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Abstract

We relate one-loop scattering amplitudes of massless open- and closed-string
states at the level of their low-energy expansion. The modular graph functions
resulting from integration over closed-string punctures are observed to follow
from symmetrized open-string integrals through a tentative generalization of the
single-valued projection known from genus zero.
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1 Introduction

Modular graph functions are building blocks for one-loop scattering amplitudes in closed-string
theories at the one-loop level. They have been thoroughly investigated by D’Hoker, Green,
Vanhove and other authors during the last couple of years [1–13] and arise from Feynman
graphs of certain conformal scalar fields on the torus. Each modular graph function depends on
the modular parameter of the torus and its modular invariance is inherited from the underlying
closed-string setup. While the computation of their asymptotic expansion 1 is itself cumbersome,
they exhibit a variety of mathematical structures: modular graph functions are related by
a network of algebraic identities and related to holomorphic Eisenstein series by differential
equations with respect to the modular parameter. Even more, they satisfy certain eigenvalue
equations involving the modular invariant Laplace operator.

Most interestingly for the purpose of this article, however, a first connection between elliptic
multiple polylogarithms (as defined in refs. [14–16]) and modular graph functions was established
in ref. [6]: The latter were written as special values of infinite sums of single-valued multiple
polylogarithms, and these infinite sums are proposed in the reference to be a single-valued
analogue of elliptic multiple polylogarithms2. This connection extends an observation made
for genus-zero (tree level) open- and closed-string amplitudes: closed-string tree amplitudes
are conjectured to be obtained by acting with the so-called single-valued projection on the
multiple zeta values appearing in their open-string counterparts [17–19]. The single-valued
projection maps generic multiple zeta values to those instances which descend from single-valued
polylogarithms at genus zero [20,21].

At genus one (one-loop level), Enriquez’s elliptic multiple zeta values [22] were shown to
capture the low-energy expansion of the open superstring [23–25]. The results of [6] suggest to
expect that modular graph functions are single-valued versions of Enriquez’s elliptic multiple
zeta values. However, the precise matching and thus the relation between open- and closed-
string results at one-loop level is an open problem: First, the closed-string [6] and open-string
literature [23–25] use different notions of elliptic polylogarithms. Second, the dependence of
modular graph functions and elliptic multiple zeta values on the modular parameters of the
respective genus-one surface is realized in rather different languages.

In the current article we are going to bridge the leftover gap between one-loop open- and
closed-string amplitudes before integration over the respective modular parameters. We propose
a setup which allows to relate certain building blocks of open-string amplitudes with modular
graph functions. This accumulates evidence for a conjectural elliptic generalization of the single-
valued projection known from genus zero. Simultaneously, this leads to a conjectural formalism
to explicitly construct modular graph functions starting from open-string quantities. The results
thus obtained pass all consistency checks and match previous partial expressions.

The main idea is to define open-string graph functions within an abelian version of one-loop
open-string amplitudes. Despite the fact that the permissible string spectrum of Type-I open-
superstring theory does not contain an abelian gauge boson [26], we will consider a kinematical
building block of the putative amplitude, which is non-trivial and well-defined for auxiliary
abelian particles. In order to implement the abelian character of the auxiliary particles, the
integration regions for open-string punctures are symmetrized in a convenient manner. The
symmetrized open-string integrals of the abelian setup are the key to lining up the properties

1As the modular parameter τ tends to i∞ such that a homology cycle of the Riemann surfaces pinches.
2It is not demonstrated that the infinite sums studied in ref. [6] can be called single-valued elliptic multiple

polylogarithms in the usual mathematical sense. This would be true if one can write them as finite linear
combinations of products of elliptic multiple polylogarithms and their complex conjugates.
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of the open-string genus-one Green function with its closed-string counterpart. In particular,
the graphical organization of the low-energy expansion of open- and closed-string amplitudes in
terms of open-string and modular graph functions agrees, which allows for direct comparison
between constituents.

open string closed string

tree-level
MZV

tree-level
sv(MZV)

one-loop level
eMZV

one-loop level
esv(eMZV)

single-valued
projection

elliptic
single-valued
projection?

Figure 1: Context of a tentative generalization “esv” of the single-valued projection to genus one.

1.1 Summary of results

The notion of a single-valued projection applies to a variety of situations [27]. The most common
examples are multiple zeta values (MZVs),

ζn1,n2,...,nr :=
∞∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nrr , ni ∈ N+, nr ≥ 2 , (1.1)

of weight n1+n2+ . . .+nr and depth r, which can be represented as multiple polylogarithms
evaluated at unit argument. In contrast, single-valued MZVs3 descend from single-valued mul-
tiple polylogarithms at unit argument [21]. As explained in the reference, the single-valued
projection formally denoted as

sv(ζn1,...,nr) = ζsv
n1,...,nr (1.2)

maps generic MZVs (1.1) to their single-valued counterparts, e.g.

ζsv
2k = 0 , ζsv

2k+1 = 2ζ2k+1 , k ∈ N+ (1.3)
ζsv

3,5 = −10ζ3ζ5 , ζsv
3,5,3 = 2ζ3,5,3 − 2ζ3ζ3,5 − 10ζ2

3ζ5 .

As will be reviewed in the next section, the single-valued projection of MZVs appears naturally
in relating tree-level scattering amplitudes of open and closed strings: the single-valued map
acts on the MZVs arising in the low-energy expansion of open-string disk integrals and yields
the closed-string integral over a punctured sphere. Correspondingly, it would be desirable to
identify a similar map called “esv” for the elliptic version of multiple zeta values ω (to be defined
and discussed below)

esv(ω(n1, . . . , nr|τ)) = ωesv(n1, . . . , nr|τ) . (1.4)

at the one-loop level. As will be shown in this article, one-loop open- and closed-string ampli-
tudes – expressed as open-string and modular graph functions, respectively – can be taken as a

3While the concept of single-valuedness is well defined for a function, the notion is – by slight abuse of
nomenclature – also used for MZVs which are numbers.
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starting point to propose an analogous single-valued projection of elliptic multiple zeta values
(eMZVs), see figure 1. Accordingly, we are going to describe suitable operations on open-string
graph functions, which conjecturally yield modular graph functions as their one-loop closed-
string counterparts,

esv
(

open-string
graph function

)
=
(

closed-string mo-
dular graph function

)
. (1.5)

We will provide examples of this correspondence up to and including the seventh subleading
order in the low-energy expansion. In particular, starting from eq. (1.5), we will establish a new
connection between building blocks of open- and closed-string four-point amplitudes

esv Mopen
4 (sij | − 1

τ ) = M closed
4 (sij |τ) . (1.6)

These functions of the modular parameters τ of the underlying Riemann surfaces result from
integrating over the open- and closed-string punctures and yield the respective building blocks
for amplitudes upon integration over τ . We will furthermore provide evidence that the planar
open-string integral on the left hand side can be replaced by any of its non-planar counterparts,
irrespective on how the four state insertions are distributed over the boundary of the worldsheet.

It is important to mention that a way to produce a single-valued projection of eMZVs (and
therefore of open-string graph functions) already exists in the literature: it is based on their
representation in terms of iterated integrals of Eisenstein series (as will be explained later in sec-
tion 2), followed by the construction given in Francis Brown’s papers [28] and [29]. Brown’s con-
struction maps iterated integrals of Eisenstein series to certain modular-invariant real-analytic
functions whose coefficients are single-valued MZVs. So far, however, it remains conjectural that
modular graph functions are contained in the image of this elliptic single-valued projection. We
postpone the investigation of the relation between our single-valued projection and Brown’s map
to a sequel of the present work.

1.2 Outline

Several techniques and previous results entering the construction of this work are reviewed in
section 2. First, a short review is given on the single-valued projection in the context of regular
multiple zeta values, which appear at string tree level. Second, A- and B-cycle versions of eMZVs
will be reviewed. As it will turn out, modular transformations are facilitated by representing
A- and B-cycle elliptic multiple zeta values in the language of iterated integrals over Eisenstein
series. Modular graph functions including some of their properties are introduced briefly.

In section 3, open-string graph functions are introduced. While starting from the so called
A-cycle graph functions, it will turn out that finally B-cycle functions are the objects necessary
for the construction of modular graph functions.

Once open-string graph functions are properly introduced, the comparison with modular
graph functions can happen, and it is presented in section 4. Using several examples, we will
finally arrive at a set of rules relating open-string graph functions to modular graph functions.
As this is done at the level of relating eMZVs to what is believed to be a single-valued version
thereof, the construction should constitute a representation of an elliptic single-valued projection.

Finally, non-planar analogues of the above open-string graph functions are introduced in
section 5, generalizing our main result eq. (1.6) to admit the integrals for arbitrary non-planar
four-point open-string amplitudes on the left hand side.
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Various details and examples can be found in the appendices. In appendix A we provide
a table allowing to translate our graphical notation to different notations for modular graph
functions appearing in earlier articles on the subject.

2 Basics

2.1 Single-valued projection at tree level

In this section, we provide a brief review of the tree-level relations between open- and closed-
string amplitudes and identify them as the single-valued projection in eq. (1.2).

Tree amplitudes among n massless open-string states can be represented by moduli-space
integrals over punctured disks accompanied by partial amplitudes of the Yang–Mills field theory
[30,31]. The moduli-space integrals read

Z(ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) =
∫

D(ρ(1,2,...,n))

dz1 dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij |−sij

σ(z12z23 . . . zn−1,nzn,1) , (2.1)

where zi are the positions of the punctures on the boundary of a disk. The integral Z(·|·) in
eq. (2.1) is labeled by two permutations σ, ρ ∈ Sn of the external legs 1, 2, . . . , n which govern
the cyclic product of zij = zi − zj in the denominator and the integration domain

D(1, 2, . . . , n) = {(z1, z2, . . . , zn) ∈ Rn, −∞ < z1 < z2 < . . . < zn <∞} . (2.2)

The division by the inverse volume vol(SL(2,R)) of the conformal Killing group can be imple-
mented by dropping any three integrations, fixing the respective positions such as (z1, zn−1, zn) =
(0, 1,∞), and inserting the compensating Jacobian z1,n−1z1,n, zn−1,n. Finally, the disk integrals
eq. (2.1) depend on the lightlike momenta kj of the external states j = 1, 2, . . . , n through the
dimensionless Mandelstam variables4

sij := −α
′

2 ki · kj (2.3)

involving the inverse string tension α′.
Tree-level amplitudes among massless closed-string states, in turn, comprise moduli-space

integrals over punctured spheres,

W (ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) := π3−n
∫
Cn

d2z1 d2z2 · · · d2zn
vol(SL(2,C))

∏n
i<j |zij |−2sij

ρ(z12z23 . . . zn,1) σ(z̄12z̄23 . . . z̄n,1) ,

(2.4)
where both permutations ρ, σ ∈ Sn label a cyclic product of zij or their complex conjugates.
The inverse volume vol(SL(2,C)) suppresses three complex integrations and the normalization
factor π3−n is chosen for later convenience.

The low-energy regime of string amplitudes is encoded in the Taylor expansion of the disk
and sphere integrals around small values of the inverse string tension α′ and thus small values
of the Mandelstam variables (2.3). The w’th order in the low-energy expansion beyond the

4Throughout this work, we will follow the normalization convention for α′ which is tailored to the closed-string
setup. The fully accurate normalization of open-string quantities can be restored by rescaling α′ → 4α′ [32].
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respective field-theory amplitudes gives rise to MZVs eq. (1.1) of weight w [33, 34], for instance

s12Z(1, 2, 3, 4 | 1, 2, 4, 3) = exp
( ∞∑
n=2

ζn
n

[
sn12 + sn23 − (s12 + s23)n

])
(2.5)

s12W (1, 2, 3, 4 | 1, 2, 4, 3) = exp
(
2
∞∑
k=1

ζ2k+1
2k + 1

[
s2k+1

12 + s2k+1
23 − (s12 + s23)2k+1]) . (2.6)

Generic examples of multiplicity n ≥ 5 also involve MZVs of higher depth r ≥ 2 [35,17], and the
explicit polynomial dependence on the Mandelstam invariants can for instance be computed5

via polylogarithm manipulations [31], the Drinfeld associator [42] or a Berends–Giele recursion
for a putative effective field theory of bi-colored scalars [43]. A machine-readable form of such
results is available for download on the website [44].

Closed-string integrals (2.4) can in principle be assembled from squares of open-string inte-
grals (2.1) through the Kawai–Lewellen–Tye (KLT) relations [45]. However, the KLT formula
obscures the cancellation of various MZVs from the open-string constituents: From the all-order
conjectures of ref. [17], closed-string integrals (2.4) are expected to be single-valued open-string
integrals [18,19],

W (ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) = svZ(ρ(1, 2, . . . , n) |σ(1, 2, . . . , n)) . (2.7)

The MZVs in the image of the single-valued projection sv(. . .) are precisely the single-valued
MZVs described in eqs. (1.2) and (1.3) above – in agreement with the four-point examples
eqs. (2.5) and (2.6). As can be seen from eq. (2.7), the sv-projection trades the integration
domain of the disk integral eq. (2.1) for an antiholomorphic cyclic denominator of a sphere
integral (2.4).

2.2 A- and B-cycle eMZVs and iterated Eisenstein integrals

Several versions of eMZVs have been used in different contexts: when represented as special
values of multiple elliptic polylogarithms (defined by Brown and Levin in [16]), they have made
an appearance in the evaluation of the sunrise integral, see for instance [46–55], while when
represented as the coefficients of the elliptic associator (defined by Enriquez in [56]), they have
made an appearance in the one-loop open-string amplitudes. The latter is the context that
we consider in this article; therefore our conventions are inspired by the string-theory setup in
refs. [23–25]. A further comprehensive reference on eMZVs is Matthes’s PhD thesis [57]. A-cycle
eMZVs are defined as iterated integrals over the unit interval

ωA(n1, n2, . . . , nr|τ) :=
∫

0≤z1≤z2≤...≤zr≤1

f (n1)(z1, τ) dz1 f
(n2)(z2, τ) dz2 . . . f

(nr)(zr, τ) dzr , (2.8)

where the integration path is taken to be on the real line6. Using the parametrization of the
torus in figure 2, the integration domain in eq. (2.8) corresponds to the A-cycle and justifies the
term “A-cycle eMZVs”. Accordingly, iterated integrals along the B-cycle connecting the points

5Earlier work on α′-expansions at n = 5, 6, 7 points include [36–39], and the representation of five-point
integrals as hypergeometric functions has been exploited in the all-order methods of refs. [40,41].

6Homotopy-invariant completions of the integrands in eq. (2.8) are known from ref. [16].
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0

τ τ + 1

1

Im(z)

Re(z)

Figure 2: Parametrization of a torus as a lattice C/(Z+τZ) with modular parameter τ in the upper
half plane and complex coordinate z ≡ z+1 ≡ z+τ . The homology cycle drawn in red is mapped to the
unit interval (0, 1) and referred to as the A-cycle. Accordingly, the second homology cycle mapped to the
path from 0 to τ is known as the B-cycle.

0 and τ in figure 2 give rise7 to B-cycle eMZVs

ωB(n1, n2, . . . , nr|τ) :=
∫

0≤z1≤z2≤...≤zr≤τ

f (n1)(z1, τ) dz1 f
(n2)(z2, τ) dz2 . . . f

(nr)(zr, τ) dzr . (2.9)

The doubly-periodic integration kernels f (n) in eqs. (2.8) and (2.9) are defined by their generating
series [23,24],

exp
(

2πiα Im(z)
Im(τ)

)
θ′(0, τ)θ(z + α, τ)
θ(z, τ)θ(α, τ) =

∞∑
n=0

αn−1f (n)(z, τ) , (2.10)

where θ(z, τ) denotes the odd Jacobi theta function, and the simplest instances are f (0)(z, τ) = 1
as well as f (1)(z, τ) = ∂z log θ(z, τ) + 2πi Im(z)

Im(τ) . We refer to the number r of entries of eMZVs
and the quantity n1 + n2 + . . . + nr as their length and weight, respectively. Furthermore, the
number of non-zero entries nj 6= 0 of eMZVs will be referred to as their depth.

B-cycle eMZVs can be obtained from A-cycle eMZVs by the modular S-transformation,
which sends τ → − 1

τ ,

ωA(n1, n2, . . . , nr| − 1
τ ) = τn1+n2+...+nr−r ωB(n1, n2, . . . , nr|τ) . (2.11)

Since the restriction of the kernels f (n) to the real line admits a Fourier-expansion in q = e2πiτ

spelt out in subsection 3.3.3 of ref. [23], the same is true for A-cycle eMZVs in eq. (2.8), and
one can prove that the coefficients are given by Q[(2πi)±1]-linear combinations of MZVs [22].

By contrast, B-cycle eMZVs have the more complicated behavior near the cusp τ → i∞ (or
q → 0) [22,58],

ωB(n1, n2, . . . , nr|τ) =
r∑

l=1−n1−···−nr
τ l

∞∑
k=0

bk,l(n1, n2, . . . , nr) qk , n1, nr 6= 1 , (2.12)

where the coefficients bk,l(n1, n2, . . . , nr) are Q[(2πi)±1]-linear combinations of MZVs. In the
resulting expansion for S-transformed A-cycle eMZVs

ωA(n1, n2, . . . , nr| − 1
τ ) =

n1+···+nr∑
l=1−r

(2πiτ)l
∞∑
k=0

ck,l(n1, n2, . . . , nr)qk , n1, nr 6= 1 , (2.13)

7We think of eq. (2.9) as an integral over the straight path [0, τ ] ⊂ C. Again, these integrals are not homotopy
invariant, and their relation with the homotopy invariant version known from ref. [16] is more subtle than in the
A-case. The interested reader is referred to [57].
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it is crucial for later purposes to note that the coefficients ck,l(n1, n2, . . . , nr) are Q[2πi]-linear
(rather than Q[(2πi)±1]-linear) combinations of MZVs. As will be proven in appendix C, all the
negative powers of π can been absorbed into the negative powers of 2πiτ in eq. (2.13).

2.2.1 Elliptic iterated integrals

In the same way as MZVs descend from multiple polylogarithms at unit argument, A-cycle
eMZVs defined in eq. (2.8) are special cases of elliptic iterated integrals subject to the recursive
definition [23]

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z | τ) :=

∫ z

0
dt f (n1)(t− a1, τ) Γ ( n2 ... nr

a2 ... ar ; t | τ) (2.14)

with initial condition Γ(; z|τ) = 1, integration path along the real line and real upper limit z.
Accordingly,

ωA(n1, n2, . . . , nr | τ) = Γ ( nr ... n2 n1
0 ... 0 0 ; 1 | τ) . (2.15)

The integrals defined in eq. (2.14) above are not homotopy invariant. However, as discussed in
ref. [16] (see also subsection 3.1 of ref. [23]), every integral Γ ( n1 n2 ... nr

a1 a2 ... ar ; z | τ) can be lifted to
a homotopy invariant integral. Thus, despite the lack of homotopy invariance, various manip-
ulations are still allowed for the integrals defined in eq. (2.14). In particular, as will become
important for later computations, differential equations in ai acting on the iterated elliptic inte-
grals defined in eq. (2.14) can be used to eliminate any additional occurrences of the argument
z on the left of the semicolon [23], for instance

Γ ( nz ; z) = (−1)n Γ ( n0 ; z) (2.16)
Γ ( 1 0 1

z 0 0 ; z) = 2 Γ ( 0 0 2
0 0 0 ; z) + Γ ( 0 2 0

0 0 0 ; z)− 2 Γ ( 0 1 1
0 0 0 ; z) + ζ2 Γ ( 0

0 ; z) . (2.17)

2.2.2 Iterated Eisenstein integrals

Given that the differential equation in appendix C.2 allows to relate eMZVs to Eisenstein series,
it is natural to represent them in terms of iterated integrals in τ (or q = e2πiτ ), see ref. [24] for
the detailed formalism of iterated Eisenstein integrals8,

E(k1, k2, . . . , kr; τ) = 2πi
∫ i∞

τ
dτr

Gkr(τr)
(2πi)kr E(k1, k2, . . . , kr−1; τr)

= −
∫ q

0
dlog qr

Gkr(qr)
(2πi)kr E(k1, k2, . . . , kr−1; qr) (2.18)

= (−1)r
∫

0≤q1≤q2≤...≤qr≤q

dlog q1 · · · dlog qr
Gk1(q1)
(2πi)k1

· · · Gkr(qr)
(2πi)kr

E0(k1, k2, . . . , kr; τ) = 2πi
∫ i∞

τ
dτr

G0
kr(τr)

(2πi)kr E(k1, k2, . . . , kr−1; τr)

= −
∫ q

0
dlog qr

G0
kr(qr)

(2πi)kr E0(k1, k2, . . . , kr−1; qr) (2.19)

8In ref. [24], a slightly different convention for iterated Eisenstein integrals has been employed. Named γ and
γ0, they differ from the objects E and E0 defined in eqs. (2.18) and (2.19) by powers of 2πi and can be related via

γ(k1, k2, . . . , kr; τ) = (2πi)k1+···+kr−2r E(k1, k2, . . . , kr; τ)

γ0(k1, k2, . . . , kr; τ) = (2πi)k1+···+kr−2r E0(k1, k2, . . . , kr; τ) .

Please see appendix D.1 for further details of our conventions.
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= (−1)r
∫

0≤q1≤q2≤...≤qr≤q

dlog q1 · · · dlog qr
G0
k1(q1)

(2πi)k1
· · ·

G0
kr(qr)

(2πi)kr .

The recursion starts with E(; τ) = E0(; τ) = 1, and the non-constant parts of Eisenstein series
are defined as

G0
2n(τ) := G2n(τ)− 2 ζ2n , G0(τ) := G0

0(τ) := −1 (2.20)

with n ∈ N+. Our conventions for Eisenstein series Gk are listed in appendix D.1, and we will
interchangeably refer to the argument of Gk, G0

k and their iterated integrals by τ or q. For both
E(k1, k2, . . . , kr; τ) and E0(k1, k2, . . . , kr; τ) in eqs. (2.18) and (2.19), we will refer to the number
of non-zero entries (kj 6= 0) as the depth of the respective iterated Eisenstein integral (similar
to the terminology for eMZVs).

Throughout this article, the endpoint divergences of the above integrals as q1 → 0 are
understood to be shuffle-regularized through the tangential-basepoint prescription described in
ref. [59] with the net effect

∫ q
0

dq1
q1

= log q. The iterated Eisenstein integrals E0(k1, . . . , kr) with
k1 6= 0 do not need to be regularized and have the following Fourier-expansion (cf. eq. (4.62) of
ref. [24]):

E0(k1, 0p1−1, k2, 0p2−1, . . . , kr, 0pr−1; q) = (−2)r
( r∏
j=1

1
(kj − 1)!

)
(2.21)

×
∞∑

mi,ni=1

mk1−1
1 mk2−1

2 . . .mkr−1
r qm1n1+m2n2+...+mrnr

(m1n1)p1(m1n1 +m2n2)p2 . . . (m1n1 +m2n2 + . . .+mrnr)pr
,

where kj 6= 0. The conversion of A-cycle eMZVs to iterated Eisenstein integrals therefore
provides an easy way to find their functional dependence on q and, by the linear independence
of E with different labels [60,29], exposes their relations [24].

The iterated Eisenstein integrals in eq. (2.18) are linear combinations of products of powers
of τ and the objects

G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]

:=
∫ i∞

τ
dτr τ jrr Gkr(τr)G

[
j1 ... jr−1
k1 ... kr−1

; τr
]
, (2.22)

where ki are even positive integers and ji are non-negative integers. The results of Brown [59] on
the integrals eq. (2.22) will be used to express the modular S-transformations E(k1, k2, . . . , kr;− 1

τ )
in terms of iterated Eisenstein integrals at argument τ , powers of τ and Q[(2πi)±1]-linear combi-
nations of MZVs. For ki 6= 0, one recovers G

[
0 0 ... 0
k1 k2 ... kr ; τ

]
=
∏r
j=1(2πi)kj−1 E(k1, k2, . . . , kr; τ),

and the general dictionary between the two types of iterated Eisenstein integrals eqs. (2.18)
and (2.22) is described in section 3.3 below. The number r of integrations in eq. (2.22) will be
referred to as the depth of Brown’s iterated Eisenstein integrals, and it is compatible with the
notion of depth in their representation via E in eq. (2.18).

Given a suitable regularization scheme, all objects defined as iterated integrals naturally
satisfy shuffle relations. This applies in particular to eMZVs, elliptic iterated integrals and
iterated Eisenstein integrals. Shuffle relations can be neatly explained by reorganizing the higher-
dimensional integration domains and read for the example of iterated Eisenstein integrals:

E(0, 0; τ) E(4; τ) = E(0, 0, 4; τ) + E(0, 4, 0; τ) + E(4, 0, 0; τ) . (2.23)
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2.3 Modular graph functions

The definition of modular graph functions [6] is motivated by the low-energy expansion of the
modular invariant integral

M closed
n (sij |τ) :=

∫
dµclosed

n (τ) exp

 n∑
i<j

sijGij(τ)

 , (2.24)

which appears in one-loop amplitudes of the closed superstring [61, 62] and gives rise to the
right-hand side of the correspondence in eq. (1.5). The Green function Gij(τ) := G(zi, zj ; τ) on
the torus is defined below, and the integration measure for n external states reads∫

dµclosed
n (τ) := 1

Im(τ)n−1

∫
T (τ)

d2z2

∫
T (τ)

d2z3 . . .

∫
T (τ)

d2zn (2.25)

with z1 = 0. The zj are to be integrated over a torus T (τ) of modular parameter τ , and the
above measure is normalized such that

∫
T (τ) d2z = Im(τ). The Green function is only defined

up to an additive function of τ , and we will employ the representative

Gij(τ) := − log
∣∣∣∣θ1(zij , τ)

η(τ)

∣∣∣∣2 − π

2 Im(τ)(zij − z̄ij)2 , zij = zi − zj (2.26)

which vanishes upon integration over the torus∫
T (τ)

d2zi Gij(τ) = 0 . (2.27)

The low-energy expansion of eq. (2.24) can be conveniently represented graphically. After ex-
panding the exponential in the integrand as a power series and exchanging integration and
summation, one can associate a graph to every summand in the following way: each integration
variable of eq. (2.25) is represented by a vertex, and each Green function Gij between vertices
i and j is visualized by an edge [1, 2]

Gij(τ) =
i j . (2.28)

Then property eq. (2.27) implies the vanishing of one-particle reducible graphs9, so the sim-
plest contributions to the low-energy expansion of eq. (2.24) stem from two-vertex graphs with
multiple edges. The associated modular graph functions are given by

D
[ ]

:=
∫

dµclosed
2 G2

12, D
[ ]

:=
∫

dµclosed
2 G3

12, D
[ ]

:=
∫

dµclosed
2 G4

12 , (2.29)

and we will employ a graphical labeling for their generalizations to one-particle irreducible graphs
with multiple vertices, e.g.

D
[ ]

:=
∫

dµclosed
3 G12G13G23 , D

[ ]
:=
∫

dµclosed
3 G2

12G13G23 , (2.30)

D
[ ]

:=
∫

dµclosed
4 G12G23G34G41 , D

[ ]
:=
∫

dµclosed
5 G13G34G42G15G52G12 .

We suppress the dependence on τ in eqs. (2.29) and (2.30) as well as in later equations.
9One-particle reducible graphs are those which can be disconnected by removing an edge.
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The number of edges in the graphical representation equals the weight of a modular graph
function. A translation between graphs at higher weight and their names in refs. [2, 63] is
provided in table 1 in appendix A. In terms of modular graph functions, the α′-expansion of
the four-point integral eq. (2.24) reads

M closed
4 (sij |τ) = 1 + 2 D

[ ]
(s2

12 + s12s23 + s2
23) + (D

[ ]
+ 4 D

[ ]
)s12s23s13

+ 1
6
(

D
[ ]

+ 9 D
[ ]2

+ 6 D
[ ])

(s2
12 + s12s23 + s2

23)2 (2.31)

+ 1
12
(

D
[ ]

+ 48 D
[ ]

D
[ ]

+ 12 D
[ ]

− 12 D
[ ]

+ 16 D
[ ]

+ 14 D
[ ]

D
[ ]

− 24 D
[ ])

× s12s23s13(s2
12 + s12s23 + s2

23) +O(α′6) ,

where we have used the relations s12 = s34, s14 = s23 and s13 = s24 = −s12 − s23 among
four-particle Mandelstam variables. Since M closed

4 (sij |τ) is the only integral contributing to
the four-point amplitude, the one-loop contribution to D2wR4 operators in the effective action
follows from integrating eq. (2.31) over the fundamental domain with respect to τ [1–3]. Closed-
string one-loop amplitudes for n ≥ 5 points, however, involve a variety of additional integrals
besides M closed

n (sij |τ) [62–64,10].
The complexity of modular graph functions is correlated with the number of loops in its

graphical representation. We will later on define a notion of depth for modular graph functions
which relates to the depth of iterated Eisenstein integrals and which is conjecturally bounded
from above by the loop order of the graph. One-loop graphs give rise to the simplest class of
modular graph functions: These are non-holomorphic Eisenstein series,

D
[ ]

= E2 , D
[ ]

= E3 , D
[ ]

= E4 , D
[ ]

= E5 , . . . (2.32)

which are defined by the lattice sums

Ek(τ) =
( Im(τ)

π

)k ∑
(m,n)6=(0,0)

1
|m+ τn|2k

(2.33)

= ek(y)− 8y(2k − 1)!
k−1∑
j=0

(
2k − 2− j
k − 1

)
1
j! (4y)j−k Re[E0(2k, 0, . . . , 0︸ ︷︷ ︸

2k−2−j

; q)]

with y := π Im(τ), Bernoulli numbers B2k and

ek(y) = (−1)k−1 B2k
(2k)! (4y)k + 4(2k − 3)!

(k − 2)! (k − 1)! ζ2k−1(4y)1−k . (2.34)

For generic modular graph functions, a lattice-sum representation generalizing the first line of
eq. (2.33) can be straightforwardly deduced from the Fourier-expansion of the Green function
eq. (2.26) with respect to Im z

Im τ [1],

Gij(τ) = Im τ

π

∑
(m,n) 6=(0,0)

e2πi(nαij−mβij)

|m+ τn|2
, zij = αij + τβij , αij , βij ∈ R . (2.35)

However, the q-expansions of modular graph functions beyond Ek have not been spelt out in
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the literature before, and we will propose new results in terms of iterated Eisenstein integrals
E0 with q-expansion eq. (2.21) in section 4.2.

2.3.1 Laurent polynomials in the zero modes

Modular graph functions associated with a one-particle irreducible graph G admit a double
expansion of the form

D[G] =
∞∑

m,n=0
cGm,n(y)qmq̄n, (2.36)

where the coefficients cGm,n(y) are Laurent polynomials in y = π Im(τ) of maximum degree equal
to the number of edges (or weight) w of G and minimum degree 1−w [65]. A variety of results
is available on the polynomial cG0,0(y) =: d[G] which describes the behavior of the corresponding
modular graph function at the cusp τ → i∞. In abuse of nomenclature, the polynomial d[G]
will be referred to as the zero mode. Apart from the zero modes ek(y) for the polygonal graphs
in eq. (2.34), the results to be compared with an open-string setup below read [2, 11]

d
[ ]

= 2y4

14175 + yζ3
45 + 5ζ5

12y −
ζ2

3
4y2 + 9ζ7

16y3 (2.37)

d
[ ]

= 2y5

155925 + 2y2ζ3
945 −

ζ5
180 + 7ζ7

16y2 −
ζ3ζ5
2y3 + 43ζ9

64y4 (2.38)

at weight four and five as well as

d
[ ]

= 38y6

91216125 + ζ7
24y −

7ζ9
16y3 + 15ζ2

5
16y4 −

81ζ11
128y5 (2.39)

d
[ ]

= 808y6

638512875 + y3ζ3
4725 −

yζ5
1890 + ζ7

720y + 23ζ9
64y3 −

ζ2
5 + 30ζ3ζ7

64y4 + 167ζ11
256y5 (2.40)

d
[ ]

= 43y6

58046625 + yζ5
630 + ζ7

144y + 7ζ9
64y3 −

17ζ2
5

64y4 + 99ζ11
256y5 (2.41)

d
[ ]

= 103y6

13030875 + y3ζ3
2025 + yζ5

54 −
ζ2

3
90 −

ζ7
360y + 5ζ3ζ5

12y2 + 5ζ9−48ζ3
3

288y3 + 14ζ3ζ7+25ζ2
5

32y4 − 73ζ11
128y5

(2.42)

at weight six. While the above examples exclusively involve zeta-values of depth10 one, some
of the modular graph functions at weight w ≥ 7 were shown to involve single-valued MZVs at
depth three, for instance11 [65]

d
[ ]

= 62y7

10945935+2y4ζ3
243 +119y2ζ5

324 +11yζ2
3

27 +21ζ7
16 +46ζ3ζ5

3y +7115ζ9
288y2 −

25ζ3
3

2y2 −
75ζ2

5
8y3 (2.43)

+1245ζ3ζ7
16y3 −9(ζ3,5,3 − ζ3ζ3,5)

4y4 −315ζ2
3ζ5

8y4 −9573ζ11
128y4 +2475ζ5ζ7

32y5 +1125ζ3ζ9
32y5 −1575ζ13

32y6

can be rewritten as

d
[ ]

= 62y7

10945935+y4ζsv
3

243 +119y2ζsv
5

648 +11y(ζsv
3 )2

108 +21ζsv
7

32 +23ζsv
3 ζ

sv
5

6y +7115ζsv
9

576y2 −
25(ζsv

3 )3

16y2

10The depth r of MZVs ζn1,...,nr is not a grading, thus it is often possible that the same MZV has two different
representations where the depth changes; for instance ζ3 = ζ1,2. Here, when we say that MZVs have a certain
depth, we mean that they cannot be written as polynomials in MZVs of lower depth.

11There is a typo in the coefficient of y−4 in the corresponding formula in ref. [65].
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−75(ζsv
5 )2

32y3 +1245ζsv
3 ζ

sv
7

64y3 −
9ζsv

3,5,3
8y4 −

405(ζsv
3 )2ζsv

5
64y4 −9573ζsv

11
256y4 +2475ζsv

5 ζ
sv
7

128y5 +1125ζsv
3 ζ

sv
9

128y5 −1575ζsv
13

64y6 .

(2.44)

It is conjectured that the coefficients of all Laurent polynomials in eq. (2.36) can be written in
terms of single-valued MZVs [65]. Finally, the zero modes in modular graph functions associated
with two-point or two-loop graphs are known in closed form [66,13].

2.3.2 Relations among modular graph functions

Modular graph functions corresponding to different graphs are not independent objects: they
satisfy various relations involving (conjecturally only) single-valued MZVs, starting with the
relation proved by Don Zagier [67] (see also [3])

0 = D
[ ]

−D
[ ]

− ζ3 . (2.45)

At weight four and five, the techniques of [3, 4, 7] led to

D
[ ]

= 24 D
[ ]

− 18 D
[ ]

+ 3 D
[ ]2

(2.46)

40 D
[ ]

= 300 D
[ ]

+ 120 D
[ ]

D
[ ]

− 276 D
[ ]

+ 7ζ5 (2.47)

D
[ ]

= 60 D
[ ]

+ 10 D
[ ]

D
[ ]

− 48 D
[ ]

+ 16ζ5 (2.48)

10 D
[ ]

= 20 D
[ ]

− 4 D
[ ]

+ 3ζ5 (2.49)

30 D
[ ]

= 12 D
[ ]

+ ζ5 , (2.50)

and the complete set of weight-six relations displayed in appendix F has been identified in
ref. [11].

2.3.3 Laplace equations among modular graph functions

Various combinations and powers of modular graph functions are related through a web of eigen-
value equations for the Laplacian ∆ := 4(Im τ)2 ∂2

∂τ∂τ̄ . While the non-holomorphic Eisenstein
series eq. (2.33) at one loop satisfy

(∆− k(k−1)) Ek = 0 , (2.51)

the systematics of inhomogeneous Laplace eigenvalue equations at two loops has been described
in ref. [3], leading for instance to

(∆− 2) D
[ ]

= 9 E4−E2
2 (2.52)

(∆− 6) D
[ ]

= 86
5 E5−4 E2 E3 + ζ5

10 (2.53)

as well as

(∆− 2)(4 D
[ ]

+ D
[ ]

) = 52 E6−4 E2
3

(∆− 12)(6 D
[ ]

−D
[ ]

) = 108 E6−36 E2
3 (2.54)
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(∆− 12)(6 D
[ ]

+ D
[ ]

) = 120 E6 +12 E2
3−36 E2 E4 .

Laplace equations for the tetrahedral topology at three loops12 are known from ref. [12]; we
will report on a new weight-six identity involving less symmetric topologies in section 4.2.5.

2.3.4 Cauchy–Riemann equations among modular graph functions

An essential tool in deriving relations between modular graph functions is the Cauchy–Riemann
derivative

∇ := 2i(Im τ)2∂τ (2.55)

with ∂τ := ∂
∂τ , which maps modular forms of weight (0, w) to those of weight (0, w−2). For

instance, repeated application of the Cauchy–Riemann derivative (2.55) mediates between non-
holomorphic and holomorphic Eisenstein series [7]

Γ(k)(π∇)k Ek = Γ(2k)(Im(τ))2k G2k . (2.56)

At higher loop-order, the Cauchy–Riemann equations

(π∇)3 D
[ ]

= 9
10(π∇)3 E4−6 Im(τ)4 G4 π∇E2 (2.57)

(π∇)3 D
[ ]

= 43
35(π∇)3 E5−2(π∇E2)(π∇)2 E3−4 Im(τ)4 G4 π∇E3 (2.58)

have been instrumental to prove the weight-four and weight-five relations in eqs. (2.46) to (2.50)
[7]. The same method has been applied in [11] to derive the weight-six relations in eq. (F.1) as
well as selected relations at weight seven.

Holomorphic Eisenstein series appear in both the Cauchy–Riemann derivatives of modular
graph functions and the τ -derivative eq. (C.3) of eMZVs. In subsection 4.2.1 below, we will
report on a correspondence between eqs. (2.56) to (2.58) and differential equations of associated
combinations of eMZVs.

3 An open-string setup for graph functions

In this section, we will describe an open-string setup mimicking the graphical organization of the
closed-string α′-expansion in subsection 2.3. Choosing auxiliary abelian open-string states, the
permutation symmetry of the closed-string integration measure in eq. (2.25) can be implemented
in an open-string setup. As a consequence, external abelian states allow to rewrite the low-energy
expansion of open-string integrals without one-particle irreducible graphs. Having done so, the
structure of the closed-string integral eq. (2.31) equals that of the four-point amplitude among
abelian open-string states.

The open-string analogues of the modular graph functions will be referred to as “A-cycle
graph functions” and expressed in terms of the A-cycle eMZVs introduced in subsection 2.2.
Accordingly, the results of their modular S-transformation will be referred to as “B-cycle graph
functions”, and we will introduce techniques to express them in terms of the same iterated
Eisenstein integrals as employed forA-cycle graph functions. These expressions forB-cycle graph
functions will be the starting point for proposing an analogue of the single-valued projection

12See [5, 8] for earlier work on Laplace equations of specific three-loop examples.
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from subsection 2.1 in the one-loop setup and furnish the left hand side of the correspondence
in eq. (1.5).

3.1 Definition of A- and B-cycle graph functions

3.1.1 Review of open-string α′-expansions

The color-ordered one-loop amplitude of four non-abelian open-string states reads13

I4pt(1, 2, 3, 4|τ) :=
∫

0≤z2≤z3≤z4≤1

dz2 dz3 dz4 exp

1
2

4∑
i<j

sijGij(τ)

 , (3.1)

with z1 = 0. The integration domain corresponds to a single-trace contribution of the non-
abelian gauge-group generators14. The open-string Green function Gij can be obtained from
the closed-string version in eq. (2.26) by restricting to real arguments. Comparing with the
definition of elliptic iterated integrals in eq. (2.14) and the form of the integration kernel f (1),
we find

Gij(τ) = −2 Γ ( 1
0 ; zij |τ) + k(τ) = −2 Γ

(
1
zj ; zi|τ

)
− 2 Γ ( 1

0 ; zj |τ) + k(τ) . (3.2)

The iterated elliptic integrals Γ in eq. (3.2) need regularization, see e.g. section 4.2.1 of ref. [25],
which leads to the scheme-dependent quantity k(τ). The latter, however, does not depend on
zi, zj and thus cancels out from eq. (3.1) after using momentum conservation

∑
i<j sij = 0. We

will suppress the dependence on τ henceforth.
The representation eq. (3.2) of the Green function has been used to algorithmically perform

the α′-expansion of eq. (3.1) in the framework of eMZVs, leading to [23]

I4pt(1, 2, 3, 4) = 1
6 − 2s13 ωA(0, 1, 0, 0) + 2ωA(0, 1, 1, 0, 0)

(
s2

12 + s2
23
)
− 2ωA(0, 1, 0, 1, 0) s12s23

− β5 (s3
12 + 2s2

12s23 + 2s12s
2
23 + s3

23) − β2,3 s12s23(s12 + s23) + O(α′4) (3.3)

with

β5 = 4
3
[
ωA(0, 0, 1, 0, 0, 2) + ωA(0, 1, 1, 0, 1, 0)− ωA(2, 0, 1, 0, 0, 0)− ζ2 ωA(0, 1, 0, 0)

]
(3.4)

β2,3 = ζ3
12 + 8 ζ2

3 ωA(0, 1, 0, 0)− 5
18 ωA(0, 3, 0, 0) . (3.5)

As can be seen from the non-vanishing contribution at linear order, a single Green function does
not integrate to zero. This is true in general for the non-abelian situation: one cannot find a
constant c(τ) such that both G12(τ)+c(τ) and the cyclically inequivalent G13(τ)+c(τ) integrate
to zero simultaneously within eq. (3.1). Hence, in presence of non-abelian open-string states,
there is no analogue of the property eq. (2.27) which eliminates one-particle reducible graphs in
the expansion.

13Given that the normalization of α′ is tailored to the closed-string setup in this work, the expressions for
I4pt(1, 2, 3, 4) given in [23] is recovered from eq. (3.1) by rescaling α′ → 4α′. The definitions eqs. (2.3) and (2.26)
of the Mandelstam invariants and the Green function on the torus are identical to those of [3,6,7,11] to match the
conventions of the references for closed-string integrals and modular graph functions. The normalization of sij
and Gij chosen in [23, 25] can be obtained from eqs. (2.3) and (2.26) by rescaling sij → −4sij and Gij → −Gij ,
respectively.

14The contributions from cylinder- and Möbius-strip diagrams to planar one-loop amplitudes are obtained by
integrating (3.1) over τ ∈ iR+ and τ ∈ 1

2 + iR+, respectively [26].
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3.1.2 Open-string α′-expansion for abelian states

Switching from non-abelian to abelian open-string states amounts to democratically combining
all different possible integration domains in eq. (3.1) and to independently integrating each zj
for j = 2, 3, 4 over the unit interval. Hence, we will be interested in symmetrized open-string
integrals

Mopen
n (sij) :=

∫
dµopen

n exp

 n∑
i<j

sijPij

 (3.6)

with z1 = 0 and an integration measure analogous to eq. (2.25):∫
dµopen

n :=
∫ 1

0
dz2

∫ 1

0
dz3 . . .

∫ 1

0
dzn . (3.7)

Momentum conservation has been used to trade the Green function eq. (3.2) for15

P1j := ωA(1, 0)− Γ ( 1
0 ; zj) , Pij := ωA(1, 0)− Γ

(
1
zj ; zi

)
− Γ ( 1

0 ; zj) , (3.8)

with z1 = 0 and i, j 6= 1 (we have suppressed the dependence on τ from the notation). Note
that one can also swap the roles of zi and zj in the rightmost expression since Pij = Pji. In
analogy to the situation for the quantity k(τ) in eq. (3.2), the addition of ωA(1, 0) in eq. (3.8)
does not contribute to the open-string integral eq. (3.1) after taking momentum conservation
into account. However, including ωA(1, 0) into the propagator eq. (3.8) ensures that an analogue
of the crucial identity eq. (2.27) from the closed-string setup holds∫ 1

0
dzi Pij = 0 , (3.9)

as can be checked using the definition eq. (2.14) of elliptic iterated integrals. Then, the α′-
expansion of the four-point amplitude among abelian open-string states will be organized in
terms of one-particle irreducible graphs: each integration variable in eq. (3.7) is represented
by a vertex, and each propagator Pij in eq. (3.8) between vertices i and j is visualized by an
undirected edge, as shown below.

Pij =
i j . (3.10)

In these conventions, the open-string analogue of eq. (2.31) reads

Mopen
4 (sij) = 1 + 2 A

[ ]
(s2

12 + s12s23 + s2
23) + (A

[ ]
+ 4 A

[ ]
)s12s23s13

+ 1
6
(

A
[ ]

+ 9 A
[ ]2

+ 6 A
[ ])

(s2
12 + s12s23 + s2

23)2

+ 1
12
(

A
[ ]

+ 48 A
[ ]

A
[ ]

+ 12 A
[ ]

(3.11)

− 12 A
[ ]

+ 16 A
[ ]

+ 14 A
[ ]

A
[ ]

− 24 A
[ ])

× s12s23s13(s2
12 + s12s23 + s2

23) +O(α′6) ,
15Note that the right hand side of eq. (3.8) does not match the definition of Pij in ref. [25].
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where the A-cycle graph function A[G] associated with a graph G is defined in analogy with the
corresponding modular graph function D[G]

A[G] := D[G]
∣∣∣dµclosed

n → dµopen
n

Gij → Pij
, (3.12)

for instance

A
[ ]

:=
∫

dµopen
2 P 2

12 , A
[ ]

:=
∫

dµopen
5 P13P34P42P15P52P12 .

Again, the number of edges in the graphical representation equals the weight of an A-cycle graph
function.

Finally, symmetrizing over the respective integration domains, the four-point integral in the
abelian case coincides with the symmetrization of eq. (3.3),

Mopen
4 (sij) =

∑
ρ∈S3

I4pt(1, ρ(2, 3, 4)) . (3.13)

In particular, up to the orders where I4pt(1, 2, 3, 4) is available, eq. (3.13) has been used as a
consistency check for the explicit results for the A-cycle graph functions in eq. (3.11) to be
obtained in the next section.

Although the n-point amplitude of the open superstring involves many integrals beyond
eq. (3.6) [68,69,23,64,70], we still want to study A-cycle graph function with n ≥ 5 vertices for
the sake of their parallels with modular graph functions.

3.1.3 B-cycle graph functions

The open-string integral eq. (3.1) and the measure eq. (3.7) are expressed in a parametrization
of the cylinder worldsheet, where one of the boundary components is the A-cycle. By a modular
transformation, this setup is related to a parametrization of the boundary component through
the path from 0 to τ , i.e. the B-cycle (cf. figure 2 in section 2.2). In order to compare open-
string quantities with modular graph functions below, we will study the image of A-cycle graph
functions under the S-transformation τ → − 1

τ (cf. below eq. (2.9)),

B[G] := A[G]
∣∣
τ→− 1

τ
, (3.14)

which will be referred to as B-cycle graph functions, and can be expressed in terms of B-
cycle eMZVs by eq. (2.11). Techniques for their systematic evaluation in terms of A-cycle
quantities E0(. . . ; τ) with known q-expansion eq. (2.21) will be discussed in section 3.3. The
main motivation to do this comes from the fact that the asymptotic expansion at the cusp of
B-cycle eMZVs (2.12) looks more suitable to be compared with the asymptotic expansion of
modular graph functions (2.36) than the simple Fourier expansion of their A-cycle counterparts.

3.2 Evaluating A-cycle graph functions

The representation of the propagator in eq. (3.8) guarantees that the low-energy expansion of
open-string integrals eq. (3.6) is expressible in terms of elliptic iterated integrals. As will be
argued below, there is no bottleneck in algorithmically computing A-cycle graph functions of
arbitrary complexity by means of the techniques developed in refs. [23, 24].
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3.2.1 A-cycle graph functions at weight two

The simplest non-trivial A-cycle graph function at second order of eq. (3.11) can be computed
using the definition eq. (2.14) of elliptic iterated integrals,

A
[ ]

=
∫ 1

0
dz2

{
ωA(1, 0)2 − 2ωA(1, 0)Γ ( 1

0 ; z2) + Γ ( 1
0 ; z2)2

}
(3.15)

= 2ωA(1, 1, 0)− 2ωA(1, 0)2 + ωA(1, 0)2 = ωA(2, 0, 0) + 5ζ2
6 .

Here and below we have been using relations between eMZVs like 2ωA(1, 1, 0) = 5ζ2
6 +ωA(1, 0)2+

ωA(2, 0, 0), which can be found on the website [71] along with various generalizations up to and
including length six. In eq. (3.15) as well as in all computations of A-cycle graph functions
below, the term ωA(1, 0) in the propagator eq. (3.8) avoids the appearance of divergent eMZVs.

3.2.2 A-cycle graph functions at weight three

The A-cycle graph functions at the third order of eq. (3.11) can be computed via

A
[ ]

=
∫

dµopen
2 P 3

12

=
∫ 1

0
dz2

{
ωA(1, 0)3 − 3ωA(1, 0)2Γ ( 1

0 ; z2) + 3ωA(1, 0)Γ ( 1
0 ; z2)2 − Γ ( 1

0 ; z2)3
}

= −6ωA(1, 1, 1, 0) + 6ωA(1, 1, 0)ωA(1, 0)− 2ωA(1, 0)3

= ζ3
2 + 8ζ2 ωA(0, 1, 0, 0)− 1

3 ωA(0, 3, 0, 0) (3.16)

A
[ ]

=
∫

dµopen
3 P12P13P23

= ωA(1, 0)3 − 2
∫ 1

0
dz3

∫ z3

0
dz2 Γ ( 1

0 ; z2) Γ ( 1
0 ; z3)

{
Γ ( 1

0 ; z3) + Γ
( 1
z3 ; z2

) }
= ωA(1, 0)3 + 2

∫ 1

0
dz3 Γ ( 1

0 ; z3) Γ
( 1 0 1
z3 0 0 ; z3

)
= 2ζ2 ωA(0, 1, 0, 0)− 1

3 ωA(0, 3, 0, 0) . (3.17)

In eq. (3.16), the relevant eMZV relation is

ωA(0, 1, 1, 1) = ζ3
12 −

ζ2
4 ωA(0, 1) + 1

6 ωA(0, 1)3 + 1
36 ωA(0, 3) (3.18)

+ 1
2 ωA(0, 1)ωA(0, 0, 2) + 4ζ2 ωA(0, 0, 0, 1)− 1

6 ωA(0, 0, 0, 3) ,

and the last step of eq. (3.17) involves the identity (2.17) for Γ
( 1 0 1
z3 0 0 ; z3

)
along with the eMZV

relations from appendix I.2 of ref. [25]. Moreover, in eqs. (3.16) and (3.17) we have replaced the
integration domains according to

∫ 1
0 dz2

∫ 1
0 dz3 → 2

∫ 1
0 dz3

∫ z3
0 dz2, which is valid along with any

monomial Pm12P
n
13P

q
23 due to the symmetry Pij = Pji of the propagator, i.e. for any three-vertex

diagram.

3.2.3 Computing A-cycle graph functions at higher weight

A-cycle graph functions with higher numbers of vertices n can be algorithmically computed by
iterating the manipulations in eq. (3.17). Among other things, the recursive techniques of [23]
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to eliminate the appearance of the argument z in the second line of the elliptic iterated integral
Γ ( n1 n2 ... nr

z 0 ... 0 ; z) – see e.g. eq. (2.17) – play a key role. As will be explained in the following,
A-cycle graph functions with an arbitrary number of vertices or edges can always be expressed
in terms of eMZVs.

In order to connect with the definition (2.14) of elliptic iterated integrals, the integration
region [0, 1]n−1 of the measure eq. (3.7) has to be decomposed into simplicial cells defined by
0 ≤ zρ(2) ≤ zρ(3) ≤ . . . ≤ zρ(n) ≤ 1 with ρ ∈ Sn−1. Using the symmetry Pij = Pji of the
propagator, this ordering is equivalent to its reversal 0 ≤ zρ(n) ≤ . . . ≤ zρ(3) ≤ zρ(2) ≤ 1, that
is, only 1

2(n−1)! inequivalent cells need to be considered. Different cells benefit from different
representations of the propagators, e.g. in situations with z2 < z3, it is preferable to use the
expression

P23 := ωA(1, 0)− Γ
( 1
z3 ; z2

)
− Γ ( 1

0 ; z3) rather than P23 := ωA(1, 0)− Γ
( 1
z2 ; z3

)
− Γ ( 1

0 ; z2)
(3.19)

as done in eq. (3.17).
Compact expressions for A-cycle graph functions are tied to expressing the eMZVs in terms

of a basis over Q[(2πi)±1]-combinations of MZVs. For certain ranges of their length and weight,
an exhaustive list of such relations among eMZVs is available for download [71], but already
for A-cycle graph functions at weight four, some of the intermediate steps exceed the scope of
this website. In deriving the subsequent results on A-cycle graph functions of weight w ≤ 6, we
have expressed the eMZVs in terms of iterated Eisenstein integrals eq. (2.19) to automatically
attain the desired basis decomposition. Using this method, the divergent eMZV ωA(1, 0) could be
shown to drop out in all cases considered, which is a strong consistency check for our calculational
setup.

3.2.4 A-cycle graph functions at weight four and beyond

The strategy outlined in the previous section gives rise to the following expressions for the three
A-cycle graph functions at weight four:

A
[ ]

= 15ωA(0, 0, 2)2 − 30ωA(0, 0, 0, 0, 4) + 3ωA(0, 0, 4)− 24ωA(0, 0, 0, 2, 2)

− 48ζ2 ωA(0, 0, 0, 0, 2) + 13ζ2 ωA(0, 0, 2) + 343ζ4
24 (3.20)

A
[ ]

= 1
2 ωA(0, 0, 2)2 − 1

2 ωA(0, 0, 0, 0, 4)− ωA(0, 0, 0, 2, 2)

+ 7
3ζ2 ωA(0, 0, 2)− 14ζ2 ωA(0, 0, 0, 0, 2) + 301

180ζ4 (3.21)

A
[ ]

= ωA(0, 0, 0, 0, 4)− 1
6 ωA(0, 0, 4) + 4

3 ωA(0, 0, 2)ζ2 − 8ωA(0, 0, 0, 0, 2)ζ2 + 311ζ4
360 . (3.22)

At weight five there are six A-cycle graph functions, for example

A
[ ]

= 1
90 ωA(0, 5) + 2

3 ωA(0, 0, 0, 5)− 1
3 ωA(0, 0, 2, 3) + 2ωA(0, 3)ωA(0, 0, 0, 0, 2)

− 6ωA(0, 0, 0, 0, 0, 5) + 2ωA(0, 0, 0, 0, 1, 4)− 1
3 ωA(0, 3)ζ2 + 8

9 ωA(0, 0, 3, 0)ζ2

+ 24ωA(0, 0, 0, 0, 0, 3)ζ2 − 16ωA(0, 0, 0, 0, 1, 2)ζ2 + 2
3ζ2ζ3 + 7ωA(0, 0, 1, 0)ζ4

− 52ωA(0, 0, 0, 1, 0, 0)ζ4 (3.23)
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A
[ ]

= − 7
360 ωA(0, 5) + 1

6 ωA(0, 0, 0, 5)− ωA(0, 0, 0, 0, 0, 5)− 1
12 ωA(0, 3)ζ2 + 5

9 ωA(0, 0, 3, 0)ζ2

+ 10ωA(0, 0, 0, 0, 0, 3)ζ2 −
1
2 ωA(0, 0, 1, 0)ζ4 − 9ωA(0, 0, 0, 1, 0, 0)ζ4 , (3.24)

and expressions of comparable complexity for A
[ ]

,A
[ ]

,A
[ ]

and A
[ ]

are displayed
in appendix E. Analogous results at weight six are available from the authors.

3.3 Evaluating B-cycle graph functions

In this section, we compute modular transformations of A-cycle eMZVs. For this purpose it
will be convenient to represent A-cycle graph functions in terms of iterated Eisenstein integrals
eq. (2.19)

A
[ ]

= −6 E0(4, 0) + 1
2ζ2

A
[ ]

= 3
2ζ3 − 6 E0(4, 0, 0)− 60 E0(6, 0, 0)

A
[ ]

= 1
4ζ3 −

3
2 E0(4, 0, 0)− 60 E0(6, 0, 0) (3.25)

A
[ ]

= −36 E0(4, 4, 0, 0)− 756 E0(8, 0, 0, 0)− 70 E0(6, 0, 0, 0)− 1
10 E0(4, 0, 0, 0) + 3

8ζ4

A
[ ]

= −840 E0(8, 0, 0, 0)− 40 E0(6, 0, 0, 0) + ζ4
8 ,

and we will now present two methods to compute their S-transformation. Both of these methods
leave certain additive constants built from MZVs undetermined. These constants can be either
determined numerically or by a method of Enriquez [22], which allows to infer constant terms
of B-cycle eMZVs from the Drinfeld associator, see appendix B for more details.

In subsections 3.3.1 to 3.3.3, the method of obtaining B-cycle eMZVs from A-cycle eMZVs as
developed by Brown is explained. An alternative method using differential equations is provided
in subsection 3.3.4.

3.3.1 Conversion to Brown’s iterated Eisenstein integrals

In this subsection we want to briefly recall the theory of iterated integrals of Eisenstein series,
developed by Brown in ref. [59], and explain how one can use it to get the q-expansion of B-cycle
eMZVs. The key idea is to express the iterated Eisenstein integrals appearing in A-cycle graph
functions in terms of the iterated integrals

G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]

=
i∞∫
τ

dτr τ jrr Gkr(τr)
i∞∫
τr

dτr−1 τ
jr−1
r−1 Gkr−1(τr−1) . . .

i∞∫
τ2

dτ1 τ
j1
1 Gk1(τ1) , (3.26)

which already appeared in eq. (2.22), and are regularized as explained in subsection 2.2.2. The
modular properties of the functions G are known from ref. [59] (for a certain range of the powers
ji’s) and will be discussed in the next subsection.

The translation between the expressions eq. (2.18) for iterated Eisenstein integrals E and
eq. (3.26) can be conveniently extracted from the respective generating series

Ek(Y0, Y1, . . . , Yr; τ) :=
∑

p0,p1,...,pr≥0

1
(2πi)2p0

[ r∏
i=1

(2πi)ki−2pi−1
]
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× E(0p0 , k1, 0p1 , . . . , kr, 0pr ; τ)Y p0
0 Y p1

1 · · ·Y
pr
r (3.27)

Gk(T1, T2, . . . , Tr; τ) :=
∑

p1,...,pr≥0

[ r∏
i=1

1
pi!

(
Ti

2πi

)pi]
G
[ p1 p2 ... pr
k1 k2 ... kr ; τ

]
with formal variables Yi and Ti. Here and in later places, we are using multi-index notation
k := (k1, k2, . . . , kr), i.e. eqns. (3.27) define two generating series for any fixed r-tuple k. As will
be shown in appendix D.3, the series in eqns. (3.27) are related via

Ek(Y0, Y1, . . . , Yr; τ) = exp
(
τYr
2πi

)
Gk(Y0 − Y1, Y1 − Y2, . . . , Yr−1 − Yr; τ) (3.28)

Gk(T1, T2, . . . , Tr; τ) = exp
(
− τU2πi

)
Ek(T1+T2+ · · ·+Tr+U, T2+ · · ·+Tr+U, . . . , Tr+U,U ; τ) ,

where the dependence of the right hand side on the formal variable U drops thanks to shuffle
relations. By isolating the coefficients of suitable monomials in the formal variables, eq. (3.28)
translates into the following relations at depth one and two,

E(0p0 , k1, 0p1 ; τ) = (2πi)p0+p1−k1+1 ∑
α1+β1=p1

(−1)α1τβ1

p0!α1!β1! G
[
p0+α1
k1

; τ
]
, (3.29)

E(0p0 , k1, 0p1 , k2, 0p2 ; τ) = (2πi)p0+p1+p2−k1−k2+2 ∑
α1+β1=p1
α2+β2=p2

(−1)α1+α2τβ2

p0!α1!β1!α2!β2!G
[
p0+α1 β1+α2
k1 k2

; τ
]
,

and conversely

G
[ p1
k1 ; τ

]
= (2πi)k1−p1−1p1! E(0p1 , k1; τ) (3.30)

G
[ p1 p2
k1 k2 ; τ

]
= (2πi)k1+k2−p1−p2−2 ∑

a+b=p2

(p1+a)!p2!
a! E(0p1+a, k1, 0b, k2; τ) .

3.3.2 Modular transformations of Brown’s iterated Eisenstein integrals

The modular transformation of Brown’s iterated Eisenstein integrals eq. (3.26) can be compactly
encoded in another generating function

IE(τ,∞) = 1 +
i∞∫
τ

ΘE(X1, Y1, τ1) +
i∞∫
τ

ΘE(X2, Y2, τ2)
i∞∫
τ1

ΘE(X1, Y1, τ1) + . . . , (3.31)

where Eisenstein series are combined with non-commutative formal variables16 gk

ΘE(X,Y, τ) = dτ
∑
k≥4

Gk(τ) (X − τY )k−2 gk . (3.32)

As a special case of a lemma proved by Brown in ref. [59], there exists a series CES in infinitely
many non-commutative variables gk and infinitely many pairs of commutative variables (Xi, Yi)

16Brown developed the theory for the full space of modular forms. Here, we specialize his construction to
iterated integrals of Eisenstein series only, so we keep his original notation, adding the superscript E which stands
for Eisenstein. Moreover, we chose a different normalization convention for Eisenstein series.
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such that17

IE(τ,∞) = CES IE
(
− 1

τ ,∞
)
|S , IE

(
− 1

τ ,∞
)

=
(
CES
)−1|S IE(τ,∞)|S , (3.33)

where |S acts on a function F (Xi, Yi) of the commutative variables Xi, Yi according to

F (Xi, Yi)|S = F (−Yi, Xi) . (3.34)

The series CES does not depend on τ , and its coefficients are called multiple modular values (of
Eisenstein series). In all cases relevant to the computation of B-cycle graph functions at weight
w ≤ 7, these coefficients are Q[2πi]-linear combinations of MZVs of known transcendentality
whose composition can be obtained either numerically, using the fact that (by eq. (3.33))

CES = IE(i,∞)
(
IE(i,∞)|S

)−1
, (3.35)

or by matching with the method of Enriquez reviewed in appendix B.
The desired modular transformations of iterated Eisenstein integrals can be extracted from

the series in eq. (3.33): To isolate the coefficients of any non-commutative word gk1gk2 · · · gkr
in the above generating series IE(τ,∞) and CES , we will write IE(τ,∞)(k1, k2, . . . , kr) and
CES (k1, k2, . . . , kr), respectively. In terms of Brown’s iterated Eisenstein integrals eq. (3.26),
we find

IE(τ,∞)(k1, k2, . . . , kr) =
k1−2∑
j1=0

k2−2∑
j2=0
· · ·

kr−2∑
jr=0

[ r∏
i=1

(−1)ji
(
ki − 2
ji

)]
(3.36)

× G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]
Xk1−2−j1

1 Xk2−2−j2
2 · · ·Xkr−2−jr

r Y j1
1 Y j2

2 · · ·Y
jr
r .

In the case of a single integration, one gets abelian cocycles CES (k), also called period polynomials,
very well known after the work of Eichler, Shimura and Manin in the case of cusp forms, and
worked out for Eisenstein series in refs. [72, 73]. In particular, it was proven that

CES (2k) = 2πi
2k−1

(
ζ2k−1(Y 2k−2 −X2k−2)− (2πi)2k−1

k−1∑
i=1

B2iB2k−2i
(2i)!(2k−2i)!X

2i−1Y 2k−2i−1
)
. (3.37)

3.3.3 B-cycle eMZVs from Brown’s iterated Eisenstein integrals

The computation of B-cycle eMZVs from eq. (3.33) follows a simple idea which has already
been used in ref. [58] at depth one: once the underlying E(k;− 1

τ ) are related to the coefficients
eq. (3.26) of the series IE(τ,∞), one can use Brown’s result. In particular, by inserting eq. (3.36)
into the special cases of

IE
(
− 1

τ ,∞
)
(k1) = IE(τ,∞)(k1)|S − CES (k1)|S (3.38)

IE
(
− 1

τ ,∞
)
(k1, k2) = IE(τ,∞)(k1, k2)|S − CES (k1)|SIE(τ,∞)(k2)|S

+ CES (k1)|SCES (k2)|S − CES (k1, k2)|S (3.39)
17In [59], the position of the factors on the right hand side is reversed, because of our opposite convention for

iterated integrals.
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of eq. (3.33), we arrive at

G
[
j1
k1

;− 1
τ

]
= (−1)j1G

[
k1−2−j1

k1
; τ
]
−
(
k1 − 2
j1

)−1

ck1−2−j1(k1), (3.40)

G
[
j1 j2
k1 k2

;− 1
τ

]
= (−1)j1+j2G

[
k1−2−j1 k2−2−j2

k1 k2
; τ
]
− (−1)j2

(
k1−2
j1

)−1

ck1−2−j1(k1)G
[
k2−2−j2

k2
; τ
]

+
(
k1−2
j1

)−1(
k2−2
j2

)−1(
ck1−2−j1(k1)ck2−2−j2(k2)− ck1−2−j1,k2−2−j2(k1, k2)

)
, (3.41)

where the quantities c...(k1, . . .) are defined by the expansion

CES (k1, . . . , kr) =
k1−2∑
j1=0
· · ·

kr−2∑
jr=0

cj1,...,jr(k1, . . . , kr)Xk1−2−j1
1 · · ·Xkr−2−jr

r Y j1
1 · · ·Y

jr
r . (3.42)

One must be warned that not all E(k;− 1
τ ) can be computed in this way: if k contains too many

zeros, eq. (3.28) gives rise to G
[
j1 j2 ... jr
k1 k2 ... kr

; τ
]

with ji /∈ {0, 1, . . . , ki−2} which are excluded from
the building block eq. (3.32) of Brown’s series eq. (3.31). However, this method always applies to
the special linear combinations of E(k;− 1

τ ) given by eMZVs and therefore selected by a certain
derivation algebra [74, 75, 24]: This is a consequence of Proposition 6.3 of ref. [29], and in fact,
the linear combinations of E(k;− 1

τ ) descending from eMZVs are contained in a proper subset
of the iterated integrals eq. (2.22). Putting all of this together, one obtains a closed formula at
depth one for p0 + p1 ≤ k1 − 2

E(0p0 , k1, 0p1 ;− 1
τ ) = (−1)p1(2πi)p0+p1+1−k1

∑
α+β=p1

(k1 − 2− p0 − α)!
α!β!τβ (3.43)

×
(
(−2πi)p0+α E(0k1−2−p0−α, k1; τ)− (p0 + α)!

(k1 − 2)! ck1−2−p0−α(k1)
)
,

and higher-depth expressions such as18

(2πi)6 E(6, 4;− 1
τ ) = ζ3,5

75 + ζ3ζ5
15 −

503ζ8
10800 −

2ζ5
5 E(0, 0, 4; τ)+

48
(
E(0, 0, 0, 0, 6, 0, 0, 4; τ) + 5 E(0, 0, 0, 0, 0, 6, 0, 4; τ) + 15 E(0, 0, 0, 0, 0, 0, 6, 4; τ)

)
, (3.44)

as well as (setting T = πτ)

E(4, 4, 0, 0;− 1
τ ) = E(02, 4, 4; τ)− ζ3 E(4; τ)

6 + 209π4

11664000

+ i

T

(
E(02, 4, 0, 4; τ) + 3 E(03, 4, 4; τ)− ζ3 E(0, 4; τ)

6 + ζ2ζ3
360 −

5ζ5
432

)
(3.45)

+ 1
2T 2

(
− E(02, 4, 02, 4; τ)− 3 E(03, 4, 0, 4; τ)− 6 E(04, 4, 4; τ) + ζ3 E(02, 4; τ)

6 − ζ2
3

72
)
,

E(4, 0, 4, 0, 0;− 1
τ ) + 3 E(4, 4, 0, 0, 0;− 1

τ ) = − π4

108 E(4; τ)− 2π2 E(0, 4, 4; τ)− ζ2ζ3
360 + 5ζ5

432
18We do not have a closed formula like eq. (3.37) for multiple modular values at depth ≥ 2, so for the purposes

of this paper, we contented ourselves to guessing their representations as MZVs based on five hundred digits
numerical approximations. In all cases up to weight six, these representations have been confirmed through the
analytic method of appendix B.
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+ iπ2

T

(ζ3
3 E(4; τ)− ζ2

18 E(0, 4; τ)− 2 E(0, 4, 0, 4; τ)− 6 E(0, 0, 4, 4; τ)− 167ζ4
32400

)
+ π2

T 2

(
− ζ3

3 E(0, 4; τ) + ζ2
36 E(0, 0, 4; τ)− ζ2ζ3

540 −
5ζ5
432 + E(0, 4, 0, 0, 4; τ)

+ 4 E(0, 0, 4, 0, 4; τ) + 9 E(0, 0, 0, 4, 4; τ)
)
− iπ2

T 3

(ζ3
6 E(0, 0, 4; τ)− E(0, 0, 4, 0, 0, 4; τ)

− 3 E(0, 0, 0, 4, 0, 4; τ)− 6 E(0, 0, 0, 0, 4, 4; τ)− ζ2
3

72
)

(3.46)

and the modular transformations given in appendix D.4. In all examples of A-cycle graph
functions tested so far we indeed landed on iterated integrals of the kind eq. (3.26) with ji ≤ ki−2,
whose S-transform can therefore be computed as explained above. Note that the relative factor
of 3 on the left hand side of eq. (3.46) is crucial to obey this criterion.

In order to determine the q-expansion of B-cycle graph functions, the iterated Eisenstein
integrals on the right hand side of eq. (3.44) and the above depth-two examples need to be cast
into the form E0(k, . . .) with k 6= 0 such that eq. (2.21) becomes applicable. This can always
be achieved by first applying shuffle relations such as E(0, 4; τ) = E(0; τ) E(4; τ)−E(4, 0; τ) and
E(0, 0, 4; τ) = E(4, 0, 0; τ) − E(0) E(4, 0; τ) + E(0, 0; τ) E(4; τ) to attain the form E(k, . . .) with
k 6= 0. Then, the conversion between E(. . .) and E0(. . .) follows from the definitions eqs. (2.18)
and (2.19) of the respective iterated Eisenstein integrals, along with

E(0, 0, . . . , 0︸ ︷︷ ︸
n

; τ) = E0(0, 0, . . . , 0︸ ︷︷ ︸
n

; τ) = 1
n! (2πiτ)n , (3.47)

for instance E(4, 0; τ) = E0(4, 0; τ)+ π2τ2

360 and E(4, 0, 0; τ) = E0(4, 0, 0; τ)+ iπ3τ3

540 . At depth larger
than one, this might introduce further instances of E0(0, . . .) with zero in the first entry which
call for additional shuffle manipulations. This can be illustrated through the following example
at depth two

E(4, 4, 0, 0) = E0(4, 4, 0, 0)− 2ζ4
(2πi)4

[
E0(4, 0, 0, 0) + E0(0, 4, 0, 0)

]
+
( 2ζ4

(2πi)4

)2
E0(0, 0, 0, 0)

= E0(4, 4, 0, 0) + 1
360 E0(4, 0, 0, 0)− iπτ

360 E0(4, 0, 0) + π4τ4

777600 , (3.48)

where we have inserted E0(0, 4, 0, 0) = E0(0) E0(4, 0, 0) − 3 E0(4, 0, 0, 0) in passing to the second
line. A generating series for the most general case can be found in appendix D.2.

3.3.4 B-cycle eMZVs from differential equations

As an alternative and recursive method to determine modular transformations of iterated Eisen-
stein integrals eqs. (2.18) and (2.19), one can take advantage of the differential equation

τ22πi∂τ E(A, 2k| − 1
τ ) = −(2πi)2−2kτ2k G2k(τ) E(A| − 1

τ ) (3.49)
τ22πi∂τ E0(A, 2k| − 1

τ ) = −(2πi)2−2k[τ2k G0
2k(τ) + 2 ζ2k(τ2k − 1)

]
E0(A| − 1

τ ) (3.50)

for k 6= 0 as well as

τ22πi∂τ E(A, 0| − 1
τ ) = (2πi)2 E(A| − 1

τ ) , τ22πi∂τ E0(A, 0| − 1
τ ) = (2πi)2 E0(A| − 1

τ ) , (3.51)
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resulting from their recursive definition. With this method, the expression for E(n, 0, 0, . . . , 0;− 1
τ )

in eq. (3.44) with j−1 successive zeros follows from integrating eqs. (3.49) and (3.51) j times,
and the multiple modular values eq. (3.37) arise as the integration constants of the respective
j steps. So the modular transformation is performed separately on each integration kernel in
the iterated Eisenstein integrals. At higher depth, these integration constants can be obtained
numerically or by matching with Enriquez’s method reviewed in appendix B. In all cases we
have checked the approach of this subsection matches the results obtained from Brown’s theory.

3.3.5 Examples of B-cycle graph functions

In applying the modular transformation eq. (3.44) at depth one to the A-cycle graph functions
in eq. (3.25), we have to take the offsets between the E(. . .) and E0(. . .) into account. From the
discussion around eq. (3.47), we have

E0(4, 0;− 1
τ ) = E(4, 0;− 1

τ )− π2

360τ2 = E(4, 0; τ) + i

πτ
E(4, 0, 0; τ)− iζ3

6πτ + π2

216 −
π2

360τ2

= E0(4, 0; τ) + i

T
E0(4, 0, 0; τ) + T 2

1080 + ζ2
36 −

iζ3
6T −

ζ4
4T 2 (3.52)

with T := πτ , and by similar manipulations,

E0(4, 0, 0;− 1
τ ) = π2

T 2 E0(4, 0, 0; τ) + iT ζ2
90 + ζ3

6 −
5iζ4
6T −

ζ2ζ3
T 2 + 7iζ6

4T 3 . (3.53)

Following the same strategy at higher weight, one obtains the following expressions for B-cycle
graph functions:

B
[ ]

= − T
2

180 + ζ2
3 + iζ3

T
+ 3ζ4

2T 2 − 6 E0(4, 0)− 6i E0(4, 0, 0)
T

B
[ ]

= iT 3

3780 −
iT ζ2
60 + iζ4

T
+ 3ζ2ζ3

2T 2 −
3ζ5
2T 2 −

iζ6
8T 3

− 60 E0(6, 0, 0)− 180i E0(6, 0, 0, 0)
T

+ 180 E0(6, 0, 0, 0, 0)
T 2 − 9 E0(4, 0, 0)ζ2

T 2

B
[ ]

= T 4

75600 −
T 2ζ2
945 + 13ζ4

180 −
4ζ6
3T 2 + 4iζ2ζ5

T 3 − 5iζ7
2T 3 + 95ζ8

24T 4 (3.54)

− 840 E0(8, 0, 0, 0)− 5040i E0(8, 0, 0, 0, 0)
T

+ 12600 E0(8, 0, 0, 0, 0, 0)
T 2

+ 12600i E0(8, 0, 0, 0, 0, 0, 0)
T 3 − 240 E0(6, 0, 0, 0)ζ2

T 2 − 480i E0(6, 0, 0, 0, 0)ζ2
T 3 .

We have rewritten the integrals E following from the above modular transformations in terms of
E0 to make the q-expansion of the B-cycle graph functions accessible from eq. (2.21). Moreover,
this highlights the property of B-cycle eMZVs that coefficients of qn are Laurent polynomials in
τ . The change of variables from πτ to T absorbs all negative powers of π and yields Q-linear
combinations of MZVs as Laurent coefficient, as remarked in eq. (2.13). Hence, these Laurent
polynomials can be thought of as the open-string antecedents of the zero modes d[G] of modular
graph functions discussed in section 2.3.1. Accordingly, we will denote the coefficient of q0 in
the B-cycle graph function B[G] by b[G], e.g. one has

b
[ ]

= − T
2

180 + ζ2
3 + iζ3

T
+ 3ζ4

2T 2 , b
[ ]

= iT 3

3780−
iT ζ2
60 + iζ4

T
+ 3ζ2ζ3

2T 2 −
3ζ5
2T 2 −

iζ6
8T 3 , (3.55)
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and a method to determine such b[G] from the Drinfeld associator is presented in appendix B.
This method goes back to Enriquez [22], where a generating series for the constant terms of A-
cycle and B-cycle eMZVs is given, and a procedure to extract the constant terms of individual
A-cycle eMZVs is explained in section 2.3 of ref. [24].

At depth two, the modular transformation eq. (3.45) of E(4, 4, 0, 0) leads to

B
[ ]

− 9
10 B

[ ]
= − T 4

324000 −
17T 2ζ2
18900 −

iT ζ3
180 + 253ζ4

1800 + 5iζ5
12T −

49ζ6
80T 2

+ ζ2
3

4T 2 −
3iζ3ζ4
2T 3 + 17iζ5ζ2

5T 3 + 277ζ8
48T 4 +

( iT
30 −

3ζ3
T 2 + 9iζ4

T 3

)
E0(4, 0, 0) + 9 E0(4, 0, 0)2

T 2

− 36i
T

[
E0(4, 0, 4, 0, 0) + 3 E0(4, 4, 0, 0, 0) + 1

360 E0(4, 0, 0, 0, 0)
]

(3.56)

− 36
[
E0(4, 4, 0, 0) + 1

360 E0(4, 0, 0, 0)
]
− 204ζ2 E0(6, 0, 0, 0)

T 2 − 408iζ2 E0(6, 0, 0, 0, 0)
T 3 ,

where the specific linear combination of B-cycle graph functions will be motivated in section 4.2.
Note that the combination E0(4, 4, 0, 0) + 1

360 E0(4, 0, 0, 0) in the last line can be recombined to
E(4, 4, 0, 0) according to eq. (3.48), and a similar statement applies to the length-five combination
in the third line of eq. (3.56).

By the modular transformation eq. (D.19), the A-cycle graph functions eqs. (3.23) and (3.24)
at weight five are mapped to the B-cycle graph function

B
[ ]

− 43
35 B

[ ]
= iT 5

2381400 −
T 2ζ3
3780 −

ζ5
360 + iζ3ζ5

T 3 −
7ζ7
8T 2 +

( T 2

630 −
6iζ5
T 3

)
E0(4, 0, 0)

+
(2iT

3 − 60ζ3
T 2

)
E0(6, 0, 0, 0)−

(
4 + 120iζ3

T 3

)
E0(6, 0, 0, 0, 0)

+ 360 E0(4, 0, 0) E0(6, 0, 0, 0)
T 2 + 720i E0(4, 0, 0) E0(6, 0, 0, 0, 0)

T 3

− 720 E0(4, 6, 0, 0, 0) + 1
42 E0(4, 0, 0, 0, 0)− 240 E0(6, 0, 4, 0, 0)− 720 E0(6, 4, 0, 0, 0)

− 720i E0(4, 0, 6, 0, 0, 0)
T

− 4320i E0(4, 6, 0, 0, 0, 0)
T

+ i E0(4, 0, 0, 0, 0, 0)
14T (3.57)

− 720i E0(6, 0, 0, 4, 0, 0)
T

− 2160i E0(6, 0, 4, 0, 0, 0)
T

− 4320i E0(6, 4, 0, 0, 0, 0)
T

− 10i E0(6, 0, 0, 0, 0, 0)
T

+ 1440 E0(4, 0, 6, 0, 0, 0, 0)
T 2 + 7200 E0(4, 6, 0, 0, 0, 0, 0)

T 2

− E0(4, 0, 0, 0, 0, 0, 0)
14T 2 + 10 E0(6, 0, 0, 0, 0, 0, 0)

T 2 + 720 E0(6, 0, 0, 0, 4, 0, 0)
T 2

+ 2160 E0(6, 0, 0, 4, 0, 0, 0)
T 2 + 4320 E0(6, 0, 4, 0, 0, 0, 0)

T 2 + 7200 E0(6, 4, 0, 0, 0, 0, 0)
T 2 mod ζ2 .

For reasons to be explained in subsection 4.3 below, we have suppressed terms of the form
π2k E0(. . .)Tm with k ≥ 1 and m ∈ Z and refer to their omission by mod ζ2. The modular
transformations in appendix D.4 lead to similar expressions for B-cycle graph functions at weight
six which are available from the authors upon request. We have also determined numerically a
Laurent polynomial at weight seven

b
[ ]

= 31iT 7

700539840 −
5251iT 5ζ2
233513280 + T 4ζ3

3888 + 7405iT 3ζ4
598752 − 119T 2ζ5

2592 − 31T 2ζ2ζ3
864

− 11iT ζ2
3

216 − 15527iT ζ6
10368 + 21ζ7

32 + 67ζ2ζ5
27 + 167ζ3ζ4

48 + 23iζ3ζ5
3T + 80017iζ8

1296T − 3iζ2ζ
2
3

T
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+ 25ζ3
3

4T 2 −
7115ζ9
144T 2 −

21ζ2ζ7
T 2 − 35ζ4ζ5

6T 2 + 6613ζ3ζ6
288T 2 + 75iζ2

5
4T 3 −

1245iζ3ζ7
8T 3 − 48iζ3,5ζ2

T 3

+ 443iζ2ζ3ζ5
T 3 − 275iζ2

3ζ4
8T 3 + 941869iζ10

5760T 3 − 9573ζ11
16T 4 − 18ζ3,5,3

T 4 − 405ζ2
3ζ5

4T 4 + 195ζ2ζ
3
3

2T 4

+ 27745ζ5ζ6
48T 4 − 3795ζ4ζ7

16T 4 + 17731ζ3ζ8
16T 4 + 15875ζ2ζ9

12T 4 + 2475iζ5ζ7
4T 5 + 1125iζ3ζ9

4T 5

− 90iζ3,5ζ4
T 5 − 450iζ3,7ζ2

7T 5 + 165iζ3ζ4ζ5
2T 5 − 3375iζ2ζ

2
5

7T 5 − 3335iζ2
3ζ6

4T 5 − 3960iζ2ζ3ζ7
7T 5

− 93091945iζ12
11056T 5 + 1575ζ13

T 6 − 13275ζ2ζ11
4T 6 − 7425ζ4ζ9

8T 6 − 129465ζ6ζ7
16T 6 − 233525ζ5ζ8

48T 6

− 160053ζ3ζ10
64T 6 + 15301285iζ14

768T 7 (3.58)

comprising the depth-three MZV ζ3,5,3 along with T−4 which will be argued to harmonize with
the Laurent polynomial eq. (2.43) of the corresponding modular graph function.

4 Open versus closed strings

In this section, we are going to establish and discuss the relation and connection between open-
string graph functions and modular graph functions. The reason and origin for our investigations
is a stunning similarity of the relations satisfied by open-string graph functions and their cor-
responding modular graph functions: in subsection 4.1 we are going to spell out commonalities
and differences in order to establish a clear starting point. Given this similarity, it is an obvious
question, whether modular graph functions can be eventually calculated from their open-string
analogues. Anticipating the main result of this article, the answer is indeed positive: we can
obtain modular graph functions from A-cycle graph functions performing the operations noted
at the arrows in figure 3. The two different paths which can be taken in order to obtain modular

A-cycle graph
function

B-cycle graph
function

modular graph
function

modular
transformation

τ → − 1
τ

esv
projection

compare
τ -derivative

and
Cauchy–Riemann

derivative

.

Figure 3: Two paths for the calculation of modular graph functions

graph functions from A-cycle graph functions are as follows:

• the first path starts from A-cycle graph functions and employs the similarity between the
τ -derivative on the A-cycle graph functions and the Cauchy–Riemann derivative acting
on modular graph functions. Using the appropriate derivatives multiple times on both
sides of the correspondence allows to successively infer the elements of the modular graph
functions from their A-cycle graph analogues. This method is described in subsection 4.2.

• for the second path one converts A-cycle graph functions into B-cycle ones. Following this
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step, the projection esv is applied, which we conjecture to be an elliptic analogue of the
single-valued projection sv mentioned in eq. (1.2). While the conversion from A- to B-cycle
graph functions using a modular transformation has been described in subsection 3.3, the
map esv will be described and discussed in subsection 4.3.

Both methods yield the same results, which are simultaneously in agreement with all expressions
for modular graph functions calculated before [1–3].

4.1 Comparing relations amongA-cycle graph functions with relations among
modular graph functions

Given the common graphical representation of A-cycle graph functions and modular graph
functions it is tempting to investigate, whether the known relations for modular graph functions
reviewed in subsection 2.3.2 have an echo for A-cycle graph functions.

The simplest relation among modular graph functions, D
[ ]

−D
[ ]

= ζ3 at weight three,
translates into

A
[ ]

−A
[ ]

= 1
2 ζ3 +6 ζ2 ωA(0, 1, 0, 0) , (4.1)

and the weight-four relation eq. (2.46) leads to

A
[ ]

− 24 A
[ ]

+ 18 A
[ ]

− 3 A
[ ]2

= 144 ζ2 ωA(0, 0, 0, 0, 2)− 24 ζ2 ωA(0, 0, 2)− 31
2 ζ4 ,

(4.2)

where the right-hand sides have been obtained by simply plugging in our results from subsec-
tion 3.2.

The right-hand sides of the corresponding equations for modular graph functions, eqs. (2.45)
and (2.46) read ζ3 and 0, respectively. This is rather suggestive: a relation between A-cycle graph
functions might imply a valid relation between modular graph functions by formally replacing

ωA(m) ζn → ωA(m) ζsv
n , (4.3)

where the single-valued projection of MZVs has been discussed in eqs. (1.2) and (1.3), and we
remind the reader of the multi-index notation n = (n1, n2, . . . , nr). The ad-hoc prescription
eq. (4.3) has the desired effect of replacing 1

2ζ3 with ζ3 on the right hand side of eq. (4.1)19.
Similarly, ζ4 is mapped to zero on the right hand side of eq. (4.2), and all instances of ζ2 ωA(m)
are suppressed. For brevity of notation below, let X be the rational vector space generated by
products of classical and elliptic MZVs vanishing after applying eq. (4.3). That is

X = 〈ζ2 ωA(m), ζ4 ωA(m), . . . , (2 ζ3,5 +5 ζ3 ζ5)ωA(m), . . .〉Q . (4.4)

In the equations below we will write “mod X”, which means that we are not writing terms from
the space X. At weight five, the expressions in eqs. (3.23), (3.24) and appendix E for A-cycle

19When eMZVs are expressed in terms of iterated Eisenstein integrals E , the prescription in eq. (4.3) might seem
to be tension with the intuition from the single-valued projection of MZVs. For instance, ζ2 ωA(0, 1, 0, 0|τ) can
be represented as 1

8ζ3 − 3
4 E0(4, 0, 0; q). Demanding consistency after application of eq. (4.3) to both expressions

would yield a constraint for a replacement of E0(4, 0, 0; q). As will become clear in subsection 4.3, the formulation
of eq. (4.3) in terms of ωA is very natural after converting the A-cycle eMZVs ωA to B-cycle eMZVs ωB by a
modular transformation.
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graph functions lead to the relations

40 A
[ ]

= 300 A
[ ]

+ 120 A
[ ]

A
[ ]

− 276 A
[ ]

+ 7
2ζ5 mod X (4.5)

A
[ ]

= 60 A
[ ]

+ 10 A
[ ]

A
[ ]

− 48 A
[ ]

+ 8ζ5 mod X (4.6)

10 A
[ ]

= 20 A
[ ]

− 4 A
[ ]

+ 3
2ζ5 mod X (4.7)

30 A
[ ]

= 12 A
[ ]

+ ζ5
2 mod X , (4.8)

which – upon employing eq. (4.3) – yield relations (2.47) to (2.50) among modular graph func-
tions. The validity of the connection between A-cycle graph functions and modular graph
functions described above has been also checked for relations between A-cycle graph functions
of weight six, see appendix F – applying eq. (4.3) reproduces the relations eq. (F.1) among
modular graph functions from open-string input20.

Note that the prescription in eq. (4.3) is ill-defined as it does depend on the particular
representations of eMZVs. In particular, there exist many relations among eMZVs and classical
MZVs: For instance, the combination 2ωA(0, 2, 2) + ωA(0, 0, 4) = 3ζ4 should in principle be
annihilated by applying eq. (4.3), but the definition in eq. (4.3) leaves both terms ωA(0, 2, 2)
and ωA(0, 0, 4) inert. However, this does not affect the statement of the following conjecture:
Given a polynomial P in A-cycle graph functions and MZVs such that

P(A[G], ζn) = 0 mod X , (4.9)

with some graphs G, one can replace A[G]→ D[G] and ζn → ζsv
n in that polynomial to obtain a

relation between modular graph functions

P(D[G], ζsv
n ) = 0 . (4.10)

While this alone is a beautiful result, we would like to turn it into a formalism to actually
compute modular graph functions. The next two subsections are dedicated to the description of
the two possible methods outlined in figure 3.

4.2 Modular graph functions from A-cycle graph functions

Given that relations among A-cycle graph functions can be mapped to those of modular graph
functions, a natural follow-up question concerns a mapping between the respective functions
of τ themselves: eMZVs on the open-string side and, as will be shown below, real parts of
iterated Eisenstein integrals on the closed-string side. For this purpose, we compare first-order
differential operators, namely ∂τ := ∂

∂τ acting on A-cycle graph functions and the Cauchy–
Riemann derivative ∇ defined in eq. (2.55) acting on modular graph functions.

20More precisely, we have been calculating only 12 out of the 13 A-cycle graph functions at weight six, since
A
[ ]

is beyond the reach of our current computer implementation. Instead, we have inferred a conjectural

expression for A
[ ]

mod X from one of the relations in eq. (F.1). Hence, only seven out of the eight relations
in appendix F could be used as a check.
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4.2.1 τ -derivatives versus Cauchy–Riemann equations

From the representation of A-cycle graph functions in terms of eMZVs, their τ -derivatives can
be conveniently computed using eq. (C.3). For instance, the expressions eqs. (3.15) and (3.17)
straightforwardly imply that

2πi∂τ A
[ ]

= −2ωA(0, 3)

(2πi∂τ )2 A
[ ]

= 6 G0
4 (4.11)

as well as

2πi∂τ A
[ ]

= 3(ωA(0, 0, 4)− 1
6 ωA(4))− ζ2(6ωA(0, 0, 2)− ωA(2))

(2πi∂τ )2 A
[ ]

= −12ωA(0, 5) + 12ζ2 ωA(0, 3) (4.12)

(2πi∂τ )3 A
[ ]

= 60 G0
6−36ζ2 G0

4 ,

see eq. (2.20) for our conventions for G0
k. In the previous subsection, relations between A-cycle

graph functions were found to only resemble those of modular graph functions after dropping
terms from the space X defined in eq. (4.4). Hence, we shall consider the simpler differential
equations obeyed by a hatted version of A-cycle graph functions, in which the terms projected
to zero by eq. (4.3) are omitted:

Â[G] = A[G] mod X . (4.13)

The simplest examples of Â[G] can be expressed as:

Â
[ ]

= ωA(0, 0, 2) , Â
[ ]

= −ωA(0, 0, 0, 3) + 1
6 ωA(0, 3)

Â
[ ]

= ωA(0, 0, 0, 0, 4)− 1
6 ωA(0, 0, 4) (4.14)

Â
[ ]

= −ωA(0, 0, 0, 0, 0, 5) + 1
6 ωA(0, 0, 0, 5)− 7

360 ωA(0, 5)

Â
[ ]

= 1
2 ωA(0, 0, 2)2 − 1

2 ωA(0, 0, 0, 0, 4)− ωA(0, 0, 0, 2, 2) .

Writing the analogue of eq. (4.12) for Â[G], the Eisenstein series G0
4 in the last line is no longer

existent. Considering other simple graphs, one finds for instance

(2πi∂τ )2 Â
[ ]

= 6 G0
4 , (2πi∂τ )3 Â

[ ]
= 60 G0

6 (4.15)

(2πi∂τ )4 Â
[ ]

= 840 G0
8 , (2πi∂τ )5 Â

[ ]
= 15120 G0

10 ,

which intriguingly resemble the following instances of eq. (2.56):

(π∇)2 D
[ ]

= 6 (Im(τ))4 G4 , (π∇)3 D
[ ]

= 60 (Im(τ))6 G6 (4.16)

(π∇)4 D
[ ]

= 840 (Im(τ))8 G8 , (π∇)5 D
[ ]

= 15120 (Im(τ))10 G10 .
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A similar correspondence can be established for graphs with more than one loop: For instance,
the expression for Â

[ ]
in eq. (4.14) yields

(2πi∂τ )3 Â
[ ]

= 12 G0
4 ωA(0, 3)− 108ωA(0, 7)− 72ζ4 ωA(0, 3) (4.17)

= −6 G0
4 2πi∂τ Â

[ ]
+ 9

10(2πi∂τ )3 Â
[ ]

mod X ,

which resembles the differential equation (2.57) among modular graph functions

(π∇)3 D
[ ]

= −6(Im(τ))4 G4 π∇D
[ ]

+ 9
10(π∇)3 D

[ ]
. (4.18)

In passing to the second line of eq. (4.17), we have identified 2πi∂τ Â
[ ]

= −2ωA(0, 3) as well

as (2πi∂τ )3 Â
[ ]

= −120ωA(0, 7) and dropped −72ζ4 ωA(0, 3) as it is contained in the space
X defined in eq. (4.4). In a similar way, discarding21 terms from X in the third τ -derivative of
A
[ ]

gives rise to an open-string counterpart of eq. (2.58).
We infer the following general conjecture from the above examples: Suppose that A-cycle

graph functions associated with some graphs G satisfy the differential equation

Q(2πi∂τ ,G0
2k,A[G]) = 0 mod X , (4.19)

with some polynomial Q in G0
2k(2πi∂τ )nA[G] where k, n ≥ 0. Then, one can coherently replace

A[G] → D[G] as well as 2πi∂τ → π∇ and G0
2k → (Im(τ))2k G2k in that polynomial and obtain

a Cauchy–Riemann equation among modular graph functions

Q(π∇, (Im(τ))2k G2k,D[G]) = 0 . (4.20)

This procedure has been used at weight w = 5, 6 to derive conjectural Cauchy–Riemann differen-
tial equations for modular graph functions from A-cycle graph functions and thus constitutes an
alternative way compared to the graphical manipulations of refs. [7, 11]. Our method has been
checked to either reproduce the Cauchy–Riemann equations in the above reference or to yield
expressions for modular graph functions that satisfy the Laplace equations in subsection 2.3.3
as discussed in the following section.

4.2.2 Integrating Cauchy–Riemann equations

We shall now describe techniques to convert Cauchy–Riemann equations derived via eqs. (4.19)
and (4.20) into explicit representations of modular graph functions. The idea is to solve the
differential equations in terms of iterated Eisenstein integrals eq. (2.19) along with integer powers
of Im(τ) and to fix the integration constants via modular invariance and reality of D[G]. However,
these constraints do not fix the last integration constant which amounts to adding MZVs of the
appropriate weight to the modular graph function under investigations. This shortcoming can
be fixed either by numerical evaluation or by employing the alternative method described in
subsection 4.3.

In case of one-loop graphs, eq. (2.56) can be integrated to yield the representation eq. (2.33)
of non-holomorphic Eisenstein series Ek up to integration constants and antiholomorphic iterated

21Of course, we will as well discard terms like G0
2k ζ2 ωA(n) containing a factor from X.
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Eisenstein integrals. The case k = 2 in eq. (2.56) reads

(π∇)2 E2 = 6(Im(τ))4 G4 (4.21)

which – upon integration in τ – yields

π∇E2 = 2y3

45 + c1ζ3 + 24y2 E0(4) + 12y E0(4, 0) + 3 E0(4, 0, 0) + c2E0(4, 0, 0) (4.22)

with rational constants c1, c2 and y = π Im(τ). Then, a further integration gives rise to

E2 = y2

45 − c1
ζ3
y
− 6 E0(4, 0) + c3E0(4, 0)− 3

y
E0(4, 0, 0)− c2

y
E0(4, 0, 0) (4.23)

with another rational constant c3. While performing the above integrations, we have used that
Cauchy–Riemann derivatives act via

π∇(yn) = n yn+1 , π∇(E0(k1, k2, . . . , kr)) = 4y2

(2πi)kr G0
kr E0(k1, k2, . . . , kr−1) , (4.24)

and the integration constants ci ∈ Q have been introduced following two selection rules:

(i) Let D[Gw] denote a modular graph function of weight w, then the admissible integration
constants in (π∇)nD[Gw] without any accompanying E0(k) are rational combinations of
single-valued MZVs of weight w+n.

(ii) Whenever (π∇)nD[Gw] contains a term ζsv
m E0(k), then rational multiples of its complex

conjugate ζsv
mE0(k) have to be included in the integration constant.

Note that, as a consequence of (i), there is no rational multiple of ζ2 in eq. (4.23).
The rational constants ci ∈ Q in eq. (4.23) can be fixed by imposing reality D[Gw] = D[Gw]

and modular invariance: Reality requires the coefficients of E0(4, 0) and E0(4, 0) as well as
E0(4, 0, 0) and E0(4, 0, 0) to match, yielding c2 = 3 and c3 = −6. Then, the modular transfor-
mation eqs. (3.52) and (3.53) of E0(4, 0), E0(4, 0, 0) and their complex conjugates introduce ζ3 in
a way such that eq. (4.23) can only be modular invariant for c1 = −1. Hence, we arrive at

E2 = y2

45 + ζ3
y
− 12 Re[E0(4, 0)]− 6

y
Re[E0(4, 0, 0)] , (4.25)

which agrees with eq. (2.33). However, the criterion based on modular invariance still leaves the
freedom to add single-valued MZVs to D[Gw] which do not exist in the case at hand with w = 2.
When applying the above integration procedure to obtain the expressions

E3 = 2y3

945 + 3ζ5
4y2 − 120 Re[E0(6, 0, 0)]− 180

y
Re[E0(6, 0, 0, 0)]− 90

y2 Re[E0(6, 0, 0, 0, 0)] (4.26)

E4 = y4

4725 + 5ζ7
8y3 − 1680 Re[E0(8, 0, 0, 0)]− 5040

y
Re[E0(8, 0, 0, 0, 0)]

− 6300
y2 Re[E0(8, 0, 0, 0, 0, 0)]− 3150

y3 Re[E0(8, 0, 0, 0, 0, 0, 0)] (4.27)

at weight w = 3, 4, the absence of ζ3 in E3 must be checked either by numerical evaluation or
by the methods of section 4.3.
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Note that the task of integrating Cauchy–Riemann equations is completely analogous to com-
puting modular transformations of iterated Eisenstein integrals from their differential equations,
see section 3.3.4. In particular, the differential operator ∼ τ2∂τ for recursive computations of
B-cycle graph functions in eqs. (3.49) to (3.51) can be mapped to the Cauchy–Riemann deriva-
tive eq. (2.55) by replacing τ2∂τ → (Im τ)2∂τ . This is another reason to expect strong parallels
between B-cycle graph functions and modular graph functions.

4.2.3 Simplifying Cauchy–Riemann equations for multi-loop graphs

When applying the integration procedure of the previous subsection to modular graph functions
corresponding to graphs with more than one loop, it is useful to disentangle iterated Eisenstein
integrals with different types of entries. For instance, the simplest irreducible two-loop mod-
ular graph function D

[ ]
will comprise two kinds of iterated Eisenstein integrals involving

either two instances of G0
4 or a single integration kernel G0

8. Any appearance of G0
8 in modular

graph functions at weight four can be captured via E4, so it is convenient to study the linear
combination

E2,2 := D
[ ]

− 9
10 E4 (4.28)

for which the Cauchy–Riemann equation (4.18) simplifies to

(π∇)3 E2,2 = −6 Im(τ)4 G4 π∇E2 . (4.29)

Then, starting from the representation (4.25) of E2, integration of eq. (4.29) yields depth-two
iterated Eisenstein integrals with two entries of G0

4. This observation motivates us to define the
depth of a modular graph function to be the minimum depth of the iterated Eisenstein integrals
required to represent it, see section 2.2.2. Hence, the object E2,2 in eq. (4.28) is our simplest
example of a modular graph function of depth two.

Similarly, Cauchy–Riemann equations at higher weight (which can be extracted from refs. [7,
11] and which we obtained from employing the correspondence in eqs. (4.19) and (4.20)) simplify
when considering the following combinations:

E2,3 = D
[ ]

− 43
35E5 (4.30)

E3,3 = 3 D
[ ]

+ D
[ ]

− 15
14E6 (4.31)

E′3,3 = D
[ ]

+ 17
60 D

[ ]
− 59

140E6 (4.32)

E2,4 = 9 D
[ ]

+ 3 D
[ ]

+ D
[ ]

− 13E6 (4.33)

E2,2,2 = −D
[ ]

+ 232
45 D

[ ]
+ 292

15 D
[ ]

+ 2
5 D

[ ]
+ 2E2

3 + E2E4 −
466
45 E6 . (4.34)

The above combinations can be thought of as higher-depth generalizations of non-holomorphic
Eisenstein series. The benefit of the subtractions of Ek in eq. (4.30) to eq. (4.34) becomes
apparent22 in

(π∇)3 E2,3 = −2(π∇E2)(π∇)2E3 − 4 Im(τ)4 G4 π∇E3 (4.35)
(π∇)5 E3,3 = 180 Im(τ)6 G6(π∇)2E3 (4.36)

22Note that these subtractions also simplify the respective Laplace equations, e.g. we have (∆− 2) E2,2 = −E2
2

instead of eq. (2.52).
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(π∇)4E′3,3 = −12 Im(τ)6 G6(π∇)E3 (4.37)
(π∇)3 E2,4 = −27 Im(τ)4 G4(π∇)E4 + R2,4 (4.38)

π∇R2,4 = −81 Im(τ)4 G4(π∇)2E4 − 27(π∇)E2(π∇)3E4 (4.39)

from which we can anticipate all of E2,3,E3,3,E′3,3 and E2,4 to be of depth two. Finally, modular
graph functions at weight six contain one independent depth-three representative satisfying

(π∇)3 E2,2,2 = −12 Im(τ)4 G4 π∇E2,2 +(π∇E2)3 . (4.40)

For all terms ∇nEk on the right hand side of the above Cauchy–Riemann equations, a represen-
tation in terms of iterated Eisenstein integrals E0 can be found in appendix G.1. We will now
proceed to solving eq. (4.29) and eqs. (4.35) to (4.40) using the method in subsection 4.2.2.

4.2.4 Explicit solutions to Cauchy–Riemann equations at higher depth

For the simplest modular graph function of depth two, E2,2, the differential equation eq. (4.29)
can be integrated to yield

E2,2 = − y4

20250 + yζ3
45 + 5ζ5

12y −
ζ2

3
4y2 −

(2y
15 −

3ζ3
y2

)
Re[E0(4, 0, 0)]

− 9
2y2

(
Re[E0(4, 0, 0)]2 + Im[E0(4, 0, 0)]2

)
− 72 Re[E0(4, 4, 0, 0)]− 1

5 Re[E0(4, 0, 0, 0)]

− 36 Re[E0(4, 0, 4, 0, 0)]
y

− 108 Re[E0(4, 4, 0, 0, 0)]
y

− Re[E0(4, 0, 0, 0, 0)]
10y (4.41)

− 9 Re[E0(4, 0, 0, 4, 0, 0)]
y2 − 27 Re[E0(4, 0, 4, 0, 0, 0)]

y2 − 54 Re[E0(4, 4, 0, 0, 0, 0)]
y2 ,

see eq. (G.1) for a convenient representation of the factor ∇E2 therein. Unlike the expression
for Ek, eq. (4.41) contains products of holomorphic and antiholomorphic iterated Eisenstein
integrals, for example in

Re[E0(4, 0, 0)]2 = 1
4 E0(4, 0, 0)2 + 1

2 E0(4, 0, 0)E0(4, 0, 0) + 1
4E0(4, 0, 0)2 (4.42)

and Im[E0(4, 0, 0)]2. The latter can be eliminated from eq. (4.41) by taking the real part of
E0(4, 0, 0)2 and taking the shuffle relation

E0(4, 0, 0)2 = 2 E0(4, 0, 0, 4, 0, 0) + 6 E0(4, 0, 4, 0, 0, 0) + 12 E0(4, 4, 0, 0, 0, 0) , (4.43)

into account. This manipulation turns out to cancel all iterated Eisenstein integrals of length
six from eq. (4.41):

E2,2 = − y4

20250 + yζ3
45 + 5ζ5

12y −
ζ2

3
4y2 −

(2y
15 −

3ζ3
y2

)
Re[E0(4, 0, 0)]

− 9 Re[E0(4, 0, 0)]2

y2 − 72 Re[E0(4, 4, 0, 0)]− 1
5 Re[E0(4, 0, 0, 0)] (4.44)

− 36 Re[E0(4, 0, 4, 0, 0)]
y

− 108 Re[E0(4, 4, 0, 0, 0)]
y

− Re[E0(4, 0, 0, 0, 0)]
10y .
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The coefficients of ζ5
y and ζ2

3
y2 in eqs. (4.41) and (4.44) appear as integration constants in interme-

diate steps and can by fixed by imposing modular invariance23 of eq. (4.44). We have checked
the resulting expression for D

[ ]
to satisfy the Laplace eigenvalue equation (2.52), and its

coefficient of q1q0 has been verified to agree with the results of ref. [3].
Similarly, the Cauchy–Riemann equation (4.35) for the depth-two modular graph function

eq. (4.30) at weight five can be integrated to yield

E2,3 = − 4y5

297675 + 2y2ζ3
945 −

ζ5
180 −

ζ3ζ5
2y3 + 7ζ7

16y2 −
(4y2

315 −
3ζ5
y3

)
Re[E0(4, 0, 0)]

−
(8y

3 −
60ζ3
y2

)
Re[E0(6, 0, 0, 0)]−

(
8− 60ζ3

y3

)
Re[E0(6, 0, 0, 0, 0)]

− 360 Re[E0(4, 0, 0)] Re[E0(6, 0, 0, 0)]
y2 − 360 Re[E0(4, 0, 0)] Re[E0(6, 0, 0, 0, 0)]

y3

− 1440 Re[E0(4, 6, 0, 0, 0)] + Re[E0(4, 0, 0, 0, 0)]
21 − 480 Re[E0(6, 0, 4, 0, 0)]− 1440 Re[E0(6, 4, 0, 0, 0)]

− 720 Re[E0(4, 0, 6, 0, 0, 0)]
y

− 4320 Re[E0(4, 6, 0, 0, 0, 0)]
y

+ Re[E0(4, 0, 0, 0, 0, 0)]
14y (4.45)

− 720 Re[E0(6, 0, 0, 4, 0, 0)]
y

− 2160 Re[E0(6, 0, 4, 0, 0, 0)]
y

− 4320 Re[E0(6, 4, 0, 0, 0, 0)]
y

− 10 Re[E0(6, 0, 0, 0, 0, 0)]
y

− 720 Re[E0(4, 0, 6, 0, 0, 0, 0)]
y2 − 3600 Re[E0(4, 6, 0, 0, 0, 0, 0)]

y2

+ Re[E0(4, 0, 0, 0, 0, 0, 0)]
28y2 − 360 Re[E0(6, 0, 0, 0, 4, 0, 0)]

y2 − 1080 Re[E0(6, 0, 0, 4, 0, 0, 0)]
y2

− 2160 Re[E0(6, 0, 4, 0, 0, 0, 0)]
y2 − 3600 Re[E0(6, 4, 0, 0, 0, 0, 0)]

y2 − 5 Re[E0(6, 0, 0, 0, 0, 0, 0)]
y2 ,

see eqs. (G.2) and (G.3) for explicit expressions of ∇E3 and ∇2E3. Following the strategy
of simplifying E2,2, we have eliminated the appearance of Im[E0(4, 0, 0)] Im[E0(6, 0, 0, 0)] and
Im[E0(4, 0, 0)] Im[E0(6, 0, 0, 0, 0)] in intermediate steps by taking the real part of appropriate
shuffle relations. These manipulations also remove all iterated Eisenstein integrals of length 8
from our final expression eq. (4.45). Hence, elimination of any Im[E0(. . .)] via shuffle relations
will be our guiding principle for all subsequent cases which turns out to reduce the maximum
length of the iterated Eisenstein integrals appearing in a given Ek.

The coefficient of ζ5 in E2,3 is not fixed by modular invariance and can be inferred by
comparison with the results in the literature, numerical evaluation or by the method discussed
in subsection 4.3. The expression for D

[ ]
resulting from eq. (4.45) has been checked to satisfy

the Laplace equation (2.53), and its coefficient of q1q0 agrees with the results of [3].
There are three independent modular graph functions at weight six and depth two: E3,3,E′3,3

as well as E2,4 defined in eqs. (4.31) to (4.33) are a convenient choice of basis. Integrating the
Cauchy–Riemann equation (4.36) for E3,3 gives rise to

E3,3 = 2y6

6251175 + yζ5
210 + ζ7

16y −
7ζ9

64y3 + 9ζ2
5

64y4 −
(4y

7 + 135ζ5
4y4

)
Re[E0(6, 0, 0, 0, 0)]

+ 2025 Re[E0(6, 0, 0, 0, 0)]2

y4 + 21600 Re[E0(6, 6, 0, 0, 0, 0)]− 20
7 Re[E0(6, 0, 0, 0, 0, 0)]

+ 21600 Re[E0(6, 0, 6, 0, 0, 0, 0)]
y

+ 108000 Re[E0(6, 6, 0, 0, 0, 0, 0)]
y

23The modular transformations in eqs. (3.53), (3.45) and (3.46) are sufficient to check this.
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− 45 Re[E0(6, 0, 0, 0, 0, 0, 0)]
7y + 16200 Re[E0(6, 0, 0, 6, 0, 0, 0, 0)]

y2 (4.46)

+ 81000 Re[E0(6, 0, 6, 0, 0, 0, 0, 0)]
y2 + 243000 Re[E0(6, 6, 0, 0, 0, 0, 0, 0)]

y2

− 15 Re[E0(6, 0, 0, 0, 0, 0, 0, 0)]
2y2 + 8100 Re[E0(6, 0, 0, 0, 6, 0, 0, 0, 0)]

y3

+ 40500 Re[E0(6, 0, 0, 6, 0, 0, 0, 0, 0)]
y3 + 121500 Re[E0(6, 0, 6, 0, 0, 0, 0, 0, 0)]

y3

+ 283500 Re[E0(6, 6, 0, 0, 0, 0, 0, 0, 0)]
y3 − 15 Re[E0(6, 0, 0, 0, 0, 0, 0, 0, 0)]

4y3 ,

and similar expressions for E′3,3 and E2,4 based on eqs. (4.37) to (4.39) are provided in ap-
pendix G.2. The resulting expressions for D

[ ]
,D
[ ]

and D
[ ]

have been checked to
satisfy the Laplace eigenvalue equations (2.54).

Finally, there is a single irreducible modular graph function of depth three at weight six:
E2,2,2 defined in eq. (4.34). Integrating its Cauchy–Riemann equation (4.40) (with ∇E2,2 spelt
out in eq. (G.7)) yields

E2,2,2 = 4y6

9568125 −
2y3ζ3
10125 + yζ5

54 + ζ2
3

90 + 661ζ7
1800y −

5ζ3ζ5
12y2 + ζ3

3
6y3

+
( 4y3

3375−
2ζ3
15 + 5ζ5

2y2−
3ζ2

3
y3

)
Re[E0(4, 0, 0)] +

(2
5+18ζ3

y3

)
Re[E0(4, 0, 0)]2 − 36 Re[E0(4, 0, 0)]3

y3

− 36
(2y

45 −
ζ3
y2 + 6 Re[E0(4, 0, 0)]

y2

)
Re
[
E0(4, 0, 4, 0, 0)] + 3 E0(4, 4, 0, 0, 0) + E0(4, 0, 0, 0, 0)

360
]

− 864 Re[E0(4, 4, 0, 4, 0, 0)]− 2592 Re[E0(4, 4, 4, 0, 0, 0)]− 12
5 Re[E0(4, 0, 0, 4, 0, 0)]

− 36
5 Re[E0(4, 0, 4, 0, 0, 0)]− 84

5 Re[E0(4, 4, 0, 0, 0, 0)]− 1
150 Re[E0(4, 0, 0, 0, 0, 0)] (4.47)

− 1296 Re[E0(4, 4, 0, 0, 4, 0, 0)]
y

− 3888 Re[E0(4, 4, 0, 4, 0, 0, 0)]
y

− 7776 Re[E0(4, 4, 4, 0, 0, 0, 0)]
y

− 432 Re[E0(4, 0, 4, 0, 4, 0, 0)]
y

− 1296 Re[E0(4, 0, 4, 4, 0, 0, 0)]
y

− 6 Re[E0(4, 0, 0, 0, 4, 0, 0)]
5y

− 18 Re[E0(4, 0, 0, 4, 0, 0, 0)]
5y − 42 Re[E0(4, 0, 4, 0, 0, 0, 0)]

5y

− 18 Re[E0(4, 4, 0, 0, 0, 0, 0)]
y

− Re[E0(4, 0, 0, 0, 0, 0, 0)]
300y ,

which, together with E3,3,E′3,3 and E2,4, completes the basis of weight-six modular graph func-
tions under the relations in appendix F. For all the above expressions for modular graph
functions, modular invariance has been confirmed numerically.

All the above examples confirm our conjecture that the number of loops in a graph is an
upper bound for the depth of the associated modular graph function. Said upper bound is
saturated for the independent modular graph functions D

[ ]
,D
[ ]

,D
[ ]

,D
[ ]

,D
[ ]

and D
[ ]

at weight w ≤ 6. However, D
[ ]

being of depth one (cf. eq. (2.45)) and D
[ ]

being of depth three (cf. eq. (F.1)) are examples where the loop order exceeds the depth.
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4.2.5 Laplace equation at weight six

From their representations in terms of iterated Eisenstein integrals, we infer the following Laplace
equation among modular graph functions which has not yet been spelt out in the literature:

(∆− 2)
(
D
[ ]

− 2 E2
3−E2 E4

)
− 14

9 D
[ ]

+ 16
3 D

[ ]
− 4 D

[ ]
+ 284

9 E6 +2
3 E3

2 +16 E2
3 +12

5 E2 E4−4 E2 E2,2 = 0 . (4.48)

The combination D
[ ]

−2 E2
3−E2 E4 along with the Laplacian is designed to absorb contribu-

tions ∼ ∂τ Ep ∂τ Eq in eq. (4.48) with p+q = 6. Moreover, the combination D
[ ]

−2 E2
3−E2 E4

is selected by the formalism of ref. [11] to linearize the relations between modular graph func-
tions24, as can be verified from the second equation from below in eq. (F.1).

4.2.6 Representations of modular graph functions in terms of E rather than E0?

While all expressions for modular graph functions or their constituents have been expressed in
terms of iterated Eisenstein integrals E0 defined in eq. (2.19), we conclude this subsection with
expressions for modular graph functions in terms of iterated Eisenstein integrals E defined in
eq. (2.18), where the constant terms 2ζk of the integrands Gk are not subtracted. At depth one,
these E appear to be the more suitable language for modular graph functions than the E0 since
the polynomial term Ek ∼ yk in eq. (2.34) is absorbed in this way:

Ek = 4 (2k−3)! ζ2k−1 (4y)1−k

(k−2)! (k−1)! − 8y(2k−1)!
k−1∑
j=0

(
2k−2−j
k−1

)
(4y)j−k

j! Re[E(2k, 0, . . . , 0︸ ︷︷ ︸
2k−2−j

; q)] .

(4.49)

However, the analogous rearrangements at depth two convert eq. (4.44) into

E2,2 = ζ3 |T |2

60y + 5ζ5
12y −

ζ2
3

4y2 + 3ζ3
y2 Re[E(4, 0, 0)]− 9 Re[E(4, 0, 0)]2

y2 (4.50)

− 72 Re[E(4, 4, 0, 0)]− 36 Re[E(4, 0, 4, 0, 0)]
y

− 108 Re[E(4, 4, 0, 0, 0)]
y

and introduce an explicit appearance of Re τ via |T |2 = π2((Re τ)2 + (Im τ)2). Similar observa-
tions have been made for E2,3 and examples at higher weight, so it is not clear if representations
in terms of E are preferable at generic depth.

4.3 Modular graph functions from B-cycle graph functions

In this section, we suggest a mapping between B-cycle graph functions and the corresponding
modular graph functions which is based on their representations via iterated Eisenstein integrals
(see subsection 3.3.5 and subsection 4.2.4, respectively).

24The general formalism ref. [11] assigns a so-called “primitive” version to each modular graph function which is
observed to linearize all relations know up to date. We are grateful to Eric D’Hoker and Justin Kaidi for bringing
the connection between primitive modular graph functions and the Laplace equation (4.48) to our attention.
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4.3.1 Depth one

For illustrative purposes, we repeat the expressions

D
[ ]

= y2

45 + ζ3
y
− 12 Re[E0(4, 0)]− 6

y
Re[E0(4, 0, 0)]

D
[ ]

= 2y3

945 + 3ζ5
4y2 − 120 Re[E0(6, 0, 0)]− 180

y
Re[E0(6, 0, 0, 0)]− 90

y2 Re[E0(6, 0, 0, 0, 0)] (4.51)

D
[ ]

= y4

4725 + 5ζ7
8y3 − 1680 Re[E0(8, 0, 0, 0)]− 5040

y
Re[E0(8, 0, 0, 0, 0)]

− 6300
y2 Re[E0(8, 0, 0, 0, 0, 0)]− 3150

y3 Re[E0(8, 0, 0, 0, 0, 0, 0)] ,

for the simplest modular graph functions which agree with the all-weight formula eq. (2.33)
for non-holomorphic Eisenstein series. These closed-string expressions will be brought into
correspondence with the analogous B-cycle graph functions eq. (3.54) modulo ζ2 on the open-
string side,

B
[ ]

= − T
2

180 + iζ3
T
− 6 E0(4, 0)− 6i E0(4, 0, 0)

T
mod ζ2

B
[ ]

= iT 3

3780 −
3ζ5
2T 2 − 60 E0(6, 0, 0)− 180i E0(6, 0, 0, 0)

T
+ 180 E0(6, 0, 0, 0, 0)

T 2 mod ζ2

B
[ ]

= T 4

75600 −
5iζ7
2T 3 − 840 E0(8, 0, 0, 0)− 5040i E0(8, 0, 0, 0, 0)

T
(4.52)

+ 12600 E0(8, 0, 0, 0, 0, 0)
T 2 + 12600i E0(8, 0, 0, 0, 0, 0, 0)

T 3 mod ζ2 .

As in eq. (3.57), the notion of “mod ζ2” refers to a representation of all the τ -dependence via T
and E0(k), where all terms of the form ζn2 T

m E0(k) with n ≥ 1 and m ∈ Z are suppressed. Both,
iterated Eisenstein integrals and Laurent polynomials in y or T exhibit striking similarities in
their coefficients: Every single term in eq. (4.52) will find a correspondent in eq. (4.51) once we
replace

T → 2iy , E0(2k, 0, . . .)→ 2 Re[E0(2k, 0, . . .)] , ζ2k+1 → 2ζ2k+1 , ζ2k → 0 . (4.53)

The τ dependence of the E0(k) through their q-series eq. (2.21) is understood to be unaffected
by the prescription T → 2iy. The same correspondence has been verified between the depth-one
modular graph functions D

[ ]
, D
[ ]

and their B-cycle counterparts B
[ ]

, B
[ ]

.

4.3.2 General form

Both the doubling of odd zeta-values in eq. (4.53) and the suppression of ζ2 in matching B-cycle
graph functions with non-holomorphic Eisenstein series are reminiscent of the single-valued
projection of MZVs. From the above examples associated with one-loop graphs, it is tempting
to study the following generalization of eq. (4.53)25

esv :


(i) T → 2iy

(ii) E0(k1, k2, . . . , kr)→ 2 Re[E0(k1, k2, . . . , kr)], k1 6= 0
(iii) ζn → ζsv

n

(4.54)

25As pointed out in appendix D.2, one can always write E0’s in terms of powers of T and E0’s with k1 6= 0.
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to arbitrary MZVs and iterated Eisenstein integrals. Note that part (i) or τ → 2i Im(τ) is in fact
a special case of part (ii) since E0(0) = 2πiτ . As before, part (i) is understood to not act on the
q-series eq. (2.21) of E0(k, . . .) with k 6= 0. Moreover, part (iii) motivates our earlier choices to
occasionally display B-cycle graph function modulo terms sent to zero by the esv-map such as
ζ2T

m E0(k). As the key result of this section, we conjecture that, once a B-cycle graph function
is suitably expressed in terms of T and E0(k), the esv-map in eq. (4.54) yields the corresponding
modular graph function,

esv B[G] = D[G] . (4.55)

The notion of suitably expressing B-cycle graph function in terms of T and E0(k) will be made
more precise in the next subsection 4.3.3 using examples at depth two and three. We must
introduce this notion, because the esv-map is a map on iterated integrals only if we consider
them as symbols and forget about the algebraic relations among them. The reason is, that these
relations would not be respected by part (ii) of eq. (4.54). Since open- and closed-string am-
plitudes comprise generating functions of the respective graph functions, eq. (4.55) immediately
implies the main result of this work – the connection eq. (1.6) between the four-point open- and
closed-string integrals eqs. (3.6) and (2.24).

Let us already note here that the esv-map eq. (4.54) is consistent with the truncation
eq. (4.13) of A-cycle graph functions selected by the replacement in eq. (4.3): Using the re-
sult eq. (2.13), it follows that adding any term ζn ω(m) contained in the space X defined in
section 4.1 to an A-cycle graph function will result in terms proportional to ζnTm E0(. . .) in the
corresponding B-cycle graph function26, which are in turn annihilated by part (iii) of eq. (4.54).
In other words, all terms contained in X will yield zero upon taking their modular transforma-
tion and applying the rules eq. (4.54) afterwards. Accordingly, the observation of subsection 4.1
that A-cycle graph functions – after omission of terms from the space X and replacing ζn → ζsv

n

– satisfy the relations of modular graph functions, is made plausible by eq. (4.55).

4.3.3 Higher depth

We shall now discuss the representations of B-cycle graph functions in which the esv-map
eq. (4.55) to modular graph functions is applicable. At depth two, it is instructive to com-
pare the expression eq. (4.44) for E2,2 = D

[ ]
− 9

10 D
[ ]

with the analogous B-cycle graph
function

B
[ ]

− 9
10 B

[ ]
= − T 4

324000 −
iT ζ3
180 + 5iζ5

12T + ζ2
3

4T 2

+
( iT

30 −
3ζ3
T 2

)
E0(4, 0, 0) + 9 E0(4, 0, 0)2

T 2 − 36 E0(4, 4, 0, 0)− 1
10 E0(4, 0, 0, 0) (4.56)

− 36i E0(4, 0, 4, 0, 0)
T

− 108i E0(4, 4, 0, 0, 0)
T

− i E0(4, 0, 0, 0, 0)
10T mod ζ2 ,

see eq. (3.56) for the terms ∼ ζ2 suppressed by the esv-map. In the present form of eq. (4.56),
the esv-map in eq. (4.54) correctly reproduces the corresponding modular graph function in
eq. (4.44). However, as already anticipated in the previous section, a major shortcoming is that
the esv-map in eq. (4.54) is not compatible with shuffle multiplication: Rewriting eq. (4.56) via

26For instance, even though ζ2 ωA(0, 0, 1, 0|τ) = − ζ3
8 + 3

4 E0(4, 0, 0|τ) appears to introduce a term proportional
to ζ3 which is preserved by the single-valued projection, the modular image ζ2 ωA(0, 0, 1, 0|− 1

τ
) = iπ6

720T3 − iπ4

144T +
iπ2T
720 −

π2ζ3
8T2 + 3π2 E0(4,0,0;τ)

4T2 and thereby the contribution to a B-cycle graph function is sent to zero by the esv-map
eq. (4.54) term by term.
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E0(4, 0, 0)2 = 2 E0(4, 0, 0, 4, 0, 0) + 6 E0(4, 0, 4, 0, 0, 0) + 12 E0(4, 4, 0, 0, 0, 0) results in a different
image under the esv-map. When performing this shuffle multiplication, one could at best hope
to make contact with the more cumbersome representation of E2,2 in eq. (4.41) with spurious
iterated Eisenstein integrals of length six, but it is not clear how to extend the esv-map such as
to generate Im[E0(k)].

In the depth-two case at hand, one can still argue that the representation in eq. (4.56) is
optimized with respect to the length of the iterated Eisenstein integrals and therefore particularly
canonical: There is currently no E0(. . .) at length six, provided that the shuffle multiplication of
E0(4, 0, 0)2 is not performed.

At weight five, the expression eq. (4.45) for the two-loop modular graph function E2,3 can
be reached by applying eq. (4.54) to the representation eq. (3.57) of the corresponding B-cycle
graph function. For the first non-trivial product E0(4, 0, 0) E0(6, 0, 0, 0, 0) of iterated Eisenstein
integrals in eq. (3.57), the absence of E0(k) at length eight in the remaining equation suggests
to not perform this shuffle multiplication. However, the other product E0(4, 0, 0) E0(6, 0, 0, 0) in
eq. (3.57) does not admit a comparable argument to leave it inert: Said B-cycle graph function
inevitably contains E0(k) at length seven, independent on the treatment of E0(4, 0, 0) E0(6, 0, 0, 0).

We expect that each B-cycle graph function admits a scheme of performing selected shuffle
multiplications such that the esv-map eq. (4.54) converts it to the corresponding modular graph
function via eq. (4.55). It would be desirable to identify a general criterion on the representations
of B-cycle graph function that are tailored to the esv-map. Inappropriate ways of performing
shuffle multiplications before applying the esv-map will usually result in a breakdown of modular
invariance.

We have checked that the independent modular graph functions E3,3,E′3,3,E2,4 and E2,2,2 at
weight six can be obtained through the esv-map from suitable representations of the correspond-
ing B-cycle graph functions. This adds a depth-three example to support the general conjecture
eq. (4.55).

4.3.4 Expressing esv rules in terms of E0 versus E

One very obvious question is whether one can find a formulation of the esv-map in eq. (4.54)
which applies to iterated Eisenstein integrals E rather than E0. It has been noted in eq. (4.49)
that the leading term in the Laurent polynomial of non-holomorphic Eisenstein series cancels
when E0 are collectively traded for E . Indeed, inserting E0(4, 0; τ) = E(4, 0; τ) − π2τ2

360 and
E0(4, 0, 0; τ) = E(4, 0, 0; τ) − iπ3τ3

540 into the B-cycle graph function eq. (4.52) gives rise to the
analogous cancellation of the term T 2,

B
[ ]

= iζ3
T
− 6 E(4, 0)− 6i E(4, 0, 0)

T
mod ζ2 . (4.57)

Given that this effect persists in one-loop graph functions of higher weight, it is conceivable that
replacing the esv-rule (ii) by E(k)→ 2 Re[E(k)] correctly reproduces all En from B-cycle graph
functions in terms of iterated Eisenstein integrals E .

At depth two, however, there is a discouraging example: When replacing E0 by combinations
of E in eq. (4.56), one arrives at a shorter expression

B
[ ]

− 9
10 B

[ ]
= 5iζ5

12T + ζ2
3

4T 2 −
3ζ3 E(4, 0, 0)

T 2 + 9 E(4, 0, 0)2

T 2 − 36 E(4, 4, 0, 0)

− 36i
T

(E(4, 0, 4, 0, 0) + 3 E(4, 4, 0, 0, 0)) mod ζ2 , (4.58)
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which should be compared with the representation eq. (4.50) of the modular graph function
E2,2. It turns out that there is no B-cycle analogue of the term E2,2 = ζ3|T |2

60y + . . . in eq. (4.50),
which was already mentioned as a drawback of representations in terms of E . We hope that
this particular term in the expression for E2,2 will shed light on a reformulation of the esv-map
which respects shuffle multiplication.

4.3.5 Zero modes

We recall that (by abuse of nomenclature) the zero mode of a modular graph function (see
eq. (2.36))

D[G] =
∞∑

m,n=0
cGm,n(y)qmq̄n, (4.59)

is defined to be d[G] := cG0,0(y). The analogue of the zero mode for a B-cycle graph function

B[G] =
∞∑
m=0

bGm(T )qm (4.60)

will be denoted as b[G] := bG0 (T ) and is also referred to as a constant term in appendix B. The
map esv is well defined on zero modes, as it does not present the problem of being dependent
on the way we write B[G] in terms of iterated Eisenstein integrals E0(k; q) = O(q). Hence, the
conjectural formula

esv b[G] = d[G] (4.61)

is well defined, and it has been verified on all examples up to weight six. Moreover, in order to
confirm part (iii) of the esv-map for an MZV of depth 3 and weight 11, where the sv-map acts
in a non-trivial way, eq. (4.61) has been checked to hold for the weight seven-examples b

[ ]
and d

[ ]
spelt out in eqs. (3.58) and (2.44).

Hence, we propose eq. (4.61) as a conjectural method to compute the zero modes d[G] of
modular graph functions. Expressions for the constant terms b[G] of B-cycle graph functions can
be calculated using the methods described in appendix B. There is no conceptual bottleneck to
addressing graphs of arbitrary complexity in this way, though the amount of data in intermediate
steps of the calculations in appendix B imposes practical limitations27 for weights larger than
six. As pointed out in subsection 3.3, the analytic computation of b[G] bypasses the necessity
to numerically determine the multiple modular values arising in the modular transformations of
iterated Eisenstein integrals described in subsection 3.3.3 as well as the integration constants in
the method outlined in subsection 3.3.4.

5 Non-planar A-cycle graph function

As will be demonstrated in this section, the graphical organization of open-string α′-expansions
is not tied to planar one-loop amplitudes. Even for non-abelian open-string states, the α′-
expansions of the non-planar open-string amplitudes can be conveniently expressed via mild
generalizations of A-cycle graph functions which we will call non-planar A-cycle graph functions.
As shown in ref. [25], non-planar α′-expansions are composed of A-cycle eMZVs, and one-particle

27The expression for b
[ ]

in eq. (3.58) has been obtained by modular transformation of the A-cycle graph

function A
[ ]

, involving numerical evaluations of multiple modular values, see section 3.3.3.
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reducible graphs will be shown to again decouple once one employs a suitable choice of the
Green function. Most surprisingly, planar and non-planar A-cycle graph functions turn out
to be indistinguishable under the esv-map eq. (4.54), i.e. under the correspondence eq. (1.5)
between open-string graph functions and modular graph functions for the closed string. As will
be detailed in section 5.3, this gives rise to expect that planar open-string amplitudes carry the
complete information on the closed string, without any need for non-planar input.

5.1 Non-planar open-string integrals

Non-planar one-loop amplitudes of both abelian and non-abelian open-string states comprise
the integrals [76]

Mopen
12|34(sij |τ) :=

∫ 1

0
dz2

∫ 1

0
dz3

∫ 1

0
dz4 exp

s12P12 + s34P34 +
2∑
i=1

4∑
j=3

sijQij

 (5.1)

Mopen
123|4(sij |τ) :=

∫ 1

0
dz2

∫ 1

0
dz3

∫ 1

0
dz4 exp

 3∑
i<j

sijPij +
3∑
j=1

sj4Qj4

 , (5.2)

which remain to be integrated over the modular parameter τ ∈ iR of the respective cylinder
worldsheet. The subscripts 12|34 and 123|4 refer to the distribution of the open-string states
over the two boundaries of the cylinder. When performing the τ -integral for Mopen

12|34(sij |τ)
an additional factor of qα′k1·k2/2 needs to be taken into account28. Given that none of the
worldsheet boundaries in eqs. (5.1) and (5.2) comprises more than three punctures, the integrals
are universal to both abelian and non-abelian open-string states. However, generic non-planar
integrals at n ≥ 5 points will necessitate a distinction between abelian and non-abelian states.

In contrast to the integrals eqs. (3.6) and (3.7) from the planar abelian sector, eqs. (5.1)
and (5.2) contain a second species of propagators: Qij . This propagator connects punctures on
different boundaries of the cylinder, and its representation following from Pij in eq. (3.8) reads

Q1j := ω
(

1, 0
τ/2, 0

)
− Γ

(
1
τ/2 ; zj

)
, Qij := ω

(
1, 0
τ/2, 0

)
− Γ

(
1

zj+τ/2 ; zi
)
− Γ

(
1
τ/2 ; zj

)
. (5.3)

The planar and non-planar propagators Pij and Qij given by eqs. (3.8) and (5.3) are related to
the Green functions employed in section 4 of ref. [25] through a shift by ωA(1, 0). Momentum
conservation

∑
i<j sij = 0 again guarantees that the Green functions of the reference and the

present expressions for Pij and Qij yield the same integrand in eqs. (5.1) and (5.2). As a key
benefit of the representations eqs. (3.8) and (5.3) of Pij and Qij , they satisfy eq. (3.9) and∫ 1

0
dzi Qij = 0 , (5.4)

which furnish a suitable starting point to again organize the α′-expansion of eqs. (5.1) and (5.2) in
terms of one-particle irreducible graphs. As elaborated on in ref. [25], the non-planar propagator
introduces twisted eMZVs in intermediate steps,

ω
(
n1, n2, ..., nr
b1, b2, ..., br

)
:= Γ

(
nr nr−1 ... n1
br br−1 ... b1 ; 1

)
, (5.5)

28The integral I12|34 expanded in ref. [25] is related to eq. (5.1) via I12|34 = qα
′k1·k2/2Mopen

12|34.
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Figure 4: In the framework of non-planar A-cycle graph functions, the two types of propagators Qij and
Pij are represented by edges (drawn as solid lines) which do and do not cross the dashed line, respectively.
Said dashed line tracks the distribution of the punctures in non-planar open-string amplitudes over two
cylinder boundaries. The situations for the non-planar integrals Mopen

12|34 and Mopen
123|4 are depicted in the

left and right panel, respectively.

which drop out from the final expressions such as29

Mopen
12|34(sij |τ) = 1 + s2

12

(7ζ2
6 + 2ωA(0, 0, 2)

)
− 2s13s23

(ζ2
3 + ωA(0, 0, 2)

)
(5.6)

− 4 ζ2 ωA(0, 1, 0, 0) s3
12 + s12s13s23

(ζ3
2 −

5
3 ωA(0, 3, 0, 0)− 4 ζ2 ωA(0, 1, 0, 0)

)
+O(α′4)

Mopen
123|4(sij |τ) = 1 + (s2

12 + s12s23 + s2
23)
(7ζ2

6 + 2ωA(0, 0, 2)
)

(5.7)

+ s12s23s13
(ζ3

2 + 4 ζ2 ωA(0, 1, 0, 0)− 5
3 ωA(0, 3, 0, 0)

)
+O(α′4) ,

also see [77] for the linear orders in sij . Moreover, all-order expressions for the τ → i∞ limit of
eq. (5.1) and eq. (5.2) have been given in [77] and [78], respectively.

5.2 Examples of non-planar A-cycle graph functions

The definition of planar A-cycle graph functions in section 3.1 has a natural extension to the
non-planar setup. Monomials in Pij and Qij from the expansion of the integrand in eqs. (5.1)
and (5.2) are translated into graphs according to the following rules: Each integration variable
in the open-string measure eq. (3.7) is again represented by a vertex, and the two kinds of
propagators Pij and Qij in eqs. (3.8) and (5.3) between vertices i and j are visualized by two
types of undirected edges.

A convenient way to track the two types of edges stems from the distribution of the punctures
in Mopen

12|34(sij |τ) and Mopen
123|4(sij |τ) into two sets according to the vertical-bar notation. These

two sets correspond to the location of the punctures on two different boundaries of a cylindrical
worldsheet, and the separation of the boundaries can be incorporated into the graphs through
the dashed line in figure 4. Then, propagators Qij and Pij correspond to edges that cross and
do not cross the dashed line, respectively. The generalization of eq. (2.28) then reads

Pij =
i j , Qij =

i j . (5.8)

At weight two and three, for instance, one will have to evaluate the following non-planar A-cycle
29The Mopen

123|4 is defined as twice the integral I123|4 expanded in ref. [25] in order to illustrate the parallels to
the α′-expansion of Mopen

12|34, see in particular section 5.3. Also note the relative minus sign in the definition of the
Mandelstam variables in this work and ref. [25] which affects the third order in α′ in the subsequent expansions.
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graph functions

A
[ ]

:=
∫

dµopen
2 Q2

12 , A
[ ]

:=
∫

dµopen
2 Q3

12 , A
[ ]

:=
∫

dµopen
3 P12Q13Q23 (5.9)

in addition to their planar counterparts A
[ ]

,A
[ ]

and A
[ ]

. The essential steps of their
computation can be assembled from ref. [25], see in particular appendix I.1 of the reference,
with the following results in terms of untwisted A-cycle eMZVs:

A
[ ]

= ωA(0, 0, 2) + ζ2
3 (5.10)

A
[ ]

= ζ3
2 −

1
3 ωA(0, 3, 0, 0)− 4ζ2 ωA(0, 1, 0, 0) (5.11)

A
[ ]

= −1
3 ωA(0, 3, 0, 0) . (5.12)

From weight four on, certain graph topologies admit several non-planar A-cycle graph functions
which correspond to different distributions of punctures over two boundaries or different numbers
of Qij propagators. For instance, there are two and three non-planar analogues to A

[ ]
and

A
[ ]

, respectively,

A
[ ]

:=
∫

dµopen
2 Q4

12 (5.13)

A
[ ]

:=
∫

dµopen
3 P 2

12Q13Q23 , A
[ ]

:=
∫

dµopen
3 Q2

12P13Q23 (5.14)

A
[ ]

:=
∫

dµopen
4 P12Q23P34Q41 , A

[ ]
:=

∫
dµopen

4 P12P23Q34Q41

A
[ ]

:=
∫

dµopen
4 Q12Q23Q34Q41 . (5.15)

5.3 Comparing α′-expansions of planar and non-planar integrals

By means of momentum conservation, the α′-expansion eqs. (5.6) and (5.7) of the non-planar
integrals eqs. (5.1) and (5.2) can be recovered from the following planar and non-planar A-cycle
graph functions:

Mopen
12|34(sij |τ) = 1 + s2

12(A
[ ]

+ A
[ ]

)− 2s13s23 A
[ ]

+ s3
12
3 (A

[ ]
−A

[ ]
) + s12s13s23(A

[ ]
+ 4 A

[ ]
) +O(α′4) , (5.16)

Mopen
123|4(sij |τ) = 1 + (s2

12 + s12s23 + s2
23)(A

[ ]
+ A

[ ]
)

+ s12s13s23
(1

2 A
[ ]

+ 1
2 A

[ ]
+ A

[ ]
+ 3 A

[ ])
+O(α′4) . (5.17)

Clearly, when identifying the two boundaries and formally sending A
[ ]

→ A
[ ]

, A
[ ]

→

A
[ ]

and A
[ ]

→ A
[ ]

, both eq. (5.16) and eq. (5.17) reduce to the integral eq. (3.11) of
the abelian planar amplitude. Nevertheless, the expressions eqs. (5.16) and (5.17) for non-planar
integrals also apply to non-abelian open-string amplitudes.

It is tempting to compare the eMZV representation of non-planar A-cycle graph functions
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with their planar counterparts. The above examples in eqs. (5.10) to (5.12),

A
[ ]

−A
[ ]

= 1
2ζ2

A
[ ]

−A
[ ]

= 12ζ2 ωA(0, 0, 1, 0) (5.18)

A
[ ]

−A
[ ]

= 2ζ2 ωA(0, 0, 1, 0)

give rise to the following observation: to the orders considered, planar and non-planar A-cycle
graph functions associated with the same graph differ by terms in the space X defined in eq. (4.4)
and thus lead to identical results after applying eq. (4.3). This is furthermore supported by the
weight-four example

A
[ ]

= 216 E0(4, 0, 4, 0)− 432 E0(4, 4, 0, 0)− 3024 E0(8, 0, 0, 0) mod ζ2 (5.19)

which again matches the expression for A
[ ]

in eq. (3.20) modulo terms in X and validates the
observation beyond one-loop graphs. We therefore expect the matching of planar and non-planar
A-cycle graph functions modulo terms in X to persist at higher weights,

A[G] = A[ G· · ·· · · ] mod X , (5.20)

where G· · ·· · · represents an arbitrary non-planar generalization30 of the graph G.
As explained in the paragraph below eq. (4.55), the modular S-transformation maps terms

contained in the space X to terms sent to zero by esv in eq. (4.54). Hence, given the definition
of non-planar B-cycle graph functions

B[ G· · ·· · · ] := A[ G· · ·· · · ]
∣∣
τ→− 1

τ
, (5.21)

in direct analogy with the planar ones eq. (3.14), our conjecture eq. (5.20) implies that modular
graph functions can also be constructed from non-planar open-string graph functions

esv B[ G· · ·· · · ] = esv B[G] = D[G] . (5.22)

At the level of their generating functions, this leads to the following conclusion: When the closed-
string four-point amplitude is obtained from open-string input through the esv-projection as in
eq. (1.6), then the non-planar sectors do not carry any additional information beyond the planar
sector for abelian open-string states:

esv Mopen
4 (sij | − 1

τ ) = esv Mopen
12|34(sij | − 1

τ ) = esv Mopen
123|4(sij | − 1

τ ) . (5.23)

In other words – the esv-map identifies non-planar open-string integrals with planar abelian
ones! It would be interesting to understand this in the light of monodromy relations among
one-loop open-string amplitudes [79,77].

6 Conclusions

In this work, we have identified new connections between building blocks of open- and closed-
string one-loop amplitudes at the level of their α′-expansions. In view of the relation between

30For instance, G· · ·· · · can be either or when G is taken to be .
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the respective tree-level amplitudes through the single-valued projection of MZVs, we have
proposed an elliptic version of a single-valued map called “esv”. The latter acts on the eMZVs in
symmetrized one-loop open-string integrals and yields the corresponding integrals of the closed
string. This connection between open and closed strings through the esv-map has been explicitly
verified at the leading seven orders in α′ and suggests to envision the following scenario in the
long run: Closed-string α′-expansions at generic multiplicity and loop order might be entirely
derivable from open-string data using suitable operations.

Our construction is based on a graphical organization of the α′-expansions of planar and
non-planar open-string amplitudes: Convenient arrangements of the genus-one Green function
cancel the contributions from one-particle reducible graphs which has already been used to
simplify closed-string α′-expansions. For each one-particle irreducible graph, we have defined
a meromorphic A-cycle graph function comprising eMZVs, its modular S-transformation called
B-cycle graph function as well as non-planar generalizations. Representing these open-string
constituents in terms of iterated Eisenstein integrals leads to a straightforward identification
through the esv-map with the modular graph functions governing the closed-string α′-expansion.

Expressing modular graph functions in terms of iterated Eisenstein integrals gives rise to
new results on their Fourier expansions beyond the simplest cases of non-holomorphic Eisenstein
series. Furthermore, our iterated-Eisenstein-integral representations automatically manifest all
relations between modular graph functions and their Laplace equations at the weights under
consideration. We expect that this language is suitable to represent the general systematics of
indecomposable modular graph functions and their network of Laplace eigenvalue equations.

Having applied methods from the open-string to modular graph functions on the closed-
string side, it would be interesting to try the converse: The representation of modular graph
functions in terms of nested lattice sums, which is immediately accessible from their definition
through the genus-one Green function, should have an echo for eMZVs. In particular, tentative
lattice-sum representations of A-cycle and B-cycle eMZVs are likely to offer new perspectives
on their algebraic and differential relations and new insights on the esv-map.

Moreover, it would be desirable to connect the present proposal for the esv-map with the
framework developed by Brown in refs. [59,28,29]. This would make clear whether our observa-
tions hold true for any graph or should be corrected at higher depth.

While the present results are restricted to scattering amplitudes of four external states, a
natural follow-up question concerns the generalization to n-point one-loop amplitudes. Since
the coefficients of the Kronecker–Eisenstein series capture the all-multiplicity integrands [23],
the n-point α′-expansion for both open and closed strings is expressible in terms of iterated
Eisenstein integrals and therefore accessible to the proposed esv-map. However, it remains to
identify the correspondence between cyclic orderings in higher-point open-string amplitudes and
the additional functions of the punctures in closed-string integrands at five and more points
[62–64,10]. The recent double-copy representation [70] of open-string integrands is expected to
play a key role in this endeavor.

Relations between open- and closed-string amplitudes at higher genus should be encoded in
a similar organization scheme of the integrals over the punctures. A strategic path at genus two
would be to express the moduli-space integrand for the Zhang–Kawazumi invariant [80,81] and
its recent generalizations to higher orders in α′ [82] in terms of open-string quantities. For this
purpose, higher-genus generalizations of eMZVs along with the appropriate analogues of iterated
Eisenstein integrals seem to be a suitable framework.

Finally, both the α′-expansion of closed-string one-loop amplitudes and the iterated-integral
description of modular graph functions have important implications for the non-perturbative S-
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duality of type-IIB superstrings [83]: this duality symmetry connects amplitudes of different loop
orders and incorporates their non-perturbative completion. It would be desirable to express the
underlying modular invariant functions of the axion-dilaton field – non-holomorphic Eisenstein
series at half-odd integer arguments [84, 85] and beyond [86, 87] – via esv-projected open-string
quantities. This would set the stage for taking maximal advantage of S-duality to infer exact
and non-perturbative results on the low-energy regime of type-II superstrings at unprecedented
orders in α′.
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Appendix

A Translating between graphs and notations for modular graph
functions

Graph D-notation C-notation

D2 = E2 C2,0

D3 C1,1,1

D111 = E3 C3,0

D4 C1,1,1,1

D211 C2,1,1

D1111 = E4 C4,0

D5 C1,1,1,1,1

D221 -

D311 C2,1,1,1

D2111 C3,1,1

= D′1111 C2,2,1

D11111 = E5 C5,0

D511 C2,1,1,1,1,1

Graph D-notation C-notation

D6 C1,1,1,1,1,1

D411 C2,1,1,1,1

D321 -

D222 -

D3111 C3,1,1,1

D2211 -

D′2111 -

D′′1111 C2,2,1,1

D×1111 -

D21111 C4,1,1

= D′11111 C3,2,1

D11,11,11 C2,2,2

D111111 = E6 C6,0

Table 1: Different notations for modular graph functions in various publications

B Constant term of B-cycle eMZVs

As explained in detail in subsection 2.3 in ref. [24], the constant term of an A-cycle eMZV
can be calculated using a method developed in refs. [74,22]. In short, the construction relies on
comparing the properly regulated generating series of A-cycle eMZVs, the elliptic KZB associator
A(τ)

eπi[y,x]A(τ) ≡
∑
r≥0

(−1)r
∑

n1,n2,...,nr≥0
ωA(n1, n2, . . . , nr|τ)adnrx (y) . . . adn2

x (y)adn1
x (y) , (B.1)

to its asymptotic expansion as τ → i∞ [74]

A(τ) = Φ(ỹ, t) e2πiỹ Φ(ỹ, t)−1 +O(e2πiτ ) . (B.2)

Taking the limit τ → i∞ in eq. (B.1) amounts to replacing the full eMZV ωA(n1, . . . , nr) with
its constant part ωA,0(n1, . . . , nr), which is the quantity of interest here.
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Comparison between eqs. (B.1) and (B.2) is done for coefficients of words built from the
letters x and y, which in turn denote generators of a complete and free algebra C〈〈x, y〉〉, whose
multiplication is concatenation and adx(y) ≡ [x, y]. Equation (B.2) takes its concise and short
form only after defining additional auxiliary letters

t ≡ [y, x] , ỹ ≡ − adx
e2πiadx − 1(y) . (B.3)

Finally, Φ in eq. (B.2) denotes the Drinfeld associator [88–90]

Φ(e0, e1) ≡
∑

Ŵ∈〈e0,e1〉

ζ (W ) · Ŵ . (B.4)

The sum over Ŵ ∈ 〈e0, e1〉 runs over all non-commutative words built from letters e0 and e1. The
operationˆacts on a word W by replacing letters e0 and e1 by 0 and 1, respectively. The notion
ζ (W ) refers to shuffle-regularized MZVs [91] which are uniquely determined from eq. (1.1), the
shuffle product and the definition ζ (0) = ζ (1) = 0. Accordingly, the first couple of terms of
Φ(e0, e1) are given by

Φ(e0, e1) = 1− ζ2[e0, e1]− ζ3[e0 + e1, [e0, e1]] + . . . . (B.5)

Numerous results for constant terms have been calculated and noted in ref. [24].
For B-cycle eMZVs, an analogous construction does exist. Considering the expansion of

B-cycle eMZVs, this time it is not a constant term, but rather a polynomial ωB,0(n1, . . . , nr) in
τ which comes with the term q0 in the expansion

ωB(n1, . . . , nr|τ) = ωB,0(n1, . . . , nr|τ) +
∞∑
k=1

ωB,k(n1, . . . , nr|τ) qk , (B.6)

see eq. (2.12). The B-cycle analogue of the A-cycle associator in eq. (B.1) reads [22]

eπi[y,x]B(τ) ≡
∑
r≥0

(−1)r
∑

n1,n2,...,nr≥0
ωB(n1, n2, . . . , nr|τ)adnrx (y) . . . adn2

x (y)adn1
x (y) , (B.7)

While taking the limit τ → i∞ in the above equation will again replace ωB by ωB,0, obtaining
the B-cycle analogue of eq. (B.2) takes a little more effort. In ref. [22], it was shown that the
comparison ought to be done between the (τ → i∞)-limit of eq. (B.7) and

B(τ) = exp
(
−2πi

τ
e+

)
eiπtΦ(−ỹ − t, t)e2πixe2πiỹτΦ−1(ỹ, t) +O(e2πi(1−ε)τ ) , (B.8)

where the introduction of an arbitrary ε > 0 is needed to account for the suppressed terms of
the form τ lqk with k, l ≥ 1. The new ingredient in comparison to eq. (B.2) is the derivation e+,
which acts on algebra generators x and y via

e+(x) = 0 and e+(y) = x .

The term ωB,0(n1, . . . , nr|τ) in the expansion eq. (B.6) of B-cycle eMZVs can then be obtained
by equating eqs. (B.7) and (B.8) and isolating the coefficients of a given word in adnix (y).
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For instance, applying this procedure to the simplest B-cycle graph function

B
[ ]

= 1
2
ωB(0, 0, 2)2

τ2 − 1
2
ωB(0, 0, 0, 0, 4)

τ
− ωB(0, 0, 0, 2, 2)

τ

+ 7
3ζ2

ωB(0, 0, 2)
τ

− 14ζ2
ωB(0, 0, 0, 0, 2)

τ3 + 301ζ4
180 (B.9)

involving eMZVs of depth two, we arrive at the constant term

b
[ ]

= T 4

113400 −
T 2ζ2
540 −

iT ζ3
180 + 37ζ4

180 + 5iζ5
12T (B.10)

− 29ζ6
16T 2 + ζ2

3
4T 2 −

9iζ7
4T 3 + 7iζ2ζ5

T 3 − 3iζ3ζ4
2T 3 + 28ζ8

3T 4 ,

and the same can be repeated at higher weight.

C Expanding S-transformed A-cycle eMZVs

This appendix is dedicated to a proof of our observation on the expansion eq. (2.13) of S-
transformed A-cycle eMZVs: the coefficients of a given (2πiτ)lqk (with l ∈ Z and k ≥ 0) in the
expansion of ωA(n1, n2, . . . , nr|− 1

τ ) around the cusp are claimed to be Q[2πi]-linear combinations
of MZVs. This claim is essential in subsection 4.3, where we show that terms from the space X
defined in eq. (4.4) are annihilated by the esv-map after a modular transformation.

Using eqs. (2.11) and (2.12), we can write

ωA(n1, n2, . . . , nr| − 1
τ ) =

n1+···+nr∑
l=1−r

τ l
∞∑
k=0

b̃k,l(n1, n2, . . . , nr)qk , (C.1)

where the coefficients b̃k,l are Q[(2πi)±1]-linear combinations of MZVs and related to the coeffi-
cients in eq. (2.12) via b̃k,l := bk,l+r−(n1+···nr). What we need to prove is that ck,l := b̃k,l/(2πi)l

are Q[2πi]-linear combinations of MZVs. The proof is divided into two parts. In appendix C.1,
the setup of appendix B will be used to prove that the ck,l at k = 0 are Q[2πi]-linear combi-
nations of MZVs. Then, the analogous statement for ck,l at k > 0 will be deduced from the
differential equation of eMZVs in appendix C.2, which together with the previous step implies
our claim for all k.

C.1 The Laurent polynomial

For the coefficients bk,l(n1, n2, . . . , nr) of the B-cycle eMZV ωB(n1, n2, . . . , nr|τ) in eq. (2.12),
it will now be shown that b0,l/(2πi)n1+···+nr−r is a Q[2πi]-linear combination of MZVs. After
multiplication by τn1+...+nr−r, this implies the above claim at k = 0.

The B-cycle eMZV ωB(n1, n2, . . . , nr|τ) can be obtained as the coefficient of the word
adnrx (y) . . . adn1

x (y) in the B-elliptic associator eq. (B.7). In the degeneration eq. (B.8) of the
associator where all the coefficients bk>0,l of the B-cycle eMZVs eq. (2.12) are suppressed, each
instance of the letter x is accompanied by at least one power of 2πi, and each letter of y intro-
duces at most one negative power 1

2πi . This follows from the following properties of eq. (B.8):

• The letter t in the Drinfeld associator and its inverse can be written as t = [ y
2πi , 2πix], and

the exponential eiπt adds further powers of 2πi to each y
2πi and 2πix.

• The exponential e2πix introduces precisely one factor of 2πi for each appearance of x.
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• The expansion
ỹ = − 1

2πi
∑
n≥0

Bn
n! (2πi)nadnx(y) (C.2)

of the letter ỹ in eq. (B.3) yields the word y
2πi when n = 0, and words containing one

instance of y
2πi and n − 1 instances of 2πix when n > 0 (so that the negative 2πi cancel

out for n > 0).

Moreover, the factor of exp
(
− 2πi

τ e+
)

in eq. (B.8) does not alter the argument, because when it
acts on y

2πi it gives back x
τ . Hence, the fact that the τ → i∞ asymptotics of ωB(n1, n2, . . . , nr|τ)

enter eq. (B.8) along with n1 +n2 + . . .+nr letters x and r letters y implies that the coefficient
b0,l can be written as (2πi)n1+n2+...+nr−r times Q[2πi]-linear combination of MZVs.

C.2 The q-expansion

The second part of the proof is based on Enriquez’s differential equation satisfied by the gener-
ating series of A-cycle eMZVs [22]. For any fixed A-cycle eMZV, it implies that

2πi ∂
∂τ

ωA(n1, . . . , nr|τ) = n1 Gn1+1 ωA(n2, . . . , nr|τ)− nr Gnr+1 ωA(n1, . . . , nr−1|τ)

+
r∑
i=2

{
(−1)ni(ni−1 + ni) Gni−1+ni+1 ωA(n1, . . . , ni−2, 0, ni+1, . . . , nr|τ) (C.3)

−
ni−1+1∑
k=0

(ni−1 − k)
(
ni + k − 1

k

)
Gni−1−k+1 ωA(n1, . . . , ni−2, k + ni, ni+1, . . . , nr|τ)

+
ni+1∑
k=0

(ni − k)
(
ni−1 + k − 1

k

)
Gni−k+1 ωA(n1, . . . , ni−2, k + ni−1, ni+1, . . . , nr|τ)

}
.

One can straightforwardly deduce the differential equation for the modular images (which up to
powers of τ coincide with B-cycle MZVs, see eq. (2.11))

∂

∂τ
ωA(n1, . . . , nr| − 1

τ ) = n1

(
(2πiτ)n1−1Ĝn1+1(τ)− δn1,1

τ

)
ωA(n2, . . . , nr| − 1

τ ) (C.4)

− nr
(

(2πiτ)nr−1Ĝnr+1(τ)− δnr,1
τ

)
ωA(n1, . . . , nr−1| − 1

τ )

+
r∑
i=2

{
(−1)ni(ni−1+ni)(2πiτ)ni−1+ni−1Ĝni−1+ni+1(τ)ωA(n1, . . . , ni−2, 0, ni+1, . . . , nr| − 1

τ )

−
ni−1+1∑
k=0

(ni−1−k)
(
ni+k−1

k

)
(2πiτ)ni−1−k−1Ĝni−1−k+1(τ)ωA(n1, . . . , ni−2, k+ni, ni+1, . . . , nr| − 1

τ )

+
ni+1∑
k=0

(ni−k)
(
ni−1+k−1

k

)
(2πiτ)ni−k−1Ĝni−k+1(τ)ωA(n1, . . . , ni−2, k+ni−1, ni+1, . . . , nr| − 1

τ )
}
,

where the Kronecker-delta terms in the first and second line follow from the exceptional modular
transformation G2(− 1

τ ) = τ2 G2(τ)− 2πiτ . We are using the normalization conventions

Ĝ2k(τ) = G2k(τ)
(2πi)2k−1 = 2ζ2k

(2πi)2k−1 + 4πi
(2k−1)!

∑
m≥1

m2k−1qm

1− qm (C.5)
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for the Eisenstein series in eq. (C.4) which enters the iterated Eisenstein integrals in eq. (2.18)
and where each Fourier coefficient is a rational multiple of 2πi.

The right hand side of eq. (C.4) involves A-cycle eMZVs of smaller length r−1 multiplied by
2πi(2πiτ)lqk with l ∈ Z and k ≥ 0. When r = 1 it is easy to see that ωA(2m| − 1

τ ) = −2ζ2m
and ωA(2m+1|− 1

τ ) = 0 with m ≥ 0 are compatible with our claim. Hence, eq. (C.4) implies by
induction in r that that the b̃k,l(n1, n2, . . . , nr) in eq. (C.1) with k > 0 can be written as (2πi)l

times Q[2πi]-linear combinations of MZVs.
In view of the discussion in appendix C.1, there is no need to revisit the constant term of

the Laurent polynomial b̃0,l(n) which is annihilated by ∂τ , so this concludes the proof.

D Different flavors of iterated Eisenstein integrals

D.1 Another convention for iterated Eisenstein integrals

In this appendix we make precise how to convert the iterated Eisenstein integrals E(k) considered
in the present work to the differently normalized iterated integrals γ(k) considered in refs. [23,24],
defined for

Gk(τ) =
∑

(m,n) 6=(0,0)

1
(m+ τn)k = 2

(
ζk + (2π)k

(k − 1)!

∞∑
m,n=1

mk−1qmn
)

= 2ζk + G0
k(τ) (D.1)

when k ≥ 2 (even) and G0(τ) = G0
0(τ) = −1 as

γ(k1, k2, . . . , kr; τ) := 1
2πi

∫ i∞

τ
dτr Gkr(τr) γ(k1, k2, . . . , kr−1; τr)

= 1
4π2

∫ q

0
dlog qr Gkr(qr) γ(k1, k2, . . . , kr−1; qr) (D.2)

= 1
(4π2)r

∫
0<q1<q2<...<qr<q

dlog q1 Gk1(q1) dlog q2 Gk2(q2) . . . dlog qr Gkr(qr) ,

γ0(k1, k2, . . . , kr; τ) := 1
2πi

∫ i∞

τ
dτr G0

kr(τr) γ0(k1, k2, . . . , kr−1; τr)

= 1
4π2

∫ q

0
d log qr G0

kr(qr) γ0(k1, k2, . . . , kr−1; qr) (D.3)

= 1
(4π2)r

∫
0<q1<q2<...<qr<q

dlog q1 G0
k1(q1) dlog q2 G0

k2(q2) . . . dlog qr G0
kr(qr) .

The conversion reads

γ(k1, k2, . . . , kr; τ) = (2πi)k1+k2+···+kr−2r E(k1, k2, . . . , kr; τ) , (D.4)
γ0(k1, k2, . . . , kr; τ) = (2πi)k1+k2+···+kr−2r E0(k1, k2, . . . , kr; τ) . (D.5)

D.2 Conversion between E0 and E

Recall the generating series

Ek(Y0, Y1, . . . , Yr; τ) :=
∑

p0,p1,...,pr≥0

1
(2πi)2p0

[ r∏
i=1

(2πi)ki−2pi−1
]

(D.6)

× E(0p0 , k1, 0p1 , . . . , kr, 0pr ; τ)Y p0
0 Y p1

1 · · ·Y
pr
r .

53



Let us introduce a lighter notation for iterated integrals: we denote the iterated integral of
the differential forms ω1(t)dt, . . . , ωr(t)dt, integrated from ωr to ω1 along a path γ ⊂ C as∫
γ ω1 · · ·ωr. For instance, on the straight path [0, 1] we have

∫
[0,1]

ω1 · · ·ωr =
∫ 1

0
ω1(t1) dt1

∫ t1

0
ω2(t2) dt2 · · ·

∫ tr−1

0
ωr(tr) dtr , (D.7)

while on a path [τ, i∞] in the upper half plane we have∫
[τ,i∞]

ω1 · · ·ωr =
∫ i∞

τ
ωr(t1) dt1

∫ i∞

t1
ωr−1(t2) dt2 · · ·

∫ i∞

tr−1
ω1(tr) dtr . (D.8)

Let us then rewrite our generating series as

Ek(Y0, Y1, . . . , Yr; τ) =
∑

p0,p1,...,pr≥0

Y p0
0 Y p1

1 Y p2
2 · · ·Y pr

r

(2πi)p0+p1+p2+...+pr

×
[ ∫

[τ,i∞]
G0 · · ·G0︸ ︷︷ ︸

p0

Gk1 G0 · · ·G0︸ ︷︷ ︸
p1

Gk2 · · ·Gkr G0 · · ·G0︸ ︷︷ ︸
pr

]
(D.9)

=
∫

[τ,i∞]
exp

(
t1Y0
2πi

)
Gk1(t1) exp

((t2−t1)Y1
2πi

)
Gk2(t2) · · ·

× · · ·Gkr−1(tr−1) exp
((tr−tr−1)Yr−1

2πi

)
Gkr(tr) exp

((τ − tr)Yr
2πi

)
,

where in the last step we have used that∫
[ti,tj ]

G0 G0 · · ·G0︸ ︷︷ ︸
p

= (ti − tj)p

p! (D.10)

and that (according to the regularization introduced in [59])∫
[t,i∞]

G0 · · ·G0︸ ︷︷ ︸
p

= (−1)p
∫

[0,t]
G0 · · ·G0︸ ︷︷ ︸

p

= tp

p! . (D.11)

Let us also introduce a modified generating series

Êk(Y1, . . . , Yr; τ) :=
∑

p1,...,pr≥0

[ r∏
i=1

(2πi)ki−2pi−1
]
E(k1, 0p1 , . . . , kr, 0pr ; τ)Y p1

1 · · ·Y
pr
r , (D.12)

where, in comparison to eq. (D.6), the iterated Eisenstein integrals E(0, . . .) with 0 in the first
entry are suppressed. It is easy to check repeating for Êk the same steps of (D.9) that

Ek(Y0, Y1, . . . , Yr; τ) = exp
(
τY0
2πi

)
Êk(Y1, . . . , Yr; τ) , (D.13)

which leads to the explicit formula

E(0p0 , k1, 0p1 , . . . , kr, 0pr ; τ) =
∑

t+s1+···+sr=p0

(−1)s1+···+sr (D.14)

×
( r∏
j=1

(
pj + sj
sj

))(2πiτ)t

t! E(k1, 0p1+s1 , . . . , kr, 0pr+sr ; τ) .
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Iterated Eisenstein integrals of the kind E(k1, 0p1 , . . . , kr, 0pr ; τ) can be written as the sum of
E0(k1, 0p1 , . . . , kr, 0pr ; τ) and other iterated Eisenstein integrals E ’s of strictly lower depth31,
therefore one can iteratively make use of eq. (D.14) and write any E in terms of the E0’s. For
instance, one easily gets

E(k1, 0p1 ; τ) = E0(k1, 0p1 ; τ)− 2ζk1

(2πi)k1
E(0p1+1; τ) (D.15)

and

E(k1, 0p1 , k2, 0p2 ; τ) = E0(k1, 0p1 , k2, 0p2 ; τ)− 2ζk2

(2πi)k2
E0(k1, 0p1+p2+1; τ) (D.16)

− 2ζk1

(2πi)k1

∑
s+t=p1+1

(
p2 + s

s

)
(−1)s(2πi)t

t!
(
E0(k2, 0p2+s; τ)− 2ζk2

(2πi)k2
E0(0p2+s+1; τ)

)
.

The motivation to do this conversion comes from the fact that we know explicitly32 the q-expansion
of any E0, which therefore allowed us to exploit the very fast convergence of these series and
verify numerically our results and conjectures to arbitrary precision.

D.3 Conversion between E and G

The relations eq. (3.28) between the two generating series eq. (3.27) of iterated Eisenstein inte-
grals E and G can be proven by writing, as in the previous section,

Ek(Y0, Y1, . . . , Yr; τ) =
∫

[τ,i∞]
exp

(
t1Y0
2πi

)
Gk1(t1) exp

((t2−t1)Y1
2πi

)
Gk2(t2) · · · (D.17)

× · · ·Gkr−1(tr−1) exp
((tr−tr−1)Yr−1

2πi

)
Gkr(tr) exp

((τ − tr)Yr
2πi

)
.

as well as writing the generating series Gk in eq. (3.27) as

Gk(T1, . . . , Tr; τ) =
∫

[τ,i∞]
exp

(
t1T1
2πi

)
Gk1(t1) exp

(
t2T2
2πi

)
Gk2(t2) · · · exp

(
trTr
2πi

)
Gkr(tr)

(D.18)
by a completely similar computation.

D.4 Examples of modular transformations

We give here one more example in depth two of a special linear combination of iterated Eisenstein
integrals which can be S-transformed with our methods, as well as an example of depth three,
where one finds one MZV of depth three involved:

3 E(4, 6, 0, 0, 0;− 1
τ ) + E(6, 0, 4, 0, 0;− 1

τ ) + 3 E(6, 4, 0, 0, 0;− 1
τ ) = ζ4

240 E(4; τ)− ζ3
6 E(0, 6; τ)

+ E(0, 0, 4, 0, 6; τ) + 3 E(0, 0, 0, 4, 6; τ) + 3 E(0, 0, 0, 6, 4; τ) + i

T

(
− ζ5

20 E(4; τ) + ζ4
240 E(0, 4; τ)

− ζ3
2 E(0, 0, 6; τ) + 3 E(0, 0, 4, 0, 0, 6; τ) + 9 E(0, 0, 0, 4, 0, 6; τ) + 18 E(0, 0, 0, 0, 4, 6; τ)

31Recall that this was defined as the number of non-zero entries of E .
32This is a consequence of eq. (2.21) and the fact that our regularization of iterated Eisenstein integrals yields
E0(0p; τ) = E(0p; τ) = (2πiτ)p/p!.
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+ 3 E(0, 0, 0, 6, 4; τ) + 18 E(0, 0, 0, 0, 6, 4; τ) + 143ζ6
241920

)
+ 1
T 2

( ζ5
20 E(0, 4; τ)

− ζ4
480 E(0, 0, 4; τ) + 3ζ3

4 E(0, 0, 0, 6; τ)− 9
2 E(0, 0, 4, 0, 0, 0, 6; τ)− 27

2 E(0, 0, 0, 4, 0, 0, 6; τ)

− 27 E(0, 0, 0, 0, 4, 0, 6; τ)− 45 E(0, 0, 0, 0, 0, 4, 6; τ)− 3
2 E(0, 0, 0, 6, 0, 0, 4; τ)

− 12 E(0, 0, 0, 0, 6, 0, 4; τ)− 45 E(0, 0, 0, 0, 0, 6, 4; τ)− 13ζ4ζ3
20160 + 7ζ7

1920
)

+ i

T 3

( ζ5
40 E(0, 0, 4; τ) + ζ3

2 E(0, 0, 0, 0, 6; τ)− 3 E(0, 0, 4, 0, 0, 0, 0, 6; τ)

− 9 E(0, 0, 0, 4, 0, 0, 0, 6; τ)− 18 E(0, 0, 0, 0, 4, 0, 0, 6; τ)− 30 E(0, 0, 0, 0, 0, 4, 0, 6; τ)
− 45 E(0, 0, 0, 0, 0, 0, 4, 6; τ)− 3 E(0, 0, 0, 0, 6, 0, 0, 4; τ)− 15 E(0, 0, 0, 0, 0, 6, 0, 4; τ)

− 45 E(0, 0, 0, 0, 0, 0, 6, 4; τ)− ζ3ζ5
240

)
(D.19)

and

E(6, 4, 4;− 1
τ ) = 1

8(2πi)8

[533ζ3ζ8
4050 − 4ζ3ζ3,5

225 − 4ζ5ζ
2
3

45 − 4ζ3,5,3
225 − 221ζ11

5400

+
(16ζ5ζ3

15 − 503ζ8
675 + 16ζ3,5

75

)
E(02, 4; τ)− 16ζ5

5
[
E(02, 4; τ)

]2
+ 80640 E(07, 6, 4, 0, 4; τ) + 69120 E(06, 6, 02, 4, 4; τ) + 23040 E(05, 6, 03, 4, 4; τ)
+ 768 E(04, 6, 02, 4, 02, 4; τ) + 161280 E(07, 6, 0, 4, 4; τ) + 11520 E(06, 6, 4, 02, 4; τ)
+ 34560 E(06, 6, 0, 4, 0, 4; τ) + 11520 E(05, 6, 02, 4, 0, 4; τ) + 2304 E(04, 6, 03, 4, 0, 4; τ)

+ 4608 E(04, 6, 04, 4, 4; τ) + 322560 E(08, 6, 4, 4; τ) + 3840 E(05, 6, 0, 4, 02, 4; τ)
]

(D.20)

E A-cycle graph functions at weight five

Among the six A-cycle graph functions at weight five, two examples have been spelt out in terms
of eMZVs in eqs. (3.23) and (3.24), and the remaining four are given by

A
[ ]

= 8ζ5 + 8
5 ωA(0, 5) + 32ωA(0, 0, 0, 5)− 20ωA(0, 0, 2, 3) + 10

3 ωA(0, 0, 2)ωA(0, 0, 3, 0)

+ 120ωA(0, 3)ωA(0, 0, 0, 0, 2)− 312ωA(0, 0, 0, 0, 0, 5) + 120ωA(0, 0, 0, 0, 1, 4)

+ 5ωA(0, 0, 2)ζ3 − 12ωA(0, 3)ζ2 − 80ωA(0, 0, 2)ωA(0, 0, 1, 0)ζ2 + 25
9 ωA(0, 0, 3, 0)ζ2

+ 480ωA(0, 0, 0, 0, 0, 3)ζ2 − 960ωA(0, 0, 0, 0, 1, 2)ζ2 + 265
6 ζ2ζ3

+ 412
3 ωA(0, 0, 1, 0)ζ4 + 192ωA(0, 0, 0, 1, 0, 0)ζ4 (E.1)

A
[ ]

= 7ζ5
80 + 87

400 ωA(0, 5) + 77
20 ωA(0, 0, 0, 5)− 5

2 ωA(0, 0, 2, 3) + ωA(0, 0, 2)ωA(0, 0, 3, 0)

+ 15ωA(0, 3)ωA(0, 0, 0, 0, 2)− 381
10 ωA(0, 0, 0, 0, 0, 5) + 15ωA(0, 0, 0, 0, 1, 4)

− 7
10 ωA(0, 3)ζ2 − 6ωA(0, 0, 2)ωA(0, 0, 1, 0)ζ2 + 3

2 ωA(0, 0, 3, 0)ζ2 + 36ωA(0, 0, 0, 0, 0, 3)ζ2

− 48ωA(0, 0, 0, 0, 1, 2)ζ2 + 2ζ2ζ3 + 47
10 ωA(0, 0, 1, 0)ζ4 + 48

5 ωA(0, 0, 0, 1, 0, 0)ζ4 (E.2)

A
[ ]

= 3ζ5
20 + 3

100 ωA(0, 5) + 19
15 ωA(0, 0, 0, 5)− 2

3 ωA(0, 0, 2, 3) + 4ωA(0, 3)ωA(0, 0, 0, 0, 2)

56



− 58
5 ωA(0, 0, 0, 0, 0, 5) + 4ωA(0, 0, 0, 0, 1, 4)− 1

3 ωA(0, 3)ζ2 + 14
9 ωA(0, 0, 3, 0)ζ2

+ 32ωA(0, 0, 0, 0, 0, 3)ζ2 − 8ωA(0, 0, 0, 0, 1, 2)ζ2 + 1
3ζ2ζ3

− 4
5 ωA(0, 0, 1, 0)ζ4 −

352
5 ωA(0, 0, 0, 1, 0, 0)ζ4 (E.3)

A
[ ]

= ζ5
60 −

7
900 ωA(0, 5) + 1

15 ωA(0, 0, 0, 5)− 2
5 ωA(0, 0, 0, 0, 0, 5) + 1

10 ωA(0, 3)ζ2

+ 1
3 ωA(0, 0, 3, 0)ζ2 + 12ωA(0, 0, 0, 0, 1, 2)ζ2 −

1
2ζ2ζ3 −

103
15 ωA(0, 0, 1, 0)ζ4

+ 132
5 ωA(0, 0, 0, 1, 0, 0)ζ4 . (E.4)

F Relations between modular graph functions at weight six

In this appendix, we collect the complete set of relations among modular graph functions of
weight six as given in [11]:

0 = D
[ ]

− 15 D
[ ]

D
[ ]

+ 30 D
[ ]3

− 10 D
[ ]2

− 60 D
[ ]

+ 720 D
[ ]

+ 240 D
[ ]

D
[ ]

− 720 D
[ ]

D
[ ]

− 1440 D
[ ]2

− 5280 D
[ ]

+ 360 D
[ ]

D
[ ]

− 1280 D
[ ]

+ 3380 D
[ ]

0 = 2 D
[ ]

+ 3 D
[ ]

− 9 D
[ ]

D
[ ]

− 6 D
[ ]2

− 18 D
[ ]

− 24 D
[ ]

− 2 D
[ ]

+ 32 D
[ ]

0 = −3 D
[ ]

+ 109 D
[ ]

+ 408 D
[ ]

+ 36 D
[ ]

+ 18 D
[ ]

D
[ ]

+ 12 D
[ ]

D
[ ]

− 211 D
[ ]

0 = 3 D
[ ]

− 18 D
[ ]

− 58 D
[ ]

− 192 D
[ ]

− 3 D
[ ]3

+ 24 D
[ ]2

+ 18 D
[ ]

D
[ ]

+ 46 D
[ ]

0 = 2 D
[ ]

+ 18 D
[ ]

− 36 D
[ ]

− 69 D
[ ]

− 288 D
[ ]

− 6 D
[ ]

D
[ ]

− 18 D
[ ]

D
[ ]

− 36 D
[ ]2

+ 183 D
[ ]

0 = 3 D
[ ]

+ 6 D
[ ]

− 10 D
[ ]

− 48 D
[ ]

− 12 D
[ ]

− 6 D
[ ]

D
[ ]

− 12 D
[ ]2

+ 40 D
[ ]

0 = 18 D
[ ]

− 9 D
[ ]

− 20 D
[ ]

− 60 D
[ ]

+ 9 D
[ ]

D
[ ]

+ 18 D
[ ]2

− 10 D
[ ]

0 = 3 D
[ ]

−D
[ ]

− 12 D
[ ]

+ 4 D
[ ]

. (F.1)

G Explicit modular graph forms and modular graph functions

In this appendix we gather explicit representations of all the modular graph forms and modular
graph functions which appear in the Cauchy–Riemann equations up to weight six and have not
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been spelt out in the main text.

G.1 Cauchy Riemann derivatives

In order to supplement the discussion of the Cauchy–Riemann equations in section 4.2.3, all
the modular graph forms on their right hand side will be spelt out in this subsection. Starting
from the expression eq. (2.33) for non-holomorphic Eisenstein series, repeated action of the
Cauchy–Riemann derivative eq. (2.55) gives rise to

π∇E2 = 2y3

45 − ζ3 + 24y2 E0(4) + 12y E0(4, 0) + 6 Re[E0(4, 0, 0)] (G.1)

π∇E3 = 2y4

315 −
3ζ5
2y + 240y2 E0(6, 0) + 360y E0(6, 0, 0) + 180 E0(6, 0, 0, 0) (G.2)

+ 180 Re[E0(6, 0, 0, 0)] + 180 Re[E0(6, 0, 0, 0, 0)]
y

(π∇)2 E3 = 8y5

315 + 3ζ5
2 − 960y4 E0(6)− 960y3 E0(6, 0)− 720y2 E0(6, 0, 0) (G.3)

− 360y E0(6, 0, 0, 0)− 180 Re[E0(6, 0, 0, 0, 0)]

π∇E4 = 4y5

4725 −
15ζ7
8y2 + 3360y2 E0(8, 02) + 10080y E0(8, 03) + 12600 E0(8, 04) (G.4)

+ 6300 E0(8, 05)
y

+ 5040 Re[E0(8, 04)] + 12600 Re[E0(8, 05)]
y

+ 9450 Re[E0(8, 06)]
y2

(π∇)2 E4 = 4y6

945 + 15ζ7
4y − 13440y4 E0(8, 0)− 33600y3 E0(8, 02)− 50400y2 E0(8, 03) (G.5)

− 50400y E0(8, 04)− 25200 E0(8, 05)− 12600 Re[E0(8, 05)]− 18900 Re[E0(8, 06)]
y

(π∇)3 E4 = 8y7

315 −
15ζ7

4 + 53760y6 E0(8) + 80640y5 E0(8, 0) + 100800y4 E0(8, 02) (G.6)

+ 100800y3 E0(8, 03) + 75600y2 E0(8, 04) + 37800y E0(8, 05) + 18900 Re[E0(8, 06)] .

At depth two, the Cauchy–Riemann derivative of the modular graph function E2,2 in eq. (4.44)
is given by

π∇E2,2 = − 2y5

10125 + y2ζ3
45 −

5ζ5
12 + ζ2

3
2y +

(4y3

15 − 6ζ3
)
E0(4, 0)−

(2y2

15 + 6ζ3
y

)
Re[E0(4, 0, 0)]

+ 2y2

5 E0(4, 0, 0) + 36y E0(4, 0)2 + 36 E0(4, 0) Re[E0(4, 0, 0)] + 18 Re[E0(4, 0, 0)]2

y
(G.7)

+ 144y2 E0(4, 4, 0) + 72y
(
E0(4, 4, 0, 0) + 1

360 E0(4, 0, 0, 0)
)

+ 36 Re[E0(4, 0, 4, 0, 0) + 3 E0(4, 4, 0, 0, 0) + 1
360 E0(4, 0, 0, 0, 0)] ,

which enters on the right hand side of the differential equation (4.40) for E2,2,2.

G.2 Modular graph functions at weight six

Using the method in section 4.2.2, the Cauchy–Riemann equations (4.39) to (4.39) give rise to
the following expressions for E′3,3 and E2,4, respectively.

E′3,3 = − y6

18753525 + yζ5
630 + 3ζ7

160y −
7ζ9

480y3 −
(4y2

105 −
9ζ5
y3

)
Re[E0(6, 0, 0, 0)]
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− 540 Re[E0(6, 0, 0, 0)]2

y2 − 1080 Re[E0(6, 0, 0, 0)] Re[E0(6, 0, 0, 0, 0)]
y3

− 4y
21 Re[E0(6, 0, 0, 0, 0)]− 1440 Re[E0(6, 0, 6, 0, 0, 0)]− 11

21 Re[E0(6, 0, 0, 0, 0, 0)]

− 2160 Re[E0(6, 0, 0, 6, 0, 0, 0)]
y

− 4320 Re[E0(6, 0, 6, 0, 0, 0, 0)]
y

− 13 Re[E0(6, 0, 0, 0, 0, 0, 0)]
14y − 1080 Re[E0(6, 0, 0, 0, 6, 0, 0, 0)]

y2 (G.8)

− 2160 Re[E0(6, 0, 0, 6, 0, 0, 0, 0)]
y2 + 10800 Re[E0(6, 6, 0, 0, 0, 0, 0, 0)]

y2

− Re[E0(6, 0, 0, 0, 0, 0, 0, 0)]
y2 + 1080 Re[E0(6, 0, 0, 0, 6, 0, 0, 0, 0)]

y3

+ 5400 Re[E0(6, 0, 0, 6, 0, 0, 0, 0, 0)]
y3 + 16200 Re[E0(6, 0, 6, 0, 0, 0, 0, 0, 0)]

y3

+ 37800 Re[E0(6, 6, 0, 0, 0, 0, 0, 0, 0)]
y3 − Re[E0(6, 0, 0, 0, 0, 0, 0, 0, 0)]

2y3

E2,4 = − y6

70875 + y3ζ3
525 + 3ζ7

40y + 25ζ9
8y3 −

135ζ3ζ7
32y4 −

(2y3

175 −
405ζ7
16y4

)
Re[E0(4, 0, 0)]

−
(
504y − 11340ζ3

y2

)
Re[E0(8, 0, 0, 0, 0)]−

(
2520− 28350ζ3

y3

)
Re[E0(8, 0, 0, 0, 0, 0)]

−
(5670

y
− 42525ζ3

2y4

)
Re[E0(8, 0, 0, 0, 0, 0, 0)]− 68040 Re[E0(4, 0, 0)] Re[E0(8, 0, 0, 0, 0)]

y2

− 170100 Re[E0(4, 0, 0)] Re[E0(8, 0, 0, 0, 0, 0)]
y3 − 127575 Re[E0(4, 0, 0)] Re[E0(8, 0, 0, 0, 0, 0, 0)]

y4

− 45360 Re[E0(8, 0, 0, 4, 0, 0)]− 136080 Re[E0(8, 0, 4, 0, 0, 0)]− 272160 Re[E0(8, 4, 0, 0, 0, 0)]

− 272160 Re[E0(4, 8, 0, 0, 0, 0)]− 3
20 Re[E0(4, 0, 0, 0, 0, 0)]− 136080 Re[E0(4, 0, 8, 04)]

y

− 1360800 Re[E0(4, 8, 05)]
y

− 9 Re[E0(4, 06)]
20y − 136080 Re[E0(8, 03, 4, 02)]

y
(G.9)

− 408240 Re[E0(8, 02, 4, 03)]
y

− 816480 Re[E0(8, 0, 4, 04)]
y

− 1360800 Re[E0(8, 4, 05)]
y

− 340200 Re[E0(4, 0, 8, 05)]
y2 − 2551500 Re[E0(4, 8, 06)]

y2 − 9 Re[E0(4, 07)]
16y2

− 170100 Re[E0(8, 04, 4, 02)]
y2 − 510300 Re[E0(8, 03, 4, 03)]

y2 − 1020600 Re[E0(8, 02, 4, 04)]
y2

− 1701000 Re[E0(8, 0, 4, 05)]
y2 − 2551500 Re[E0(8, 4, 06)]

y2 − 6615 Re[E0(8, 07)]
y2 − 9 Re[E0(4, 08)]

32y3

− 255150 Re[E0(4, 0, 8, 06)]
y3 − 1786050 Re[E0(4, 8, 07)]

y3 − 85050 Re[E0(8, 05, 4, 02)]
y3

− 255150 Re[E0(8, 04, 4, 03)]
y3 − 510300 Re[E0(8, 03, 4, 04)]

y3 − 850500 Re[E0(8, 02, 4, 05)]
y3

− 1275750 Re[E0(8, 0, 4, 06)]
y3 − 1786050 Re[E0(8, 4, 07)]

y3 − 6615 Re[E0(8, 08)]
2y3

The contributing expressions for ∇E3 and ∇j=1,2,3E4 can be found in the previous subsection.
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