic SRP and ThRP developing at 60 °C (Table 4), a temperature below

Fig. 2. Chemical evolution of solutions in the test chamber during the periods of exposure for Series 2 and Series 3 rods. Lines are guides to the eye. (a) pH. (b) [Fe]aq, (c) [Cl] and [SO4].
(d) [Na]aq, [K]aq, [Ca]aq, and [Mg]aq. (e) DOC and TIC. (f) [Si]aq.

Fig. 3. Evolution of the gas phase composition in the test chamber.
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nominal conditions of the test chamber (85 °C). After t0+ 1035 days,
these populations gradually decrease. Interestingly, anaerobic (fer-
mentary) prokaryotes were also detected during the heating break-
down, as well as aerobic/facultative anaerobic prokaryotes. This could
result from the tightness loss of the test chamber, and from the DOC
increase. Also, both aerobic microorganisms and SRP are detected in
the porewater in contact with Series 3-Rod 2 samples, in contrast to the
near-absence of comparable populations at the CPs surfaces. The most
likely explanation is that CPs surfaces are occupied by consortia which
are recalcitrant to cultivation.

Total microorganism enumeration by epifluorescence microscopy
was performed only for the porewater sample collected at
t0+ 1314 days. A value of 1.6× 104 prokaryotes/mL was obtained, not
too far from the high number of aerobic prokaryotes detected by the
MPN method. This value is also within a factor of three from the total
density of planktonic prokaryotes measured by flux cytometry
(4.25×104 prokaryotes/mL). However, flux cytometry also revealed
that only 0.7% of these were living cells. This low fraction suggests that
microorganisms could have been harmed by changes in local condi-
tions, such as change in pH, or limited ingress of O2.

3.2.2. Biomolecular analyses of planktonic microorganisms
Molecular characterization of the porewater sample at

t0+ 1314 days has been performed to seek microbial strains not

revivable in the MPN media. Enumeration using qPCR resulted in
1.5 ± 0.3×104 Eubacteria/mL and 5.8 ± 0.2 Archaea/mL. The
amount of total prokaryotes compares well with the values obtained by
flux cytometry and fluorescence counting.

The bands obtained after migration on DGGE gel and the peaks
obtained by capillary electrophoresis–SSCP were reamplified by PCR
with 16S rDNA sequencing. Phylogenetic analysis identified the ream-
plicons as belonging to different prokaryote entities or operational
taxonomic units (OTUs). The results of identification of the major and
minor Eubacteria and Archaea obtained via PCR–DGGE cloning and
PCR–SSCP cloning are reported in Table 5. Both DGGE and SSCP
identified the three genera of Eubacteria as Pseudomonas (non-spore-
forming facultative anaerobe), Desulfotomaculum (spore-forming strict
anaerobe, sulfate-reducing), Pelotomaculum (non-spore-forming strict
anaerobe), and four different genera of methanogenic (non-spore-
forming strict anaerobes) Archaea, i.e. Methanolobus, Methano-
brevibacter, Methanosphaera and Methanococcus. DGGE also identified
one supplementary genus belonging to Eubacteria (Ferribacterium) and
five genera belonging to Archaea that were missed by SSCP.

Note that the genus Desulfotomaculum corresponds to SRP with
sporulation capabilities, hence able to withstand unfavorable condi-
tions (such as in the MCO experiment) during a significant amount of
time. The fact that methanogenic Archaea and spore-forming SRP were
identified only by molecular biology, but not specifically enumerated

Table 3
Results of microbiological analyses performed on samples reacted in the clay porewater.

Sample
Name

Steel 
grade

Removal time 
(days)

T
°C

microorganism population (units/ cm2)
SRP ThRB Aerobic 

prokaryotes
Anaerobic 

prokaryotes

Series 2-Rod 1 t0 + 748
A282 P275 60 2 68 7 7
A242 P235 60 7 68 7 7
A262 P235s 60 7 7 2 7
A284 SA 516 60 <2 7 <2 7

Series 2-Rod 2 t0 + 748
A285 P275 60 7 7 <2 7
Series 2-Rod 3
A289 P275 60 7 7 7 7

Series 3-Rod 1 t0 + 1169
A216 SA 516 60 <2 6 6 <2

Series 3-Rod-2 t0 + 1314
A296 P 275 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8
A256 P235 30 <0.8 <0.8 <0.8 <0.8

60 2.5 <0.8 <0.8 <0.8
A276 P235s 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8
A221 SA 516 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8
A223 SA 516 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8
A258 P235 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8
A222 SA 516 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8
A224 SA 516 30 <0.8 <0.8 <0.8 <0.8

60 <0.8 <0.8 <0.8 <0.8

Series 3-Rod-3 t0 + 1783
A298 P275 60 <1 14 <1 <1
A259 P235 60 <1 6 <1 <1
A278 P235s 60 <1 14 <1 <1
A226 SA 516 60 1.5 6 <1 <1

Series 3-Rod 4 t0 + 1783
A300 P275 60 <1 6 <1 <1
A211 P235 60 <1 6 <1 <1
A280 P235s 60 6 14 <1 <1
A212 SA 516 60 30 57 <1 <1

*Only 80% of the sample surface was swabbed.
*Only 10% of the sample surface was swabbed.
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by MPN demonstrates the complementarity of cultural and molecular
approaches to be closer to the full assessment of the microorganism
content in porewater. Also, molecular-based methodologies give access
to names of genera or species of microorganisms, but only with quali-
tative and semi-quantitative information, because of several biases
(during DNA extraction, amplification, choice of primers, and coloca-
tion of sequences, to name a few).

3.3. Corrosion processes

Two distinct corrosion behaviours were observed for the samples
corroded in the liquid phase (Fig. 4). For Series 3-Rods 1–2, ecor was
limited to less than 1 μm, except for one P235 sample (6.8 μm at
t3+ 279 days). In contrast, ecor for the Series 2-Rods 1–3 and Series 3-
Rods 3–4 coupons span the [4.7, 5.5] and [14.5, 38.3] μm ranges, re-
spectively. All the average rates of corrosion are lower than 19 μm/a,
but the discrepancy clearly suggests that changes in temperature affect
the corrosion rate. The microscopic origins for these discrepancies will
be examined now.

3.3.1. Macroscopic characterizations
Macroscopic views show that the surface of samples from Series 3-

Rods 1–2 is smooth and essentially covered with either light or dark

Table 4
Results of microbiological analyses performed on the porewater for distinct reaction times. Aliquots cultured at 60 °C.

Sample type Reaction time (days) Incubation T (°C) Prokaryote population (units/cm3)

SRP ThRP Aerobic prokaryotes Anaerobic prokaryotes

Porewater t0+ 748a 60 60 25 25 5×102

Series 2 waterb 60 25 2.5 2.5 2.5
Porewater t0+ 845c 60 110 70 2.5 <0.5
Porewater t0+ 923d 60 250 2.5 2.5 <0.5
Porewater t0+ 1035e 30 25 200 50 <0.5

60 25 2.5 0.9 <0.5
Porewater t0+ 1169f 60 2.5 2.5 < 0.5 <0.5
Porewater t0+ 1314g 30 < 0.5 < 0.5 6 <0.5

60 25 25 25 <0.5
Series 3-Rod 2 waterb 30 25 <0.5 6000 250

60 2.5 < 0.5 2500 <0.5
Porewater t0+ 1783h 30 2.5 25 2500 0.5

60 2.5 250 <0.5 <0.5
Series 3 −Rod 3 waterb 30 < 0.5 < 0.5 < 0.5 <0.5

60 2.5 200 <0.5 <0.5

a sample collected with Series 2-Rods 1–3, during the first heating breakdown.
b water present in the steel cover during coupon recovery.
c collected with Series 1-Rod 5 (see [51]).
d collected with Series 1-Rod 6–7 (see [51]).
e collected at the introduction of Series 3-Rods 1–4.
f collected with Series 3-Rod 1.
g collected with Series 3-Rod 2.
h collected with Series 3-Rod 3.

Table 5
List of genera and species identified by PCR-DGGE and PCR-SCCP in the porewater collected at t0+ 1314 days.
The numbers in brackets indicate the homology percent and the number of clones.
Prokaryote
type

PCR-DGGE/cloning PCR-SSCP/cloning

Major 
Eubacteria

Pseudomonas nitratoreducensa

Pseudomonas sp. or Ps. pseudoalcaligenesa

1 unidentified major OTUc

Pseudomonas stutzeria

Pelotomaculum sp. or P. isophtalicicumb

Minor 
Eubacteria

Ferribacterium limneticuma

Desulfotomaculum auripigmentuma

Pelotomaculum thermopropionicumb

Pelotomaculum schinckiia

Desulfotomaculum sp. or D. arcticumb

11 unidentified minor OTUc

Major 
Archaea

Uncultured thermophilic euryarchaeon Absence of peak after PCR

Minor 
Archaea

- Methanococcus aeolicusb

- Methanosphaera cuniculib

- Methanobrevibacter smithii or M. oralisb

- Methanolobus profundi 
or M. bombayensisb

Absence of peak after PCR

aOTU identified with a homology percent> to 97%.
bI OTU identified with a homology percent< to 97%.
cOTU not amplified.
In bold: OTU identified as the same genera both with the two techniques (DGGE & SSCP).

Fig. 4. Evolution of metal loss in the borehole water of the test chamber.
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greyish material (Fig. 5). Light-grey deposits are observed on the
coupon short ends, which are usually inserted in the sample holder. The
coupons from Series 2-Rods 1–3 also seem to be covered with a brown-
grey layer, except near the coupon short ends which are distinctively
black. In contrast, coupons from Series 3–Rods 3–4 are covered by red-
brown deposits, forming thin linear bulges at about 2–3mm from the
coupon short end (Fig. 5). The surface itself can also be covered by red-
brown bulges and tubercles. Thus ecor correlates with the amount of
surface deposits, which likely correspond to CPs.

Cross sections (Fig. 6) show that there is no corrosion indent, and
corrosion layers are not visible for shorter reaction times (A241 and
A261 coupons). In contrast, A213 (Series 3-Rod 3) and A260 (Series 3-
Rod 4) coupons display visible depressions, usually close to the ex-
tremities, suggesting heterogeneous corrosion. These corroded areas
coincide with the bulges and massive deposits. Away from these tu-
bercles, the C-steel surfaces seem smooth and free of thick CPs layers.
Microscopic analysis showed that these heterogeneities in local damage
are mirrored by distinct compositions of CPs.

3.3.2. Corrosion of samples series 3-rods 1–2 (reacted at 85 °C only)
The BSE images of cross-sections from Series 3-Rods 1–2 coupons

show that the metal surface is generally flat and covered by a very thin

CPs layer (Fig. 7). The absence of significant roughening of the metal-
CPs interface confirms that corrosion is quite limited, in agreement with
gravimetric results. The CPs layer is surprisingly thin (≤5 μm over most
of the interface). Chemical maps and EDX quantification (Table 6) in-
dicate that this layer is enriched in Mg, Si, and, to a lesser extent, Na.
For the A274 interface, local Na, Mg, Si and Fe contents amounted to
6.3–8.8, 2.8–4.7, 11.8–15, and 11–12 at.%, respectively, whereas the Al
content (≤0.7 at.%) was close to detection limit. The O content was
about 60 at.% for all PI, a value not far from that expected if all cations
were present as oxides, suggesting that the amount of hydroxide or
carbonate is limited. The (Mg+ Fe)/Si ratio is quite stable near
1.09–1.14, a value intermediate between TO dioctahedral and triocta-
hedral phyllosilicate (1.0 and 1.5, respectively). However, the layer also
contains a significant amount of Na (6.4–8.8 at.%). Sodium is known to
balance the permanent layer charge of TOT phyllosilicate [57], but TO
phyllosilicate do not have significant layer charge [58], Also, amounts
of detected O are significantly smaller than expected for TO phyllosi-
licate, for which four out of nine O atoms per unit cell correspond to
hydroxyl groups. This suggests the prevalence of TOT phyllosilicate,
with, perhaps, a small amount of TO polytypes.

The local composition of PI for sample A257 compares with A274
(Table 6). Again, Fe, Mg and Si contents result in (Fe+Mg)/Si ratios

Fig. 5. Macrograph of coupons reacted in the borehole water showing the apparent evolution of the corrosion facies.
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between 1.11 and 1.16, except for PI 2, a protruding grain, for which
this ratio equals 1.6 (possibly due to the presence of small amounts of
oxide). A fair amount of Na was also present, probably as a charge-
compensating cation in TOT phyllosilicate.

In conclusion, the free surface of samples reacted at 85 °C only is flat
and essentially covered by a thin layer of Fe silicate. No extended
corrosion occurred, consistent with the presence of a solid-state pro-
tective barrier.

3.3.3. Corrosion of series 2-rods 1–2 and series 3-rods 3–4
Cross-section from Series 2-Rods 1–3 and Series 3-Rods 3–4 coupons

reveal that the metal-CPs interfaces are significantly roughened (Fig. 8).
For slightly damaged areas, depressions of a few μm are observed, often
covered by CPs layers with thicknesses between 5 and 20 μm
(Fig. 8a–d). These layers have a loose structure, with vacancies and
fractures parallel and perpendicular to the corrosion interface, some-
times resulting in CPs flaking. Coupons from Series 3‐Rods 3–4 also
show depressions as deep as 200 μm, filled with CPs, and covered with
outer deposits locally as thick as about 1000 μm (Fig. 8e,f). These sig-
nificantly corroded areas correspond to the bulges and tubercles ob-
served on about 10% of the surface for samples A213 and A260. The
transitions between depressions and slightly damaged areas is sharp,
sometimes over distances shorter than a few μm (Fig. 8g,h).

Typical EDX chemical maps for Series 2-Rods 1–3 samples (reaction
time of 105 days) reveal some lateral variability in CPs chemical com-
position (Fig. 9). In some areas, the CPs layers are essentially made of O
and Fe (Fig. 9a), possibly with H and C which cannot be quantified by
EDX. Quantitative analysis yielded O and Fe contents of 55 and 33–34
at.%, respectively, for the innermost layer, and 51 and 38–39 at.% for
the outermost layer (Table 7, sample A261). This resulted in O/Fe ratio
between 1.29 (outer CPs) and 1.65 (inner CPs), suggesting the forma-
tion of Fe oxide such as magnetite (O/Fe=4/3) or hematite (O/

Fe=3.2). Magnetite was identified by μXRD (Fig. 10). The layer also
contained significant amounts of S (1.1–1.4 at.%), and, surprisingly, Na
(6.4–7.2 at.%). The high Na content could result from drying of residual
porewater, but this hypothesis is invalidated by the low Cl content
(< 0.4 at.%). Also, Na retention by TOT phyllosilicates can be ruled out
because of the low silicate content. The only other explanations are
either Na incorporation in a Fe solid phase, or precipitation as Na
(hydrogeno)carbonate.

In other areas, both the inner and other CPs are significantly more
enriched in O (62–65 at.%) and depleted in Fe (27–31 at.%), leading to
O/Fe ratios of 2/1 which are rather consistent with oxide/hydroxide
phases (Table 7, sample A241, PI 1–2 and 5–6). It can be noted that Si
content is also significant in the median and outer parts of the CPs layer
(Table 7, sample A241, PI 3–4), and S fairly abundant (from 1.8 to 3.7
at.%). The Fe/Si ratio in the median layer equals ∼1.5–1.7, a value
expected for Fe(II)-containing TO phyllosilicate. Note however that S
could be present in the layer as Fe sulfide, which would lower the
amount of Fe incorporated in other phases. Assuming the effective
presence of FeS, then the ratio of residual Fe over Si decreases to
1.2–1.5, intermediate between the values of TO trioctahedral and
dioctahedral phyllosilicate. Interestingly, the Na content in the CPs of
this area is lower than 1.1 at.%, a sixfold decrease compared to Si-poor
areas, confirming that Na in these layers is unrelated to the formation of
phyllosilicate. Overall, these results indicate that CPs are essentially
made of Fe (hydr)oxide, and, locally, Fe silicate and S-containing solids.

For Series 3- Rods 1–2 coupons, at least two distinct types of in-
terfacial domains can be identified. In some areas, corrosion layers are
quite thin (Fig. 8c,d), and the sample surface is smooth (Fig. 11a–c),
and partially covered by euhedral particles (Fig. 11d–e). In some flaked
areas (Fig. 11b), at least three successive layers with distinct compo-
sitions can be identified (Fig. 11c). The innermost layer is enriched in
O, Si, and Fe (Fig. 11c), suggesting the formation of Fe silicate. This

Fig. 6. Comparison of the cross-sections of P235 and P235 s coupons recovered from the successive rods. The indents on sample A254 correspond to coupon engraving.
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innermost layer is also visible on cross-sections of these areas (Fig. 12).
Quantitative analysis (Table 8, PI 1) yields Fe, Mg and Si amounts of 19,
3.8 and 13.7 at.%, hence a (Fe+Mg)/Si ratio of 1.7. Over this inner-
most unit, an homogeneous and discontinuous layer enriched in Fe, Cu
and S can be observed (Fig. 12). Chemical analysis showed that this
layer is significantly depleted in O (≤15 at.%), and contains similar

amounts of Fe and Cu (Table 8, PI 2–3). This suggests either the for-
mation of a mixed (Fe,Cu) sulfide or the coexistence of Fe and S sulfide.
This sulfide layer is covered by a compact external layer forming most
of the exposed surface, with a composition more enriched in Mg and
depleted in Fe than the silicate innermost layer (Table 8, PI 4). The
(Fe+Mg)/Si chemical ratio (1.6 ± 0.1) is in reasonable agreement
with the composition of TO phyllosilicate (greenalite). Finally, the
presence of outer euhedral particles is consistent with growth in free
solution (Fig. 11d,e). Some of these solid have a squat rhomboedreal
shape and a chemical composition corresponding to Ca-rich Fe carbo-
nate, i.e. ankerite (Fig. 11d). Other solid phases seem to be made of
small thin foils, sometimes stacked together to form particles with tri-
angular prism shape (Fig. 11e,f). The Fe and Si content of these particles
are about 20.6 and 6.1 at.%, respectively, with leads to a Fe/Si ratio of
3.5. Both the triangular prismatic shape and the high Fe/Si ratio allow
to identify these crystals as cronstedtite ([Fe(II)3-xFe(III)x][Fe(III)xSi2-x]
O5(OH)4) [59]. From the Fe/Si ratio, x can be calculated, and equals
0.89, a value slightly small than for nominal cronstedtite (x= 1), but
larger than for most natural polytypes [60]. Interestingly, the imaged
surface did not charge under the electron beam, even though no elec-
trically conducing coating was deposited. This indicates that these
layers were fairly correct electron conducers.

Fig. 7. SEM image in BSE mode and chemical maps of the corrosion interface for samples A274 (a) and A257 (b). The Points of Interest (PI) for EDX quantitative analysis (Table 6) are
indicated on the BSE images.

Table 6
Quantification of SEM-EDX analyses for the coupons reacted for 134 days (A274) and
279 days (A257) at 85 °C only. Points of Interest (PI) are indicated on Fig. 7.

Sample PI Composition (at.%)

O Na Mg Al Si S Cl K Ca Fe Cu Zn

A274 1 59.8 6.3 4.7 0.7 15.0 0.2 0.5 0.1 0.0 11.9 0.6 0.2
2 63.9 8.8 2.8 0.5 11.8 0.3 0.4 0.1 0.0 10.7 0.5 0.2
3 60.4 7.0 4.0 0.6 14.4 0.3 0.4 0.1 0.0 11.9 0.5 0.2
4 59.6 6.4 4.6 0.5 15.4 0.2 0.4 0.1 0.0 12.2 0.5 0.1

A257 1 56.9 5.5 4.0 0.7 16.2 0.9 0.1 0.2 0.0 14.5 0.7 0.3
2 59.4 5.6 2.4 0.5 12.6 0.4 0.2 0.2 0.0 17.6 0.6 0.3
3 61.8 3.6 4.3 0.6 15.4 0.3 0.1 0.1 0.0 13.1 0.5 0.2
4 61.2 4.0 4.4 0.8 15.3 0.4 0.1 0.1 0.0 12.6 0.6 0.2
5 61.1 3.7 4.6 0.6 15.5 0.2 0.1 0.1 0.0 13.4 0.5 0.2
6 61.5 3.5 4.6 0.7 15.6 0.2 0.1 0.1 0.0 13.1 0.5 0.2
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In contrast to this relatively simple structural organization, areas of
extensive corrosion are quite heterogeneous. First, essentially O and Fe
are detected in the inner CPs, with contents of 59–71 and 25–39 at.%,
respectively, suggesting coexistence of several distinct phases (Table 9,
PI 1–5). Local μRaman analyses (Figs. 13 and 14a,b) and μXRD
(Fig. 14g, patterns B060-B090) confirmed the prevalence of magnetite
and chukanovite. Also, the S content close to the steel-CPs interface can
be locally quite significant (up to 1.6 at.%; Table 9, PI 4–5), as is the
case of Cl (up to 2.6 at.%; Table 9, PI 3). In some areas, the Cl-rich CPs
actually individualize as an interfacial layer of a Cl-rich solid (Fig. 15a),
identified by μXRD (Fig. 15b, patterns A050-A090) and μRS (Fig. 15c)
as β-Fe2(OH)3Cl.

Closer to the trace of the original surface, O and Fe contents of ∼75
and ∼24 at.% suggest the occurrence of siderite (Table 9, PI 6–7). This
occurrence was confirmed by μXRD (Fig. 14g, pattern B150). The trace
of the original surface is clearly visible as a discontinuous fringe en-
riched in Si, Mg, S and Cu (Fig. 13). This trace is actually made of two
joint sublayers of Fe-rich silicate sandwiched between two dis-
continuous layers of magnetite (Fig. 15). This interfacial fringe is in
lateral continuity with CPs units present in areas with limited corrosion.
Here however, these fringes are embedded in CP, meaning that ex-
tensive corrosion occurred after the formation of the initial corrosion
interface.

Finally, the outer CPs are heterogeneous in composition (Fig. 13). In
some areas, Fe and O only are detected (e.g. Table 9, PI 8–9 and 11–12).
μRaman analysis (Fig. 14c–d) and μXRD (Fig. 14e) indicate association
of siderite and magnetite. In other areas, Mg and Si values up to 1.3 and

10 at.% are measured (e.g. Table 9, PI 13–15), consistent with the
precipitation of (Fe,Mg) silicate.

3.3.4. Nature of corrosion products on coupons extremities
Coupon extremities, corresponding to areas inserted in PEEK sample

holders, share some similarities in terms of nature and composition of
CPs. The corrosion interfaces are made of a thin (< 10 μm) layer of Fe
silicate close to steel, and an outer layer (Fig. 16a,b) shown by μXRD
and μRS to be made of rhombohedral carbonate. For shorter reaction
times (e.g. sample A241, 104 days of reaction) this carbonate layer can
be fragmentary (Fig. 17, sample A241), and is made of (Ca,Mg)-con-
taining ankerite (Table 10, A241 sample, PI 4–7). For longer reaction
times, the particles have a typical desert rose-like morphology
(Fig. 16a), and they coalesced to form a crackled compact layer
(Fig. 16b). The ankerite is restricted to the vicinity of the steel surface
for the longer reaction times (Table 10, A260 sample, PI 5–7), and outer
Fe carbonate to almost pure siderite (Table 10, A260 sample, PI 8). This
gradual from ankerite to siderite is in line with the depletion of the
seeping water in Ca and Mg.

4. Discussion

4.1. Physico-chemical evolution of the seeping porewater

Series 2 and Series 3 rods were introduced in the reaction chamber
when slightly basic conditions were restored after an acidic transient.
Basic pH values were considered representative of the long-term

Fig. 8. SEM image in BSE mode of the cross-sections for coupons corroded at both 85 and 25 °C. Metal is at the bottom of each picture. The dotted line marks the trace of the original metal
surface (a) Sample A 241. (b) Sample A261. (c) Sample A213, area of limited corrosion. (d) Sample A260, area of limited corrosion. (e) Sample A213, area of significant corrosion. (f)
Sample A260, area of significant corrosion. (g,h) Images in BSE and Secondary Electron (SE) modes of the transition between areas of limited and extended corrosion.
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conditions in a geologic repository, but the abrupt changes in tem-
perature due to breakdown of the heating system were not.
Interestingly, the first breakdown between t0+ 708 and 802 days did
not seem to significantly impact pH or TIC values. In contrast, re-
heating correlated with a steady increase in TIC, [SO4

2−] and [Cl−]
and pH, and with a decrease in [Fe]aq. The evolution of anionic tracers
(Cl− and SO4

2−) suggests changes in the water level in the test
chamber, with salts precipitated at water low levels, and redissolved at
higher levels [51,61]. During this period, and during increase in pH, Fe
could be slowly incorporated in solids, or get diluted by seeping solu-
tions.

4.2. Corrosion of C-steel under alkaline conditions

All samples have relatively modest average rates of corrosion. They
are also covered – mostly – by thin layers of CPs, sometimes enriched in
Si or S. In addition to these general features, some samples display more
corroded areas, made by depressions containing siderite, chukanovite,
magnetite, and covered by bulges and tubercles of CPs. In some of these
depressions, a layer of β-Fe2(OH)3Cl formed in contact with steel.
Although we did not observe fully developed layers of Fe sulfide,
characterization of related coupons revealed the presence of such
phases [62]. Finally, all coupon extremities are covered, at least par-
tially, by ankerite or siderite particles, hinting at solution conditions in
equilibrium with respect to siderite. None of the coupons exhibit the
large damage observed in the previous study [51,52], confirming that
such damage resulted from the physico-chemical transients during the
experiment early stages (heating, resaturation of borehole walls, pH
transient).

The almost negligible corrosion for Series 3-Rods 1–2 samples,
combined with the presence of thin layers of CPs, suggest that the
surface was significantly protected. Indeed, the observed average rate is
below 1 μm/a, significantly lower than the residual rate for iron in clay

Fig. 9. SEM image in BSE mode and chemical maps of
the cross sections for samples A241 and A261. The
dashed line locates the trace of the original surface.
The Points of Interest (PI) for EDX quantitative ana-
lysis given in Table 7 are indicated on the BSE image.
ECP: external corrosion products; ICP: Internal cor-
rosion products. (a) Example of Si-rich CP units
(A261 sample). (b) Example of Si-poor CP units
(A241 sample).

Table 7
Quantification of SEM-EDX analyses for coupons A241 and A261 (both reacted at 85 °C
and 25 °C for 105 days). Points of Interest (PI) are indicated on Fig. 9.

Sample PI Composition (at.%)

O Na Mg Al Si S Cl K Ca Fe Cu Zn

A261 1 55.4 6.2 0.6 0.3 0.5 1.3 0.1 0.1 0.2 34.3 0.8 0.2
2 54.8 7.2 0.8 0.4 0.5 1.4 0.2 0.1 0.2 33.2 0.9 0.3
3 50.7 6.5 0.5 0.2 0.5 1.4 0.4 0.1 0.2 38.4 0.8 0.2
4 50.7 6.4 0.6 0.3 0.4 1.1 0.3 0.1 0.2 39.2 0.6 0.1

A241 1 65.2 0.7 0.3 0.2 0.4 1.8 0.1 0.1 0.1 30.4 0.5 0.2
2 62.3 1.1 0.4 0.2 2.0 3.3 0.1 0.0 0.2 29.7 0.6 0.1
3 53.0 1.0 0.8 0.8 15.1 3.0 0.1 0.2 0.2 25.6 0.1 0.0
4 55.7 1.0 0.9 0.8 15.0 3.7 0.1 0.2 0.2 22.0 0.3 0.0
5 64.4 0.8 0.4 0.2 0.6 1.8 0.2 0.0 0.1 30.9 0.6 0.2
6 63.1 1.0 1.8 0.2 0.7 2.4 0.1 0.0 2.8 27.2 0.6 0.1

Fig. 10. μXRD patterns collected on the corrosion products of sample A261. The in-
vestigated zone corresponds to the dotted rectangle on the BSE image of Fig. 9.
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slurry (about 6 μm/a; [63]). Surface protection may result from diffu-
sion limitation of oxidized Fe and/or oxidizing species to the metal
surface. A first possibility is that the entire corrosion interface provides
such a limitation. In that case, however, more significant corrosion
would be observed near cracks, of defects, which is not observed here.
An alternate explanation is that the metal surface would be protected
by a thin barrier layer a few nm thick, directly at the steel surface
[49,63,64]. This layer controls the transport of Fe and O (or vacancies)
by solid-state diffusion, with the cathodic reaction occurring at the
outer surface of the barrier layer [65]. A clue to this location of the
cathodic sites is the observation of a thin fringe of Cu-enriched CPs.
Copper itself is present as a trace element in clay, but then its accu-
mulation to significant concentrations in very limited areas right near
the trace of C-steel original surface is noteworthy. Indeed, in previous
studies of steel corrosion under anoxic conditions, Cu has been shown
to reduce at cathodic sites, and form metal copper [66]. In the presence
of dissolved sulfide, metal copper can reoxidize to form CuS2 at 25 °C

[67–69]. Our observation of Cu sulfide precipitates near the steel sur-
face supports such a scenario of Cu reduction followed by conversion to
sulfide. It also confirms that the cathodic reaction is located very close
to the steel surface. Note however that inner layers of Fe silicate can be
present between C-steel and the Cu sulfide, suggesting either that these
inner layers can protect the metal and conduce electrons. Another
possibility is that Cu sulfide formed only during the corrosion initial
stage, when no Fe silicate was present; these inner CPs then formed
after the sulfide fringe.

In contrast, the heterogeneity in the corrosion damage for Series 3-
Rods 3–4 samples reveals that the whole surface is not protected, sug-
gesting that anodic and cathodic sites are spatially separated.
Interestingly, a similar heterogeneity in surface corrosion was observed
for steel in contact with clay materials [14,70] or in seawater [71]. The
surface dichotomy was linked to the formation of a differential aeration
cell, with minerals such as Fe oxide and sulfide phases associated to
cathodic reactions [71]. Here a similar process is observed, with thin Fe

Fig. 11. SEM image in SE electron mode and EDX chemical map of the areas with limited corrosion for the A260 sample. (a) Overview of the surface. (b) Detail of a lost flake revealing the
underneath smooth surface. The area framed on this picture has been mapped by EDX in (c). The PI relate to analyses reported in Table 8. (d) Outer deposits on the smooth interface,
showing the coexistence of Fe carbonate and Fe-silicates phases. (e) Detail showing the presence of Fe silicate particles with a triangular prism-like morphology typical of cronstedtite.
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silicate and (Fe,Cu) sulfide layers acting as surface electron-conducing
phases on large cathodic areas. Sulfides are good electron (semi)-con-
ducers, and, as explained above, the presence of Cu sulfide can be
traced to the occurrence of cathodic reactions near the metal surface.
The electron conductivity of Fe phyllosilicates is not well known, but
these solids did not charge during SEM observations. The case for
spatially separated anodic and cathodic reactions is further supported

by the formation of β‐Fe2(OH)3Cl near the steel-CPs interface. This solid
phase has been previously observed for samples corroded in marine
environments [72], in soils permanently immersed in slightly diluted
NaCl waters [40,73,74], and for extensively corroded Series 1 samples
[52]. At 25 °C, this solid is actually stable only at rather high Cl− and Fe
(II) concentrations [75], and so its presence in the corrosion layers in a
somewhat diluted aquifer implies electrophoretic accumulation of Cl−.
Such a mechanism can operate only if anodic and cathodic reactions are
(at least partially) spatially separated. Finally, the sharp limit between
areas of limited and extended corrosion, shape of the depression pro-
files near these limits and he steep slopes of the depression edges [76]
are additional evidence for spatial separation of anodic and cathodic
sites.

The initiation of such pits is usually related to galvanic coupling
between areas more or less exposed to O2 in (sub)oxic conditions
[70,71]. Areas easily accessed by O2 become cathodic, whereas those
less exposed to O2 (e.g. more protected by CPs) may become anodic.
The galvanic coupling is sustained by the precipitation of CPs in areas
of extended corrosion, further shielding the surface from O2 diffusion.
The driving force for such a reaction cell is the large difference in
electrochemical potential between O2 reduction and Fe oxidation. In-
terestingly, such coupling is observed only for coupons corroded at
room temperature. The major impacts of the low T transients would be
(1) metal oxidation occurring more rapidly than precipitation of CPs
[77,78], (2) development of microbial communities, responsible for the
formation of biofilms or of Fe sulfide, and (3) partial loss of air tight-
ness.

The formation of a galvanic cell can be favoured by the accumula-
tion of microorganisms and biofilms shielding fractions of the surface
from oxidant, thus differentiating anodic and cathodic areas [71]. Here,
however, the major oxidant (water) is expected to be present every-
where. In contrast, sulfide can locally initiate cathodic reactions. An-
other possibility is that slits from the sample holder act as pseudo-
cavities, initially preventing diffusion of OH− in areas affected by
corrosion. At room temperature, under conditions where metal oxida-
tion is faster than precipitation for CPs [77,78], this would result in a
locally faster damage, and the initiation of an anodic area. Afterwards,
upon increase in temperature, precipitation of CPs would speed up. Yet,
precipitation and diffusion would be thwarted in the confined areas
within the slit, effectively hindering corrosion. Finally, suboxic episodes
may have occurred and provide conditions favouring the formation of
differential aeration cells, with areas easily accessed by O acting as

Fig. 12. SEM image in BSE mode and chemical maps of the cross of interface with limited corrosion for sample A260.

Table 8
Quantification of SEM-EDX analyses performed in areas of limited corrosion of the surface
of the A260 coupon (reacted for 748 days at 85 and 25 °C). Points of Interest (PI) are
indicated on Fig. 11.

PI Composition (at.%)

O Na Mg Al Si S Cl K Ca Fe Cu Zn

1 62.0 0.2 3.8 nma 13.7 1.0 nm nm nm 19.0 0.3 nm
2 15.4 0.8 1.5 nm 3.2 33.9 nm nm nm 24.5 20.6 nm
3 13.0 0.6 1.0 nm 3.1 36.3 nm nm nm 24.6 21.4 nm
4 64.5 0.3 8.2 nm 13.0 1.0 nm nm nm 12.9 0.1 nm
5 68.2 0.9 0.5 nm 6.1 1.6 nm nm nm 22.6 nm nm

a nm=not measured.

Table 9
Quantification of SEM-EDX analyses at the extensively corroded interface of sample A260
(reacted for 748 days at 85 and 25 °C). Points of Interest (PI) are indicated on Fig. 13.

PI Composition (at.%)

O Na Mg Al Si S Cl K Ca Fe Cu Zn

1 59.1 0.1 0.1 0.2 0.3 0.6 0.2 0.0 0.0 39.2 0.2 0.1
2 58.9 0.1 0.1 0.4 0.4 0.5 2.6 0.0 0.0 36.8 0.1 0.0
3 63.8 0.3 0.4 0.3 0.2 0.3 0.0 0.0 0.0 34.1 0.4 0.1
4 71.3 0.2 0.3 0.3 0.3 1.7 0.1 0.0 0.0 25.3 0.4 0.1
5 69.7 0.2 0.2 0.3 0.8 1.6 0.2 0.0 0.0 26.5 0.3 0.1
6 74.3 0.2 0.2 0.1 0.2 0.5 0.0 0.0 0.0 24.0 0.3 0.1
7 74.8 0.2 0.3 0.2 0.2 0.5 0.0 0.0 0.0 23.3 0.3 0.1
8 64.0 0.2 0.3 0.3 0.8 0.4 0.0 0.0 0.0 33.5 0.5 0.1
9 64.0 0.4 0.3 0.2 0.6 0.2 0.0 0.0 0.0 33.9 0.3 0.1
10 69.2 0.2 0.7 0.1 4.7 0.1 0.0 0.0 0.0 24.7 0.1 0.0
11 76.7 0.2 0.3 0.2 0.1 0.2 0.0 0.0 0.0 21.8 0.3 0.1
12 77.5 0.3 0.3 0.2 0.1 0.2 0.0 0.0 0.0 20.9 0.4 0.1
13 66.5 0.5 1.3 0.2 8.3 0.0 0.0 0.0 0.0 22.8 0.3 0.1
14 61.5 0.1 1.3 0.1 9.8 0.0 0.1 0.0 0.0 27.1 0.0 0.0
15 61.6 0.2 1.3 0.1 6.5 0.1 0.1 0.0 0.0 29.7 0.2 0.1
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cathodic sites, and corrosion depressions filled with CPs acting as
anodic sites. Under consistent suboxic conditions, however, precipita-
tion of Fe(III)-containing (hydr)oxides would have been expected [70].
Such Fe(III) (hydr)oxides were not observed, either because they were
reduced afterwards, or, because very little O2 actually entered into the
test chamber.

Once initiated, the differential oxidation cell can operate only if
electron will spontaneously flow from the anodic to the cathodic sites.
In anoxic aqueous conditions, possible reductants are H2O or H2S.
Water is expected to be always in unlimited supply, and so it may act as
the main oxidant in our experiment. However, the difference in elec-
trochemical potential favouring steel oxidation and H2O reduction can
be affected by local pH values, which are themselves related to local
electrochemical reactions. For example, under slightly alkaline condi-
tions, oxidation of iron may be written as

Fe(0)→ Fe2++2e− (3)

The oxidoreduction potential associated to this reaction is given by
the Nernst equation, and equals

= ++
+E E RT

F
Ln Fe

2
( ),Fe Fe

o
/ 2

2
(4)

where E0Fe/Fe2+ is the standard electrochemical potential for iron oxi-
dation, R is the gas constant, T is temperature, F is the Faraday con-
stant, and |Fe2+| is the Fe2+ activity in solution. At alkaline pH Fe2+

can precipitate to form Fe(OH)2(s), according to

Fe2++2H2O→ Fe(OH)2(s) +2H+ (5)

with log10K=− 12.95 [79]. Eqs. (3) and (5) can be combined to
write the reaction of direct Fe oxidation to Fe(OH)2(s), according to

Fe(0)+ 2H2O→ Fe(OH)2(s)+ 2H++2e− (6)

The electrochemical potential for this oxidation reaction can be
calculated by using the Nernst relationship and the Fe(OH)2(s) solubi-
lity, resulting in

= + +E E RT
F

Ln H
2

(( ) ).Fe Fe OH s
o

/ ( )2( )
2

(7)

At 25 °C, this relationship for the potential at the anodic site is
simplified to

= −E E pH0.059 ,anod Fe Fe OH s
o

anod/ ( )2( ) (8)

with E0Fe/Fe(OH)2(s)=− 0.0585 V and pHanod is the pH value at the
anodic site. This electrochemical potential for Fe(0) can be compared to
the oxidoreduction potential for H2O reduction, which is given by

= ++

+HE E RT
F

Ln ( )
(H )

,H /H2
o

2 (9)

with E0H+/H2=0V by convention. The (H2) gas activity can be
related to PH2, and so at 25 °C:

Ecath=− 0.059pHcath− 0.059log10(PH2/Po) (10)

For the corrosion reaction to occur (and neglecting any over-
potential), Ecath must be greater than Eanod [80], and so the following
inequality must be obeyed

Fig. 13. BSE image and chemical maps of the cross section under a massive corrosion deposit of sample A260. The PI for EDX quantitative analysis are indicated on the BSE image, and
quantitative results are given in Table 9.
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Equation shows that for PH2= P0, the difference is extremely lim-
ited. For PH2 below 0.01 atm (corresponding to the measured PH2 in the
test chamber), pHcath − pHanod must be smaller than 3. Thus, this
simple calculation indicates that for pHcath values greater than 9, pHanod

must be greater than 6. These mild pH conditions are confirmed by the
nature of CPs in areas of extended corrosion, i.e. siderite, chukanovite,
β-Fe2(OH)3Cl, which are all unstable under acidic conditions [81].
Thus, alkaline conditions seem to be somewhat maintained in these
areas, meaning that the local production of H+ is balanced by a flux of
OH− from the solution. In fact, an indirect evidence for such an anionic
flux comes from the formation of β-Fe2(OH)3Cl, which can be explained
only by electrophoretic concentration of Cl− near the metal surface
[11,52]. Likewise, OH− would be locally accumulated by electro-
phoresis (but not Si(OH)4, the neutral predominant form of silicate at
pH≤ 9; [82]). The concentration of OH− in the test chamber can be
estimated from the dissociation constant of water at T= 85 °C
(Kw= 10−12.5; [83]), and, for pH values between 7.2 and 9.4, ranges
from 10−(12.4− 7.2) to 10−(12.4− 9.4) M, i.e. 10−5 to 10−3 M. The upper
limit of this range is about 40 times lower than [Cl−]aq and so a sub-
stantial amount of OH− can still accumulate near the metal surface. In
conclusion, the initiation of galvanic coupling in our study is likely
related to the faster corrosion rate at room temperature, possibly cou-
pled with the local shielding of the coupon surface by biofilms or by the
sample holder and by limited ingress of O2.

The isovolumic replacement of metal by CPs implies that a

significant fraction of oxidized Fe migrated from the steel-CPs interface
to the coupon surface, where it readily precipitates. The solids present
in the outer CPs are similar to the inner CPs, and in addition they
contain Fe sulfide and Fe silicate. The presence of Fe silicate in the outer
CPs was observed for Series 1 coupons reacted over long corrosion
times (up to t0+ 923 days). At the recovery time of these previous
samples, physico-chemical conditions in the test chamber were already
similar to those observed for the Series 3-Rods 3–4 (i.e. near-neutral pH
values). Such conditions favor the formation of Fe silicate and magne-
tite directly in the outer CPs units. This precipitation would then sca-
venge Si out of the porewater diffusing the CPs, preventing it from
reaching the inner CPs.

4.3. On the nature and significance of sulfide minerals

As for Series 1 coupons, sulfide minerals were observed near the
trace of the original surface for Series 2 and Series 3 coupons partially
reacted at room temperature. However, in Series 1 coupons, Fe sulfide
formed a thin fringe of elongated particles radiating outward of the
original surface [52]. The morphology of these particles, and their
formation during the early experimental stage, suggested that they re-
sulted from the activity of sulfidogenic prokaryotes. Here these sulfide
are present as compact layers embedded between two thin bands of Fe
silica, and they are somewhat enriched in Cu and Zn, which seem to
rule out direct participation from sulfidogenic prokaryotes (especially
for Cu, which can poison microorganisms; [84]). Instead, sulfide could
have been supplied by remotely located SRP or by reduction of pyrite
from the clay formation. The precipitation of Cu sulfide could then

Fig. 14. (a–d) μRaman spectra collected on the points of interest of the A260 sample. (e) μXRD patterns collected on the areas of interest. (f) BSE image showing the locations of points
and areas probed by μRS and μDRX, respectively.
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occur by the two-step mechanism of Cu reduction, followed by con-
version to sulfide solid, as explained above. During the conversion from
metal to sulfide, additional elements such as Zn may coprecipitate with
Cu, a consequence of the low solubility of Cu and Zn sulfide [85]. Note
that Fe sulfide were also detected in the inner and outer CPs of samples
reacted for a significant period of time, whether after a pH transient, or
only under alkaline pH conditions (this study). In cathodic areas, this
sulfide layer can act as a cathodic surface when the external silicate
layer is lost by flaking.

4.4. Microbial activity and corrosion processes

Microbiological characterizations of this study demonstrate that
living micro-organisms, especially thermophilic SRP, were present on
coupon surfaces and in the seeping porewater of the test chamber. The

comparison of molecular biology, epifluorescence counting and MPN
results reveals that many of these organisms could not be cultivated in
standard media. This is the case when symbiotic relationships develop
between strains, but cannot be reproduced by culture media [86].

One point which is to be clarified is the real impact of microbial
activity on the observed corrosion processes. The MPN analysis and
accumulation of sulfides in the seeping porewater are strong supporters
of significant bioactivity during the low-temperature experimental
periods (∼30–25 °C). In fact, it is possible that biofilms developed
heterogeneously at the metal surface of Series 3-Rods 3–4 coupons
during the low-temperature episodes, setting up galvanic coupling.
However, the MPN procedure failed to reveal any significant bioactivity
at temperatures higher than 70 °C. Again, it is quite possible that mi-
croorganisms would thrive in the test chamber under these conditions,
but not in the cultures broths used for enumeration. Note however, that

Fig. 15. (a) BSE image and chemical maps of A260 cross section with limited corrosion damage, and the presence of a Cl-rich corrosion layer. (b) μDRX patterns collected on areas of
interest (indicated on the BSE image of the interface). (c) Example of Raman spectrum collected on the Cl-rich layer, and corresponding to β-Fe2(OH)3Cl.

Fig. 16. (a) SE image of siderite particles near the coupon extremities of sample A260. (b) Overall view of the coupon extremities showing the siderite deposits.
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even in the absence of bioactivity at 70 °C, the galvanic coupling would
continue to operate provided anodic and cathodic areas are well se-
parated and chemically distinct. Yet, with time, the anodic area lat-
erally expands, covering previous cathodic surfaces. However, cathodic
reactions can also take place at cementite particles, eventually keeping
spatial separation between anodic and cathodic sites.

4.5. Implication for nuclear waste disposal

Despite relatively stable and alkaline pH conditions, a hetero-
geneous corrosion interface can form after two years of exposure to the
test chamber. The average corrosion damage in itself is quite limited
(20 μm in 2 years). However, the separation between cathodic zones
over a large surface fraction and anodic zones in corroded cavities
implies that corrosion, once initiated, proceeds at a fairly constant rate,

Fig. 17. BSE image and chemical maps of A213 and A260 sample extremities. Also shown on the BSE image are the locations of PI corresponding to analyses reported in Table 10.
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even at alkaline pH. Indeed, under these conditions, the rate seems to
be controlled by the cathodic reaction of water reduction at the metal/
electrolyte interface. In the open conditions experienced by the cou-
pons, water is readily available for such a reaction, which would result
in rather sustained corrosion rates. In contrast, water flow toward the
bottom of significantly damaged areas would be relatively hindered,
thus preserving galvanic coupling.

This study also would suggest that under constant, well-controlled
temperature conditions, C-steel surface may be protected by a uniform
layer and possibly by a interfacial barrier layer. However, care should
be exercised when extrapolating the results from these well-prepared
steel surfaces to rougher industrial surfaces which will be likely marked
by several defects. Such defects would act as initiation sites for the
setup of galvanic coupling. Hence, the possibility of having relatively
localized corrosion should not be overlooked.

5. Conclusions

In the course of this study, pH remained at slightly alkaline condi-
tions in the test chamber of the MCO-Gravimetry experiment. As ex-
pected, these conditions resulted in limited corrosion at 85 °C over two
years. However, slightly more important corrosion was observed for
samples exposed to 25 °C episodes. Two distinct corrosion mechanisms
were observed. For constant temperature conditions, the steel surface is
covered by a silicate-rich layer, and corrosion rates were extremely low,
indicating surface protection by CPs, and possibly by a stable barrier
layer. When the steel surfaces experienced changes in temperature,
metal surface appeared to be less smooth and eventually spatial se-
paration of anodic and cathodic reactions occurred within two years.
The consequence of this separation is that the local corrosion rate inside
cavities (about 100 μm/a) is about one order of magnitude greater than
the average rate of corrosion (below 10 μm/a).

The CPs observed in the present study compare in nature, if not in
location, with the solids identified in the previous study [52]. Some
solids that were specific to metal-replacing CPs, such as Fe silicate, now
exclusively form near the original surface and in outer CPs. This is a
possible consequence of alkaline pH and moderate [Si]aq conditions in
the test chamber. The pervasive presence of magnetite away from the
metal surface can also be noted. This finding indirectly supports pre-
vious modelling results for iron corrosion in clay media, which sug-
gested the formation of magnetite layers away from metal, near the
original surface [38]. This demonstrates that the models are actually
reliable at predicting geochemical processes in the corrosion layers. It
further supports the contention that the magnetite formation at the

metal-CPs interface [27–29] is not a geochemical process (i.e., it is not
driven by solution equilibria), but rather an interfacial electrochemical
process controlled by solid-state fluxes of reactants and charges [65].

The overall set of results obtained for MCO-Gravimetry coupons
shows that localized corrosion, with spatially separated anodic and
cathodic reactions, may occur in nuclear waste repository. The ex-
perience gained on clay-steel compact systems [27–29] however sug-
gests that the occurrence of such galvanic coupling is hindered by near-
neutral/alkaline pH values and by the presence of compact diffusion
barriers at the steel surface. Areas of localized corrosion would spread
out laterally, gradually covering the entire surface and resulting in
transition to generalized corrosion. Alternatively, occurrence of
cathodic reactions on cementite particles would keep spatial separation
between anodic and cathodic reactions, delaying long-term passivation
of the interface.
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