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Abstract. Under a Lorentz transformation of the electromagnetic field (E, cB) the quantity E2 − c2B2

remains preserved. A Lorentz transformation does not preserve the energy density ε0 (E2 + c2B2) of the
field. One can thus ask which are the transformations that preserve the quantity E2 + c2B2. We show that
the symmetry group of such transformations is isomorphic to SU(3). We can thus use these transformations
of the electromagnetic field as a model to visualize what happens in SU(3) by analogy, just like we can use
the rotation group SU(2) as a model to visualize what happens in the isospin group SU(2) by analogy.

PACS. 02.20.-a Group Theory

1 Introduction: Lorentz symmetry

1.1 Lorentz symmetry of the electromagnetic field

This paper really starts in Section 2. The reader should not feel dishearted if he does not master the subject matter
recalled in the Introduction. He will still be able to grasp the essence of the paper, which does not really build on the
contents of the Introduction. They will only be used from time to time to make some comparisons within a broader
context. For the reader who wants to fill some gaps in his knowledge, a very clear introduction to spinors in the
representation SU(2) of the three-dimensional rotation group in R3 is given in the first part of reference [1]. This is
also explained in Chapter 3 of reference [2]. In the second part of reference [1] we also show how these ideas can be
extended to rotation groups in vector spaces Rn, of arbitrary dimension n > 3. It also indicates how we can apply
the same ideas to the homogeneous Lorentz group in R4. This is actually worked out in Chapter 4 of [2]. The goal
of these references is to explain the subject matter in such a way that it does not leave the reader frustrated behind
with a feeling that he may well check mechanically the algebra of the proofs, but just cannot figure out what might
be going on behind the scenes. Their motivation is exactly to confer all the insight needed to dissipate any kind of
feeling of impenetrability, which one encounters unfortunately all too often in austere standard presentations of what
has been called the Gruppenpest. Reading these references will allow the reader to understand every single detail of
the reminders given in the present Introduction.

As explained in reference [2], SL(2,C), the group of all complex 2×2 matrices L with detL = 1, is a representation
of the homogeneous Lorentz group L . Within SL(2,C) a fourvector (vt, vx, vy, vz) is represented by:

V = vt1+ v·σ =

[
vt + vz vx − ıvy
vx + ıvy vt − vz

]
; detV = v2t − v2x − v2y − v2z . (1)

Here σ = (σx, σy, σz) are the three Pauli matrices, whereby v·σ is not a true scalar product, but just a convenient
shorthand for vxσx+vyσy +vzσz. In fact, in SU(2) ⊂ SL(2,C) a vector r = (x, y, z) ∈ R3 is represented by the matrix:

X = [ r·σ ] =

[
z x− ıy

x+ ıy −z

]
; −detX = x2 + y2 + z2. (2)

We can see from this that σx, σy, σz just correspond to ex, ey, ez in the mapping: r → X. Therefore r·σ is a vector,
not a scalar as the notation [ r·σ ] may seem to suggest. A general homogeneous Lorentz transformation is in this
representation SL(2,C) represented by:
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L =

[
a b
c d

]
, with: detL = ad− bc = 1. (3)

It transforms the four-vector V “quadratically” according to:

V→ LVL†. (4)

As detL = 1, this transormation preserves indeed detV = v2t − v2x − v2y − v2z . Elements L1 of the Lorentz group
themselves transform linearly:

L1 → LL1. (5)

It is hereby understood that L works like a group automorphism that transforms a group element into another group
element according to Eq. 5. The homogeneous Lorentz group contains not only boosts, but also the full group of
rotations SO(3). The reason for this is that the product L2L1 of two non-collinear boosts is not a pure boost but the
product RL of a rotation and a boost. Hence the product of boosts L2L1L

−1 is a pure rotation. Finally, a tensor T
is transformed according to:

T→ LTL−1, (6)

which preserves detT. We can now play with these matrices and combine the four-gradient and the four-potential:

[ ∂
∂ct1−∇·σ ] [ Vc 1−A·σ ] = [

1

c2
∂V

∂t
+∇ ·A ]1︸ ︷︷ ︸ − 1

c
[ (∇V +

∂A

∂t
)·σ ]︸ ︷︷ ︸ + ı[ (∇∧A)·σ ]︸ ︷︷ ︸

Lorentz gauge 1
cE·σ ıB·σ

(7)

With the Lorentz gauge condition, we obtain thus:

[
∂

∂ct
1−∇·σ ] [

V

c
1−A·σ ] =

1

c
[ (E + ıcB)·σ ]. (8)

We recover thus automatically the expressions for the Lorentz gauge condition, and for the electric and magnetic fields
in terms of the potentials. The term E + ıcB is the electromagnetic field tensor. The presence of ı in an expression
signals that it is a pseudo-vector or a pseudo-scalar. The vector E and pseudo-vector B are the symmetric and anti-
symmetric three-component parts of the six-component field tensor. We see thus that symmetry is enough to recover
all the definitions. It summarizes in a sense the reason why we need the theory of relativity by showing that Lorentz
symmetry is the symmetry that is compatible with the structure of the Maxwell equations. Applying Eq. 2 to the
electromagnetic field tensor yields:

− det[ (E + ıcB)·σ ] = E2 − c2B2 + 2ıcE ·B = |E + ıcB |2E . (9)

Here | · |E denotes the extrapolation to C3 of the Euclidean norm function | r |2E =
√
x2 + y2 + z2 of R3. This extrapo-

lation is of course no longer a true norm function, because it is no longer true that ∀(x, y, z) ∈ C3 : x2 +y2 +z2 ≥ 0. To

obtain a proper norm function for C3, we must therefore rather consider the extrapolation | r |2H =
√
xx∗ + yy∗ + zz∗,

because ∀(x, y, z) ∈ C3 : xx∗ + yy∗ + zz∗ ≥ 0. This is the Hermitian norm. From Eqs. 6 and 9 it can be seen that
a Lorentz transformation of an electromagnetic field preserves the Euclidean norm rather than the Hermitian norm
of the electromagnetic field. This implies that Lorentz transformations preserve simultaneously both E2 − c2B2 and
E·B. If we assume that E ⊥ B, which is the case for an electromagnetic wave, then −det[ (E+ ıcB)·σ ] = E2− c2B2.
For an electromagnetic field E ⊥ B is thus true in all frames from the moment that it is true in one frame.

1.2 Lorentz symmetry of angular momentum

All four-vectors transform the same way under Lorentz transformations. Also all six-component tensors transform the
same way under Lorentz transformations. In fact, what we did in Eq. 7 can also be done for angular momentum:1

1 Unfortunately, the symbol E for the energy can be confused with |E|. It would of course be preposterous to change the
notations in this paper with respect to the standard notations for this reason. The context should each time be clear enough to
avoid any possible confusion. But to avoid such a confusion we have adopted the notation E for the energy density.
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1
c [ ct1− r·σ ] [E1+ cp·σ ] = [ (Et− p · r)1︸ ︷︷ ︸ ] − [ γm0c (r− vt)·σ ]︸ ︷︷ ︸ + −ı[ (r ∧ p)·σ ]︸ ︷︷ ︸

phase of the wave-function centre of mass angular momentum

(10)
We discover this way that angular momentum is in reality a part of a tensor. Just like we cannot consider a magnetic
field as an isolated quantity under Lorentz transformations but part of a tensor, we cannot consider angular momentum
as an isolated quantity under Lorentz transformations. We must consider it as part of a tensor. This tensor must
transform just like the electromagnetic field according to Eqs. 12 below. Both angular momentum and the magnetic
field are axial vectors (as indicated by the prefactor ı). In the second term of Eq. 10 we have rewritten the energy
E under the form E = γm0c

2 to highlight the motion of the centre of mass r − vt. Such expressions are used in the
definition of the spin current. The scalar part (Et−p · r)1 is a Lorentz invariant, but does not disappear here like the
Lorentz gauge. The tensor part is again of the form [ (C + ıD)·σ ]. Due to the universality of these structures, what
we are going to develop does not only apply to the electromagnetic field, but to a Lorentz tensor in general.

2 The symmetry group of the energy density of the electromagnetic field

2.1 The relation with U(3)

The energy density E of an electromagnetic field is E = ε0E
2 + 1

µ0
B2. Using ε0µ0 = 1

c2 this can be rewritten as:

E = ε0(E2 + c2B2). We could now ask for the symmetry group G of all the transformations which preserve the energy
density. This is of course also the group of all the transformations which preserve (E2 + c2B2). As transpires from the
discussion in Section 1 this is a different symmetry group than the Lorentz group which rather preserves (E2− c2B2).
If we note the electromagnetic field as E+ ıcB like in SL(2,C), then the quantity E2 + c2B2 corresponds to the square
of Hermitian norm of E + ıcB, because (E + ıcB)∗·(E + ıcB) = (E − ıcB)·(E + ıcB) = E2 + c2B2.2 The symmetry
group G we are looking for is thus the group of transformations that preserve the Hermitian norm and its square
(E + ıcB)∗·(E + ıcB).

Let us now introduce a new matrix formalism whereby we write (E + ıcB) under the form of a 3× 1 matrix:

F =

 Ex + ıBx
Ey + ıBy
Ez + ıBz

 , such that E = F†F. (11)

Let M be a matrix of the three-dimensional unitary group U(3). By definition this implies that M† = M−1. If we
transform F→MF, then F† → F†M† = F†M−1, and thus F†F→ F†M−1MF = F†F. The group U(3) can thus be
interpreted as a group of transformations of an electromagnetic field that preserve its energy density.

2.2 Lorentz transformations

The group SU(3) contains the group SO(3) of the rotations of R3, but as SU(3) is compact, it cannot contain the other
transformations of the homogeneous Lorentz group L , which is not a compact group. In fact, boosts preserve the
Euclidean norm F>F and therefore both E2− c2B2 and E·B, while the transformations of SU(3) ⊂ U(3) preserve the
Hermitian norm and therefore E2 + c2B2. The boosts for the electromagnetic field are thus a complex generalization
of SO(3) to C3, which we will note as [ SO(3),C ]. In fact, this complex generalization is the complete homogeneous
Lorentz group L .3 The Lorentz transformation of the electromagnetic field by a boost with velocity v is given by:

E′‖ = E‖ , E′⊥ = γ(E⊥ + β ∧ cB⊥),

cB′‖ = cB‖ , cB′⊥ = γ(cB⊥ − β ∧E⊥).
(12)

2 We want to study the symmetry group of all the transformations which preserve the energy density, but the formulation of
this symmetry in terms of the quantity E2 + c2B2 is much more simple and elegant. In order not to burden the formulation we
will therefore introduce the abus de langage to call also E2 + c2B2 the energy density of the electromagnetic field.

3 As rotations belong to SO(3) ⊂ [ SO(3),C ], all Lorentz transformations belong to [ SO(3),C ], i.e. L ⊂ [ SO(3),C ]. We also
have [ SO(3),C ] ⊂ L , such that L = [ SO(3),C ]. In fact, consider a matrix M ∈ [ SO(3),C ]. We have then M> = M−1.
Therefore: (MF)>(MF) = F>M>MF = F>M−1MF = F>F. The transformation M preserves thus [E + ıcB ]2 such that
M ∈ L .
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Here β = v/c and γ = (1− β2)−1/2 as usual. The indices ⊥ and ‖ indicate the components that are perpendical and
parallel to the boost velocity v respectively. Working Eq. 12 out for the example of a boost with velocity v = vez
along the z-axis, and combining the components Ej and cBj into Ej + ıcBj yields:

Lz(v) =

 γ ıβγ 0
−ıβγ γ 0

0 0 1

 , (13)

for the transformation matrix of the boost operating on F. From:

[Lz(v) ]> =

 γ −ıβγ 0
ıβγ γ 0
0 0 1

 , [Lz(v) ]† =

 γ ıβγ 0
−ıβγ γ 0

0 0 1

 , (14)

it is easily seen that [Lz(v) ]> = [Lz(v) ]−1 6= [Lz(v) ]† such that Lz(v) 6∈ SU(3). The boosts Lx(v) and Ly(v) are
defined mutatis mutandis. The rotations en bloc of E + ıcB are of the type:

Rz(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1

 , (15)

which illustrates a rotation over an angle α around the z-axis. The rotations Rx(α), Ry(α) have again mutatis mutandis
similar expressions. These rotations belong thus, as already stated to SU(3) ∩ SO(3).

2.3 Counting the number of free real parameters

Let us note the matrix M ∈ SU(3) by means of its three lines, which are the 1× 3 line matrices vj :

M =

 v1

v2

v3

 ⇒ M† =
[
v†1 v†2 v†3

]
. (16)

This permits simultaneously to note M† in terms of its three columns v†j , which are the 3×1 column vectors obtained

by transposing the line vectors v∗j . Expressing that MM† = 1 shows that vectors vj must satisfy the conditions
vj ·v∗k = δjk. One can make an analogous reasoning, whereby one starts from M expressed in its column matrices
wk and uses then M†M = 1. We find then w∗j ·wk = δjk This means that all line vectors vj must be normalized to
1 and mutually orthogonal according to the Hermitian norm. Also all column vectors wj must be normalized to 1
and mutually orthogonal according to the Hermitian norm. We can thus construct an arbitrary matrix M ∈ SU(3)
by constructing an arbitrary basis for C3 by the Gram-Schmidt procedure. The basis vectors will then constitute the
columns (or the lines) of the SU(3) matrix.

For the first basis vector we can choose an arbitrary vector a + ıb ∈ C3, where a ∈ R3 and b ∈ R3. We can thus
choose all six real parameters (ax, ay, az, bx, by, bz) at will. But we must normalize a + ıb to 1, such that we are left
with five free real parameters. This defines a first complex basis vector η1 ∈ C3. The second basis vector η2 ∈ C3 must
be normalized to 1 (one real constraint). It must also be orthogonal to the first one, which implies < η1,η2 >= 0.
This corresponds to two real constraints: <(< η1,η2 >) = 0 & =(< η1,η2 >) = 0.4 To choose η2 we are thus left
with three free real parameters. The third basis vector η3 ∈ C3 must be normalized to 1 and orthogonal to the two
previous ones. This leaves us with one free real parameter. But to be elegible for constituting the third column of an
SU(3) matrix M, its phase must be adjusted to satisfy also the condition detM = 1. After choosing the first two basis
vectors, the third basis vector is thus already uniquely determined. We can no longer choose it. There are thus no free
real parameters left to choose the third basis vector. The group SU(3) has thus in total eight free real parameters.

We can generalize this reasoning to SU(n) to show that SU(n) has: (2n − 1) + (2n − 3) + · · · 3 = n2 − 1 free real
parameters (see Appendix). We can use mutatis mutatndis exactly the same method to count the number of free real
parameters that define a matrix M of the group SO(n), which is defined by M>M = 1 (see Appendix). This number
is n(n−1)/2. Elements of SO(n) and SU(n) can thus both be visualized by their action on a canonical basis, where the
basis vectors are all normalized to one and mutually orthogonal according to the Euclidean and the Hermitian norm

4 We discover here the reason why we cannot define the scalar product < z1, z2 > of two complex vectors z1 ∈ Cn, z2 ∈ Cn
in the vector space (Cn,C) as 1

2

∑n
j=1 (z1jz

∗
2j + z2jz

∗
1j). The space orthogonal to a vector would be equivalent to (R2n−1,R).

Every choice of a new basis vector in the Gram-Schmidt procedure must have two free real parameters less than the previous
one to make sure the procedure yields the correct dimension n for the complex vector space (Cn,C).
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respectively. Such a basis is called in German a Vielbein, which could be translated as “multipod” in English. The
idea behind this rather expressive terminology is that an orthonormal basis of Rn has n legs, which are the n basis
vectors which constitute it. There is a on-to-one corrspondence between group elements and the vielbeins obtained by
them by acting on the canonical basis.

2.4 Magnetic monopoles

One transformation which preserves the energy density and does not belong to the homogeneous Lorentz group L is
easily found. The transformation h : E→ cB, cB→ −E corresponds to E + ıcB→ ı(E + ıcB), such that it is easily
seen to preserve (E + ıcB)†(E + ıcB). As it transforms −(E2 − c2B2) into (E2 − c2B2) and E ·B into −E ·B, it is
obviously not a Lorentz transformation, such that it does not belong to L . There is indeed no Lorentz transformation
that can transform a pure electric field into a pure magnetic field and vice versa.

The symmetry transformation E → cB, cB → −E is introduced in the discussion of magnetic monopoles, but as
we see here it is all but a trivial transformation. It is not a Lorentz transformation. It is a Lorentz-forbidden “rotation”
around the direction of Poynting vector.5 Another, different transformation that would preserve the energy density is:
E→ cB, cB→ E. This is the transformation: F→ ıF∗ and cannot be written in the form of a matrix multiplication
in the formalism whereby one expresses the field in terms of F ∈ C3. We will see below that the transformations
Ij(π/2) are almost of the form of h. They are just an itty-bitty more subtle.6

3 Classification of the elements of the group SL(3,C)

3.1 Preliminary considerations

SL(3,C) is the group of all complex 3 × 3 matrices M with detM = 1. As both the Lorentz group and SU(3) are
part of SL(3,C) it is perhaps worth to classify the transformations of SL(3,C). The group SL(3,C) is 16-dimensional,
because detM = 1 imposes two real conditions on a complex 3× 3 matrix M, viz. <(detM) = 1 and =(detM) = 0.
We must thus find 16 basic transformations. Of these, three correspond to boosts (which belong to the complex group
[ SO(3),C ] ) = L , three to the plain rotations in R3, which belong to SO(3) ∩ SU(3), and five to transformations
of SU(3)\ SO(3) that are not plain rotations in R3. This way we account for 11 parameters. There remain thus five
parameters to identify.

3.2 “Infinitesimal generators”

Let G be a Lie group. Let us note a representation matrix [D(g) ](λ) of a group element g ∈ G as M(λ), where
λ = (λ1, λ2 · · ·λdim(G)) ∈ Rdim(G) is a set of independent real group parameters.7 Here dim(G) is the dimension of
the group, which is of course different from the dimension of the representation, which is the rank of the matrix M.
E.g. in SU(2) the dimension of the representation in 2, while the dimension of the group is 3. These two dimensions
are in general still different from the dimension of the vector space the transformations might be acting on. E.g.
the homogeneous Lorentz group is six-dimensional, it acts on four-dimensional space-time, and the dimension of the
representation SL(2,C) is two. In the group SO(3), the three different types of dimensions all take the same value
three, such that we may think that there is only one concept of dimension. The resulting absence of disambiguation
can stirr confusion in one’s first contact with the group theory.

5 Assume e.g. that E = Eex and cB = cBey. A geometrical rotation over π/2 will turn this into E = Eey, cB = −cBex. This
is entirely different from the transformation considered here, which changes the nature of the fields. In fact, h changes a vector
E into an axial vector cB and vice versa. The transformation h is a so-called involution, which means that h2 is equal to the
identity element.

6 The subtlety will reside in the way one handles the rule det(M) = 1 of SU(3). The rule det(M) = 1 makes that we must be
careful in how we write a transformation. If we do not take into acount the planar symmetry of the electro-magnetic field, we
could write the transformation E + ıcB→ ı(E + ıcB) as:

H =

 ı
ı

ı

 , with: H† = H−1, but: detH = −ı 6= 1⇒ H 6∈ SU(3). (17)

As indicated, the definition of SU(3) includes the supplementary condition detM = 1, such that the transformation h in its
transcription according to Eq. 17 does not belong to SU(3). In Footnote 15 we will come back on this issue.

7 There are different choices possible for such sets. E.g. in SU(2) we can take the three Euler angles, but we can also take the
rotation axis and the rotation angle.
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In Lie groups G one uses so-called “infinitesimal generators”. Textbooks [3,4] explain then the following. We
consider a neighbourhood of the identity element 1. In this neighbourhood, all parameters λj are small. We now
consider the group elements, whereby only one parameter λj is allowed to vary and to be different from zero. We let
λj vary between 0 and 1. The matrices M(0, 0, · · · , 0, λj , 0, · · · 0, 0) will then be one-parameter sets of group elements.
They will describe a one-dimensional curve on the group manifold. An infinitesimal generator is then:

ı

[
∂

∂λj
M(0, 0, · · · , 0, λj , 0, · · · 0, 0)

]
λj=0

. (18)

The infinitesimal generators belong to the tangent space of the group manifold at the identity element. The idea behind
defining the infinitesimal generators and the Lie algebra is thus to construct a basis for the tangent space to the manifold
of the Lie group. The elements of the Lie algebra, the tangent vectors, are thus objects that are completely different
from the elements of the Lie group which are group elements. As they belong to the tangent space rather than to the
group itself, “infinitesimal generators” are not generators. Furthermore, the matrices M(0, 0, · · · , 0, dλj , 0, · · · 0, 0)−1
are infinitesimal, but the quantities defined by Eq. 18 are not. The “infinitesimal generators” are thus also not
infinitesimal. Let us drop a further small comment on the prescription based on Eq. 18. With the definition given in
Eq. 18 and the examples given in textbooks, the procedure to define the Lie algebra looks clearly outlined. But an
example is not a definition. What one does not spell out is that one wants an orthonormal basis for the tangent space
and how the various one-parameter sets must be chosen to achieve that goal. That not speciffying this very clearly can
lead to difficulties does not transpire from the textbook examples. An example that shows that defining this choice
may not always as simple as in these examples is given by the parameterization of a rotation matrix R(α1, α2, α3) of
SU(2) in terms of its three Euler angles αj (see e.g. Eq. 1.2.29 of reference [4]):

R(α1, α2, α3) =

[
e−ı(α1+α3)/2 cos(α2/2) −ıe−ı(α1−α3)/2 sin(α2/2)
−ıeı(α1+α3)/2 sin(α2/2) eı(α1+α3)/2 cos(α2/2)

]
. (19)

The infinitesimal generators of SU(2) are the three Pauli matrices, but blindly applying the prescription of Eq. 18 by
calculating the partial derivatives with respect to αj will not yield the desired result. The three Euler angles are not a
good choice for the set of parameters to be used. This shows that it takes some geometrical insight in the structure of
the group to make the good choices which will tease out the infinitesimal generators correctly. With a group that has
been defined completely abstractly like SU(3), we do not have that geometrical insight. We develop this idea a bit more
in the Appendix. The insight we will gain in SU(3) from the present study will enable us to derive the infinitesimal
generators by using the procedure of Eq. 18. To illustrate this, we will derive the infinitesimal generators for the group
elements we will come across. Even with the additional insight, it can prove tricky enough (see Footnote 13).

With respect to further use we can observe that:

ı
[
d
dα sinα

]
α=0

= ı ı
[
d
dα cosα

]
α=0

= 0

ı
[
d
dβ γ

]
α=0

= 0 ı
[
d
dββγ

]
α=0

= ı
(20)

The infinitesimal generator for the rotation Rz around the z-axis in the Oxy plane is therefore:

Rz ;
◦
Rz =

 0 −ı 0
ı 0 0
0 0 0

 ∈ su(3), (21)

Here su(3) is the notation for the Lie algebra of SU(3). We use the superscript ◦ to identify the infinitesimal generators.
The infinitesimal generator for the boost Lz along the z-axis is:

Lz ;
◦
Lz =

 0 −1 0
1 0 0
0 0 0

 ∈ sl(3,C)\ su(3), (22)

3.3 SL(3,C) \ (SU(3) ∪ L ) is not an empty set

Let us now show that SL(3,C) contains more than L and SU(3). Matrices M ∈ L are characterized by MM> = 1,

while matrices M ∈ SU(3) are characterized by MM† = 1. The matrix:
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Qz(v) =

 γ βγ 0
βγ γ 0
0 0 1

 , with: detQz(v) = 1, and Q−1z = Qz(−v) =

 γ −βγ 0
−βγ γ 0

0 0 1

 . (23)

belongs very obviously to SL(3,C), but not to [ SO(3),C ] (because Q>z 6= Q−1z ) nor to SU(3) (because Q†z 6= Q−1z ).
The infinitesimal generator of Qz is:

Qz ;
◦
Qz

 0 ı 0
ı 0 0
0 0 0

 ∈ sl(3,C). (24)

It is ı times the infinitesimal generator of Sz (see below) and anti-Hermitian. We can derive three such matrices Qx,
Qy, Qz. There remain thus two basic matrices of SL(3,C)\ SU(3) which we have not yet identified. We must also
further specify the five matrices of SU(3)\ [ SO(3),C ] .

3.4 The meaning of SU(3)

The group that preserves the energy density allows actually for a lot of freedom. Imagine an initial field (E0, cB0). Let

us call
√

E2
0 + c2B2

0 = F .8 We can then define a new field (E, cB) by choosing an angle χ0, and taking |E| = F cosχ0,
|cB| = F sinχ0. The orientations of E and cB can then further be taken at will. In other words, we we can just choose
two vectors E and cB with relative orientations and magnitudes at will. The only constraint we must satisfy is that
E2 + c2B2 remains constant.

A matrix M ∈ U(3), satisfies the condition MM† = 1. To belong to SU(3) it must satisfy also the condition
detM = 1. For preserving the energy density of the electromagnetic field, adding this restriction detM = 1 is at first
sight not in order. The addition of the supplementary condition detM = 1 feels like a curse. We thought it was a
nice idea that the group SU(3) would be the symmetry group of the energy density of a Lorentz tensor. But with
this supplementary condition detM = 1 the whole idea seems to fall apart. It even saddles us with uncomfortable
questions like: what is the condition detM = 1 good for? What purpose does it serve and what does it mean?

Fortunately, this is not the end of the story and we will be able to answer these questions. In fact, we have been
unsubtle as E and cB define a plane through the origin, unless when E ‖ cB.9 When E ‖ cB they do not define a
plane but just a straight line {r ∈ R3 ‖ r = λu & λ ∈ R}, whereby u is a unit vector. We can then choose another
arbitrary straight line defined by a unit vector w that intersects the first straight line at the origin. Together the two
straight lines will define a plane spanned by the unit vectors u and w. There is thus always at least one plane. Taking
the x-axis and y-axis of the reference frame within this plane, the electromagnetic field tensor becomes:

F =

 Ex + ıBx
Ey + ıBy

0

 . (25)

The transformations:

Mz(χz) =

 1
1

eıχz

 ∈ U(3), (26)

have then absolutely no impact on the value of E + ıcB. After performing a number of in-plane transformations on
E + ıcB we can therefore apply Mz(χz) to the result, whereby we choose the value of χ to make sure that detM = 1
in the global final result. This will not change the value of E + ıcB. There is only one such value χz (mod 2π). The
other values lead to detM 6= 1 and are useless. We can thus restrict U(3) to a smaller group. We argued above that
U(3) ⊂ G because every element of U(3) preserves the energy density. Hence we have SU(3) ⊂ U(3) ⊂ G . If we can
now also show G ⊂ SU(3), then we will have proved that G = SU(3). We are back on track.

In fact, the electromagnetic plane is an object we turn around in a three-dimensional space. There is always a
direction of space, viz. that of the Poynting vector, along which the component of the field is zero. Consider an
electromagnetic field in its canonical form (E0, cB0), given by Eq. 25. It defines the plane (E0, cB0). As we will show

8 Note that E0 and cB0 do not need to be orthogonal in R3 to enable us to calculate the square F 2 of the Hermitian norm
of E + ıcB according to the rule E2

0 + c2B2
0.

9 When E = 0 or cB = 0, we consider also that E ‖ cB.
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below, within the limits of the constraint that E2+c2B2 must remain constant, the relative magnitudes and orientations
of E and cB within this plane can be changed at will by transformations Mx(χx) and My(χy). We can then perform
a further transformation Mz(χz) that does not affect the result and whose angle χz = −χx − χy is choosen to make
det[Mx(χx)My(χy)Mz(χz) ] = 1. Furthermore, we can replace the transformations Mx(χx), My(χy), Mz(χz), which
belong to U(3) but not to SU(3), by transformations Ix(ζx), Iy(ζy), Iz(ζz) which all belong to SU(3), which equally
satisfy det[ Ix(ζx)Iy(ζy)Iz(ζz) ] = 1 and whereby the combined transformation Ix(ζx)Iy(ζy)Iz(ζz) has exactly the same
effect on E + ıcB as Mx(χx)My(χy)Mz(χz).

Consider now a second field E′ + ıcB′ that defines a different plane (E′, cB′). The plane (E′, cB′) can be obtained
from the plane (E0, cB0) by a simple rotation R around the axis defined by the intersection of the two planes. The
rotations R belong to SU(3) and fulfill the condition detR = 1. Let us now apply R−1 to (E′, cB′). This rotation will
produce a field (E, cB) in the plane defined by (E0, cB0). In general (E, cB) will be different from (E0, cB0). But as
we said, we will show that (E, cB) can be transformed to (E0, cB0) by a transformation I = Ix(ζx)Iy(ζy)Iz(ζz) with

det(I) = 1. The transformation T = IR−1, with detT = 1 transforms thus (E′, cB′) into (E0, cB0). Consequently, the
transformation T−1 with det(T−1) = 1 transforms a field from its canonical form (E0, cB0) to (E′, cB′). All physically
relevant configurations of an electromagnetic field with a given energy density can thus be obtained from its canonical
form by a transformation of SU(3). The group U(3) = SU(3) × U(1), contains an extra degree of freedom, contained in
U(1) which is redundant for the physics due to the fact that the electromagnetic field remains confined to a plane. The
group U(1) contains thus redundant information: it is a gauge group. What we do in U(3) to fix the gauge is to impose
the gauge condition detM = 1,∀M ∈ SU(3). The symmetry group for the energy density of the electromagnetic field
is thus really SU(3).

Let us now give the proofs we promised. We have already pointed out that the rotations Rj(α) belong to SU(3).
Consider a vector E + ıcB = (Ex + ıcBx)ex. The “phase transformations”:

Mx(χx) =

 eıχx 0 0
0 1 0
0 0 1

 , with: MM† = 1, (27)

preserve E2 + c2B2. The vectors transformed, Exex, and cBxex are and remain all parallel to the x-axis. In spite of
this obvious parallelism, the formalism permits to consider these two x-components as mutually orthogonal within the
complex plane. We could compare using C instead of R to having a fan that is folded up and aligned with the x-axis
(which corresponds to using R). Both Exex and cBxex are aligned with the x-axis and our vision is one-dimensional.
The fact that we write Ex and cBx under the form Ex + ıcBx opens the fan such that what we considered as a one-
dimensional subspace has become two-dimensional with respect to R. But we can still describe it as one-dimensional
with respect to C. The transformation in Eq. 27 corresponds to:[

E′x
cB′x

]
=

[
cosχz − sinχz
sinχz cosχz

] [
Ex
cBx

]
. (28)

The transformation does not change the orientation in physical space of these components but it permits changing
their relative strengths, thereby taking care of keeping E2

x + c2B2
x constant. In fact, if we define the angle χ0 by:[

Ex
cBx

]
=
√
E2
x + c2B2

x

[
cos(χ0)
sin(χ0)

]
, (29)

then the transformation Eq. 27 changes this into:[
E′x
cB′x

]
=
√
E2
x + c2B2

x

[
cos(χ0 + χz)
sin(χ0 + χz)

]
. (30)

Unfortunately the transformation Eq. 27 does not comply with the rule detM = 1. However, the combined transfor-
mations:

Iz(ζz) =

 eıζz 0 0
0 e−ıζz 0
0 0 1

 , with: I†z(ζz) = I−1z (ζz), (31)

do comply with the rule det Iz(ζz) = 1. The corresponding infinitesimal generator is:

◦
Iz = ı

[
∂Iz(ζz)

∂ζz

]
ζz=0

=

 −1 0 0
0 1 0
0 0 0

 . (32)

The definitions of the transformations Ix(ζx) and Iy(ζy) are obtained by cyclic permuation:
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Ix(ζx) =

 1 0 0
0 eıζx 0
0 0 e−ıζx

 , Iy(ζy) =

 e−ıζy 0 0
0 1 0
0 0 eıζy

 . (33)

The infinitesimal generator corresponding to [ Iz(ζz) ]−1 is algebraically identical to σz of SU(2), but it must be
clear that Iz(ζz) is by no means a rotation around the z-axis of physical space.10 It is a rotation around an abstract
z-axis in an abstract space as further explained in Footnote 11. The fact that Ix(ζx), Iy(ζy), Iz(ζz) are mutually
commuting and Iz(ζ)Ix(ζ)Iy(ζ) = 1, implies that we need only two of them to generate all their products. Only two
of them are thus independent. This explains also why one needs only two diagonal infinitesimal generators in the
Lie algebra su(3). In fact, as Iz(ζ)Ix(ζ)Iy(ζ) = 1 the sum of the three infinitesimal generators is zero. By combining
Ix(ζx), Iy(ζy), Iz(ζz), we obtain:

Ix(ζx)Iy(ζy)Iz(ζz) =

 eı(ζz−ζy) 0 0
0 eı(ζx−ζz) 0
0 0 eı(ζy−ζx)

 ∈ SU(3). (34)

It is obvious that det[ Ix(ζx)Iy(ζy)Iz(ζz) ] = 1. Let us now consider the matrices Mj . We could take the rotation angles
χx of Mx(χx) and χy of My(χy) at will, but must the choose the angle χz of Mz(χz) such that χx + χy + χz = 0.
We haven then:

Mx(χx)My(χy)Mz(χz) =

 eıχx 0 0
0 eıχy 0
0 0 eıχz

 with: det[Mx(χx)My(χy)Mz(χz) ] = 1. (35)

But this equivalent to stating that ∃(ζx, ζy, ζz) ∈ R3 : χx = ζz−ζy, χy = ζx−ζz, χz = ζy−ζx, In fact, this is equivalent
to ζx = 1

2 (χx +χy −χz) (cycl.). As χx +χy +χz = 0, this simplifies actually to ζx = −χx (cycl.). If we make sure that
χx + χy + χz = 0 then det[ Ix(ζx)Iy(ζy)Iz(ζz) ] = 1. This is thus equivalent to det[Mx(χx)My(χy)Mz(χz) ] = 1. But
Ij(ζj) belong to SU(3), while Mj(χj) do not belong to SU(3).

The way the product of transformations Mx(χx)My(χy) acts in the Oxy plane is illustrated in Fig.1. It illustrates
how the operation Mx(π/4)My(π/3) of an electromagnetic field (E,0), with E ‖ (cos(π/6), sin(π/6)) and cB = 0,
transforms it into an electromagnetic field (E′, cB′). The way the transformation Iz(ζz) acts on the Oxy plane is
illustrated in Fig.2.

Let us now prove that we can indeed change at will the relative strengths and orientations of E and cB within
the plane (E, cB) by using the transformations Mj(χj). This will complete the prove that G ⊂ SU(3). Consider
two arbitray vectors c and d, and a vector F = Fex = Exex in a canonical plane, whereby F2 = c2 + d2. Here

c = (cx, cy, 0) and d = (dx, dy, 0). We calculate `x =
√
c2x + d2x, `y =

√
c2y + d2y, `z = 0. The vector ` = (`x, `y, `z) has

the same length F as F. There exists a rotation R(α) in R2 that turns F into `.11 We can now define the angles χj
as follows: cx = cosχx`x, dx = sinχx`x, cy = cosχy`y, dy = sinχy`y. The combined transformation Mx(χx)My(χy)
will turn (`x, `y) into c + ıd. We can now choose χz such that χx + χy + χz = 0. The in-plane transformation
T2 = Mx(χx)My(χy)Mz(χz)R(α) of SU(3) permits thus to transform the vector F into an arbitrary vector c+ ıd of
the same length F2 = c2 + d2.

We can the same way transform F into C + ıD, whereby C2 + D2 = F2. Let us note this transformation as T1 ∈
SU(3). The transformation T2T

−1
1 ∈ SU(3) permits then to transform C+ ıD into c+ ıd, whereby C2 +D2 = c2 +d2.

This clearly shows that the matrices Mj and Rk generate all norm-preserving transformations. We have also made

10 The infinitesimal generator of a rotation Rz(α) around the z-axis in R3 is in SU(3) not given by σz, but by the non-diagonal
matrix with imaginary entries given in Eq. 21. Similarly, the infinitesimal generator of a rotation Rx(α) around the x-axis in
R3 is in SU(3) not given by σx, but also a matrix with off-diagonal and imaginary entries.
11 This is a rotation around the origin O of the plane. It is typical of the mathematics in vector spaces based on C that we
consider only such planes and not a third dimension that would embed this plane in R3, such that we could call the rotation
a rotation around an axis in this space R3. We encounter this also with the 2ν × 2ν matrices in the spinor representations of
the rotation groups SO(n) as discussed in [1]. We refer the reader in this respect to Eq. (103) in [1], where we refrain from
introducing the terminology σz for the operator in the function space that is algebraically identical to σz. Instead of that we
use 1, σx, ıσy, and −ıσxσy. This is necessary to fit the step from a representation with 2ν × 2ν matrices to a representation
with 2ν+1 × 2ν+1 matrices into a Peano induction scheme in an intelligible way. If we embedded the (Ex, cBx) plane into R3

with a basis η1, η2, η3 we would have to represent (Ex, cBx) as Exη1 + cBxη2. We could then claim that a rotation in the
plane (Ex, cBx) ≡ (η1,η2) would be a rotation around ` ∧F ‖ η3 in this abstract vector space R3. The space is really abstract
because in physical space Exex and cBxex are parallel.
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Fig. 1. Illustration of the action of the transformation Mx(χx)My(χy) in the plane (E, cB). For simplicity we have illustrated
the special case that cB = 0. In the figure we have taken χx = π/4, χy = π/3, E ‖ (cos(π/6), sin(π/6)), cB = 0. The
transformation results in an electromagnetic field (E′, cB′). The figure consists of four quadrants. The first quadrant shows the
initial field E and the transformed field (E′, cB′). We first decompose E into its components Exex and Eyey, as shown by the
blue vectors along the x- and y-axis. The component Ey is carried over to the second quadrant as shown by the horizontal
blue dotted line. In the second quadrant, this (blue) component Ey is rotated in the complex Ey + ıcBy plane to E′y + ıcB′y
(represented by the red vector) by the operation My(π/3). The component Ex is carried over to the fourth quadrant as shown by
the vertical blue dotted line. There the component Ex is then rotated in the complex Ex+ ıcBx plane to E′x+ ıcB′x (represented
by the red vector) by the operation Mx(π/4). In the third quadrant, we reconstruct cB′ from its components (cB′x, cB

′
y), by

recollecting them from the second and the fourth quadrants as indicated by the green dotted lines. We reconstruct E′ in the
first quadrant from its components (E′x, E

′
y) by recollecting them from the second and the fourth quadrants, as indicated by

the magenta dotted lines. To represent the result for cB′ in the fourth quadrant also within the first quadrant we must refect
the quadrant with respect to the direction of the diagonal of the second and the fourth quadrant over π (i.e. the line y = −x)
such that the axis cBx aligns with the axis Ex and the axis cBy with the axis Ey). This is different from mirroring with respect
to the origin (which would map cBx onto Ey and cBy onto Ex). All the operations shown preserve the square of the Hermitian
norm: |E′ + ıcB′ |H. In the general case, where cB 6= 0 we must also use the third quadrant as shown in Fig. 2

sure that det[Mx(χx)My(χyMz(χz) ] = 1. Using the transformations Mx(χx), My(χy), Mz(χz) is equivalent to using
the transformations Ix(ζx), Iy(ζy), Iz(ζz) as we have shown above.12

We have thus shown that G ⊂ SU(3), such that G = SU(3). SU(3) is thus the symmetry group of the energy
density we were looking for. With the operations Ij and the rotations of R3 we can this way construct any operation
of the group G = SU(3). In other words, the group G of norm-preserving operations is generated by operations of the
type Ix, Iy, Iz and Rx, Ry, Rz. SU(3) contains thus the three operations Ix, Iy, Iz, the three rotations Rx, Ry, Rz

and three remaining operations. As the products of Ij and Rk are not rotations and not of the type Ix, the remaining
operations must be of the type IjRk.

Let us now try to find the three lacking infinitesimal generators. We know that we should find an infinitesimal
generator:

12 Everything is here a consequence of the fact that the fields are planar. In fact, this implies that in a reference plane whose Oxy
plane we have made coincide with the plane of the field, we can choose cx, cy, dx, dy at will (within the constraint c2 +d2 = F2),
while (cz, dz) = (0, 0). This in turn implies that we can then satisfy the condition det(Mx(χx)My(χyMz(χz)) = 1 by making

a proper choice of χz. In terms of infinitesimal generators, det(Mx(χx)My(χyMz(χz)) = 1 is expressed by
◦
Ix +

◦
Iy +

◦
Iz = 0.

In the case of the strong interaction this is translated into an expressive language of three colors, which must forcedly add up
to white. In the case of the electromagnetic force, we can also express it by saying that the field (and a photon) have only two
linear polarizations.



G. Coddens: Symmetries of Lorentz tensors 11

Fig. 2. Illustration of the action of the transformation Iz(ζz) in the plane (E, cB). This is equivalent to Mx(χx)My(χy), with
the constraint: χx = −χy, whereby we note χx as ζz. In the figure we have taken ζz = −π/5, E = (6 cos(π/6), 6 sin(π/6)),
cB = (8 cos(π/3), 8 sin(π/3)). The transformation results in an electromagnetic field (E′, cB′). The figure consists of four
quadrants. The positive orientation for the angles in each quadrant is shown by the arrows on the circles. We have not presented
the magnetic field in the first quadrant in order not to burden the figure. The representation of cB in the first quadrant can be
obtained by reflecting the third quadrant with respect to the diagonal y = −x. In the first quadrant we decompose E = (Ex, Ey)
into its components Ex and Ey, as shown by the dark blue dotted lines. In the third quadrant we decompose cB = (cBx, cBy)
into its components cBx and cBy, as shown by the red dotted lines. The values of Ex and cBx are combined in the fourth
quadrant to define the point P (Ex, cBx). The values of Ey and cBy are combined in the second quadrant to define the point
Q(Ey, cBy). The transformation Iz(ζz) turns P over ζz to P ′(E′x, cB

′
x) and Q over −ζz to Q′(E′y, cB

′
y). Then we reconstruct

E′ = (E′x, E
′
y) in the first quadrant and cB′ = (cB′x, cB

′
y) in the third quadrant from the components of P ′ and Q′ as shown by

the light blue and magenta dotted lines. Comparison with the positive sense of orientation in each quadrant shows that E and
cB are rotating in opposite directions. The transformation increases the amplitude of the field E. Concomitantly it decreases
the amplitude of the field cB to keep E2 + c2B2 constant.

◦
Sz =

 0 1 0
1 0 0
0 0 0

 ∈ su(3). (36)

We could thus cheat a bit and work backwards to this result. It is then tempting to propose:

Sz =

 ı cosα −ı sinα 0
−ı sinα −ı cosα 0

0 0 1

 , with: detSz = 1, and S−1z =

 −ı cosα ı sinα 0
ı sinα ı cosα 0

0 0 1

 = S†z. (37)

This can be decomposed as:
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Sz =

 ı 0 0
0 −ı 0
0 0 1

 cosα − sinα 0
sinα cosα 0

0 0 1

 = Iz(π/2)Rz(α). (38)

Applying the recipe of Eq. 18 yields the tangent vector:

Sz(α) ;

 0 1 0
1 0 0
0 0 0

 . (39)

But this is wrong because it is not a tangent vector at the identity element. It is a tangent vector at Iz(π/2). In fact:

lim
α→0

Sz(α) =

 ı 0 0
0 −ı 0
0 0 1

 6= 1. (40)

A correct solution is the following:

Sz(ζz) = [Rz(π/4) ] [ Iz(−ζz) ] [Rz(−π/4) ] =
1√
2

 1 −1 0
1 1 0
0 0 1

 e−ıζz 0 0
0 eıζz 0
0 0 1

 1 1 0
−1 1 0

0 0 1

 1√
2
. (41)

This leads indeed to:

lim
ζz→0

Sz(ζz) = 1, Sz(ζz) ;
◦
Sz =

 0 1 0
1 0 0
0 0 0

 ∈ su(3). (42)

This existence of Sz(ζz) and its construction are relying entirely on the fact that Rz(π/4) and Iz(−ζz) do not
commute.13

The nine 3× 3 matrices Ekm, k ∈ [1, 3] ∩ N, m ∈ [1, 3] ∩ N, defined by (Ekm)ij = δkiδmj are a basis for the vector
space of 3× 3 matrices. The infinitesimal generators of Sz and Rz span the same subspace as E12 and E21. Similarly
the infinitesimal generators of Sx and Rx span the same subspace as E23 and E32, while the infinitesimal generators

13 To find this solution we have used rather fishy heuristics, by taking inspiration from the geometry of SU(2). In SU(2), a
rotation R(n, ϕ) around an axis n over an angle ϕ is given by the Rodrigues formula:

R(n, ϕ) = cos(ϕ/2)1− ı sin(ϕ/2) [n·σ ] =

[
cos(ϕ/2)− ınz sin(ϕ/2) −ı(nx − ıny) sin(ϕ/2)
−ı(nx + ıny) sin(ϕ/2) cos(ϕ/2) + ınz sin(ϕ/2)

]
. (43)

The matrix:

Ry(π/2) =
1√
2

[
1 −1
1 1

]
, (44)

represents therefore in SU(2) a rotation over π/2 around the y-axis. When a 2× 2 matrix M2 is embedded inside a 3× 3 matrix
M1 according to:

M1 =

[
M2 0>

0 1

]
, (45)

then we will note this as M1
∼= M2. Here 0 is the 2 × 1 matrix [ 0 0 ], This is an equivalence between a subalgebra of SU(3)

and the algebra of SU(2) that identifies M1 with M2 on the mere basis of a purely formal algebraic identity, which is devoid of
any geometrical meaning. In our heuristics to find Eq. 41 we have identified Rz(π/4) ∼= Ry(π/2), although this is geometrically
spoken non-sense. Despite their algebraic identity Rz(π/4) and Ry(π/2) have completely different geometrical meanings in
the two formalisms, But the identification helps us to find solutions in SU(3) by reasoning on SU(2) with whose geometry we
are more familiar. In the algebra of SU(2) the rotation Ry(π/2) turns the vector ez (represented by σz) into the vector ex
(represented by σx). As Eq. 4 shows, this is expressed by σx = [Ry(π/2) ]σz [Ry(π/2) ]† in the group formalism. When we
translate this back to SU(3), this yields Eq. 41. This is the result we needed as it permits us to obtain an infinitesimal generator
◦
Sz ∼= σx starting from an infinitesimal generator

◦
Iz ∼= σz. Geometrically what happens in SU(3) has nothing to do with what

happens in SU(2). What happens in SU(3) is that the non-commutativity [Rz(π/4) ] [ Iz(−ζz) ] 6= [ Iz(−ζz) ] [Rz(π/4) ] creates
a new type of displacement Iz(−ζz) → [Rz(π/4) ] [ Iz(−ζz) ] [Rz(π/4) ]−1 within the Oxy plane. We will come back on this in
Section 5.
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of Sy and Ry span the same subspace as E13 and E31. The three matrices
◦
Ij span the same subspace as E11, E22, and

E33. Therefore the infinitesimal generators we obtained forcedly span the tangent space to the group manifold. But
to do so, one must use also imaginary coefficients in the linear combinations. The infinitesimal generators we derived
constitute a basis for SU(3) whereby the coefficients in the linear combinations can be kept real. SU(3) has thus five
generating operations (three rotations and two of the three transformations Ij) and eight infinitesimal generators. It
is the group one obtains by extending SO(3) with the “scrambler” operations Ij(ζj), which unlock E and cB one from
another, while keeping them within the constraint that E2 + c2B2 must remain constant.

3.5 Philosophical motivation

There is a kind of geometrical nomansland between physics and mathematics nobody seems to be interested in. It
permits to render algebra more intuitive by relying on its geometrical meaning. Mathematicians consider that intuition
endangers the mathematical rigor of their algebraic proofs, such that they prefer not to mention what is going on
behind the scenes of the algebra of their proofs. As explained by Dieudonné [5], they experience serious difficulties
and feelings of alienation with such presentations themselves. For physicists it is worse. It forces them to use this
algebra as a blackbox. In doing so they have become so much used to think that mathematics is only about carrying
out algebraic calculations, that they cannot even imagine that there could be a geometrical counterpart to the algebra
they use. They teach their students to shut up and calculate. Despite the lack of interest from both sides, figuring
out the geometry that corresponds to the algebra is important because it provides additional insight into the meaning
of the mathematics. To understand the physics, one must always go after the geometry hidden behind the algebra,
as this will open the door to insight in its physical meaning. It is a very useful strategy. The present work has been
entirely motivated by this idea and shows that the strategy works. There is also such a geometrical nomansland that
gives additional insight into the meaning of the algebra of quantum mechanics [1,2,6].

3.6 The meaning of SL(3,C)

Fig. 3. Venn diagram of the group SL(3,C) and its subgroups. The letters A, B, C and D design sets that are all mutually
disjoint. (The sets A and D are thus represented by non-convex polygons). The group SO(3) is the set B. The set B ∪ C,
surrounded by a red line in the figure is the homogeneous Lorentz group L . Its subset C = L \ SO(3) contains thus all the
boosts and the products of a boost and a rotation (different from the identity element). The set generated by SO(3) and the
operations Ij(ζj) is SU(3), which corresponds to A ∪ B. The set generated by L and the operations Ij(ζj) is SL(3,C) and
corresponds thus to A ∪B ∪ C ∪D. SU(3) and SL(3,C) are thus extensions of SU(2) and SL(2,C) by the operations Ij(ζj).

Although this is somewhat beyond the scope of this paper, we can classify further the elements of SL(3,C). The

situation is summarized by the Venn diagram in Fig. 3. First of all, we note that
◦
Lj = −ı

◦
Rj ,∀j ∈ [1, 3] ∩ N. The

additional infinitesimal generators we are looking for could thus be of the types:
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◦
Kz = −ı

◦
Iz =

 ı 0 0
0 −ı 0
0 0 0

 ∼= ıσz, and:
◦
Cz = −ı

◦
Sz =

 0 −ı 0
−ı 0 0

0 0 0

 ∼= −ıσx. (46)

The complement of SU(3) in SL(3,C) would then be obtained from SU(3) by mutiplication with −ı. We have thus
◦
Lz ∼= −ıσy and

◦
Kz
∼= ıσz. We can use again the quirky heuristics explained in Footnote 13. In SU(2), we can obtain

ıσz from −ıσy by a rotation Rx(−π/2) over −π/2 around the x-axis. We therefore consider an operation U in SU(3)
defined by U ∼= Rx(−π/2), to construct:

Kz(v) = U [Lz(v) ]U† = 1√
2

 1 ı 0
ı 1 0
0 0 1

 γ ıβγ 0
−ıβγ γ 0

0 0 1

 1 −ı 0
−ı 1 0

0 0 1

 1√
2

=

 γ(1 + β) 0 0
0 γ(1− β) 0
0 0 1

 .
(47)

Checking the algebra is greatly simplified by observing that Lz(v) ∼= γ1− βγσy, such that we only need to check the
calculations on σy. The operation U belongs to SU(3), because detU = 1 & U−1 = U†. Its decomposition into more
familiar group elements follows from:

1√
2

[
1 ı
ı 1

]
=

1√
2

[
1 −1
1 1

] [
eıπ/4 0

0 e−ıπ/4

] [
1 1
−1 1

]
1√
2
∼= Rz(π/4) Iz(π/4)Rz(−π/4). (48)

The operator Kz(v) leads indeed to the desired infinitesimal operator. We have also
◦
Lz ∼= −ıσy and

◦
Cz
∼= −ıσx. We

can obtain −ıσx from −ıσy in SU(2) by a rotation over −π/2 around the z-axis. We use therefore now a transformation
Iz(π/4) ∼= Rz(−π/2):

Cz(v) = Iz(π/4) [Lz(v) ] Iz(−π/4) = 1√
2

 eıπ/4 0 0
0 e−ıπ/4 0
0 0 1

 γ −ıβγ 0
ıβγ γ 0
0 0 1

 e−ıπ/4 0 0
0 eıπ/4 0
0 0 1

 1√
2

=

 γ −γβ 0
−γβ γ 0

0 0 1

 .
(49)

This is the desired result. Obviously, Cz(v) is just the group element Qz(−v) we guessed in Eq. 23. The group SL(3,C)
is thus generated by the rotations R, the boosts L, and the transformations I. It is the extension of L ≡ SL(2,C) by
the operations Ij(ζj).

14 The mixed products of the basic operations are providing additional infinitesimal generators
because have different characters. Any group automorphism: Tf , f ∈ G : ∀g ∈ G,Tf (g) = f−1 ◦ g ◦ f will produce an
equivalent basis of infinitesimal generators, and will thus induce a change of basis in tangent space.

4 Intermezzo - Important caveats

We can consider what we have done as didactically interesting. But we would like to point out that we must remain
cautious and refrain from using these results to lay down claims about the physics. In Heisenbergs conception of using
SU(2) to define isospin, the rotation group is assumed not to operate on R3 but on some internal space of the particles.
Something similar has been postulated for the group SU(3) used in particle physics. The symmetries are thus very
abstract and impenetrable. The statements about the isospin group SU(2) and the elementary-particle group SU(3)
actually imply that the parameters of the elementary particles the groups work on are not defined. They are some
unidentified parameters in some unidentified space. But working on concepts that are not defined is not recommended
practice in dayly life actions, let alone in science. One should try to figure out what these parameters are.

14 It is an interesting question if SU(n) could be always obtained from SO(n) by such a “scrambler” extension scheme that
completely unlocks all vectors of a two-dimensional plane. This is extremely likely, because the dimension of the group is n2− 1
and detM = 1, ∀M ∈ SU(n). But this has to be proved. One may also wonder what are the groups that would completely
unlock higher-dimensional subspaces.
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The level of abstraction in SU(3) looked even worse than in the case of isospin, because we even did not have an
analogous group in physical space to visualize it. The present findings improve on this situation. The group which
describes the symmetry properties of the energy density of the electromagnetic field in physical space R3 can now be
used to visualize the transformation group SU(3) used in particle physics by analogy, just like we could use the rotation
group SU(2) in physical space R3 to visualize the isospin group by analogy. The abstraction of SU(3) discouraged us
from asking any questions about the possible physical meaning the group could have in R3 (or any other space). It was
too impenetrable. It looked impossible to figure out what was going on behind the scenes of the algebra. We did not
perceive any firm conceptual ground we could stand on to even start reasoning about the problem. The abstraction
disempowered us. That situation has now changed.

However, this does not mean that we must engage head over heels into fomenting a rebellion against the current
doctrine. We must rather try to blend our results into it, without getting carried away towards jumping to conclusions.
We can certainly not claim that our findings would give us a cogent re-interpretation of SU(3) as it occurs in particle
physics in terms of electromagnetic fields. This is a priori completely unlikely. The considerations apply to any
Lorentz tensor C + ıcD. We think that we can definitely conclude that the group SU(3) acts on a tensor, because
Lorentz symmetry implies that all physical quantities are scalars, four-component vectors, six-component tensors,
four-component axial vectors or pseudo-scalars. The whole problem remains thus to identify this tensor.

The fact that the transformation h belongs to SU(3)15 raises a question about the way we must interpret the group
SU(3). We could interpret it just as a mathematical gimmick, in the sense that it does not describe transformations that
occur in nature. For the electromagnetic field, it could then be merely a convenient way to relate various configurations
of the electromagnetic field which we can put together manually. Nature itself would not do it. Perhaps for the
electromagnetic field the rôle of the group is limited to such a mathematical gimmick. It is an interesting thought that
for the strong interaction, the transformations could really occur in nature without manual human intervention. But
for the moment, this is all speculation. We are not sure that SU(3) acts on the field tensor of the strong interaction.
It could act on any type of tensor, e.g. the one we defined in Eq. 10 and which contains the angular momentum.

We have seen that Lorentz transformations form [ SO(3),C ], an extension of SO(3) to C3 which ceases to be a
compact group, while SU(3) is compact. Hence the transformations we are considering here within the framework of
SU(3) are spatially confined, in contrast with boosts in free space which can result in motions that cover distances
that can be arbirarily large.

In any case, we have now an analogy we can use to visualize the structure of SU(3) within a less abstract context.
We can visualize SU(3) by an analogy in terms of transformations of an electromagnetic field, because there is an
isomorphism between the physics of a class of transformations of an electromagnetic field and the physics of the strong
intractions at work in baryons. As we have intuition for the electromagnetic field, this could help us in dealing with the
transformations that occur in particle physics, whose meaning remains otherwise rather abstract and impenetrable.

One application of the analogy has consisted in obtaining the Lie algebra from the infinitesimal generators of SU(3)
like we do it for the rotation group or the Lorentz group, by calculating the tangent vectors to one-parameter subsets
of the group manifold. In textbooks another approach is used. One lets an abstract basis descend from heaven, letting
the reader check by purely algebraic means that it is indeed a correct basis. The difficulties one may encounter in
trying to built an approach that provides some more geometrical insight are again a consequence of the abstraction of
SU(3). We have given a hint about the difficulties one may encounter in Subsection 3.2. In fact, we can parametrize the
SU(3) matrices like one can parameterize an SO(3) matrix in terms of a rotated triad of the three basis vectors, but
when we did this for SU(3), we ended up in the puzzling situation that we could not figure out which one-parameter
sets we had to choose to obtain the full set of infinitesimal generators. We outline this briefly in the Appendix.

The procedure given in Eq. 18 is ill-defined, in that it does not give a clear prescription of the way one must select
the group parameters to obtain an orthonormal basis for the tangent space. This can lead to several difficulties. Some
of the parameter sets may contain singularities, in the same way spherical coordinates contain a singularity at the
North and South poles of the sphere. Also the curves we define on the manifold with the one-parameter sets are not
forcedly everywhere mutually orthogonal. We have seen in the example of the Euler angles that α1 and α3 produce
tangent vectors that are parallel. In an abstract formulation of the group, without any geometrical clues, its is hard
to foresee where the problems will occur and to figure out how we can avoid them. We may have to cover the group
with an atlas of several sets of parameters in order to avoid the singularities. We will need then the transformations
between the various members of the atlas.

One’s first guess would be that SU(3) is a little big brother of the group SU(2). That sounds all right and reasonable
as long as we keep it abstract. But when we start to inspect applications and try to give geometrical meaning to the

15 The transformation matrix H of h for the field in the canonical form (E0, cB) can be written as:

H =

 ı
ı
−1

 , with: H† = H−1, but: detH = 1⇒ H ∈ SU(3). (50)

In this transcription we have h ∈ SU(3).
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groups, things immediately go wrong. In fact, the group SU(2) represents the rotations of R3. It is thus directly related
to SO(3), of which it is a double covering. How we construct SU(2) from scratch based on its geometrical meaning
is explained in reference [1]. But when we try to extrapolate this idea to rotation groups of Rn, any analogy one
might anticipate with some group SU(k), k ∈ N turns out to be chimerical. In fact, the next step along this line
of thought would be to consider SO(4). But the spinor representation corresponding to SO(4) is a six-dimensional
representation of rank 4 and can thus not be SU(3). Noting ν = bn2 c, the spinor representation corresponding to SO(n)

is a n(n− 1)/2-dimensional representation of rank 2ν , while SU(n) is a n2− 1-dimensional representation of rank n.16

Hence considering SU(3) as a generalization of SU(2) is not as straightforward as one might have guessed. SU(3)
just does not fit conceptually into the logical chains 2ν , ν ∈ N for the ranks, or n(n− 1)/2, n ∈ N for the dimensions.
We use the group SU(2) to describe angular momentum. But we have seen that this neglects the fact that angular
momentum is part of a tensor. In this respect, we could consider perhaps SU(2) as a group we can use to describe
a non-relativistic approximation to the description of tensors. In such a non-relativistic approximation, we could
describe the angular momentum within the framework of SU(3) by the group SO(3) ⊂ SU(3). We can then study the
corresponding rotation group in an alternative way by SU(2). The electron has a magnetic moment. At relativistic
velocities it should thus also have an electric dipole moment, but it could be so tiny that it has never interfered with
our experiments.

5 The three subalgebras of the type su(2)

Most textbooks mention that the Lie algebra su(3) contains three subalgebras su(2).17 We may feel stunned when we
hear this and wonder what it may mean. We get the impression that there are some hidden connections. But nothing
in textbooks would help us further out in clarifying what these connections are. We are forced to accept that it is just
an factual truth that comes out of some abstract algebra. To demystify these issues we turn towards the corresponding
geometry. What this actually implies is that we have three basic planes, Oxy (cycl.), which we can label by the index
` of the unit vectors u` along their Poynting vectors. There are three basic planes Oxjxk with normals u` whereby
jk` can be cyclically permuted. We can then label the planes with the single index ` instead of the double index jk.
There is a whole subalgebra su(2) for each of the planes ` labeled by `. Using the imagery of the fan we introduced
after Eq. 27 we can consider the three-dimensional space SU(2) associated with u` as a three-dimensional fan along
u` we unfold. Of course, three-dimensional fans do not exist for real, perhaps an umbrella comes close to the idea.
Anyway we think that the language we use will nevertheless make the point.

We can no longer describe such a fan with the number field C as for its real bidimensional realization, which is why
we must now use the quaternions σx, σy, σz. We have in this paper given all our examples based on the Oxy plane with
normal uk = ez. E.g. We have rotations Rz(α) in the Oxy plane. The infinitesimal generator corresponding to these
rotations ressembles σy. Next we have the transformations Iz(ζz) in the Oxy plane which scramble the electric and
the magnetic fields. The corresponding infinitesimal generator ressembles σz. The third infinitesimal generator only
intervenes when we start considering products Iz(ζz) of and Rz(α). These products do not commute, and therefore
we must consider products Rz(α)−1Iz(ζz)

−1Rz(α)Iz(ζz) 6= 1.18 In the Lie algebra this is expressed in terms of
commutators. It is these commutators which are related to the matrix σx of the subalgebra su(2). The x-axis that
would correspond to such a “σx-operator” just does not belong to physical space, just like the “σz-operator” does not
belong to physical space, while the “σy-operator” is a true rotation in physical space R3, but around the z-axis rather
than around the y-axis.

The three Pauli matrices σj related to the symmetries in the Oxy plane are all defined within a fan that is folded
along the z-axis and that we must unfold in order to be able to see the dazzle of the symmetry. They belong thus really
to what physicists call a hidden internal space of symmetries, but this does not mean that this “abstract” internal space

16 It is worth comparing the dimensions and the ranks of the representations. For SO(n), with n ≥ 3, the dimensions of the
groups follow the series 3, 6, 10, 15, 21, 28, 35, 45, . . . . For SU(n), with n ≥ 3, the dimensions follow the series 8, 15, 24, 35, 48, . . . .
For SO(n), with n ≥ 3, the ranks follow the series 3, 4, 4, 8, 8, 16, 16, . . . . For SU(n), with n ≥ 3, the ranks follow the series
3, 4, 5, 6, . . . . The spinor representations of SO(n) can therefore at the very best be subgroups of SU(2ν).
17 It is dangerous to state that the Lie group SU(3) contains three subgroups SU(2). It contains three subgroups, but these
subgroups are linearly acting on meaningful vectors, not quadratically like SU(2).
18 We are used to associate non-commutativity with curvature. The Oxy plane is of course not curved. The curvature occurs
in the four-dimensional manifold of the quantities (Ex, cBx, Ey, cBy) subjected to the constraint that E2 + c2B2 is a constant.
This is a hypersphere and in the symmetry group of this hypersphere Iz(ζz) and Rz(α) do not commute, which introduces the
curvature. We have actually taken advantage of this non-commutativity to find the construction presented in Eq. 41. The lesson
we may take from this is that non-commutativity can be expressed mathematically in terms of curvature, and that curvature can
be described mathematically by introducing additional dimensions. But these additional mathematical dimensions do not need
to be additional physical dimensions, as we see here with SU(3). Hence, it is a non-issue that the additional seven dimensions
of string theory are “not observed”.
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must remain beyond intuition, because we can identify it with what happens in the Oxy plane. As shown here, with
some fan-tasy we can really describe SU(3) with vivid imagery and colors. In fact, all the operations corresponding
to one of the subalgebras su(2) are taking place in the Oxy plane. We may note that in each of the subalgebras the
indices of the operators σx, σy, σz, are related to the type of the operations, not to the indices we might use to note
the orientations of the planes. Hence, when we make cyclic permutations of the planes Oxy, the operators σx, σy,
and σz in the corresponding subalgebras are not co-permuted. We may ask why there are no further operators that
enter the scene when we start making products of operators of different su(2) subalgebras. The algebraic answer to
that question would presumably consist in pointing out laconically that it just factually rolls out of the algebra. The
geometrical answer resides in our proof in Subsection 3.4 that G = SU(3). Whatever we do, we always end up with a
plane defined by E and cB while the transformations between different planes are already taken care of by SO(3) ⊂
SU(3).

6 A possible link?

The ideas of the present Section are more speculative and really need validation before they can be adopted. They
are about what could be the next step in implementing the strategy outlined in Subsection 3.5. There must be such
a next step because the algebra must mean something in the physics of the real world. One should never give in
to Heisenberg’s morbid doctrine that quantum mechanics would be beyond human understanding. We should never
accept that something looks impenetrable.

The identification of the three subgroups we proposed in Section 5 draws us into turbulent waters. Physicists call
the 3 × 1 column matrices of SU(3) spinors. A 3 × 1 column matrix taken from a 3 × 3 SU(3) matrix represents
only a part of the information about the whole matrix, and thus in general only a part of the information about
a general SU(3) group element. Most of the time a single column drawn from a matrix will indeed not contain the
complete information about the matrix. E.g. SL(2,C) is a six-parameter group. A single column of an SL(2,C) matrix
can thus not possibly contain the full information about a general group element. A notable exception is SU(2) where
a single column represents all the information about the group element, because the first column constructed by the
Gram-Schmidt procedure outlined in the Appendix, defines already the full Vielbein. The 4×4 column matrices of the
Dirac theory also contain the complete information about the group element, such that we have here an exception as
well. A column of an SU(3) matrix can only contain five parameters while the group is defined by eight parameters. It
can thus not possibly contain the complete information. It is for this reason that we prefer to use the term “spinor”
only for a number of columns that together represent the complete information [1,2].

The construction of a parameterization of the group by the Gram-Schmidt procedure in the Appendix shows that
the columns of an SU(3) matrix are basis vectors. The 3× 1 column matrices F are exactly such column vectors. The
group acts linearly on them, just like it acts linearly on group elements and we could call them in an abus de langage
thus also spinors, even if they do not represent the full information. There is however a very important difference
between a true spinor formalism, like SU(2) and a formalism like that of SU(3). In a true spinor formalism like SU(2),
vectors and tensors of physical space transform quadratically rather than linearly under the transformations of the
group, as we explained in Section 1. This is the reason why one often states that a spinor is the square root of a vector.
Now SU(3) acts linearly, not quadratically on the Lorentz tensors F. The interpretation of SU(3) as a symmetry group
for Lorentz tensors makes it therefore appear to belong to an entirely different world of concepts than SU(2). The
situation within SU(3) looks much more to that within the rotation group SO(3) of R3, which turns vectors, than that
within SU(2), which turns spinors representing group elements, and is thus an automorphism group.

This linearity of the action of the group on tensors raises difficult questions. There seems to be a contradiction in
the fact that SU(3) acts linearly on tensors and vectors (which are the real and imaginary components of the tensors),
while on the other hand it contains groups SU(2) which are supposed to act quadratically on vectors and tensors. If
the fields E+ ıcB are transformed linearly, what are then the quantities in the SU(2) subgroups that are transformed
quadratically? Are they perhaps purely mathematical, physically meaningless quantities? One would be inclined to
opt for this solution. But we enter then on collision course with the way Gell-Mann’s scheme is used to interpret the
elementary particles as representations of the group SU(3). Gell Mann really uses the SU(2) subgroups as working on
physically meaningful quantities.

The way out of this paradox is that a group acts on two different types of vector spaces as explained in Footnote
19. These vector spaces can even have different dimensions as shown by the example of the Lorentz group. We want
to eleborate this in some more detail. This will give us a link between the two conceptually very different worlds of
the two types of vector spaces and this way resolve the paradox. The crucial point is that SU(2) and the Dirac theory
act quadratically on both vector spaces, while SU(3) acts quadratically on one space and linearly on the other one.
Let us consider an electromagnetic field E = Eex, cB = ez ∧E = Eey. This field is represented by:
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F = F

 1
ı
0

 (51)

Consider now the operator:

P(ϕ) =

 e−ıϕ

e−ıϕ

e2ıϕ

 ;
◦
P =

 1
1
−2

 , (52)

whose infinitesimal generator is proportional to Gell-Mann’s matrix λ8. Let us now render this dynamical by putting
ϕ = ωt. This is completly analogous to the way we describe orbits of planets in Newtonian dynamics by replacing
r ∈ R3 by r(t). We have shown in reference [2] that putting ϕ = ωt in Eq. 43 permits to derive the Dirac equation. Let
now the operator P(ωt) act on F. This will then describe the polarization of a circularly polarized electromagnetic
wave. This permits us to identify the varying electromagnetic field of a circularly polarized photon with a group
element of SU(3). Other group elements could then describe polarization dynamics that are not available to photons.
We have now:

d

dt
P(ωt) = −ıω

◦
PP(ωt). (53)

Let us now consider the action of a static, fixed group element G on P(ωt) We will have then:

d

dt
GP(ωt) = −ıωG

◦
PP(ωt) = −ıωG

◦
PG−1 GP(ωt). (54)

We see thus that while the group elements P and the fields F transform linearly according to P→ GP and F→ GF,

the infinitesimal generators
◦
P, which are vectors of tangent space, transform quadratically according to

◦
P→ G

◦
PG−1,

just like vectors in SU(2).19 With other types of polarization dynamics O(t) we would have the same scheme: O(Ωt)→
GO(Ωt),

◦
O→ G

◦
OG−1, d

dtO(Ωt) = ıΩ
◦
OO(Ωt). We see thus that SU(3) acts linearly on the “vectors” (tensors F) of

physical space while it acts quadratically on the vectors of tangent space. This suggests that we could interpret SU(3)
in terms of polarization modes of fields within particles. The Lie algebra is then a generalized angular-momentum
algebra.20

7 Appendix - Parameter sets for SO(n) and SU(n)

7.1 SO(n)

We have explained in Subsection 2.3 that we can obtain a matrix of SU(n) or of SO(n) by taking the basis vectors of a
given basis as its columns. Parameter sets for SO(n) and SU(n) can thus be constructed by constructing a basis for Rn

19 As explained in reference [1], there are two types of vectors that transform quadratically in SU(2): viz. the vectors of R3

and the vectors of the three-dimensional tangent space to the group manifold (the infinitesimal generators, which are here
proportional to the angular momentum operators). While one could confuse them in SU(2) because they look algebraically
identical, they can no longer be confused in other groups. E.g. the tangent space to the Lorentz group is six-dimensional, while
its physical space is four-dimensional. The Lorentz group acts quadratically on the four-dimensional vectors of space time,
but also on the six-dimensional vectors of its tangent space. Hence all groups act like a spinor formalism on tangent space,
transforming the tangent vectors “quadratically”, while they may not act as a spinor formalism on the vectors of physical space
and transform them linearly. Examples exhibiting such a linear behaviour would be SO(3) en SU(3).
20 Gell-Mann’s construction uses ladder operators to construct various representations of the group. Each particle in the
multiplet corresponds to a representation. Quantization is counterintuive as we are used to quantities that are continuous in
physical space. In the case of angular momentum we get the impression that the directions of physical space are not a continuum.
This is all the more puzzling as in the theory this discreteness is derived from the group theory of a continuous group, which
makes it look as though the theory contains a contradiction. The answer is that quantization is wired into the mathematics by
associating stable states with group representations. Why this is so is not laid down in the mathematics. But once we accept
the principle, quantization corresponds to the fact that the representations of finite rank of a group are forcedly discrete and
thus “quantized”. We can also construct these representations in physical space by making tensor products of representations as
explained in [2]. The ranks of these tensor products are forcedly integer numbers and thus quantized. In the construction of the
multiplets we encounter exactly the same phenomenology of quantization as with angular momentum. We start from a group
SU(3) that is continuous and end up with a discontinous set of members of a multiplet. The discontinuity seems to contradict
the continuity we started from. Note that the quantum numbers also exist if we do not multiply them by ~.
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or Cn by the Gram-Schmidt procedure. The difference between SU(n) and SO(n) resides in the vector spaces they are
acting on and on the definition we use for the scalar product of two vectors a and b in these vector spaces. For SO(n)
we have a ∈ Rn and b ∈ Rn and we use the Euclidean scalar product a · b. For SU(n) we have a ∈ Cn and b ∈ Cn
and we use the Hermitian scalar product < a,b >= a∗·b. We will explain here how to construct the corresponding
bases. Let us note the canonical basis ej , j ∈ [1, n] ∩ N. We are going to define an arbitrarily oriented new basis. The
parameters we will use to define this new basis will become the free parameters that define the SO(n) matrix. We will
do this iteratively in steps. The first step will be to define a new orthonormal basis ηj , j ∈ [1, n] ∩ N for Rn. But this
will only be the first step of the iteration procedure. To highlight the iterative character of the procedure, we will note

ej , j ∈ [1, n] ∩ N as e
(0)
j , j ∈ [1, n] ∩ N. The superscript 0 is here an index for the step in the iterative procdure. We

will thus similarly note ηj , j ∈ [1, n] ∩ N as η
(1)
j , j ∈ Rn. We will also note Rn as Vn. We observe how the spherical

coordinates in R3 are defined by extending the definition of polar coordinates in R2 to R3 by following the scheme:

en → en+1 =

[
cosφn

sinφn [ en ]

]
. (55)

From |en| = 1 it follows then also |en+1| = 1. We can extrapolate this extension scheme to Rn to obtain hyperspherical
coordinates. We use R = 1 all the time:

x = cosφ
y = sinφ

,
x = sin θ cosφ
y = sin θ sinφ
z = cos θ

, · · ·

xn = cosφn−1
xn−1 = sinφn−1 cosφn−2
xn−2 = sinφn−1 sinφn−2 cosφn−3

...
x2 = sinφn−1 sinφn−2 sinφn−3 · · · sinφ2 sinφ1
x1 = sinφn−1 sinφn−2 sinφn−3 · · · sinφ2 cosφ1

. (56)

We must then redub (φ, θ) as (φ1, φ2) to make their notation suitable for use in a general iterative scheme. We have
thus n− 1 free parameters φ1, φ2, · · ·φn−1 to choose a first basis vector:

η
(1)
1 =



cosφn−1
sinφn−1 cosφn−2
sinφn−1 sinφn−2 cosφn−3

...
sinφn−1 sinφn−2 sinφn−3 · · · sinφ2 sinφ1
sinφn−1 sinφn−2 sinφn−3 · · · sinφ2 cosφ1

 . (57)

The parameters φ1, φ2, · · ·φn−1 are curvilinear coordinates for the hypersphere. They satisfy the constraint η
(1)
1 ·η(1)

1 =

1 automatically. The n − 1 vectors η
(1)
j+1 = ∂

∂φj
[η

(1)
1 ], j ∈ [1, n − 1] ∩ N satisfy then automatically the conditions

η
(1)
j ·η

(1)
1 = 0. This identity follows from ∂

∂φj
[η

(1)
1 ·η(1)

1 ] = 0. The vectors η
(1)
j+1 = ∂

∂φj
[η

(1)
1 ], j ∈ [1, n−1]∩N do not yet

satisfy the condition η
(1)
j ·η

(1)
j = 1, but the normalization factor is a trivial common factor that occurs in the non-zero

entries. We continue to use the notation η
(1)
j+1, j ∈ [1, n− 1] ∩ N for the vectors obtained after renormalization. These

n− 1 vectors span now an orthonormal basis for the (n− 1)-dimensional subspace Vn−1 of Vn ≡ Rn that is orthogonal

to η
(1)
1 . We keep from now on η

(1)
1 with its n− 1 free parameters φ1, φ2, · · ·φn−1 fixed. But we will reorient the basis

η
(1)
1 , j = [2, n]∩N within the subspace Vn−1. We can consider thus the n− 1 parameters φ1, φ2, · · ·φn−1 as being used

to select an orientation of the subspace Vn−1 within Vn. The subspace Vn−1 is a hyperplane and φ1, φ2, · · ·φn−1 define
the normal to the hyperplane. Within the (n − 1)-dimensional subspace Vn−1 itself we can reorient the basis at will,

just like we reoriented the n basis vectors η
(1)
j , j ∈ [1, n] ∩ N in Rn = Vn with respect to e

(0)
j , j ∈ [1, n] ∩ N at will.

We therefore consider them as a new canonical basis e
(1)
j , j ∈ [1, n− 1] ∩ N of Vn−1 ≡ Rn−1. With respect to this

basis we introduce now second-level hyperspherical coordinates θ1, θ2, · · · θn−2:

η
(2)
1 =



cos θn−2
sin θn−2 cos θn−3
sin θn−2 sin θn−3 cos θn−4

...
sin θn−2 sin θn−3 sin θn−4 · · · sin θ2 sin θ1
sin θn−2 sin θn−3 sin θn−4 · · · sin θ2 cos θ1

 . (58)
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They constitute n − 2 new free parameters to define the Vielbein. Again, for the sake of generality, we must change

the nomenclature and redub φ1, φ2, · · ·φn−1 as φ
(1)
1 , φ

(1)
2 , · · ·φ(1)n−1 and θ1, θ2, · · · θn−2 as φ

(2)
1 , φ

(2)
2 , · · ·φ(2)n−2. We could

have introduced these notations right from the start, but this would certainly have looked puzzling at that stage of

the development. We can now complete the basis for Rn−1 by introducing η
(2)
j+1 = ∂

∂θj
[η

(2)
1 ], j ∈ [1, n− 2]∩N. We can

now carry on with η
(2)
j , j ∈ [2, n− 1]∩N in a way completely analogous to what we did with η

(1)
j , j ∈ [2, n]∩N. That

is, we have used φ
(2)
1 , φ

(2)
2 , · · ·φ(2)n−2 to define an orientation of a subspace Vn−2 within Vn−1. Within this subspace itself

η
(2)
j , j ∈ [2, n − 1] ∩ N define the new canonical basis e

(2)
j , j ∈ [1, n − 2] ∩ N. This way we obtain iterative scheme of

spaces Vn, Vn−1, · · ·V1, whereby we introduce progressively n + (n − 1) + · · · + 2 + 1 free parameters to define the

orientations of the subspaces Vn−j−1 within the subspaces Vn−j . We construct this way a basis η
(k)
1 , k ∈ [1, n] ∩ N

for Rn. It is defined by n(n − 1)/2 free real parameters which define the complete orientation of a general Vielbein.
The Vielbein stands in one-to-one correspondence with the SO(n) matrix that has to be applied to the canonical

Vielbein to obtain it. It is this matrix which transforms e
(0)
j , j ∈ [1, n] ∩ N into η

(k)
1 , k ∈ [1, n] ∩ N. The basis vectors

η
(k)
1 , k ∈ [1, n] ∩ N of the Vielbein are the columns of the SO(n) matrix.

7.2 SU(n)

We start now from:

η
(1)
1 =



eıχ
(1)
1 cosφ

(1)
n−1

eıχ
(1)
2 sinφ

(1)
n−1 cosφ

(1)
n−2

eıχ
(1)
3 sinφ

(1)
n−1 sinφ

(1)
n−2 cosφ

(1)
n−3

...

eıχ
(1)
n−1 sinφ

(1)
n−1 sinφ

(1)
n−2 sinφ

(1)
n−3 · · · sinφ

(1)
2 sinφ

(1)
1

eıχ
(1)
n sinφ

(1)
n−1 sinφ

(1)
n−2 sinφ

(1)
n−3 · · · sinφ

(1)
2 cosφ

(1)
1


. (59)

The phase parameters can be choosen at will. They do not affect the normalization of η
(1)
1 . We have now 2n− 1 free

parameters, viz. the n − 1 parameters from SO(n) and n phases. We must now consider a subspace V2n−3 of V2n−1.

Here the dimensions 2n − 1 and 2n − 3 are defined with respect to R. We can complete the column vector η
(1)
1 with

n− 1 other column vectors, which will depend on 2n− 3 free real parameters, scattered over n− 1 column matrices.

This can be done by using eıχ
(2)
j ∂

∂φ
(1)
j

[η
(1)
1 ]. That is, we first consider n− 1 vectors of Rn obtained from η

(1)
1 by partial

derivation with respect to φ
(1)
j , j ∈ [1, n− 1]∩N to constitute n− 1 columns. We will be able to reorient these column

vectors in Rn−1 by defining n− 2 free parameters φ
(2)
j , j ∈ [1, n− 2]∩N. To these n− 2 parameters we can add n− 1

phases χ
(2)
j , j ∈ [1, n− 1]∩N. We have then 2n− 3 free real parameters. The chain of spaces is now V2n−1, V2n−3 · · · 1.

However, the last parameter must be used to render the determinant of the matrix equal to 1. The total number of
free parameters is thus (2n+ 1) + (2n− 3) + · · ·+ 5 + 3 = n2 − 1.

7.3 Application to SU(3) to show the limits of an abstract approach

By using this procedure we can derive the following parameterization for a matrix M of SU(3):

M =

 eıχ
(1)
1 cosφ

(1)
2 eıχ

(1)
1 [−eıχ

(2)
1 sinφ

(1)
2 cosφ

(2)
1 ]

eıχ
(1)
2 sinφ

(1)
2 cosφ

(1)
1 eıχ

(1)
2 [ eıχ

(2)
1 cosφ

(1)
2 cosφ

(1)
1 cosφ

(2)
1 − eıχ

(2)
2 sinφ

(1)
1 sinφ

(2)
1 ]

eıχ
(1)
3 sinφ

(1)
2 sinφ

(1)
1 eıχ

(1)
3 [ eıχ

(2)
1 cosφ

(1)
2 sinφ

(1)
1 cosφ

(2)
1 + eıχ

(2)
2 cosφ

(1)
1 sinφ

(2)
1 ]

· · · (60)

e−ı(χ
(1)
2 +χ

(1)
3 ) [ e−ıχ

(2)
2 sinφ

(1)
2 sinφ

(2)
1 ]

e−ı(χ
(1)
1 +χ

(1)
3 ) [−e−ıχ

(2)
2 cosφ

(1)
2 cosφ

(1)
1 sinφ

(2)
1 − e−ıχ

(2)
1 sinφ

(1)
1 cosφ

(2)
1 ]

e−ı(χ
(1)
1 +χ

(1)
2 ) [−e−ıχ

(2)
2 cosφ

(1)
2 sinφ

(1)
1 sinφ

(2)
1 + e−ıχ

(2)
1 cosφ

(1)
1 cosφ

(2)
1 ]

 ,
This requires no insight. All it takes is following the algebraic procedure outlined above, without caring about the
geometry. It is completely abstract and we do not need to know what it means. But as the reader may check, within



G. Coddens: Symmetries of Lorentz tensors 21

such an abstract approach deriving the infinitesimal generators by bluntly taking the partial derivatives with respect
to all parameters will not yield a full set of infinitesimal generators. It is not obvious what kind of one-parameter
sets one must choose. What he needs to understand is that what he wants is an orthonormal basis for tangent space
to the group manifold. This basis must be defined in the space of linear operators L(C3,C3) from C3 to C3. The
orthogonality must thus also be defined, not in C3, but in the space L(C3,C3). The scalar product of two matrices A
and B in L(Cn,Cn) is defined by:

< A,B >=

n∑
j=1

n∑
k=1

a∗jkbjk = Tr (A†B). (61)

Here Tr stands for the trace. The first identity is just based on the fact that the matrices Ejk, with j ∈ [1, n] ∩
N, k ∈ [1, n] ∩ N, which are defined by (Ejk)`,m = δj`δkm, are a basis for L(Cn,Cn). The second identity follows by
straightforward calculation from the first one. Once we have an orthonormal basis for the tangent space, any other
orthonormal basis of the tangent space obtained by an appropriate change of basis from the first one will be as good
a choice as the initial one. It is for this reason that it is quite practical to shortcut the parametrization procedure and
to derive an abstract expression for the infinitesimal generators right ahead from a few algebraic rules as is done in
textbooks. However one may wonder then how all this would work according to the prescription of Eq. 18 and why
all at once one does no longer use this prescription anymore. We also have no longer any clue as to what the defining
parameters are. We do no longer know the full details of the relationship between the Lie algebra and the Lie group.
Very specifically, we do not know which parameter has been varied within the Lie group according to the method
based on Eq. 18 in order to obtain a given infinitesimal generator that has been obtained by the abstract methods.
We also do not know how the abstract basis is oriented with respect to the intuitive basis that we could derive by
using the prescription from Eq. 18. This is all unnecessarily puzzling.
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