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Abstract

In graphene, the extremely fast charge carriers can be controlled by electron-optical elements, such

as waveguides, in which the transmissivity is tuned by the wavelength. In this work charge carriers are

guided in a suspended ballistic few-mode graphene channel, defined by electrostatic gating. By depleting

the channel, a reduction of mode number and steps in the conductance are observed, until the channel is

completely emptied. The measurements are supported by tight-binding transport calculations including the

full electrostatics of the sample.
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The wavelength of electrons at the Fermi energy in graphene [1] can be tuned locally by chang-

ing the carrier density n with gate-electrodes [2, 3]. By forming regions of different wavelengths

λ =
√

4π/|n|, elements known from optics such as lenses [4], filters [5] or Fabry-Pérot interfer-

ometers [6–8] can be mimicked. The reflection, refraction and transmission behavior of graphene’s

massless charge carriers in a spatially varying potential is analogous to the propagation of an elec-

tromagnetic wave in media with varying refractive index. An assembly of such media is used

to guide photons in optical fibers (OFs). These consist of materials that are assembled in a way

that the refractive index in the light-carrying core is larger than the refractive index in the coat-

ing. Similar conditions can be achieved in graphene using local gates. The possibility to form

electronic waveguides in graphene has attracted a lot of theoretical interest.[9–16] However, up

to now experiments were performed only in diffusive samples [17], making the comparison to

optics difficult. In addition, a graphene waveguide is expected to show a distinct behavior once

a p-n interface is involved. At a p-n interface the polarity of charge carriers is inverting. Due to

the additional confinement of such an interface it is possible to transport one or few modes in a

waveguide. In optics, single mode fibers are used for long distant communication since they are

not limited by modal dispersion. In a similar way single or few-mode electron-optic fibers can be

beneficial for quantum information communication.

So far, confinement of charge carriers has been mainly achieved with hard-wall potentials, as

provided by the edges in graphene-nanoribbons[18–20] or the induced gap in bilayer graphene[21,

22]. Whereas the former suffers from irregular edges, the latter is performed in gapped bilayer

graphene which does not host relativistic Dirac particles. Even though electrons were successfully

guided in the bulk of single-layer graphene by making use of snake states[23–25] their transport

properties is significantly altered by the involved perpendicular magnetic field. It is a different and

very challenging task to confine the charge carriers in an electrostatic waveguide [14, 16]. In this

letter we report on the formation of a narrow tunable ballistic electrostatic channel in graphene,

that can be operated as an optical fiber and features controllable single mode filling.

In single layer graphene, the local Fermi energy E = h̄vF
√
|n|π, with vF ≈ 106 ms−1 the

Fermi velocity in graphene, takes the role of the refractive index. By changing this energy us-

ing local gates, a waveguide can be formed. This guiding principle and a possible geometry

is shown in Figure 1a. The refraction at an interface is described by Snell’s law in graphene:

Ein · sin(θin) = Eout · sin(θout) and the critical angle for total internal reflection is simply given

by θc = arcsin(Eout/Ein) = arcsin(
√
|nout|/|nin|). For small density ratios |nout|/|nin|, the re-
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sulting small θc will keep electron trajectories very efficiently in the channel. In Figure 1b we plot

θc as a function of the densities in- and outside of a channel. Negative densities correspond to

hole-like, positive to electron-like transport. The resulting red shaded triangles correspond to the

region where OF guiding is possible.
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FIG. 1. Guiding mechanisms related to densities in nin and outside nout of an electrostatic channel.

a, Possible design of a guiding channel where the gray areas are electrical contacts. If the electron density

inside a channel is larger than outside nin > nout, electron trajectories reaching the interface under an angle

θin larger than the angle of total internal reflection θc stay in the channel, similar to an optical fiber (OF).

b, The different guiding mechanisms are sketched depending on nin and nout. In the red shaded triangles

OF guiding is present. The shading visualized θc(nin, nout). The hatched quadrants indicate the regions of

pnp-guiding and the blue steps correspond to different mode number M in the channel. c, The formation of

a p-n junction helps to keep charge carriers in the channel; loss is due to trajectories with (almost) zero angle

of incidence. d, Sketch of a band diagram in the channel for the situation, when the first mode (M = 1) is

populated. The small value for kx will lead to leakage as sketched in e. f, By increasing the Fermi-energy

Ein the second mode becomes available and kx of the first mode is increased. The first mode can be guided

in the channel, as illustrated in g. h, Due to this mechanism, the expected conductance plateaus will be

smoothened and shifted with respect to M compared to the situation of a hard-wall channel (dashed line).

They are still expected to occur at values of 4 e2/h.

In addition to this OF guiding, charge carriers in graphene can also propagate in a channel that

has interfaces at which the polarity of the charge carrier is inverted. Such a channel can be formed
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by tuning the channel region to electron-like (n) and the outer region to hole-like (p) doping, or vice

versa as indicated by the hatched quadrants in Figure 1b [17]. Since at a p-n interface the density

is zero, it is naturally reflective. If the transition from p- to n-doping is gradual, the low-density

region is increased in size leading to an even more reflective interface. In other words, a smooth

p-n interface can guide electrons more efficiently than a sharp one. Losses out of a p-n channel

are in both cases mostly caused by trajectories perpendicular to the interface that are transmitted

with probability one (Klein tunneling) [5, 26, 27] as sketched in Figure 1c.

At low densities nin, the wavelength in the channel is such that λ/2 becomes larger than the

channel widthW . This situation of a depleted channel is sketched in the dark blue region in Figure

1b. By increasing nin, the local Fermi-energy Ein increases such that the first mode M = 1 in the

channel can be populated, as shown in the sketch of the band-diagram in Figure 1d. Yet, due to

the low value of the wavevector kx in propagation direction x, the angle of incidence at the p-n

interface is close to perpendicular and the mode will leak out of the channel (Figure 1e) and cannot

be observed in transport along the channel. Nevertheless, by increasing Ein, kx increases and the

angle of incidence towards the p-n interface becomes larger. A corresponding band-diagram is

sketched in Figure 1f, where already the second mode (M = 2) is available. In this situation, the

first mode can be guided and the second mode leaks out of the channel since the Fermi-energy

crosses this band at low kx. Compared to a channel where the outer regions are forbidden for

electrons, the expected conductance plateaus for transport along the channel will be smoothened

due to the above discussed mechanism. We still expect conductance steps at 4e2/h, as sketched in

Figure 1h. A more detailed analysis is given in the supplementary material.

We realized an electrostatic channel in a four-terminal suspended graphene device. A 3-

dimensional design is shown in Figure 2a. By applying a voltage on the backgate (blue) and

bottomgate (gold), the density can be tuned locally to guide electrons between the source (S) and

collector (C) contact. The guiding losses can be measured at the side drain contacts (D1, D2). A

scanning electron micrograph of the measured device is given in Figure 2b. The graphene flake is

roughly 4 × 2 µm2 in size. The fabrication follows the recipe of Refs. 28, 29. Graphene is trans-

ferred onto a sacrificial polymer layer (LOR) using a dry-transfer technique, and after defining the

contacts, suspended. It is cleaned by in-situ current annealing between the D1 and D2 contact.

As a first characterization the conductance GD1D2 between D1 and D2 is measured while the

S and C contacts are floating. We correct for the capacitive cross talk between backgate and

bottomgate voltage and plot the data as a function of channel densities nin and nout. The conversion
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FIG. 2. Realization of a guiding channel in a suspended graphene device. a, 3-dimensional design

of the device. Tuning the density in the channel (nin) with the bottomgate (gold) and the density outside

of the channel (nout) with the backgate (blue), the electrons can be guided between the source (S) and the

collector (C) contacts. The losses are recorded at side drain contacts D1 and D2. b, False-colored SEM

image of the measured device; scale-bar: 1 µm.

from voltage to density is given by the gating efficiency which we extracted from the electrostatic

simulation (for details, see supplementary material). Throughout this paper negative densities

correspond to holes, positive to electron charge carriers. In the colorscale-map of Figure 3a, the

conductance drops drastically once a p-n junction is formed (i.e. the blue regions). Figure 3b

shows the field effect along uniform doping which reveals a pronounced Dirac point. The very

sharp transition from the unipolar to the bipolar region occurs within nin ≈ 109 cm−2. This

demonstrates the very high quality of the graphene. In addition, the regular Fabry-Pérot pattern

(marked with arrows and sketched in the inset of Figure 3a) indicates ballistic transport in the

channel [7, 8].

We now discuss the guiding efficiency measurement (fig. 3c). An AC voltage is applied to the

S contact and current is measured at C, D1 and D2 using an IV-converter and a Lock-In detector

on each terminal. The guiding efficiency γ = ISC/Itot is then given by the current ISC measured

at C divided by the total current Itot = ISD1 + ISD2 + ISC. It is important to notice that γ includes

the injection efficiency into the channel which is limiting the overall maximum efficiency to 42%

in this device. In this complex geometry it is not possible to discriminate the losses of the channel

itself from losses due to poor coupling of the charge carriers into the channel. The colorscale

map γ(nin, nout) shows high guiding efficiency in the expected regions: A large γ is observed in

the OF triangles, and the efficiency is even increased once a p-n-junction is formed. This is best
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FIG. 3. Experimental results: Fabry-Pérot interferences across the channel and guiding efficiency

along the channel. a, Two-terminal conductance GD1D2 between D1 and D2 as a function of the densities

nin and nout (S and C are floating). The resonances marked with black arrows are due to Fabry-Pérot

interferences in the channel as sketched in the inset. b, Field-effect as a function of uniform doping (cut

along white arrow in a). c, Guiding efficiency ISC/Itot as a function of nin and nout. Here, an AC voltage

is applied to the S contact and current is measured simultaneously at C and D1, D2. d, Cut in c at fixed

nin = 6 · 1010cm−2. The guiding efficiency increases drastically in the OF regime and is highest when pn

and OF guiding coexist. e, The cut in c around nout = 6 · 1010cm−2 reveals steps in the guiding efficiency

that are due to mode filling of the channel. Shown is an averaged curve of nout = 5...7 · 1010cm−2.

The steps are seen in the 2D plot in c and are marked there with gray vertical arrows. f, A similar cut at

nout = −4...− 6 · 1010cm−2 reveals steps also for inverted polarity.

seen by taking a cut at nin = 6 · 1010 cm−2 shown in Figure 3d and indicated by a red arrow in

Figure 3c. Charge carriers cannot be guided for nout > nin and for uniform doping (nout = nin)

roughly 29% of the charge carriers reach the C contact. In the OF regime, the efficiency increases
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drastically and reaches its maximum if the outer region is depleted, i.e. nout ≈ 0. The formation of

a p-n-interface leads to an increased γ compared to the regime where only OF guiding is present.

Even though OF and p-n guiding mechanisms have been discussed for a diffusive sample in Ref.

[17] here we demonstrate their occurrence in the expected regions in a density-density map of a

ballistic sample.

The lowest efficiency in the colorscale map (fig. 3c) is observed in the empty-channel region

(dark blue). A step-wise increase of γ starting from the depleted channel towards larger nin is

seen in the colorscale map. By taking cuts around nout = 6 · 1010 cm−2 plateaus corresponding to

a change in mode number M become apparent (Figure 3e). For this cut we averaged the curves

between nout = 5...7 · 1010 cm−2 to wash out features that are changing with nout. More details

on these features are given later in the manuscript. The plateaus are also present at the opposite

polarity, i.e. an n-doped channel and a p-doped outer region. They can be seen for example in cuts

around nout = −5 · 1010 cm−2 as given in Figure 3f.

For a comprehensive understanding, we compare the experiment to transport calculations based

on an ideal electrostatic model obtained by finite-element simulations following the gating and

graphene flake geometry of our device. Using the scalable tight-binding model for graphene [30],

the full 4×2 µm2 flake with realistic on-site energy profiles V (x, y) from the electrostatics can be

considered and the main features of the guiding efficiency map can be reproduced by applying the

real-space Green’s function method to compute the conductance. The results of the simulations

are shown in Figure 4a. The main features of the measurement are well captured: There is a high

guiding efficiency in the OF triangles which is even increased in the p-n-p-regime. We see a very

low efficiency at low nin where the channel is empty.

The emerging modes confined in the channel are observed along lines indicated by gray dashed

arrows in Figure 4a. Additional resonances (indicated by black arrows) in the p-n-p regions appear

and will be referred to as two-cavity resonances. They are related to states spatially extending

over both the inner channel and the cavity regions confined by D1 and D2. They are therefore

influenced by both nin and nout and are roughly parallel to the anti-diagonal in the density map.

Further analysis is given in the supplementary material.

From the simulations we further extract the space-resolved local current density J = Jxex +

Jyey in the different guiding situations by applying a small DC voltage difference between the S

and C contact with D1 and D2 grounded. In Figure 4b we plot J(x, y) = [J2
x(x, y) + J2

y (x, y)]1/2

in the optical fiber regime (|nin| > |nout|). Most current propagates in a channel towards the
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FIG. 4. Simulated guiding efficiency and local current density profiles based on tight-binding model.

a, Calculated guiding efficiency following the same definition as the experiment, γ = ISC/Itot, using 3-

dimensional electrostatics given by the geometry of the device. Sequential mode filling of the channel is

indicated by gray dashed lines. Black arrows mark a resonance pattern involving the inner cavity formed

by the narrow channel and an outer cavity given by one outer contact D1,D2 and the channel. b, Local

current density distribution for a small applied voltage on the source contact S. The densities are tuned to

the optical fiber regime. The red dashed line shows the angle of total internal reflection. c, In the p-n-regime,

the electrons are kept inside the channel very efficiently and complex resonance patterns are observed. Close

to the S contact current is lost towards D1 and D2 due to Klein tunneling. d, Local current distribution for

the first mode. e, At vanishing nin, the channel can be emptied, i.e., the local current density is zero inside

the channel.

right contact. The loss (i.e. current towards D1 or D2) is given by trajectories injected at S that

reach the interface close to normal incidence. For the given densities we obtain θc = 52◦ and we

sketch a corresponding dashed line in the Figure. By the formation of a p-n-interface this loss is

reduced drastically as shown in Figure 4c. Outside the channel, the current is almost completely

suppressed. Only close to the injector contact a loss current is observed, corresponding to trajec-

tories aligned perpendicular to the channel border. For smooth p-n-junctions, this is exactly what

is expected [27] due to strong Klein collimation. Inside the p-n-channel, a complex interference

pattern forms. By reducing the density in the channel only the first mode is filled (Figure 4d)
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and as a consequence the complex interference pattern of Figure 4c disappears. Even though the

channel appears to be lossless, the injection into the single-mode channel is rather inefficient, i.e.

there is a number of modes outside the channel that can be populated. For this reason the current

density in the outer cavity does not disappear completely. By further reducing nin, the channel can

be emptied completely, as it becomes apparent in Figure 4e.

We now show in figure 5a-c the conductance between source and collector in the interesting

region of biploar doping where the channel is close to full depletion and plateaus in the conduc-

tance can be expected due to quantized filling. In Figure 5a and b several curves GSC(nin) are

given for values of nout = 5...7 · 1010 cm−2. They are offset from the red curve by multiples of

nin = 0.4 · 1010 cm−2. The plateaus due to mode-filling are indicated by dashed lines and we

mark the additional two-cavity resonances by the black arrows. A similar structure is observed for

opposite polarity (Figure 5b).

Although Fabry-Pérot resonances and mode filling occur on similar length and energy scales

they can be distinguished by their different gate behaviour. The observed pattern is reproduced

clearly in the tight binding simulation for GSC(nin) shown in Figure 5c. Again the flat plateaus

are marked with dashed lines and the dispersing resonances are indicated by arrows. Comparing

to Figure 4a we confirm that the resonances indicated by the black arrows correspond to the above

mentioned two-cavity resonances whereas the plateaus indicated by horizontal dashed lines are

due to an increase of the channel mode-number. These plateaus occur at roughly 4, 8 and 12

e2/h here. Compared to the two-cavity resonances they do not disappear if the side contacts (D1

and D2) are reflective, as we reveal in the supporting material, where we also show steps in the

conductance for a second device. The number of modes M in the middle of the channel (x = 0)

can be read off from the number of peaks in J(x = 0, y) in Figures 5d-g, where the potential

landscape V (x = 0, y) from the electrostatics is also shown. On top the J(x, y) profiles for

x close to 0 are given. The positions where the profiles were imaged are labeled with stars in

Figure 5c, and their shape is representative for the whole respective conductance range marked by

colored lines in Figure 5c. The V (x = 0, y) profiles reveal that the density is gradually changing

from n outside to p inside of the channel. The smoothness in the potential landscape is due to

the large distance of ≈ 400 nm between the graphene and gate electrodes. The channel formed

by the potential in Figure 5d can transport only one mode, but since kx is small and since the

channel is very leaky for small angles as explained in Figure 1d-e., only a vanishing current is

observed in the middle. By increasing the voltage on the inner gate, the minimum in the potential

9
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FIG. 5. Discrete change of the number of modes in experimental and theoretical conductance data.

a, Steps corresponding to mode-filling are seen in the experimental GSC(nin) data at fixed nout = 5...7 ·

1010cm−2. The curves are offset from the red line by nin = 0.4 · 1010cm−2. Mode filling (see Figure

1h) occurs along the dashed lines and an additional two-cavity resonance pattern is indicated by the black

arrows. b, A comparable pattern, yet less clear, is observed for inverted polarity. c, The calculatedGSC(nin)

curves reveal the plateaus, indicated by black dashed lines, and the two-cavity resonance pattern (black

arrows). d, Local band offset V (y) (orange curve) at the middle of the channel x = 0. Blue curve:

corresponding local current density J(x = 0, y). Top panel: J(x, y) for x close to 0. For the given

density profile the channel could carry one single mode M = 1, which however is leaking out drastically

such that almost no current is transported. The plots d-g are taken at the density marked by a star in c

but are representative for the respective conductance regimes marked by colors in the outer two curves in

c. e, As the channel gets deeper and wider, the first mode can be transported in the channel. f,g, The

second and third mode appear when |nin| increases further. h,i, A model explaining the occurrence of the

conductance plateaus at 2.2, 2.6 and 2.9e2/h in a. Regions that are doped by absorbates are colored in light

blue. The channel resistance Rch is then not only given by 1/(N · 4e2/h) but modified by a transmission

probability t into and out of the channel. Additionally, current can flow from S to C through the outer

cavities, which is modeled by a parallel resistorRp. The measured resistance between S and C is then given

byR = (1/(t2 ·N ·4e2/h)+Rp)−1. The loss resistance from S to D,Rl, is modified by a contact resistance

in series Rc. If we calculate G′SC = 1/Rch at nout = 5 · 1010cm−2 for Rp = 13.4kΩ and t = 0.32 the

plateaus occur at 0, 4, 8 and 12e2/h.
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profile V (x = 0, y) decreases and the channel grows wider such that electrons gain momentum

in x-direction and the first mode can be transported along the waveguide (Figure 5e). By further

increasing the inner gate voltage, the second mode, M = 2 (Figure 5f), and third mode, M = 3

(Figure 5g), also become available for charge transport along the channel.

Having confirmed the origin of the non-dispersing features in the experiment we now compare

the conductance values. In the experiment, the plateaus do not occur at G′SC = N · 4e2/h (with

N = 0, 1, 2, ...) but rather at GSC = 1.9, 2.2, 2.6 and 2.9e2/h in Figure 5a. A simple model,

depicted in Figure 5h-i, explains this deviation by taking into account non-uniform cleanliness

of the graphene. In Figure 5h regions that presumably are doped by absorbents on the surface

are shaded with light-blue color. Such a distribution of dopants is likely to occur after current

annealing since the contacts act as heat sinks and therefore attract residual absorbents when the

graphene is hot [31]. In a simple resistor network (Figure 5i) we therefore model an additional

resistor Rp, due to trajectoires from S to C that do not penetrate the channel, in parallel to the

channel resistance Rch. In addition the injection into the channel and the detection at the collector

will be modified by a transmission probability t which is the transmission from the contact into

and out of the channel. Therefore, Rch = 1/(t2 ·N · 4e2/h) and the measured resistance between

S and C will be R = (1/Rch + 1/Rp)−1 = 1/GSC. For the GSC(nin) curve at nout = 5 · 1010cm−2

plateaus at G′SC = 0, 4, 8 and 12e2/h are obtained for Rp = 13.4kΩ and t = 0.32. By subtracting

a contact resistance Rc = 2.9kΩ from the loss conductance GSD1D2, we find guiding efficiencies

γ = G′SC/(G
′
SC + G′SD1D2) of 26%, 41% and 51% for the first, second and third plateau. Rc is

extracted for high, unipolar densities in the GSD1D2 map (shown in the supporting material). The

values compare well to the simulation (Figure 4a) where 28%, 39% and 46% are obtained.

Apparently the main limitation in the experiment is the injection and detection efficiency, which

is parametrized in t. It is with t = 0.32 a factor of 3 smaller than in the simulation, where t = 0.96

is found by applying the same resistor model. Improvements would focus on creating excellent

contact to the graphene. This would, on one hand, increase t both at the source and collector

contact. On the other hand, a reduction of Rp could be expected since the D1, D2 contacts would

be less reflective, i.e. trajectories from S that get reflected at D1 and enter C could be suppressed.

A strategy to increase t by shaping the graphene is discussed in the supplementary material.

In the simulation, however, t is large meaning that the ideal channel very efficiently transports

modes once kx is sufficiently large. This efficient guiding is only possible due to the smooth

p-n interface in our device [14] which is very reflective for larger angles of incidence θ. For
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comparison, a sharp p-n interface transmits trajectories with θ = 45◦ with 50% probability [27]

such that the mode sketched in Figure 1g could not be guided. For our smooth interface, on the

other hand, 50% transmission is obtained for only θ ≈ 20◦, and at 45◦ the transmission is close

to zero. These values are taken for (nin, nout) = (5,−10) · 1010 cm−2. Details are given in the

supplementary material.

In conclusion, we have realized electrostatically defined electron waveguides in ballistic

graphene with an aspect ratio >10 using a global and a channel gate. Typical channel param-

eters are ≈ 300 nm in width and 2.7 µm in length. The wavelengths of the charge carriers in-

and outside of the channel can be tuned by the gates independently. Using this tunability, we can

distinguish and control the regions of optical fiber- and p-n guiding. We observe an increased

guiding efficiency if the two mechanisms coexist. Using p-n guiding, clear steps in the channel

conductance appear whenever the mode number changes by one. All experimental results are

supported by self-consistent theoretical simulations which also reveal that a smooth p-n interface

and a sufficiently large momentum kx along the channel is required to transport single modes.

The simulation provides also a powerful guide for future device improvements. It shows, for

example, that by using an even smoother p-n interface to confine the electrons in the channel,

modes could be guided for kx � ky. In current devices the coupling from the injector contact to

the channel and similarly from the channel to the detector contact is far from ideal. The injector

and collector efficiencies of currently ≈ 35% can be increased either by using a p-n interface as a

collimator or by etching the graphene flake. With such improvements guiding efficiencies > 80%,

as demonstrated by the theory, are in reach. This then allows to explore one-dimensional transport

in graphene without the need to etch nanoribbons. The difficulty of the required precise control

over the sample edges at the atomic level in nanoribbons can then be circumvented. An electro-

statically confined one-dimensional channel within the bulk of graphene could even be oriented

intentionally into any preferred crystallographic direction allowing to study the symmetry of the

one-dimensional bands. A high degree of confinement can further be used for fast switches with a

potential visibility in excess of 80%.
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SUPPORTING INFORMATION

Measurements on further devices

In an effort to reduce the injection losses into the channel we also fabricated samples that were

etched at the sides, such as the one shown in Supporting Figure 1a. Here the injection into the

channel is better defined, but unfortunately after current annealing, the device is not uniformly

clean. In the Fabry-Pérot map GD1D2 (Supporting Figure 1b, the outer region exhibits a much

stronger depletion of carrier densities (lower conductance) at the Dirac point, i.e. the lowest con-

ductance is found at Vout = 0.

Compared to the device shown in the main text, the one shown here exhibits a slightly higher

absolute guiding efficiency of 49% compared to 42% before (Supporting Figure 1c). This is due to

the optimized injection into the channel. The relative increase from the unipolar value of 27% to

49% in the p-n-guiding regime is with 81% much higher than the 50% relative increase in the older

sample. The device was destructed by further attempts of current annealing. On the other hand,

the OF guiding is much weaker than for the device shown in the main text. In addition, steps due

to mode filling can not be clearly observed in this device. This is also due to a different geometry:

In this case, the channel was formed by three bottomgate electrodes instead of one electrode and a

global backgate as in the main text. The designed channel width was with 600 nm much larger than

in the main text, which further complicates the observation of single mode-filling. We conclude

that, even though the device was in the channel region not as clean as the device shown in the main

text, the injection properties were improved due to the optimized design.

The measured guiding efficiency of a third device is shown in Supporting Figure 1d. For

geometrical reasons, this device exhibits less crosstalk between the gates, i.e. the white dashed

lines are less tilted in this case. Even though the overall guiding efficiency is slightly lower, OF

guiding and steps in the conductance GSC(Vin) are visible. The features appear to be similar to the

mode filling steps described in the main text, i.e. almost equally spaced plateaus and additional

resonances. With dashed lines we indicate features that are probably due to mode filling, and with

arrows we mark what might be the two-cavity resonances. The plateaus are however less constant

with increasing Vout. In order to distinguish mode filling from coherent two-cavity resonances,

detailed comparison to a modified theoretical model would be required.
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Supporting Figure 1. New measurement of electron guiding. a, Scanning electron micrograph of an

etched guiding device. b The Fabry-Pérot map GD1D2(Vin, Vout) shows a low conductance in the outer

region of the device. c Map of guiding efficiency ISC/Itot. The non-guiding value in the unipolar regime is

around 27%, in the optical-fibre-guiding regime (e.g. at Vin = 15V and Vout = 2V) the efficiency climbs to

32% and in the pn regime (Vin = 15V and Vout = −2V) it increases by 22% to 49%. d, Guiding efficiency

map of a third device with less crosstalk between the gates. The guiding efficiency is comparable to the

former devices. OF guiding is clearly visible in this case. e, Here, as in the device shown in the main text,

steps as a function channel density appear in the conductance GSC(Vin).

Voltage to density mapping

The detailed device geometry as used for the simulations is shown in Supporting Figure2a

and b. The measurement setup for the guiding efficiency is explained in the main text: An AC

voltage is applied to the source (S) contact and an AC current is simultaneously measured at the

collector (C) and the side drain contacts (D1 and D2). In Supporting Figure 2c we show the

measured conductance between the S and C contact GSC = IC/VS and in Supporting Figure 2d
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Supporting Figure 2. Original data and density mapping. a-b, 3D and top-view of the measured device

with its dimensions used also for the simulations. c, The measured guiding conductance GSC between

left and right contact, d, and the simultaneously measured loss GSD1D2 between S and D1 and D2 con-

tact. e, The guiding efficiency γ is calculated from these two maps as described in the main text, i.e.

γ = GSC/(GSC +GSD1D2). f, The Fabry-Pérot map is measured in a different configuration. g, The simu-

lated guiding efficiency and the simulated Fabry-Pérot pattern h show the same crosstalk between the inner

and outer gate. The voltage scale for the outer voltage Vout differs from the experimental data, but not the

Vin scale. This is due to a problem with the backgate, i.e. the experimental Vout scale is not trustworthy.

i, The density mapping is done according to calculated density profiles as shown in this Figure. j, The

GD1D2(Vin, Vout) to GD1D2(nin, nout) mapping shears the data since the capacitive crosstalk is corrected.

k,l, The comparison of the Fabry-Pérot oscillation period between experiment and theory reveals a success-

ful voltage to density mapping. Plotted are the oscillations as a function of nin in k and as a function of

nout in l along the directions marked with arrows in j. The curves were normalized after subtraction of the

background conductance.
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the conductance GSD1D2 = (ID1 + ID2)/VS between the source and side drain contacts. The

guiding efficiency in Supporting Figure 2e is then given by γ = ISC/(ISD1 + ISD2 + ISC) =

GSC/(GSC +GSD1D2).

Apparently the Vout scale for γ and for the Fabry-Pérot map GD1D2 (Supporting Figure 2f) is

shifted to high voltages. Whereas the global Dirac point is very close to Vin = 0V, it occurs at

roughly Vout = 30V for the outer gate. The small shift in Vin and the regular Fabry-Pérot pattern

clearly demonstrate that the shift in Vout is not due to doping of the graphene but rather due to

experimental problems with the backgate, that also lead to gate-jumps in the Fabry-Pérot map

(Supporting Figure 2f). The backgate was connected with a silver-paint and this connection might

have become bad at low temperatures, leading to charging of the gates and to instabilities. We

therefore discard the Vout-scale since the values are apparently not trustworthy, while keeping the

Vin-scale.

By comparing to the simulated guiding efficiency (Supporting Figure 2g) and Fabry-Pérot map

(Supporting Figure 2h) the correct density values for the experimental data can be extracted. This

is possible since there are no free fitting parameters in the model and all geometrical parameters

which do influence the capacitive crosstalk between the gates are fixed. In addition, the Vin voltage

scale can be compared. Both experimental and theoretical data are mapped from (Vin, Vout) to

(nin, nout) by using the local density profiles n(x = 0, y) (Supporting Figure 2i). The maximal

absolute density in the channel nin and of the maximal absolute density in the outer region nout

are obtained for all voltages (Vin, Vout). Such a mapping is done for the theoretical Fabry-Pérot

map in Supporting Figure 2j which is not shown in the main text. The data are sheared since the

capacitive crosstalk between backgate and bottomgate is corrected.

The spacing of the Fabry-Pérot resonances represents a good control for the voltage to density

mapping. Since the potential is smooth and the cavity size is changing with applied gate volt-

age, the experimental Fabry-Pérot resonances are best compared to the oscillations obtained in

the tight-binding simulation, as it is done in Supporting Figure 2k for the density in the channel

and in Supporting Figure 2l for nout. As the periodicity of the measured and calculated oscilla-

tion is matching rather well, we conclude that the density is properly mapped. The density of

two resonance maxima ni and ni+1 are spaced
√
ni+1 −

√
ni =

√
π/W , where W is the width

of the channel. This can be obtained using the interference condition kFW = Nπ with N an

integer. From the two first maxima in Supporting Figure 2k (experimental or theoretical) a cavity

size of 730 nm is obtained, which corresponds well to the cavity size obtained from electrostatic
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simulations (see Supporting Figure 2i).

Smooth versus sharp p-n interface

−90 −60 −30 0 30 60 90
0

0.5

1

1.5

2

φ (deg)

T
(φ

)

c

y (nm)

V
(y

) (
m

eV
)

 V
in

V
out

 

 E
F

d

0 625

−40

0

40

0

0.5

1

1.5

2

T
(φ

)

a

V
(y

) (
m

eV
)

 V
in

V
out

 

 E
F

b

−40

0

40

Supporting Figure 3. Angle-resolved transmission function (red curves) T (φ) across the pn junction be-

tween the guiding channel center and the outer cavity at carrier densities (nin, nout) = (10,−10) ×

1010 cm−2 in a and (nin, nout) = (2,−10) × 1010 cm−2 in c, taking into account the smooth junction

profiles V (y) obtained from the electrostatics and sketched (red curves) in b and d, respectively. Gray

curves in a and c are T (φ) when the smooth V (y)’s are replaced with ideally abrupt profiles as sketched

(gray steps) in b and d, where Vin/out = − sgn(nin/out)h̄vF
√
π|nin/out| is the band offset applied on the

incoming/outgoing lead (shaded in light yellow).

To highlight the contrast between the smooth p-n junction of our suspended graphene and the

widely discussed abrupt junction, we show in Supporting Figure 3 the angle-resolved transmission

T (φ) across a p-n junction, considering the realistic smooth potential V (y) obtained from the

electrostatic simulation, as well as the abrupt case for comparison. The red curves correspond

to a smooth potential step, the gray one to a sharp p-n interface. The T (φ) curves shown in

Supporting Figure 3a and 3c consider symmetric and asymmetric pn junctions, respectively, and

are calculated in the same way as ref. 32. In the symmetric case of Supporting Figure 3a,b with

nin = −nout = 1011 cm−2, the transmission curve for the abrupt case corresponds to the well-

known expression[27], T (φ) = cos2(φ), so that T drops to one half at ±45◦, while for the smooth

20



−2 0 2 4 6
0

2

4

6

8

10

12

14

n
in

 (1010cm-2)

G
SC

 (e
2 /h

)

0 2 4
0

2

4

6

8

10

12

14

n
in

 (1010cm-2)

G
SC

 (e
2 /h

)

a b cD2
lead

D1
lead

−30

0

30

transparent
lead

 y (nm)

V
 (x

=
0,

y)
 (m

eV
)

−960−625 0 625 960
−30

0

30

Supporting Figure 4. The two-cavity resonances disappear once the outer leads D1 and D2 are trans-

parent. a, A similar plot as shown in the main text (Figure 5c) showing calculated conductance GSC. The

plateaus due to mode-filling occur along the dashed grid lines, the two-cavity resonances are marked with

black arrows. b, Potential profiles V (x = 0, y) as used in the main text (upper) and idealized such that

reflections at the outer D1 and D2 contacts are suppressed (lower). c, For an idealized profile the two-cavity

resonances do not occur anymore. The plateaus for mode-filling are seen for a 3 µm (orange) and a 500 nm

(blue) long channel.

case of our device T drops to one half (which is T = 1 here because the valley degeneracy is

automatically included in the tight-binding calculation[32]) at about ±14◦. In the asymmetric

case of Supporting Figure 3c,d with |nin| < |nout|, the peak of T (φ) for the smooth case remains

relatively narrow, so that guided modes at such a (nin, nout) configuration outside the OF guiding

regime become possible.

Two-cavity resonances

In the main text we mention that the two-cavity resonances, which we mark with black arrows

in Figures 4a, 4 b and Supporting Figure 4a are due to resonances that are tuned by both densities

nin and nout. For these resonances, reflections at the side contacts D1 and D2 are required. By

modifying the potential profile as shown in Supporting Figure 4b and simulating transparent (non-

reflective) leads, the two-cavity resonances on theGSC curves indeed disappear (Supporting Figure

4c). The position where they appear in the realistic device simulation are marked with black

arrows. The shoulders close to 4,8 and 12e2/h remain clearly visible. In this idealized simulation,

the source and collector contacts are set to be 3µm apart similar to the real device (orange curve).

Additionally we also show a test where the S and C contacts are 500 nm apart (blue curve).
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Bandstructures
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Supporting Figure 5. Calculated band structures for translational invariance along x. a-c, Band

structures E(kx) in the empty-channel regime (a), when the first mode appears in transport (b) and for two

modes (c). d, The corresponding positions are labeled on the calculated γ(nin, nout) map. e, A simplified

picture of b, also shown in Figure 1f of the main text. f, The maximum angles of incidence to the p-n

interface are sketched for the two different modes.

In Figure 1f in the main text we sketched a very much simplified band structure for the modes

in order to illustrate the leakage of the guide modes with short kx. A more evolved picture is

presented in Supporting Figure 5a-c, where we show band structures E(kx) calculated by taking

a unit cell laterally cut (along y) from the simulated graphene lattice at around x = 0. The

flake is oriented such that the armchair edge is parallel to the p-n interface. The band structures

are given for different densities nin, nout and the corresponding position is labeled in the guiding

efficiency map, shown in Supporting Figure 5d. We observe zero guided mode in transport along

the channel in Supporting Figure 5a, one mode in b, and two in c. The band structures consist

of mainly two Dirac-like-cones. The one for hole-like transport at the Fermi energy corresponds

to the outer cavities. Since nout is changing only little from Supporting Figure 5a-c, this part of

the band-structure remains unchanged. Due to the rather high density, there is a large number of

modes available. More interesting are the modes that appear in the inner cavity, corresponding
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to electron-like transport. In Supporting Figure 5b we overlay curves that lead to the simplified

picture shown in Figure 1f and Supporting Figure 5e by neglecting the fine-structure at low kx. We

would expect to observe two modes in transport along the channel for Supporting Figure 5b due to

the orange and the blue branch. However, by calculating ky =
√
k2 − k2x for k =

√
ninπ = 0.022

nm−1 we obtain an angle of incidence of 60◦ for the blue and only 25◦ for the orange mode.

Comparing to the numbers given in Supporting Figure 3a and c for transmission at a smooth p-n

interface it becomes apparent why in transport along the channel only one of the modes is seen:

the smaller angle of incidence for the second (orange) mode leads to leakage out of the channel,

whereas the first (blue) mode can be guided efficiently.
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