
HAL Id: cea-01735132
https://cea.hal.science/cea-01735132v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of Andreev bound state population and related
charge-imbalance effect

Roman-Pascal Riwar, Manuel Houzet, Julia S. Meyer, Yuli V. Nazarov

To cite this version:
Roman-Pascal Riwar, Manuel Houzet, Julia S. Meyer, Yuli V. Nazarov. Control of Andreev bound
state population and related charge-imbalance effect. Journal of Physics: Condensed Matter, 2015,
27 (9), pp.095701. �10.1088/0953-8984/27/9/095701�. �cea-01735132�

https://cea.hal.science/cea-01735132v1
https://hal.archives-ouvertes.fr


Control of Andreev bound state population and related charge-imbalance effect

Roman-Pascal Riwar, Manuel Houzet, Julia S. Meyer
Univ. Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble, France.

CEA, INAC-SPSMS, F-38000 Grenoble, France.

Yuli V. Nazarov
Kavli Institute of NanoScience, Delft University of Technology,

Lorentzweg 1, NL-2628 CJ, Delft, The Netherlands.

Motivated by recent experimental research, we study the processes in an ac driven supercon-
ducting constriction whereby one quasiparticle is promoted to the delocalized states outside the
superconducting gap. We demonstrate that with these processes one can control the population of
the Andreev bound states in the constriction. We stress an interesting charge asymmetry of these
processes that may produce a charge imbalance of accumulated quasiparticles, which depends on
the phase.
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Superconducting nanodevices are among the most
promising candidates to realize quantum computation
in the solid state [1], and for many other applications.
Quasiparticle poisoning, whereby an unwanted quasipar-
ticle enters a bound state in the device, is an important
factor harming their proper operation [2]. Naively, the
superconducting gap ∆ should ensure an exponentially
small quasiparticle concentration at low temperatures.
However, various experiments indicate that a long-lived,
non-equilibrium quasiparticle population persists in the
superconductor, affecting the operation of various super-
conducting devices [3–8], including tempting proposals
to use Majorana states in superconductors [9–11].

This makes it important to develop the means of an
active control of the quasiparticle population in bound
states associated with a nano-device.

As a generic model we consider a superconducting con-
striction with a few highly transparent channels. Such
constrictions are made on the basis of atomic break junc-
tions [12]. The simplicity of their theoretical description
enabled detailed theoretical research [13–15]. In the pres-
ence of a phase difference at the constriction, an Andreev
bound state (ABS) is formed in each channel [16, 17]. In a
recent pioneering experiment [18], the population of such
a single bound state has been detected by its effect on
the supercurrent in the constriction. The spectroscopy
of Andreev states has also been successfully performed
in this setup [19, 20]. Thus motivated, we theoretically
investigate the control of the population of quasiparticles
in the ABS at a superconducting constriction by means
of pulses of high-frequency microwave irradiation.

In this Letter, we demonstrate that an efficient control
of the ABS can be achieved by inducing the processes of
ionization and refill (Fig. 1), due to an ac modulation of
the phase drop across the junction, φ(t) = φ+δφ sin(Ωt).
In the course of such a process, a quasiparticle is pro-
moted to the delocalized states and leaves the constric-
tion. We compute the rates of these processes in the
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FIG. 1: Shown in (a) is the setup. A single-channel supercon-
ducting constriction with transmission coefficient T0, biased
by the phase difference φ(t). In (b) we depict the processes
changing the population of the ABS and the transitions they
induce.

lowest order in irradiation amplitude δφ. We find an
interesting charge asymmetry of the emitted quasiparti-
cles. This asymmetry leads to a net quasiparticle current
and charge imbalance of the quasiparticles accumulated
in the vicinity of the constriction. Charge imbalance
can be measured by a standard setup using a normal-
superconducting (N-S) tunnel junction [21–25].

We focus on the regime of low temperatures which per-
mits to neglect the equilibrium population of delocalized
quasiparticle states. Let us consider a quasiparticle in
the ABS with energy EA < ∆. If we modulate the su-
perconducting phase with the frequency Ω > ∆ − EA
(~ = 1), we can transfer this quasiparticle to the states of
the delocalized spectrum. This is an ionization process.
Suppose we start with no quasiparticle in the constriction
and wish to fill the bound state. This can be achieved
by the absorption of a quantum of the high-frequency
phase modulation, provided the energy quantum exceeds
∆ +EA. In the course of such a refill process, one quasi-
particle emerges in the Andreev level while another one
is promoted to the delocalized states and leaves the con-
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striction.
We model the constriction with an effective 1D Hamil-

tonian [26]. The advantage of the model in use is
that we can express all the characteristics of the bound
state and transition dynamics with a single transmis-
sion coefficient T0 characterizing the channel. For in-

stance, the energy of the spin-degenerate ABS reads

EA = ∆
√

1− T0 sin2(φ/2).

The explicit expressions for the rates in lowest order
in the phase modulation amplitude read as follows,

ΓI,R =
T0(δφ)2

16
θ(Ω± EA −∆)

√
∆2 − E2

A

EA

√
(Ω± EA)2 −∆2

EAΩ±∆2(cosφ+ 1)

(Ω± EA)2 − E2
A

. (1)
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FIG. 2: Ionization (dashed) and refill (solid) rates for T0 = 0.5
and φ = π, when EA ≈ 0.7∆. The ionization rate appears at
the threshold Ω ≈ 0.3∆, while the threshold for the refill is
≈ 1.7∆.

We see that the ionization and refill rates at T0 ' 1 are
of the order of (δφ)2∆ and, at sufficiently large phase
modulation amplitudes, are restricted by ∆ only. Thus
the population of the ABS can be changed quickly. We
illustrate the frequency dependence of the ionization and
refill rates in Fig. 2. In the limit of large frequencies, both
rates saturate at the same value. We stress, however,
that the practical frequencies for the manipulation of the
ABS are most likely restricted by 2∆: higher frequencies
would cause massive generation of quasiparticle pairs at
the constriction and in the bulk of the superconductor.

In addition to the microwave-induced processes, there
are intrinsic processes changing the ABS occupation. For
low temperatures, the only such process is the annihi-
lation of two quasiparticles in the same ABS. This in-
elastic process is due to quantum fluctuations of the
phase and is expressed in terms of the phase noise spec-
trum Sφ(ω) that is related to the impedance Z(ω) of
the external circuit felt by the constriction. Namely,
Sφ(ω) = 4πGQZ(ω)/ω, where ω > 0, T � ω, and
GQ ≡ e2/π~, while

ΓA =
Sφ(2EA)

4

(
1− E2

A

∆2

)(
∆2 − E2

A − 4

(
∂EA
∂φ

)2
)
.

(2)
It may be estimated as ΓA ' 〈〈φ2〉〉q∆, 〈〈φ2〉〉q ' GQZ
being the quantum fluctuation of the phase. For typ-
ical electromagnetic environments, Z is of the order of

the vacuum impedance and 〈〈φ2〉〉q ' 10−3. Thus, by
controlling the ac amplitude with respect to the phase
noise, both regimes of negligible, (δφ)2 � 〈〈φ2〉〉q, and
fast, (δφ)2 � 〈〈φ2〉〉q, annihilation are in principle reach-
able. We discuss both limiting cases in the following.

With the rates (1) and (2) we can determine the dis-
tribution of the bound state populations under constant
driving. The processes causing transitions between the
ABS occupations n = 0, 1, 2 are summarized in Fig. 1.
The master equation for the probabilities Pn reads

Ṗ0 = −2ΓRP0 + ΓIP1 + ΓAP2, (3a)

Ṗ1 = −(ΓI + ΓR)P1 + 2ΓRP0 + 2ΓIP2, (3b)

Ṗ2 = −(ΓA + 2ΓI)P2 + ΓRP1. (3c)

The factors 2 in this equation are due to the spin degen-
eracy of the single quasiparticle state.

In the absence of a refill rate, ΓR = 0,ΓI 6= 0,
the ABS is always emptied by the ionization processes,
P st

0 = 1. Therefore the ac phase modulation can be
used for ‘purification’ of the localized quasiparticle states
in nanodevices. We stress that the opposite situation,
ΓI = 0,ΓR 6= 0, is not achievable since the phase modu-
lation responsible for refill processes also produces ioniza-
tion. In this case, the constant ac modulation will cause
a random distribution of the population [26].

An efficient manipulation of the population is yet pos-
sible, provided one can measure the result of the manipu-
lation, that is, the population. This is equivalent to mea-
suring the superconducting current response of the con-
striction. A practical measurement would most likely ad-
dress the inductive response that takes three discrete val-
ues following the population of the state, In = IA(1−n),
where IA = −2e∂φEA.

First, let us concentrate on a simple situation when
the annihilation rate is significant at the time span of
the measurement and manipulation. In this case, the
doubly occupied state is unstable and only n = 0, 1 are
achievable. This corresponds to the current experimental
situation [18]. If n = 1 and we wish to set n = 0,
we just need to apply an ac pulse with the frequency
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EA−∆ < Ω < EA + ∆ and a duration exceeding Γ−1
I . If

n = 0 and the desired state is n = 1, we will apply a refill
pulse and measure the result. If n = 1, we are there. If
not, we apply another pulse.

Since the ac manipulation is fast, it is plausible to con-
trol the population even at time scales ' ΓA with a simi-
lar scheme and go from any n = 0, 1, 2 to any m = 0, 1, 2,
combining measurement as well as refill and ionization
pulses. Naturally, this requires the measurement time to
be much shorter than Γ−1

A . If n > m, we apply ionization
pulses, otherwise refill pulses permitting occasional ion-
ization. The frequency and duration of the pulse can be
optimized to boost the rate and the probability to come
to the desired state with a minimum number of mea-
surements. For instance, for n = 2,m = 1, the optimal
duration of the ionization pulse is Γ−1

I ln 2 that results in
the maximum 50% probability to achieve m = 1 with a
single pulse.

We find a very interesting asymmetry of the quasipar-
ticles emitted in the course of the described processes.
While the quasiparticles fly with equal probability to
both leads, more electron-like quasiparticles leave to one
of the leads while more hole-like ones leave to the oppo-
site lead. This results in a net charge transfer per process

that we define as qα(E) =
√
E2−∆2

E
Γαe−Γαh

Γαe+Γαh
, where E is

the energy of the emitted quasiparticle and α = I,R. The
rates Γαe and Γαh are the partial rates for electron- and
hole-like quasiparticles, respectively [26]. In the follow-
ing we choose to focus on the charge transfer to the right
electrode.

Upon evaluating the rates, the charge transfers qI,R for
the processes considered are expressed as

qI,R = ∓2
∂EA
∂φ

√
(Ω± EA)2 −∆2

∆2 − E2
A

EA

(
1 + EA

Ω±EA

)

ΩEA ±∆2 (1 + cosφ)
.

(4)

In Fig. 3, qI,R as a function of φ are plotted for several
parameters. We see immediately that qα(φ) = −qα(−φ),
like the supercurrent. Inverting the phase therefore in-
verts the charge transfer.

Contrary to the supercurrent, the charge transfer ex-
hibits a discontinuity at φ = 0. The explanation of this
rather counterintuitive feature is that the wave function
of the Andreev bound state is not a continuous function
of φ at φ = 0, since the state merges with the delocal-
ized spectrum at this point. The charge transfers q are
2π-periodic and have a node at φ = π, where the charge
asymmetry vanishes. In addition, qI and qR are gener-
ally of opposite sign. The maximum charge transfer for
a given φ is reached in the limit of a fully transparent
constriction T0 → 1 (thick curves in Fig. 3) where the ac
drive actually produces only a quasiparticle of one kind,
namely, e-like (h-like) for 0 < φ < π (−π < φ < 0).

Under constant irradiation the net charge transfer per
unit time is computed from the master equation (3) and

qI

φ

qR
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FIG. 3: The charge transfers due to (a) ionization, qI, and (b)
refill, qR, as a function of φ. The parameters are Ω/∆ = 1
(dashed) and T0 = {0.5, 1} (thin and thick) as well as Ω/∆ =
3 (solid) T0 = {0.5, 1}. Note that qR = 0 for Ω/∆ = 1.

reads

q̇ = qIΓI(P1 + 2P2) + qRΓR(2P0 + P1) . (5)

We see that the refill process is crucial for the net effect:
otherwise the ABS will always be empty (expressions for
q̇ in in the limits of fast and slow annihilation are pro-
vided in [26]).

If the thermalization of the quasiparticle distribution
in the leads near the constriction is not immediate, the
effect leads to charge imbalance [21, 22]. Namely,
the charge transfer asymmetry gives rise to the build-
up of a non-equilibrium quasiparticle charge density ρ.
This charge imbalance can be measured with a normal-
metal voltage probe attached to the superconductor: the
method proposed in [23] and widely applied in recent
years [24, 25], see Fig. 4. In this case, ρ gives rise to a
current Iq at the N-S tunnel junction. Applying a voltage
eVout = µN − µS between the normal metal and super-
conducting contacts produces a counter-current IV . The
voltage Vout at which Iq + IV = 0 is the signal of the
charge imbalance.

For T � ∆, this measurement is extremely sensitive
owing to the fact that IV is formed by the normal-metal
excitations with energies > ∆. Since at low temperatures
the number of these excitations is exponentially small, an
exponentially large Vout is required to compensate Iq. In
the linear regime, the signal voltage reads eVout = Tρ/c0,
where c0 = ν0

√
2πT∆e−∆/T is the equilibrium quasipar-

ticle density and ν0 the normal metal density of states.
Owing to this, even at moderately low T = 0.05∆ in alu-
minum, a charge imbalance of 0.001 elementary charges
per cubic micrometer produces already a signal' 0.1T/e.
The above relation is valid if eVout � T , at larger imbal-
ances the signal saturates at T ln(ρ/c0) [26].

To estimate ρ, we note that potential scattering does
not lead to the relaxation of charge imbalance: this re-
quires inelastic processes and/or scattering on magnetic
impurities [23]. The charge imbalance lifetime τq is there-
fore long and quasiparticles diffuse far away from the con-
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FIG. 4: Build-up of charge imbalance due to charge asymme-
try of the quasiparticles emitted from the constriction. The
solid and dashed arrows indicate the dominant processes and
their weaker counterparts, respectively. The filled (empty)
circles represent electron-like (hole-like) quasiparticles. The
charge imbalance is measured with a N-S tunnel junction
probe attached to the lead, with a tunnel conductance GT .
The voltage Vout is the output signal for the voltage measure-
ment.

striction, spreading over the length scale Lq '
√
Dτq, D

being the quasiparticle diffusion coefficient. We assume
the N-S voltage probe to be placed within this scale.
The created quasiparticles are distributed over V, the
volume of the lead at the scale Lq. We note that the
normal-state resistance of this piece of the lead can be
estimated as R−1

q = e2ν0DV/L2
q. This permits to repre-

sent the estimation in a compact form [26], independent
of peculiarities of the geometry and disorder in the leads:
ρ ' (RqGQ)ν0q̇.

Combining estimations for Vout and ρ, and estimating
q̇ ' (δφ)2∆ ≡ Γ, we find

eVout ' (RqGQ)T
ν0

c0
Γ ' (RqGQ)

√
T

∆
e∆/TΓ . (6)

To get a rough estimate of achievable values, we take
Rq ' 1 Ohm, Γ ' 10−3∆ ' 1 µeV, T ' 0.05∆. With-
out the exponential factor, the value of Vout would be
in the nanovolt range. However, the exponential factor
yields nine orders of magnitude. Since such an estima-
tion greatly exceeds T , the signal voltage in this case
would saturate at the value T ' 10 µeV which is easy to
measure.

An alternative measurement is to use a grounded N-
S junction. The current signal would then be due to
the emitted quasiparticles slipping to the normal elec-
trode. If the junction conductance GT is sufficiently
large, GTRq � 1, all emitted quasiparticles would do
so resulting in Iout = eq̇ ' eΓ.

We studied the processes of quasiparticle emission in a
superconducting constriction subject to an ac phase mod-
ulation and proposed an efficient scheme to control the
occupation of the ABS. In addition, we found an asym-
metry of the rates of electron- and hole-like quasiparti-
cle emission. This asymmetry is expected to lead to a

charge imbalance of the quasiparticles accumulated near
the constriction which may be measured in an open or
closed circuit geometry. Our results may be generalized
to the multi-channel case, by summing up the contribu-
tions of each channel.
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[20] L. Bretheau, Ç. O. Girit, C. Urbina, D. Esteve, and
H. Pothier, Phys. Rev. X 3, 041034 (2013).

[21] D. N. Langenberg and A. I. Larkin, Nonequilibrium su-



5

perconductivity (North-Holland, 1986).
[22] M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 1366

(1972).
[23] M. Tinkham, Phys. Rev. B 6, 1747 (1972).
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H. v. Löhneysen, Phys. Rev. B 81, 184524 (2010).

[25] T. E. Golikova, M. J. Wolf, D. Beckmann, I. E. Batov,
I. V. Bobkova, A. M. Bobkov, and V. V. Ryazanov, Phys.
Rev. B 89, 104507 (2014).

[26] See the supplementary material for details.



SUPPLEMENTARY MATERIAL:
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1D MODEL OF A SINGLE-CHANNEL SUPERCONDUCTING CONSTRICTION

We model the superconducting weak link with a 1D quantum Hamiltonian corresponding to a single transport
channel. The constriction of length L is modeled by a scattering potential V (x), with the spatial coordinate x. A finite
vector potential A(x) on a local support provides a phase bias between the left and right contact, φ = 2e

∫
dxA(x).

We focus on the regime where the excitation energy is much smaller than the Fermi energy, such that the spectrum
can be linearized. Left/right moving electrons with the Fermi wave vector ∓kF are represented by a pseudo spin
vector basis, |∓〉, where σz = |−〉〈−| − |+〉〈+|. In the linearized regime, the current density operator is represented
as j = −evFσz. The Bogoliubov-de Gennes Hamiltonian is then given as

H = [−ivF∂xσz + V (x)σx] τz − evFA(x)σz + ∆τx , (S1)

where the Pauli matrices τi represent the Nambu space and vF is the Fermi velocity. The potential V (x)σx provides
a finite reflection probability from left to right movers and vice versa, with σx = |−〉〈+| + |+〉〈−|. The potential
function V (x) is a real function and has a finite support in the interval x ∈ [0, L].

DIAGONALIZATION AT STATIONARY PHASE

First, we diagonalize the Hamiltonian (S1) for a stationary phase φ. Assuming a short constriction, L � vF /∆,

there is one Andreev bound state solution |ϕA(x)〉 with a subgap eigenenergy EA = ∆
√

1− T0 sin2(φ/2). The normal

state transmission coefficient T0 characterizes the transport channel under consideration. The Andreev bound state is
responsible for the supercurrent in the constriction. In addition, there are the extended scattering eigenstates |ϕout

βη (x)〉
with eigenenergies E > ∆, where an η-like quasiparticle (η = e,h) is outgoing to the left/right contact, β = l,r. They
have the BCS density of states ν(E) = θ(E−∆)E/

√
E2 −∆2ν0, where ν0 is the normal metal density of states. This

set of outgoing states is connected to the incoming scattering states via the scattering matrix Sβ
′η′

βη = 〈ϕout
β′η′ |ϕin

βη〉.
Our scattering matrix coincides with the one found in Ref. [S1].

PERTURBATION THEORY

We treat the ac drive of the phase, δφ sin(Ωt), as a perturbation, and we compute the rates of various processes
in the lowest order, ∼ (δφ)2, applying Fermi’s golden rule. The advantage of the model and the gauge in use is
that the matrix elements of the perturbation only depend on the wave functions |ϕ(x)〉 at the origin. The rate of
ionization from the bound state outgoing to a delocalized η-like quasiparticle state outgoing to contact β with energy
E = Ω + EA reads

ΓA→βη =
π

8
(δφ)2ν(E)

∣∣〈ϕA(0)|j|ϕout
βη (0)〉

∣∣2 . (S2)

The rate of the refill process whereby a Cooper pair is broken and the quasiparticles occur in the bound state and in
the continuum, at energy E = Ω− EA, reads

Γ0→Aβη =
π

8
(δφ)2ν(E)

∣∣〈ϕout
βη (0)|j|ϕ̃A(0)〉

∣∣2 , (S3)
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FIG. S1: The net charge q̇ as a function of φ for the two limiting cases ΓA � ΓR,I (solid) and ΓA � ΓR,I (dashed). The
parameters are T0 = 0.9 and Ω = 1.9∆.

with |ϕ̃A(0)〉 = iτyσx|ϕA(0)〉∗ [S2]. The partial rates used in the main text are defined as ΓIη ≡ ΓA→rη and ΓRη ≡
Γ0→Arη, as we compute the charge imbalance on the right hand side of the constriction. Note that due to charge
conservation the corresponding charge transfer on the left side is simply opposite. The total ionization and refill rates
are defined as ΓI ≡

∑
β,η ΓA→βη and ΓR ≡

∑
β,η Γ0→Aβη.

In addition, we include quantum phase fluctuations, such that the phase modulation becomes an operator, δφ(t)→
φ̂, whose dynamics is determined by the electromagnetic environment of the junction. The phase noise spectrum is
Sφ(ω) =

∫
dt e−iωt〈δφ̂ (0) δφ̂† (t)〉env, where the expectation value is taken with respect to the environment degrees

of freedom. If the environment is in thermal equilibrium, the noise can be related to the impedance Z(ω) felt by the
constriction via the fluctuation dissipation theorem, S(ω) = 4πGQZ(ω)/ω. The corresponding rate is computed as

ΓA ≡ Γfluct.
2A→0 = Sφ (2EA) |〈ϕA|j|ϕ̃A〉|2 , (S4)

which results in Eq. (2) in the main text.
The stationary occupation probabilities of the ABS due to these rates are given by

P st
0 =

2Γ2
I + ΓA(ΓI + ΓR)

ΓI(ΓA + 2ΓI + 4ΓR) + ΓR(2ΓR + 3ΓA)
, (S5a)

P st
1 =

2ΓR(ΓA + 2ΓI)

ΓI(ΓA + 2ΓI + 4ΓR) + ΓR(2ΓR + 3ΓA)
, (S5b)

with P0 + P1 + P2 = 1.
In the following we provide the limits of slow and fast annihilation, ΓA � ΓI,R and ΓA � ΓI,R, respectively, for a

discussion of q̇. When ΓA is small, we find that P st
0 = Γ2

I /(ΓI+ΓR)2, P st
1 = 2ΓIΓR/(ΓI+ΓR)2, and P st

2 = Γ2
R/(ΓI+ΓR)2.

The resulting net charge transfer is then given as

q̇ = (qI + qR)
2ΓIΓR

ΓI + ΓR
. (S6)

Note that that |qI| ≥ |qR| and thus, for slow annihilation the charge transfer due to the ionization process is always
dominant (i.e., q̇ has the same sign as qI), see also Fig. S1.

The stationary probabilities in the opposite limit of fast ΓA are P st
0 = (ΓI +ΓR)/(ΓI +3ΓR), P st

1 = 2ΓR/(ΓI +3ΓR),
and P st

2 = 0. Here we find

q̇ = (qI + qR)
2ΓIΓR

ΓI + 3ΓR
+ qR

2Γ2
R

ΓI + 3ΓR
. (S7)

While the first term has the same sign as the expression in Eq. (S6), the second term can give rise to the change
of sign in the charge transfer as shown in Fig. S1. This is because a fast ΓA suppresses the two quasiparticle state,
P2 → 0, such that the refill process can become dominant, signified by the extra term in Eq. (S7). In Fig. S1 the
frequency is below the threshold for ΓR in a finite interval close to φ = 0, where consequently q̇ = 0.
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CHARGE IMBALANCE VOLTAGE ESTIMATION

We propose a measurement of the charge imbalance due to an N-S junction close to the constriction that creates
a net charge q̇, as defined in Eq. (5) in the main text. Following the lines of Ref. [S3], the normal metal and
superconductor are connected via a tunnel junction with the conductance GT . The current leaving the normal metal
due to the finite voltage can be given as

IV =
GT
e

∫ ∞

∆

dE
E√

E2 −∆2
[f(E + eV )− f(E − eV )] , (S8)

where V is the voltage across the N-S junction and f is the Fermi distribution. In the low voltage limit, eV � T , one
can approximate IV ≈ −GT VT c0

ν0
with c0 = ν0

√
2π∆Te−∆/T . At higher voltages, T � eV � ∆, one may approximate

IV ≈ − 1
2eGT e

eV/T c0
ν0

. The current entering the normal metal due to the polarization of quasiparticles is given as

Iq =
GT
e

∫ ∞

∆

dE [fqe (E)− fqh(E)] . (S9)

where fqe,h are the nonequilibrium distributions of the electron- and hole-like quasiparticles in the lead. For the

purpose of this estimate it is sufficient to express this current contribution simply as Iq = GT

e
ρ
ν0

, where ρ represents
the non-equilibrium density of quasiparticles.

In order to estimate ρ in terms of the charge transfer q̇, we can apply a simple diffusion model. Consider the steady
state diffusion equation for the spatially resolved charge density ρ(~x), ~x = (x, y, z),

D~∇2
~xρ(~x)− τ−1

q ρ(~x) = −q̇δ(~x) +
Iout

e
δ(~x− ~xT ) , (S10)

where D is the quasiparticle diffusion coefficient, the charge imbalance source ∼ q̇ is placed at the axis origin,
and Iout = IV + Iq is the net current leaving through the tunnel detector situated at ~xT . We summarize the
relaxation processes for the nonequilibrium quasiparticle density (as mentioned in the main text) in a single rate τ−1

q .
Furthermore, we impose a hard wall boundary condition at the constriction.

We consider two possibilities to probe the charge imbalance. The first consists of a voltage probe, where the voltage
across the N-S junction is set to V = Vout such that the net current at the junction cancels, Iout = 0. This voltage is
directly sensitive to ρ, i.e., eVout = Tρ/c0 (eV � T ) or eVout ' T ln(ρ/c0) (eV � T ). Due to the condition Iout = 0,
the drain term on the right-hand side of Eq. (S10) is zero, and we find that the density ρ(x) simply decays as ∼ e−x/Lq

with the charge imbalance decay length Lq =
√
Dτq. In order to provide an estimate independent of the geometric

details, we simply average ρ(x) over this length scale (a good approximation as long as the voltage probe is situated
within Lq) and we find ρ ' τq q̇/V where V is the volume of the lead at the length scale Lq. Thus one recovers the
estimate of the voltage Vout as in Eq. (6) in the main text.

Alternatively, the charge imbalance may be measured by a direct current probe where the N-S junction is grounded.
Hence, IV = 0 and Iout = Iq = GT

eν0
ρ(~xT ), which means that the probe affects the nonequilibrium density ρ. Solving

the diffusion equation (S10) then readily provides Iout in terms of the net charge transfer q̇. In the limit when the
distance between source and drain is � Lq and GT � R−1

q (where R−1
q ' e2Dν0V/L2

q) one obtains Iout ≈ eq̇.
Therefore if the current probe is close enough, a high conductance allows ideally for a detection of the full charge
transfer q̇.
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