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Non-equilibrium spin transport in Zeeman-split superconductors

Tatiana Krishtop, Manuel Houzet, and Julia S. Meyer
Univ. Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble, France and

CEA, INAC-SPSMS, F-38000 Grenoble, France

We investigate theoretically the non-local conductance through a superconducting wire in tunnel
contact with normal and ferromagnetic leads. In the presence of an in-plane magnetic field, the
superconducting density of states is spin-split, and the current injected from the normal lead is
spin-polarized. A non-local conductance that is antisymmetric with the applied voltage can be
measured with a ferromagnetic lead. It persists for a distance between the contacts that is larger
than both the charge-imbalance relaxation length and the normal-state spin relaxation length. We
determine its amplitude by considering two extreme models of weak and strong internal equilibration
of the superconducting quasiparticles due to electron-electron interactions. We find that the non-
local signal, which was measured in recent experiments and discussed as a spin-imbalance effect,
can be interpreted alternatively as the signature of a thermoelectric effect.

PACS numbers: 72.25.Ba, 74.25.fg, 74.40.Gh, 85.75.-d

Introduction.- Recent progress in the realization of
complex ferromagnet/superconductor (F/S) heterostruc-
tures has lead to the emergence of “superconducting spin-
tronics” as a promising field of research. A fundamental
question concerns the ability of superconductors to sus-
tain the flow of a spin-polarized current. A standard way
to study spin injection and relaxation in a normal metal
consists in contacting it with two ferromagnetic leads, an
injector (I) and a detector (D), and measuring the depen-
dence of the non-local conductance, gnl = ∂ID/∂VI, on
their separation. Such a method was also used to mea-
sure the spin lifetime in superconductors [1–3]. Moder-
ate variations of the spin lifetime in the superconducting
state, with respect to its normal-state value, could be
attributed to magnetic impurities [2] or weak spin-orbit
coupling [3, 4].

It is also possible to inject a spin-polarized current from
a non-ferromagnetic, normal (N) metal into a supercon-
ducting film subject to an in-plane magnetic field. In-
deed, Bogoliubov quasiparticles in superconductors carry
a spin 1

2 . The spin degeneracy of the superconducting
gap for quasiparticles with opposite spins may thus be
lifted by the Zeeman effect. At zero temperature, one
expects the injected current to be fully spin-polarized if
the applied voltage is in the range between the gaps for
electrons with opposite spins [5]. Based on this effect,
recent experiments have established that the non-local
conductance measured with a F detector persists over a
distance from a N or F injector that is much longer than
the spin relaxation length mentioned above [6–9]. This
method was also applied at finite frequency [10].

Such a non-local signal distinguishes itself from the
charge-imbalance effect, which already exists in the ab-
sence of a magnetic field and for both N injector and
detector [11, 12], by a longer decay length. Moreover, in
the case of a N injector, the field induced non-local con-
ductance is antisymmetric with respect to the applied
voltage, while the charge-imbalance signal is symmetric.

By analogy, it was discussed as a “spin-imbalance” ef-
fect [13]. Various scenarios for the relaxation of the signal
were discussed, without a clear conclusion.

The aim of our work is to show theoretically that such
a signal appears naturally in models where the spin-
imbalance – defined as a difference between distribution
functions for quasiparticles with opposite spins – is ab-
sent. Indeed, one needs to distinguish between spin po-
larization, arising from a density of states effect, and spin
imbalance, characterizing unequal occupations. The cur-
rent injected in the superconductor is accompanied by
an energy flow that produces an out-of equilibrium dis-
tribution of quasiparticles in the S wire. This in turn re-
sults in an induced current at the detector, provided that
the quasiparticles with opposite spins have different den-
sities of states, such that the superconductor acquires a
finite spin polarization, and different probabilities to tun-
nel through the tunnel barrier. Those conditions are nat-
urally realized, if the superconducting density of states is
Zeeman-split and the detector is ferromagnetic. The de-
tector current then corresponds to the thermoelectric ef-
fect predicted in a single S/F tunnel junction in the pres-
ence of a magnetic field [14, 15]. Within this approach,
the scale over which the non-local signal disappears is
related with energy relaxation, which is set by electron-
phonon interactions. Namely, as long as energy cannot
relax, the superconductor will carry excess quasiparti-
cles that lead to a non-local signal. In particular, while
electron-electron interactions lead to internal equilibar-
tion of the quasiparticles, they do not relax energy and,
therefore, do not suppress the signal. We find, however,
that they qualitatively change its voltage dependence.

Formalism.- The setup that we address consists of a
superconducting wire in tunnel contact with two nor-
mal or ferromagnetic leads separated by a distance d,
see Fig. 1. The first lead is voltage biased with respect
to the superconductor; it acts as a quasiparticle injector.
As shown in experiments [6–8], it can result in a detec-
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FIG. 1: Setup of the junction.

tor current flowing through the second contact. Below
we obtain the dependence of the injector and detector
currents, II and ID, respectively, on the voltage bias V ,
both in the regimes of slow and fast electron-electron re-
laxation. While the formalism is more general, we specify
the results only for a N/S/F structure, i.e., a N injector
and F detector.

Using the tunnel Hamiltonian theory of Ref. [12], we
find that the current flowing between a normal or ferro-
magnetic lead at equilibrium and a superconductor with
an out-of-equilibrium quasiparticle distribution is given
by

Iα =
Gα
e

∑
σ

∫ ∞
∆

dE
{
ν(E)

[
f0(Eσ + eVα)− f0(Eσ − eVα)

2
+ σPα

(
f0(Eσ)− f0(Eσ + eVα) + f0(Eσ − eVα)

2

)]
+σPαν(E)

[
f+
σ (Eσ)− f0(Eσ)

]
+ f−σ (Eσ)

}
. (1)

Here, f0 is the Fermi distribution at temperature T0 in
the leads, Vα is the voltage bias between lead α = I,D
and the superconductor, with VI = V and VD = 0, Gα
is the normal-state tunnel conductance, Pα is the spin-
polarization of the lead (|Pα| < 1 and Pα = 0 for a
normal lead), ∆ is the superconducting gap, ν(E) =
E/
√
E2 −∆2 is the reduced BCS density of states, and

Eσ = E + σh, where h = µBB is a Zeeman field and
σ = ± (for ↑ / ↓) is a spin label.

The non-local signal is described by the second line of
Eq. (1). The out-of-equilibrium distribution functions in
the superconductor, f±σ (E) = [f>σ (E) ± f<σ (E)]/2, are
related with the distributions for electron-like [f>σ (E)]
and hole-like [f<σ (E)] Bogoliubov excitations with spin σ
and energy E > ∆ + σh, respectively. The last term in
Eq. (1) corresponds to a charge-imbalance contribution
to the current [12]. Deviations of f+

σ from its equilibrium
value, f0, yield a contribution to the current proportional
to Pα, which therefore exists only when the lead is ferro-
magnetic.

To evaluate the current (1), we need to determine the
superconducting gap and distribution functions in the
vicinity of the tunnel junctions. The former should sat-
isfy the local self-consistency equation

1 = λ

∫ Ω

∆

dE√
E2 −∆2

[
1−

∑
σ

f+
σ (Eσ)

]
. (2)

Here, the pairing constant λ and Debye frequency Ω are
related with the BCS gap at zero temperature through
∆0 = 2Ωe−1/λ. To obtain the distribution functions,
we may generalize the Boltzmann equation approach for
Bogoliubov quasiparticles [16, 17] to Zeeman-split super-
conductors. In the diffusive regime (∆τ � 1, where τ is

the elastic scattering time) [18], we find that the distri-
bution functions solve the kinetic equations

−Dσ(E)∇2f≷σ (E) = I≷σ (E). (3)

Here, Dσ(E) = DN/ν(Eσ̄), where DN is the diffusion
constant in normal state and σ̄ = −σ. The collision in-
tegral I≷σ (E) contains elastic and inelastic contributions
as well as contributions due to the tunnel injection of
quasiparticles from the leads.

The elastic contribution stems from the effect of the
in-plane magnetic field on the orbital motion of the elec-
trons as well as from the electron scattering by magnetic
impurity and by normal impurities having a large spin-
orbit scattering potential. It takes the form

I≷el,σ(E) =
1

τ1σ(E)

[
f≶σ (E)− f≷σ (E)

]
+

1

τ2σ(E)

[
f
≷
σ̄ (E)− f≷σ (E)

]
+

1

τ3σ(E)

[
f
≶
σ̄ (E)− f≷σ (E)

]
, (4)

where

1

τ1σ(E)
=

(
1

τorb
+

1

τm

)
∆2

Eσ̄ξσ̄
, (5a)

1

τ2σ(E)
=

ξσ̄
Eσ̄

(
1

τm
µ++(E) +

1

τso
µ+−(E)

)
, (5b)

1

τ3σ(E)
=

ξσ̄
Eσ̄

(
1

τm
µ−+(E) +

1

τso
µ−−(E)

)
, (5c)

and µss′(E) = θ(Eσ−∆)[Eσ̄Eσ+sξσ̄ξσ+s′∆2]/(ξσ̄ξσ) for
s, s′ = ±. Here, 1/τorb = DN (ewB)2/6 for an in-plane
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magnetic field and a wire with a thickness w � ξS , where
ξS =

√
DN/∆0 is the superconducting coherence length,

whereas 1/τm and 1/τso are the spin-flip rates due to mag-
netic and spin-orbit impurities, respectively, in the nor-
mal state. These rates will be assumed smaller than ∆,
so that they affect the kinetic equations, but not the su-
perconducting density of states. The rate 1/τ1σ leads to
charge-imbalance relaxation while the rate 1/τ2σ leads to
spin-imbalance relaxation, whereas the rate 1/τ3σ yields
both. Note that the two last terms in the r.h.s. of
Eq. (4) are only effective when the bands for Bogoliubov
quasiparticles with opposite spins overlap, enabling elas-
tic spin relaxation.

The tunnel injection of quasiparticles at position xα
results in the term

I≷α,σ(E) =
δ(x− xα)

2e2νNΣ
Gα

∑
s=±

1 + sσPα
2

× (6)

×
(

1± s ξσ̄
Eσ̄

)[
f0(E + seVα)− f≷σ (E)

]
.

Here νN is the density of the superconductor (per spin)
in the normal state, and Σ is the cross section of the
superconducting wire

Finally, the inelastic collision integral contains both
electron-electron and electron-phonon contributions,
characterized by rates γe−e and γe−ph, respectively. It
is important to note that electron-electron interactions
do not lead to energy relaxation as discussed in more
detail later.

Recent experiments with N/S/N structures demon-
strated that, at low temperatures, the relaxation of the
charge-imbalance signal under magnetic field was domi-
nated by the orbital depairing mechanism [19, 20]. The
non-local spin signal of Refs. [6, 8] persists over a much
longer length than the one determined by this effect.
Taking this into account, we decompose Eq. (3) into
two diffusion equations for f+

σ (E) and f−σ (E). Assuming
that charge imbalance relaxes fast, 1/τorb →∞, we find
f−σ (E) = 0. As a consequence, Eq. (3) reduces to a single
kinetic equation,

−Dσ(E)∇2f+
σ (E) = Iσ(E). (7)

In particular, the elastic contribution to the collision in-

tegral reduces to a spin-flip term

Iel,σ(E) =
1

τsσ(E)

[
f+
σ̄ (E)− f+

σ (E)
]
, (8)

with elastic spin relaxation rate τ−1
sσ (E) = τ−1

2σ (E) +
τ−1
3σ (E), in agreement with Refs. [13, 21, 22] at h = 0.

Taking into account that PI = 0 and VD = 0 for the
N/S/F setup that we consider, Eq. (1) reduces to

II =
GI

2e

∑
σ

∫ ∞
∆

dE ν(E) [f0(Eσ + eV )− f0(Eσ − eV )]

(9)
for the injector current and

ID =
PDGD

e

∑
σ

σ

∫ ∞
∆

dE ν(E)
[
f+
σ (Eσ)− f0(Eσ)

]
(10)

for the detector current, respectively. Eq. (10) then yields
the non-local conductance gnl = ∂ID/∂VI.

While electron-phonon scattering in superconductors
was investigated in detail [23], much less is known about
electron-electron scattering. It was argued recently that,
due to the different energy dependence of the two rates,
a large or small ratio γe−e/γe−ph could be achieved in
Aluminum (the superconductor used in all cited experi-
ments), depending on the energy range probed [24]. To
proceed further, we will therefore evaluate the distri-
bution f+

σ that enters Eq. (10) in two limiting cases,
γe−e � γe−ph and γe−e � γe−ph, and discuss qualita-
tively the differences in the result for the non-local con-
ductance. Electron-phonon processes will be described
phenomenologically by imposing that f+

σ (E) = f0(E) at
a distance L? from the tunnel junctions. Characteristic
length scales for Al are in the range of several µm, as
discussed, e.g., in Ref. [19].
Slow internal equilibration.- We first assume that

electron-electron collisions are very rare. In that case,
spin relaxation is dominated by elastic spin-flip processes.
Eq. (7) may be solved to obtain the distribution function
f+
σ , both for slow and fast elastic spin relaxation.
Neglecting elastic spin-flip processes, 1/τsσ(E) → 0,

and using the boundary conditions f+
σ (E;x = −L?) =

f+
σ (E;x = d + L?) = f0(E), we obtain the solution to

Eq. (7) at the position of the detector (x = d) as

f+
σ (E) = f0(E) +

νI(Eσ̄)GI

[
1
2 (f0(E + eV ) + f0(E − eV ))− f0(E)

]
2G? + νI(Eσ̄)GI + νD(Eσ̄)GD + (d/L?) [G? + νI(Eσ̄)GI] [G? + νD(Eσ̄)GD] /G?

, (11)

where G? = σNΣ/L? is an effective conductance asso-
ciated with the electron-phonon relaxation length and

σN = 2e2νNDN is the normal-state conductivity of the
superconducting wire. Here we added a subscript α to
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FIG. 2: Non-local conductance as a function of the bias
voltage in the regimes of slow (solid lines) and fast (dashed
lines) elastic spin relaxation. Curves are shown for three dif-
ferent Zeeman fields, h/∆0 = 0.1 (black), 0.2 (red), and 0.4
(blue). The two figures correspond to G? = 0.5GD (a) and
G? = 20GD (b). Furthermore, d� L? and GI = GD.

the reduced density of states (να) to indicate that is
should be evaluated with the self-consistent gap ∆α at
the position xα of the corresponding lead. Note that, at
G? � GI, GD and d� L?, the distribution function does
not depend on spin.

As elastic spin-flip processes require spin-up and spin-
down states to be available, they modify the distribution
function only in the energy range E > ∆ + h, where
the density of states in both spin bands is finite. Thus,
in the opposite regime of fast elastic spin relaxation,
1/τsσ(E) → ∞, the result (11) still holds at energies
∆−h < E < ∆ +h. At E > ∆ +h, spin relaxation equi-
librates the distributions between up and down spins,
f+
↑ (E) = f+

↓ (E). The resulting distribution is given
by an equation similar to (11) with να(Eσ̄) replaced by
ν̄α(Eσ̄) =

∑
σ να(Eσ̄)/2.

The non-local conductance is obtained by inserting the
distribution (11) into Eq. (10). Fig. 2 shows results in
both regimes of slow and fast elastic spin relaxation.
(Note that here we disregarded the self-consistency of
the gap.) We observe that both regimes give rise to the
same qualitative behavior. Namely, the non-local con-
ductance is the sum of two contributions of opposite signs
that have different threshold voltages (∆± h)/e, respec-
tively. At G? � GI, GD, spin relaxation has no effect, as
f+
↑ (E) ≈ f+

↓ (E) in the entire energy range even in the ab-
sence of spin-flip processes. At G? � GI, GD, elastic spin
relaxation leads to a reduction of the peak at the thresh-
old voltage (∆ + h)/e. However, also the overall mag-
nitude of the signal decreases with increasing electron-
phonon relaxation, corresponding to increasing G?. Fur-
thermore, as a function of the separation between in-
jector and detector, the non-local conductance decreases
algebraically on the scale of the electron-phonon relax-
ation length. Therefore, the measured signal is mainly
governed by energy relaxation. It is difficult to make a
clear distinction between the cases where spin-imbalance
is present or absent.

Fast internal equilibration.- In the opposite regime of
frequent electron-electron collisions, the energy redistri-

bution among Bogoliubov quasiparticles tends to estab-
lish a common Fermi distribution f(E), with a local tem-
perature T that may differ from the temperature in the
leads, T0. Such heating effects were previously addressed
in the context of S/N/S junctions [25]. As the internal
equilibration in this so-called “hot” quasiparticle regime
facilitates spin relaxation, we will concentrate on the
regime of fast spin relaxation. Thus, there is no spin
imbalance. Applying the already mentioned condition of
energy conservation for electron-electron scattering pro-
cesses, we then obtain the heat equation

−∇2

[
σN
e2

∑
σ

∫ ∞
∆

dE Eσf(Eσ)

]
=
∑
α=I,D

Q̇α, (12)

where

Q̇α =
Gαδ(x− xα)

e2Σ

∑
σ

∫ ∞
∆

dE ν(E)Eσ [fα(Eσ)− f(Eσ)]

(13)
is the power injected at the tunnel junctions and fα(E) =
[f0(E + eVα) + f0(E − eVα)]/2 [26].

Integrating Eq. (12) along the S wire for nearby injec-
tor and detector junctions (d � L?), we find that the
local temperature and superconducting gap in the vicin-
ity of the junctions are determined by

0 =
∑
σ

∫ ∞
∆

dE Eσ

{
2G? [f(Eσ)− θ(E−∆(T0))f0(Eσ)]

+ν(E)
∑
α

Gα [f(Eσ)− fα(Eσ)]
}
, (14)

together with the self-consistency equation (2) that yields
∆(T, h) [27]. The generalization to a finite separation d
between injector and detector is straightforward [28].

The dependence of the local temperature on the ap-
plied voltage shows two thresholds at eV = ∆ ± h, cor-
responding to the opening of each of the spin channels.
For a critical voltage

eVc =

√
π2

3

GΣ + 2G?
GI

T 2
c (h)− 2G?

GI
h2 , (15)

where GΣ = GI + GD and Tc(h) is the superconduct-
ing critical temperature, the local temperature reaches
the critical temperature and, thus, superconductivity is
suppressed locally [29]. When G? � GI, GD, the crit-
ical voltage is very large and the local suppression of
superconductivity in the voltage range up to a few ∆0 is
negligible.

The non-local signal exists only for voltages ∆0(h) −
h < eV < eVc. The current increases with voltage as long
as the local density of states remains gapped and then de-
creases once the local temperature reaches the value for
which ∆(T, h) = h and the gap closes locally. The succes-
sive openings of the two spin channels for transport thus
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FIG. 3: Non-local conductance as a function of the bias
voltage in the “hot” quasiparticle regime. Same parameters
as in Fig. 2. Note that in figure (a), local superconductivity is
suppressed completely beyond the critical voltages eVc/∆0 ≈
1.51, 1.72, 1.77 for h/∆0 = 0.1, 0.2, 0.4, respectively. In figure
(b), corresponding to a larger value of G?, the critical voltages
are much larger. Thus, in the voltage range shown, the local
suppression of superconductivity is small. The results without
taking it into account are shown for comparison (dotted lines).

yield two peaks of the same sign in the non-local con-
ductance, whereas the gap closing at V . Vc results in a
peak with opposite sign. The position of this last peak
beyond which the signal quickly vanishes is determined
mainly by the efficiency of energy relaxation, character-
ized by G?. Its magnitude may be large because the
gapless region is narrow. The results are illustrated in
Fig. 3.

Discussion.- We showed that a finite non-local signal
exists in the absence of spin imbalance, both for slow and
fast electron-electron relaxation. The amplitude of the
signal decreases with increasing energy relaxation due to
electron-phonon processes. On the other hand, at very
weak energy relaxation, the system quickly overheats and
superconductivity becomes locally suppressed, leading to
a complete suppression of the non-local signal beyond a
critical voltage Vc. Electron-electron relaxation qualita-
tively modifies the voltage dependence of the non-local
conductance. In particular, if Vc � ∆0, one finds two
peaks with opposite signs at slow electron-electron relax-
ation whereas one finds two peaks with the same sign at
fast electron-electron relaxation. While spin imbalance
may be present, it does not lead to any easily identifiable
features in the non-local conductance. A double peak
structure in agreement with the scenario of fast electron-
electron relaxation is clearly visible in Ref [9].

Note added.- In the last stage of this work, we learned
of two preprints that address the same effect [30, 31].
They use a quasiclassical theory, which is complemen-
tary to our kinetic theory and which allows them to in-
corporate the orbital depairing effect of the magnetic
field. While Ref. [30] also attributes the signal mea-
sured in Refs. [6, 7] to a thermoelectric effect, none of
these preprints consider the “hot” quasiparticle regime
and the local suppression of superconductivity that we
discuss here.
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useful discussions. This work is supported by ANR

grants ANR-11-JS04-003-01 and ANR-12-BS04-0016-03,
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