
HAL Id: cea-01718669
https://cea.hal.science/cea-01718669

Preprint submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraining screened fifth forces with the electron
magnetic moment

Philippe Brax, Anne-Christine Davis, Benjamin Elder, Leong Khim Wong

To cite this version:
Philippe Brax, Anne-Christine Davis, Benjamin Elder, Leong Khim Wong. Constraining screened
fifth forces with the electron magnetic moment. 2018. �cea-01718669�

https://cea.hal.science/cea-01718669
https://hal.archives-ouvertes.fr
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Chameleon and symmetron theories serve as archetypal models for how light scalar fields can couple to matter
with gravitational strength or greater, yet evade the stringent constraints from classical tests of gravity on Earth
and in the Solar System. They do so by employing screening mechanisms that dynamically alter the scalar’s
properties based on the local environment. Nevertheless, these do not hide the scalar completely, as screening
leads to a distinct phenomenology that can be well constrained by looking for specific signatures. In this work,
we investigate how a precision measurement of the electron magnetic moment places meaningful constraints on
both chameleons and symmetrons. Two effects are identified: First, virtual chameleons and symmetrons run
in loops to generate quantum corrections to the intrinsic value of the magnetic moment—a common process
widely considered in the literature for many beyond-the-Standard-Model scenarios. A second effect, however, is
unique to scalar fields that exhibit screening. A scalar bubble-like profile forms inside the experimental vacuum
chamber and exerts a fifth force on the electron, leading to a systematic shift in the experimental measurement. In
quantifying this latter effect, we present a novel approach that combines analytic arguments and a small number
of numerical simulations to solve for the bubble-like profile quickly for a large range of model parameters.
Taken together, both effects yield interesting constraints in complementary regions of parameter space. While
the constraints we obtain for the chameleon are largely uncompetitive with those in the existing literature, this
still represents the tightest constraint achievable yet from an experiment not originally designed to search for
fifth forces. We break more ground with the symmetron, for which our results exclude a large and previously
unexplored region of parameter space. Central to this achievement are the quantum correction terms, which are
able to constrain symmetrons with masses in the range µ ∈ [10−3.88, 108] eV, whereas other experiments have
hitherto only been sensitive to one or two orders of magnitude at a time.

I. INTRODUCTION

Many laboratory experiments exist today to search for or oth-
erwise strongly constrain deviations from Newtonian gravity
on submillimeter scales [1–4]. These often give tight bounds
on the parameters of hypotheticalYukawafifth forces, although
it has recently become interesting also to consider their impli-
cations for nonlinear scalar fields. It is now known that when
a scalar field is allowed to have both self-interactions and non-
linear couplings to the Standard Model, its phenomenology
becomes markedly different.

A. Chameleon-like particles

Despite the enormous range of possibilities (see [5, 6] for
reviews), a defining feature common to such scalar fields is a
nonperturbative effect known as screening. Screening mech-
anisms drive the scalar to dynamically alter its properties in
response to its surroundings, thus suppressing or enhancing
the fifth force it mediates. Two models of screening are partic-
ularly suited to being tested in the laboratory and have justly
been the focal point of experiments in recent years. The first is
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the chameleonmechanism [7, 8], wherein themass of the scalar
varies accordingly with the ambient density, thus resulting in a
Yukawa-like suppression of the range of its fifth force in dense
environments. The second, dubbed the symmetron [9, 10],
utilizes a Higgs-like potential and the spontaneous breaking of
its Z2 symmetry to couple the scalar to matter when in high
vacuum while decoupling it in dense media. Both models be-
long to the same universality class of scalar-tensor theories,
and serve as archetypal examples of how variations in density
can elicit screening. In this paper, we introduce the blanket
term ‘chameleon-like particle’ (CLP) to make it easier to refer
to this class of models collectively.1
At the time of its introduction, this novel idea of screening

found tremendous success in enabling a CLP’s evasion of the
the stringent fifth force constraints enforced by tests of gravity
on Earth and in the Solar System that were already in place
[2]. However, in some sense this success has been its own
demise; having spurred the onset of a number of dedicated
experiments searching specifically for signatures of screening.
Today, most of the parameter space of the original chameleon
model has been ruled out, leaving only a sliver still out of reach
of current experiments. (See Ref. [4] for a review of current
consraints on CLPs.) In contrast, the space of symmetron
models remains mostly unexplored. This state of affairs is due
primarily to a lack of theoretical work in translating bounds

1 Our choice of nomenclature draws inspiration from and highlights the con-
trast with axion-like particles (ALPs), which are (pseudo)scalar fields that
do not couple to matter.
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from existing experiments conducted for the chameleon, al-
though some of the blame is also borne by the symmetron’s
distinct phenomenology. Many laboratory experiments con-
ducted in vacuum chambers are only sensitive to a small range
of the symmetron mass (discussed further in Sec. V), meaning
a large number of complementary experiments are needed to
probe the parameter space fully. All in all, the question of
whether scalar fifth forces exist in our Universe still remains
open today. Our aim in this paper is to make further progress
in answering this question.

We do so by taking an approach complementary to dedicated
searches: A small number of high-precision experiments con-
ducted and refined over the years have verified the accuracy
of the Standard Model, and QED in particular, to the level of
about one part per trillion. As CLPs are assumed to interact
with all matter species, if present, they can give rise to ad-
ditional effects that might tarnish this spectacular agreement
between experiment and theory. Theoretical work in rean-
alyzing precision QED tests while incorporating the effects
of such scalar fields is therefore interesting, since models in
conflict with known physics can immediately be deemed unvi-
able. Moreover, such work is also useful in elucidating where
in parameter space future searches should direct their focus.

B. Anomalous magnetic moment

In this work, we investigate how the precision measurement
of the electron’s magnetic moment places bounds on both
chameleons and symmetrons. The magnetic moment µ can be
written as

µ = −gµBS

in terms of the spin S and the Bohr magneton µB = e/2me.
(We work in units with ~ = c = 1 throughout.) In the current
state of the art, what is measured experimentally is the dimen-
sionless ratio g/2, which is exactly one for a classical field
governed by the Dirac equation. As is well known, quantum
fluctuations slightly increase this value, making it a promising
probe for the existence of new physics. The difference between
the true and tree-level values is called the anomalous magnetic
moment

a = (g − 2)/2.

To measure this, Hanneke et al. [11, 12] confine a sin-
gle electron in a cylindrical Penning trap, within which an
axial magnetic field and quadratic electrostatic potential are
maintained. The value of a can then be inferred by measur-
ing the eigenfrequencies of the electron in this vacuum cavity.
Three measurements are needed: The cyclotron frequencyωc ,
the anomaly frequency ωa, and the axial frequency ωz , from
which one deduces [12]

aexp =
ωa − ω2

z/(2ωc)
ωc + 3δrel/2 + ω2

z/(2ωc)
+
∆gcav

2
. (1.1)

In this paper, we denote experimentally measured frequencies
ωi with an overline to distinguish them from their theoretical

counterparts. These, along with other experimental details rel-
evant to this work, are discussed further in Sec. III. Two other
quantities are present in Eq. (1.1): A small shift δrel is nec-
essary to include the leading relativistic correction, whereas
∆gcav is put in by hand to account for systematics arising from
the interaction between the electron and radiation modes in
the cavity. These considerations yield a measurement of g/2
precise to 0.28 parts per trillion [11, 12]:

(g/2)exp = 1.001 159 652 180 73 (28).

Just as spectacular an achievement is its agreement with the
Standard Model, which predicts a theoretical value

aSM =
∞∑
n=1

Cn(α/π)n + aew + ahad. (1.2)

The first term is the asymptotic series arising from QED, cal-
culations for which have now been completed up to n = 5 loops
[13, 14]. Also relevant at the experiment’s level of precision
are small contributions from the electroweak and hadronic sec-
tors, encapsulated in the remaining two terms. (See Ref. [15]
for a more in-depth discussion.) The series in Eq. (1.2) takes
as input a value for the fine-structure constant that must be de-
termined experimentally. For this purpose, the most precise,
independent determination of α comes from combining mea-
surements of the Rydberg constant [16] and the ratio h/mRb
obtained from recoil experiments with rubidium atoms [17–
19]. These yield the value

α−1(Rb) = 137.035 999 049 (90),

with the uncertainty dominated by the measurement of h/mRb.
Substituting this into Eq. (1.2), the end result is an agreement
between theory and experiment at 1.7 standard deviations [14],

aSM − aexp = (1.30 ± 0.77) × 10−12. (1.3)

The 1σ uncertainty above is dominated by the errors accrued
in measuring h/mRb.

C. Effects from a CLP

If a CLP exists in our Universe, three additional effects come
into play:

(1) Quantum corrections: Virtual chameleons and sym-
metrons run in loops, generating additional corrections
to the QED vertex function. These slightly increase the
intrinsic value of the electron’s magnetic moment.

(2) Cavity shift: Nonlinear scalar fields invariably form a
bubble-like profile inside vacuum cavities, thus exerting
an additional fifth force on the electron. This shifts its
eigenfrequencies by a small amount ωi → ωi + δωi . Un-
like the intrinsic change in (1), this is a systematic effect
coming from the experimental setup, which must be cor-
rected for to obtain an accurate value of aexp.
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(3) Charge rescaling: Scalars that couple to the photon in-
duce a field-dependent rescaling of the electron charge, or
equivalently, of the fine-structure constant α→ α(φ) [20–
26]. If the local values of φ present in the experiments used
to determine α(Rb) differ from that in the Penning trap,
then α(Rb) must be appropriately rescaled before being
substituted into Eq. (1.2).

All three effects add up to an overall deviation δa. Compati-
bility with Eq. (1.3) requires that this must be constrained, at
the 2σ level, to lie within

|δa + 1.30 × 10−12 | < 1.54 × 10−12. (1.4)

Contributions from both the quantum and cavity effects can
be estimated by considering the experiment of Hanneke et
al. in isolation, but including the variation of the fine-structure
constant requires, in addition, a good understanding of how the
scalar behaves in the experimental setups leading to the value
of α(Rb). This is a far more involved task, which lies beyond
the scope of this paper. For simplicity, we shall assume in
what follows that the value of α is identical in all relevant ex-
periments. This assumption is not expected to have a negative
impact on our results. Considering only the first two effects
is sufficient to provide conservative bounds on the model pa-
rameters, which can only be expected to improve once charge
rescaling is properly taken into account. In fact, only the
bound on the photon coupling has room for improvement; our
constraints for the matter coupling are robust against charge
rescaling since the relevant physics is independent of α.

D. Outline of this paper

The remainder of this paper is organized as follows: The
details that go into quantifying the effect of quantum correc-
tions and the cavity shift are discussed in Secs. II and III,
respectively. Up to this point, the calculations are kept as gen-
eral as possible, and will apply to any nonlinear scalar field
with a canonical kinetic term, a self-interaction potential, and
couplings to the Standard Model. The reader interested pri-
marily in the punchline may prefer to jump directly to Sec. IV.
There, the calculations are completed by specializing to the
chameleon model, and the constraints on parameter space are
determined. The same process is repeated for the symmetron
in Sec. V. We summarize in Sec. VI.

II. QUANTUM CORRECTIONS

The scalar fields we consider couple universally to matter
and mediate a fifth force. At the quantum level, virtual ex-
change of these scalars leads to additional loop corrections to
the QED vertex function, in turn resulting in an increase in the
intrinsic value of the electron’s magnetic moment.

A. Lagrangian

We begin this section by briefly reviewing the ingredients
that constitute chameleon and symmetron models. Both be-
long to the same family of scalar-field theories governed by
the Lagrangian2

L = −1
2
(∂φ)2 − V(φ) + Lm(Ψ, φ), (2.1)

where the Standard Model fields (denoted collectively by Ψ)
and their couplings to φ are encapsulated in the third termLm.
Massive fermions, such as the electron, obey the modified
Dirac equation [27]

Lm ⊃ ψ[i /D −Ω(φ)me]ψ, (2.2)

where Dµ = ∂µ + ieAµ is the usual gauge-covariant derivative,
but the mass term has picked up a dependence on the scalar
via the conformal function3 Ω(φ) > 0. To satisfy the weak
equivalence principle, nonrelativistic fluids with a conserved
density distribution ρ couple to φ via a similar interaction

Lm ⊃ −Ω(φ)ρ. (2.3)

A coupling to the electromagnetic sector is also possible, since
one is not forbidden by symmetries [24, 25]. Here one has the
freedom to specify a different coupling function ε(φ) > 0,
which modifies the kinetic term of the photon to read

Lm ⊃ −
1
4
ε(φ)FµνFµν . (2.4)

As both Ω(φ) and ε(φ) introduce nonrenormalizable oper-
ators into the Lagrangian, these theories should be viewed as
low-energy effective field theories (EFTs) valid only below
some cutoff. Well within this regime, these models typically
satisfy Ω(φ) ≈ 1 and ε(φ) ≈ 1. For this reason, their phe-
nomenology is more aptly framed in terms of the dimension-
less coupling strengths

βm(φ) = MPl
d logΩ
dφ

, βγ(φ) = MPl
d log ε
dφ

, (2.5)

where MPl = (8πGN)−1/2 is the reduced Planck mass. These
theories are most interesting when βm, βγ ≥ 1, corresponding
to interactions that are of gravitational strength or greater.

B. Vertex corrections

To compute loop corrections, let us consider quantum fluc-
tuations χ = φ − 〈φ〉 about the classical background field

2 For the purposes of laboratory experiments, it suffices to work in flat space.
See, e.g., the reviews in Refs. [5, 6] for the covariant form of this action.
Our metric signature is (−, +, +, +).

3 Ω(φ) is often also called A(φ) elsewhere in the literature. In this paper, we
reserve A for referring to the electromagnetic gauge field.
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FIG. 1. Scalar field (dashed line) contributions at one-loop order to
the magnetic moment of the electron.

profile 〈φ〉 in the cavity where g/2 is to be measured. As the
electron remains very close to the center of the cavity (see
Sec. III E), it suffices to take 〈φ〉 ≈ φ0 to be a constant, where
φ0 is the classical field value at the center.
We shall restrict ourselves to the one-loop level, which is

sufficient for determining the leading effect. At this order, the
only influence from V(φ) is a mass term for the χ field, with
mass m0 given by the second derivative

m2
0 = Veff,φφ(φ0) (2.6)

evaluated at the center of the cavity.4 Linearizing Eqs. (2.2)
and (2.4), the interaction terms relevant at this order are [24,
28]

Lm ⊃ −
(
βmme

MPl

)
ψψχ − 1

4

(
βγ

MPl

)
χFµνFµν, (2.7)

where we write βm ≡ βm(φ0) and βγ ≡ βγ(φ0) for brevity.
Overall factors of Ω(φ0) ≈ 1 and ε(φ0) ≈ 1 can be absorbed
into a renormalization of the electron mass me and charge −e,
respectively.

Three Feynman diagrams contribute to the value of g/2 at
one-loop order, as shown in Fig. 1. As these diagrams have
been widely considered for many different scenarios (see, e.g.,
Refs. [15, 29–32]), we shall merely quote their result here
in the main text. For the benefit of the inquisitive reader, a
brief description of how these computations are carried out is
relegated to Appendix A.

The first diagram in Fig. 1(a) gives the finite contribution

δa ⊃ 2β2
m

(
me

4πMPl

)2
I1(m0/me), (2.8)

whereas the remaining two diagrams are UV divergent. After
renormalization in the MS scheme, they yield

δa ⊃ 4βmβγ
(

me

4πMPl

)2 [
log

(
µ

me

)
+ I2(m0/me)

]
, (2.9)

where µ is an arbitrary energy scale. These results are ex-

4 CLPs suffer from the usual hierarchy problem, since heavy particles running
in loops induce large corrections to the scalar’s mass. Some fine tuning
must be tolerated in these theories to keep the classical predictions reliable.

pressed in terms of two integrals,

I1(η) =
∫ 1

0
dx
(1 − x)2(1 + x)
(1 − x)2 + xη2 , (2.10a)

I2(η) =
∫ 1

0
dx

∫ 1

0
dy(x − 1) log[x2 + (1 − x)yη2]; (2.10b)

for which closed-form expressions can be found. For η ≥ 0,
we have

I1(η) =
3
2
− η2 − η2(3 − η2) log η

− η(η2 − 4)1/2(η2 − 1) log

(
η

2
+

√
η2

4
− 1

)
, (2.11a)

I2(η) =
3
2
− η

2

6
+
η2

6
(η2 − 6) log η

+
η

6
(η2 − 4)3/2 log

(
η

2
−

√
η2

4
− 1

)
, (2.11b)

where the principal branch should be taken when η < 2. Al-
ternatively, a piecewise expression for I1 can also be found in
Ref. [31]. Most of the time, however, we shall find ourselves
working in the regime m0 � me, such that it suffices to set
m0/me = 0 in the integrals. Both then evaluate to

I1(0) = I2(0) =
3
2
.

C. Nonrenormalizability

It is worth discussing the result in Eq. (2.9) in more detail.
The scalar-photon coupling χFµνFµν is a dimension-five op-
erator, whose inclusion renders the theory nonrenormalizable.
This plagues the evaluation of the diagrams in Figs. 1(b) and
1(c), as their UV-divergent parts cannot be renormalized into
any of the existing parameters in the Lagrangian we started
with, such as the electron charge or particle masses. This is
not uncommon in a low-energy EFT, and it must be understood
that the scalar-photon coupling cannot remain pointlike up to
arbitrarily high energies. This is dealt with in Ref. [32] by
assuming a sharp momentum cutoff. Here, we shall take an
alternative route compatible with dimensional regularization,
although in practice the end results are similar, since physics
should not depend on the choice of regulator.
The resolution is to recognize that under RG flow, the heavy

degrees of freedom that have integrated out to generate the
scalar-photon coupling must also generate a bare term5

L ⊃ −a0µBψSµνFµνψ (2.12)

5 We have written the coupling as a0µB to make manifest its contribution to
the magnetic moment. Of course, in an EFT language, one should think of
this as a0µB ∼ c5/M?, where c5 is a dimensionless coupling and M? is
the appropriate cutoff scale.
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in the Lagrangian, where Sµν = i
4 [γµ, γν]. The UV diver-

gences that arise at one loop can now be absorbed into coun-
terterms that renormalize a0. This naturally gives an extra
contribution δa ⊃ a0, which, in the absence of knowledge of
theUV completion, is a new parameter to be constrained by ex-
periment. For simplicity, we shall assume the UV completion
is such that a0 is much smaller than the one-loop contributions
in Eqs. (2.8) and (2.9) that it can be safely neglected.

On the other hand, the arbitrary scale µ should in princi-
ple be fixed by measuring g/2 at a given energy, after which
Eq. (2.9) dictates how this changes as we vary the energy of
the experiment. Unlike particle colliders, however, there is an
ambiguity in determining the scale µ of low-energy experi-
ments like the one considered in this paper. Nevertheless, as
µ appears only as the argument of a logarithm, its exact value
is not crucial, and in practice a conservative estimate is to set

log(µ/me) ∼ 1.

III. CAVITY SHIFT

A defining feature of CLPs is their predisposition for form-
ing a bubble-like profile when trapped in a vacuum cavity.
This nontrivial profile will couple to the electron confined to
the center of the Penning trap, exerting a fifth force which
mildly shifts the energies of the electron’s eigenstates. Unlike
the intrinsic change described in Sec. II, this is a systematic
effect arising from considerations of how the experiment is
conducted, which can also be used to place constraints. In this
section, we describe how to account for this cavity shift, and
quantify its contribution to the total deviation δa. Details of
the experiment are described along the way, when needed, but
only at a cursory level sufficient for our analysis. We refer the
interested reader to the original experimental papers [11, 12] or
the associated review [33] for a more comprehensive account.

A. Vacuum cavity profile

The electron’s magnetic moment is measured using what is
called a one-electron quantum cyclotron. In this setup, a single
electron is trapped in a cylindrical vacuum cavity of radius r0
and half-height z0. The values of all experimental parameters,
and themeasured frequencies, are curated in Table I. A uniform
magnetic field

B = B0ẑ (3.1a)

is established within the cavity to split the energy levels of the
electron’s spin states. A quadratic electrostatic potential6

V =
V0

2d2

(
r2

2
− z2

)
(3.1b)

6 This expression differs by an overall sign from Ref. [33] because we use the
convention that the electron has charge −e. In our case, both constants e
andV0 are positive.

TABLE I. Values of the experimental parameters and frequencies, re-
produced from Refs. [11, 12]. Up to small differences, the theoretical
frequencies {ω+, ω0, ωz } are approximately related to their experi-
mentally measured counterparts by ω+ ≈ ω0 ≈ ωc and ωz ≈ ωz .
(See text in Secs. III D and III F for details.)

Magnetic field B0 5.36 T
Electrode potential difference V0 101.4 V
Cavity radius r0 4.5 mm
Cavity height 2z0 7.7 mm
Cyclotron frequency ωc/2π 150 GHz
Anomaly frequency ωa/2π 174 MHz
Axial frequency ωz/2π 200 MHz
Magnetron frequency ω−/2π 133 kHz

is also present to keep the electron close to the center, where
the constant

d = (r2
0/4 + z2

0/2)
1/2 ≈ 3.5mm

can be thought of as a characteristic length scale of the trap.
The profile of the scalar inside the vacuum cavity is deter-

mined by solving its field equation in the static limit,

∇2φ = Veff,φ, (3.2)

where the comma on the rhs denotes a derivative. It follows
from the Lagrangian in Sec. II A that the effective potential
differentiates to give

Veff,φ = V,φ +
βm(φ)ρ

MPl
+
βγ(φ)ρem

MPl
. (3.3)

The electromagnetic energy density ρem = (B2 −E2)/2 that
enters on the rhs is given by Eq. (3.1) in the interior of the
cavity, while it can be assumed that it is unappreciable in
the exterior. The distribution ρ of matter is assumed to be
piecewise constant, such that

ρ =

{
ρcav inside the cavity (r < r0, |z | < z0),
ρwall in the surrounding walls.

While no direct measurement of the density of gas ρcav in the
cavity has been made, an estimate from a similar trap design
places an upper bound on the number density of atoms at
100 cm−3 [12, 34]. Assuming this remains true for the current
implementation, and taking the average mass of a molecule to
be that of nitrogen, we estimate

ρcav . 5 × 10−18 kgm−3.

On the other hand, the trap electrodes and vacuum con-
tainer surrounding the cavity are composed primarily of silver,
quartz, titanium, and molybdenum [12], which have typical
densities

ρwall & 3 × 103 kgm−3.
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For the two-dimensional cylindrical geometry considered
here, an analytic solution to Eq. (3.2) is not known. We post-
pone a full numerical solution of this equation to Secs. IV and
V, where we specialize to chameleon and symmetron models,
respectively. Nevertheless, we can continue to make analytic
progress in this section because the experiment is cooled to an
extremely low temperature T ∼ 100mK, such that the electron
remains very close to the center of the cavity. (We shall be
more quantitative about this in Sec. III E.) Whatever the field
profile is, it can be Taylor expanded about the center, which
we take to be the origin, as

φ ' φ0 + φrr
r2

2r2
0
+ φzz

z2

2z2
0
. (3.4)

The central field value φ0 is a local maximum, hence we must
have φrr, φzz < 0. Reflection symmetry in all three spatial di-
rections ensures that the expansion contains only even powers
of r and z. Quartic and higher-order terms have been neglected
since they are suppressed by additional powers of 〈r2/r2

0 〉 � 1
and 〈z2/z2

0〉 � 1.

B. Electromagnetic corrections

The coupling function ε(φ) should be thought of as a relative
permittivity of the vacuum, since it appears in the Maxwell
equations as

∂ν(εFµν) = Jµ . (3.5)

The presence of a nontrivial scalar profile φ polarizes the
vacuum, generating bound charges and currents that go on to
source corrections to the bare electromagnetic fields. In a
previous paper [35], two of us showed that, at least in the case
of the spectral lines of hydrogen-like atoms, this effect is large
enough that it must be included. Moreover, it led to terms that
allow a constraint on βγ independently of βm. Given the large
magnetic field in the cavity, it is worth exploring if the same
is true for this experiment.

Solving Maxwell’s equations perturbatively in the Lorenz
gauge, the first-order corrections are given by

∇2δAµ =
βγ(φ)
MPl

F(0)µν ∂
νφ, (3.6)

where F(0)µν describes the bare (zeroth-order) electric and mag-
netic fields, as given in Eq. (3.1). Restricting ourselves to the
quadratic terms in Eq. (3.4), the correction to the electrostatic
potential is

δV =
V0

2d2
βγ(φ0)

MPl

(
φrr

r4

16r2
0
− φzz

z4

6z2
0

)
, (3.7)

whereas the magnetic field receives corrections of the form

δA = B0φrr
βγ(φ0)

MPl

r2

8r2
0
(yx̂ − xŷ), (3.8a)

δB = −B0φrr
βγ(φ0)

MPl

r2

2r2
0

ẑ. (3.8b)

C. Hamiltonian

The electron at the center of the Penning trap is ade-
quately described by nonrelativistic quantum mechanics. In
this limit, the modified Dirac equation in Eq. (2.2) reduces to
the Schrödinger equation with Hamiltonian [27, 36]

H =
(p + eA)2

2me
− eV + gµBB · S +Ω(φ)me, (3.9)

where subleading terms of the form ∼ O(Ωp2) have been
discarded. Ignoring the constant mass term, this Hamiltonian
can be split into two parts,

H = H0 + δH.

The unperturbed Hamiltonian, for which the eigenstates can
be determined exactly, is

H0 =
π2

2me
− eV + gµBB · S, (3.10)

where the mechanical momentum is defined as π = p+ eA. It
should be understood that the electromagnetic fields appearing
here take their bare values, as in Eq. (3.1). We work in the
gauge A = (B × x)/2. The remaining terms, which we shall
treat with linear perturbation theory, are

δH =
me

MPl
βmδφ − eδV + µB(2π · δA + gδB · S). (3.11)

We write δφ to mean the quadratic terms in Eq. (3.4), have
resumed writing βm ≡ βm(φ0) and βγ ≡ βγ(φ0) for brevity,
and have once again absorbed factors ofΩ(φ0) into the electron
mass me (see Sec. II B).

D. Unperturbed eigenstates

The unperturbed Hamiltonian in Eq. (3.10) can be split into
three mutually-commuting parts,

H0 = Hr + Hz + Hs .

The radial, axial, and spin interaction parts are, respectively,

Hr =
1

2me
(π2

x + π
2
y) −

1
4

meω
2
zr2, (3.12a)

Hz =
1

2me
π2
z +

1
2

meω
2
z z2, (3.12b)

Hs =
g

2
ω0Sz . (3.12c)

These expressions are written in terms of the (bare) cyclotron
frequency ω0 and the axial frequency ωz , given by

ω0 = eB0/me, ωz = (eV0/med2)1/2. (3.13)

It should already be clear at this stage that the axial motion,
governed by Hz , simply corresponds to a harmonic oscillator
with frequency ωz . Making the transformation

z =
1

√
2meωz

(az + a†z ), πz = −i
√

meωz

2
(az − a†z ) (3.14)
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allows us to write

Hz = ωz

(
a†zaz + 1

2

)
(3.15)

in terms of creation and annihilation operators. It turns out
that the same is true for the radial motion, which can be diag-
onalized to form two decoupled oscillators. To see this, first
define two more frequencies ω± via [33]

2ω± = ω0 ± (ω2
0 − 2ω2

z )1/2, (3.16)

and denote their difference by∆ω = ω+−ω−. Then, bywriting

x =
i

√
2me∆ω

(ac − a†c + am − a†m),

y = − 1
√

2me∆ω
(ac + a†c − am − a†m),

πx =

√
me

2∆ω
[ω+(ac + a†c) − ω−(am + a†m)],

πy = i
√

me

2∆ω
[ω+(ac − a†c) + ω−(am − a†m)], (3.17)

we ultimately end up with

H0 = ω+

(
a†cac + 1

2

)
+ ωz

(
a†zaz + 1

2

)
− ω−

(
a†mam + 1

2

)
+
g

2
ω0Sz . (3.18)

An eigenstate of this system |nc, nz, nm,ms〉 is specified by
four quantum numbers: Three of these correspond to the oc-
cupation numbers ni = 〈a†i ai〉 = 0, 1, 2, . . . of the harmonic
oscillators, whereas the fourth is the spin state ms = ±1/2.
Physically, the oscillators with frequencies {ω+, ωz, ω−}

correspond to cyclotron, axial, and magnetron motion, respec-
tively (see Sec. II of Ref. [33] for further details). That ω+ is
slightly larger than the bare cyclotron frequency ω0 is due to
the confining effect of the electrostatic potential, and note the
minus sign appearing in front of ω− in Eq. (3.18) makes clear
that magnetron motion is unstable and unbounded from below.
Based on the parameters of the experiment (see Table I), these
frequencies satisfy the hierarchy

ω+ � ωz � ω−. (3.19)

E. Axial and magnetron motion

This large hierarchy ensures that both the axial and mag-
netron motions are semiclassical. When measurements of the
anomalous and cyclotron frequencies are beingmade, the axial
motion is in thermal equilibrium with the detection amplifier
circuit at a temperature Tz ∼ 230mK [12]. The average axial
quantum number is thus given by

nz ∼ kBTz/ωz ∼ 24.

Similarly, the magnetron motion thermalizes with a temper-
ature Tm ∼ −(ω−/ωz)Tz , assuming maximum axial sideband

cooling [12, 33]. This relation sets the axial and magnetron
quantum numbers equal to each other,

nm ∼ nz ∼ 24.

The negative temperature here again represents the fact that
magnetron motion is unstable. Nevertheless, its decay time is
on the order of billions of years, such that the state ismetastable
on the timescale of the experiment [12, 33].
These estimates justify us truncating the scalar field profile

to quadratic order in Eq. (3.4). For nc ∼ 1, the expectation
values 〈

r2

r2
0

〉
=

2(nc + nm + 1)
me∆ωr2

0
∼ 10−10, (3.20a)〈

z2

z2
0

〉
=

nz + 1/2
meωz z2

0
∼ 10−7 (3.20b)

demonstrate that the spread of the electron wavefunction in-
deed remains very close to the center of the cavity.

F. Frequency shifts

Three frequencies must be measured experimentally to de-
termine the electron’s magnetic moment. These are defined as
follows:

(1) The measured cyclotron frequency ωc is obtained by ex-
citing the electron from the state (nc,ms) = (0, 1/2) →
(1, 1/2) at fixed nz and nm. Taking the difference in the
expectation values 〈H〉 for these two states, we get

ωc = ω+ −
3
2
δrel + δωc . (3.21a)

Note that the scalar-induced shift δωc refers to the terms
arising from computing 〈δH〉 at first order. Explicit ex-
pressions for all δωi are given together below in Eq. (3.22).
In Eq. (3.21a), we have also added in by hand the lead-
ing relativistic correction δrel/ω+ ≈ 10−9 relevant at the
experimental precision [12, 33].

(2) The measured anomaly frequencyωa is similarly obtained
by the excitation (nc,ms) = (1,−1/2) → (0, 1/2). This
yields

ωa =
g

2
ω0 − ω+ + δωa . (3.21b)

(3) The measured axial frequency ωz corresponds to the tran-
sition |∆nz | = 1, with all other quantum numbers fixed.
This yields

ωz = ωz + δωz . (3.21c)

While the result does not change significantly, for definite-
ness we define ωz as being the average energy for the two
transitions nz → nz ± 1.

The three scalar-induced shifts are
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δωc =
φrr

MPlr2
0

[
βm
∆ω
−

βγω0

2me∆ω

(g
2
+ (2nm + 3)ω+

∆ω

)
+ (nm + 1)

βγω
2
z

2me∆ω2 − (2nm + 1)
βγω0ω−

2me∆ω2

]
, (3.22a)

δωa = −
φrr

MPlr2
0

[
βm
∆ω
+ (2nm + 3)

βγω0

2me∆ω

(g
2
− ω+
∆ω

)
+ (nm + 1)

βγω
2
z

2me∆ω2 − (2nm + 1)
βγω0ω−

2me∆ω2

]
, (3.22b)

δωz =
φzz

MPlz2
0

[
βm
2ωz
− (2nz + 1)

βγ

8me

]
. (3.22c)

At the moment, Eqs. (3.21) and (3.22) form a set of three
simultaneous equations that relate g/2 to the measured fre-
quencies ωi = (ωc, ωa, ωz) and the theoretical parameters
ωi = (ω0, ωz, ω+, ω−). We infer the value of the magnetic mo-
ment by eliminating all instances of ωi to obtain an expression
for g/2 that depends only on ωi . This is necessary since ωi

are the only quantities measured to a high enough precision.
To do so requires two more independent equations. These are
provided by the definitions of ω± in Eq. (3.16), which can be
rearranged to read

ω0 = ω+ + ω−, ω− = ω
2
z/(2ω0). (3.23)

Note that these relations are exact for an ideal Penning trap,
but are also approximately true in the presence of small imper-
fections of a real trap due to the hierarchy of Eq. (3.19) and an
invariance theorem [37].

This set of five simultaneous equations will yield an approx-
imate solution of the form

(g/2)exp = 1 + aexp + δacav,

where the zeroth-order term aexp is independent of the CLP,
while the scalar-induced effects are encapsulated in the first-
order correction δacav. Owing to the highly nonlinear depen-
dence of Eq. (3.22) on ωi , the desired result is most easily
obtained in two stages. First, we solve this set of simultaneous
equations at zeroth order by ignoring the scalar-induced shifts
δωi . This is easy enough and returns (g/2)exp = 1+ aexp, with
aexp given unsurprisingly by Eq. (1.1) as before.
We then reintroduce the frequency shifts δωi by perturbing

aexp to first order to obtain the ‘cavity shift’7

δacav = −
∑
i

∂aexp
∂ωi

δωi . (3.24)

The shifts δωi that appear on the rhs are functions of ωi and
g/2, but can now be recast in terms of ωi by using the zeroth-
order relations in Eqs. (1.1), (3.21), and (3.23) once more.
Throughout both stages, judicious use of the hierarchy in

7 Theminus sign is crucial, and reflects the fact thatωi are still the parameters
to be eliminated. It can most easily be traced back to seeing that Eqs. (3.21)
can be rearranged such that their lhs’s read ωi − δωi .

Eq. (3.19) was made to keep only the terms relevant at the
level of the experimental precision. The end result is

δacav =
βm

MPlω
2
c

(
φrr

r2
0
+
φzz

2z2
0

)
−

βγ

MPlω
2
c

(
ωa

2me

φrr

r2
0
+

49ωz

8me

φzz

z2
0

)
. (3.25)

Note that the coefficient of φzz in the second line contains a
factor of 2nz +1 = 49. Notice also that the second line, arising
from the classical vacuum polarization effect due to the photon
coupling (Sec. III B), is strongly suppressed by factors of

ωa/me ∼ ωz/me ∼ 10−12.

As a consequence, this effect is unable to place any mean-
ingful constraint on the photon coupling. While we initially
imagined that the large magnetic field in the cavity would be
helpful for such a purpose, on the contrary, it turns out to offer
little advantage because of the particular combination of fre-
quencies that have to be measured. The correction δA couples
to the orbital angular momentum while δB couples to the spin
in the Hamiltonian [see Eq. (3.11)], and the two contributions
approximately cancel out when computing δacav. The leading
effect that survives is due to the correction δV to the electro-
static potential. This is much smaller, since the ratio of the
electric to magnetic energy densities is

E2

B2 ∼
V2

0

B2
0 d2
∼ 10−10. (3.26)

Moving forward, we shall neglect any effect of the photon
coupling on the cavity shift. Fortuitously, the combination of
second derivatives in the first line of Eq. (3.25) is exactly the
Laplacian evaluated at the origin. Use of Eq. (3.2) allows us
to rewrite this in terms of Veff,φ , such that

δacav =
βm(φ0)Veff,φ(φ0)

2MPlω
2
c

. (3.27)

This effect contributes to the total deviation as δa ⊃ −δacav,
where the minus sign can be traced back to the relative sign
between aSM and aexp in Eq. (1.3).
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IV. CHAMELEON CONSTRAINTS

We have seen so far that a CLP generates additional quan-
tum corrections and an experimental cavity shift that together
contribute to a total deviation δa. This must be constrained
according to Eq. (1.4) to respect the agreement between the
StandardModel prediction and the experimental measurement
of the electron’s magnetic moment. Individual contributions
to δa are given in Eqs. (2.8), (2.9), and (3.27). In these equa-
tions, the calculations were carried out in complete generality,
and the results are expressed in terms of the coupling strengths
βm(φ0) and βγ(φ0), and the first derivative of the effective po-
tential Veff,φ(φ0). Crucially, all three quantities depend only
on the choice of model and the central field value φ0. To com-
plete the calculation and determine the constraints on param-
eter space, we must simply specify the former and determine
the latter. We do so for the chameleon in this section, and for
the symmetron in the next.

The prototypical chameleon model assumes an inverse
power-law potential8 [7, 39, 40]

V(φ) = Λ
4+n

φn
(n > 0) (4.1)

and coupling functions of the form

Ω(φ) = exp
(
φ

Mc

)
, ε(φ) = exp

(
φ

Mγ

)
. (4.2)

With these definitions, the dimensionless coupling strengths

βm =
MPl

Mc
, βγ =

MPl

Mγ
(4.3)

are independent of the value of the field. Putting these together,
the effective potential differentiates to

Veff,φ = −
nΛ4+n

φn+1 +

(
ρ

Mc
+
ρem
Mγ

)
. (4.4)

While, in principle, all of parameter space is open to explo-
ration, focus has primarily been devoted to models in which Λ
is chosen to be near the dark energy scale, Λ = 2.4meV. This
choice makes the chameleon cosmologically relevant, if we
view the potential in Eq. (4.1) as just the leading φ-dependent
term in an expansion

V(φ) = Λ4 f (Λn/φn) ' Λ4 +
Λ4+n

φn
, (4.5)

assumed to arise from nonperturbative effects [41]. The con-
stant piece Λ4 has no effect on laboratory scales, but is an
alternative to ΛCDM for driving the accelerated expansion of
the Universe. (See Refs. [41, 42] for more on the cosmology
of the chameleon.)

8 Note that the chameleon mechanism can also be realized with positive
power-law potentials, V (φ) ∝ φ2s with integer values of s ≥ 2 [38],
although we shall not consider such models in this work.

A. Analytic estimates

As stated in Sec. III A, it is difficult to solve Eq. (3.2)—either
exactly or approximately—for the chameleon profile in the
interior of the Penning trap. This is because the cavity radius
and height are of the same size, so the problem is strictly two-
dimensional. However, as we are interested only in the central
field value φ0, it turns out that analyzing an analogous one-
dimensional cavity suffices to capture the most salient features
of the solution. We discuss this one-dimensional ‘toy model’
first, before turning to a numerical solution of the cylindrical
geometry proper in Sec. IVB.
The toy model in question is the following: Consider a

plane-parallel cavity in the region z ∈ [−l, l] surrounded by
walls on either side extending to infinity. The density of matter
is assumed to be piecewise constant, such that

ρ =

{
ρcav z ∈ [−l, l],
ρwall otherwise.

We shall neglect the electric field in the cavity, as its energy
density is much smaller than that of the magnetic field; see
Eq. (3.26). In doing so, the electromagnetic energy density is
also piecewise constant,

ρem '
{

B2
0/2 z ∈ [−l, l],

0 otherwise.

In this setup, Eq. (3.2) then reduces to

d2φ

dz2 = Veff,φ . (4.6)

An exact solution to this equation is known [43–45], but
only for n ∈ {1, 2} and when the interior of the cavity is pure
vacuum. This is not general enough for our purposes. Instead,
we use a standard technique to approximate the solution by
solving linearized versions of Eq. (4.6) inside and outside
the cavity, and imposing matching conditions at the adjoining
boundaries [8, 10, 46, 47]. The linearized field equations are

d2φ

dz2 '
{

m2
0(φ − φ0) + V ′0 |z | ≤ l,

m2
∞(φ − φ∞) |z | > l .

(4.7)

In the interior of the cavity, we have expanded about the as-
of-yet unknown central field value φ0. The effective mass m0
was defined previously in Eq. (2.6) as the second derivative
m2

0 = Veff,φφ(φ0) evaluated at the center. The constant term
V ′0 := Veff,φ(φ0). Deep inside the walls, the chameleon will
asymptote to the field value φ∞ which minimizes the local
effective potential, Veff,φ(φ∞; ρ = ρwall) = 0. Solving this
equation yields

φ∞ =

(
nΛ4+nMc

ρwall

)1/(1+n)
. (4.8)

We have thus expanded the field equation in the walls about
this point, with a mass m2

∞ = Veff,φφ(φ∞) similarly defined.
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Solving these equations brings about four integration con-
stants, which are determined uniquely by the boundary condi-
tions. Two of them are

dφ
dz

����
z=0
= 0, φ(z → ±∞) = φ∞, (4.9)

while the remaining two come from imposing continuity of
φ(z) and its first derivative at |z | = l. With these considera-
tions, the solution in the cavity (|z | ≤ l) is

φ(z) = φ0 −
V ′0
m2

0
−
(φ0 − φ∞ − V ′0/m

2
0) cosh(m0z)

cosh(m0l) + (m0/m∞) sinh(m0l), (4.10a)

whereas the solution in the walls (|z | > l) is

φ(z) = φ∞ +
(φ0 − φ∞ − V ′0/m

2
0)e
−m∞( |z |−l)

1 + (m∞/m0) coth(m0l) . (4.10b)

An implicit equation for the central field value φ0 is ob-
tained by demanding the solution in Eq. (4.10a) satisfy the
self-consistency condition

φ(z = 0) = φ0. (4.11)

Two approximations can bemade to simplify this result. (Their
implications and validity are discussed in the next two sub-
sections.) First, let us assume that once in the walls, the
chameleon quickly reaches its limiting value φ∞. By inspect-
ing Eq. (4.10b), this will be true if m∞ � m0. Second, let us
also assume that the interior of the cavity is pure vacuum, such
that V ′0 ' −nΛ4+n/φn+1

0 . When both these assumptions hold,
Eq. (4.11) simplifies to

cosh(m0l) = n + 2. (4.12)

This result admits an intuitive physical interpretation: In
a vacuum cavity, the chameleon adjusts itself until its local
Compton wavelength m−1

0 is on the order of the size of the cav-
ity l [8]. This feature appears to be generic. A similar calcula-
tion can be found in Ref. [48] for the case of an infinitely-long
cylindrical cavity. The same result was obtained, except with
the hyperbolic cosine replaced by the modified Bessel function
of the first kind.

We expect this result to extend to higher dimensions also,
although now the function appropriate to the geometry is not
known. To proceed, we first note that Eq. (4.12) can be ap-
proximated by

m2
0l2 ' 17.4

n + 1.05
n + 10.5

(4.13)

for n of order unity, where the rhs is the [1/1]-order Padé
approximant of [cosh−1(n + 2)]2 about n = 1. For arbitrary
(convex) cavity shapes, we conjecture that this generalizes to

m2
0l2 ' n + 1

n + δ
, (4.14)

where δ is a constant depending on the geometry and any
overall normalization of the rhs can been absorbed into the

FIG. 2. Best-fitting analytic approximation (dashed line) to the central
field value φ0 of the chameleon in the cylindrical vacuum cavity for
different values of n withΛ = 2.4meV, compared with the numerical
results (black dots). The lower plot displays the percentage difference
between the numerical and analytic results: All points agree to less
than one percent.

constant l, which should now be thought of as a characteristic
length scale of the cavity. Rearranging this equation and using
the definition of m0, we predict that the central field value has
a dependence on Λ and n given by

φ0 '
[
n(n + δ)Λ4+nl2]1/(2+n)

. (4.15)

The two constants (l, δ) act as free parameters which should
be tuned to best fit the numerical results.

B. Numerical results

We determine the full, nonlinear chameleon profile in the
cylindrical Penning trap numerically by integrating Eq. (3.2)
through successive under-relaxation using the Gauss-Seidel
scheme [49] for 12 values of n ∈ (0, 13) with Λ = 2.4meV.
Our code has been previously used to study similar problems
in Ref. [50], where more details on the method can be found.
The dependence of φ0 on n is shown in Fig. 2, alongside the
best-fitting analytic approximation, given in Eq. (4.15). The
values of the best-fitting parameters are9

l = 1.40mm, δ = 2.78.

For illustrative purposes, we also present the full chameleon
profile for n = 1 in Fig. 3. The profiles for the remaining
values of n are qualitatively similar.
Our approach is tractable only under two simplifying

assumptions—the same as were made in the preceding subsec-
tion. We now give them names and discuss their implications:

9 These values, and analogous ones in Sec. V, were determined using the
native NonlinearModelFit routine in Mathematica.
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FIG. 3. Chameleon profile in the cylindrical vacuum cavity for n = 1
andΛ = 2.4meV. The field value along the innermost contour is 90%
of the value at the origin. Moving outwards, successive contours are
80%, 70%, etc. of the central field value. The field reaches 10% near
the boundary of the cavity, before quickly plummeting to φ ≈ 0 once
inside the walls.

(1) Zero-skin-depth approximation: We assume that the
chameleon approaches its limiting value φ∞ rapidly once
inside the walls, such that we can approximate φ ≈ φ∞ ≈ 0
at the boundary of the cavity. This is exactly true in the
limit ρwall →∞, but will hold in practice provided

m2
0 � m2

∞. (4.16)

This approximation is essential, because in reality thewalls
of the cavity do not extend to infinity. By assuming that
the chameleon quickly reaches φ∞, we are assured that
it has effectively decoupled itself from everything else
happening beyond the walls, so that it is safe to neglect the
complicated configuration of apparatuses surrounding the
cavity.

(2) Perfect-vacuum approximation: We also assume that the
interior of the cavity is a perfect vacuum. This is formally
the limit ρcav, ρem → 0, but will hold in practice provided

ρcav
Mc
+
ρem
Mγ
� nΛ4+n

φn+1
0

. (4.17)

This approximation is computationally convenient because
the chameleon field equation reduces to

∇2φ = −nΛ4+n

φn+1 (4.18)

in this limit. It is obvious that the central field value φ0
can then only depend on Λ and n. More importantly, this
equation admits the scaling symmetry

Λ→ fΛ, φ→ f (4+n)/(2+n)φ, (4.19)

hence it suffices to perform the numerical integration for
just one value of Λ; all other solutions are then accessible
by rescaling.

C. Constraints

The chameleon model contains four free parameters
(n,Λ, Mc, Mγ) which we wish to constrain. In terms of these
parameters, the total deviation δa takes the form

δa =
1

2Mcω
2
c

nΛ4+n

φn+1
0
+ 3

(
me

4πMc

)2
+

10
McMγ

(me

4π

)2
, (4.20)

where the first term is due to the cavity shift, while the remain-
ing two arise from the quantum corrections.
The cavity shift term exhibits a strong dependence on the

central field value φ0, which we can predict reliably using
Eq. (4.15) only when both the zero-skin-depth (ZSD) and
perfect-vacuum (PV) approximations are valid. As the limit
ρ→ 0 is equivalent to taking Mc, Mγ →∞, these approxima-
tions are easily satisfied in some regions of parameter space,
but break down in others. (The boundary at which this hap-
pens is estimated in Appendix B.) For easy reference, we shall
refer to the region where both the ZSD and PV approximations
hold as the numerically accessible region (NAR). Outside this
NAR, we no longer have a good sense for how φ0 behaves,
and consequently cannot determine constraints arising from
the cavity shift. In contrast, the quantum correction terms
extend well beyond the NAR, since this effect has virtually
no dependence on φ0 as long as m0 � me. (The boundary
at which this approximation breaks down is also discussed in
Appendix B.) Regions of parameter space excluded at the 95%
confidence level by the cavity shift and quantum corrections
are shown, separately, in Fig. 4.
For n = 1 and Λ = 2.4meV, the chameleon field pro-

file near the center is sufficiently flat that the cavity shift
has no impact within the NAR. The constraints in Fig. 4(a)
are thus set entirely by the quantum corrections. Note that
the effect of the photon coupling only becomes noticeable
for log10(Mγ/MPl) . −16, although couplings in the region
. −15.4 are already ruled out from considering collider ex-
periments [28]. We therefore find that the electron’s magnetic
moment places no meaningful constraint on the photon cou-
pling scale Mγ. This statement is true for all values of Λ
and n, since the quantum corrections are independent of these
parameters, at least at leading one-loop order.

Focusing on the matter coupling scale Mc now, the quantum
corrections provide a universal lower bound

log10(Mc/MPl) & −16.7

independent of Λ and n, as shown in Fig. 4(b). This is a weak
constraint, stemming from the small ratio (me/Mc)2 � 1 that
sets the scale of the quantum corrections. Other experiments
domuch better. Most notably, a different precision QED test—
measurement of the 1S–2S transition in hydrogen—gives a
slightly better lower bound log10(Mc/MPl) & −14 [35, 36].
The best lower bound to date, however, comes from atom
interferometry [50–55]. Depending on the value of n, the
lower bound is between −4 to just under −2.5.
Moving away from the dark energy scale, increasing Λ

drives the chameleon to climb to a larger central field value.
When this happens, the cavity shift dominates untilΛ becomes
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FIG. 4. (Color online) Constraints on chameleon models due to the electron magnetic moment. The shaded regions are excluded at the
95% confidence level. The panels correspond to the following slices in parameter space: (a) n = 1, Λ = 2.4meV; (b) Λ = 2.4meV,
βγ := MPl/Mγ = 0; (c) n = 1, βγ = 0. Numerical limitations mean that the cavity shift can be computed reliably only when both the
zero-skin-depth and perfect-vacuum approximations are valid (see Sec. IVB for details). This corresponds to the region above the solid line,
and below or to the left of the dotted line. Inside this region, the constraints arising from the cavity shift are shaded in gray. Outside this region,
only the constraints from the quantum corrections (pink), which are still reliable, are shown.

FIG. 5. Constraints on the chameleon due to the electron magnetic
moment in the Mc–Λ plane. Parameters in the shaded region are
excluded for the n = 1 chameleon at the 95% confidence level. The
regions to the left of the solid, dotted, and dashed lines rule out
parameters for other illustrative values of n.

too large, at which point we impinge on the boundary of the
NAR. The end result is a triangular-shaped region excluded by
this effect, as shown in Fig. 4(c). For n = 1, the lower bound
on Mc extends all the way out to log10(Mc/MPl) = −10 when
Λ ≈ 300 eV. The shape of the excluded region is qualitatively
similar for other values of n, as shown in Fig. 5.

A comparison of our constraints with those from a selec-
tion of other experiments is shown in Fig. 6 for the n = 1
chameleon. Although we do not cover any new region of pa-
rameter space not already ruled out by other experiments, it
is worth remarking that our results represent the tightest con-
straints yet achievable by an experiment not originally designed

FIG. 6. (Color online) The constraining power of the electron mag-
netic moment for the n = 1 chameleon, compared with a selection of
other experiments [36, 55–59]. See Ref. [4] for details on all existing
constraints.

to search for fifth forces.

V. SYMMETRON CONSTRAINTS

The symmetron model is characterized by a Higgs-like,
double-well potential

V(φ) = −1
2
µ2φ2 +

λ

4
φ4 (5.1)



13

and coupling functions

Ω(φ) = 1 +
φ2

2M2
s

+ O
(
φ4

M4
s

)
,

ε(φ) = 1 +
φ2

2M2
γ

+ O
(
φ4

M4
γ

)
(5.2)

consistent with the field’s φ→ −φ symmetry. Differentiation
gives the field-dependent dimensionless coupling strengths

βm(φ) = MPl
φ

M2
s

, βγ(φ) = MPl
φ

M2
γ

(5.3)

to leading order. Taken altogether, these yield an effective
potential

Veff(φ) =
1
2
µ2

(
ρ

µ2M2
s

+
ρem

µ2M2
γ

− 1

)
φ2 +

λ

4
φ4. (5.4)

A. Analytic estimates

As we did for the chameleon, it is helpful to first consider an
analogous plane-parallel cavity whose solution will elucidate
the relevant physics. Unlike the chameleon, this simple toy
model admits an exact solution even in the presence of matter,
provided only that it is distributed in a piecewise-constant
fashion. The only spatially-varying source of matter is the
energy density in the electric field, which for all intents and
purposes is small enough to be neglected [recall Eq. (3.26)].
Doing so, the symmetron’s field equation can be integrated up
once to give(

dφ
dz

)2
=
µ2

2

(
ρ

µ2M2
s

+
ρem

µ2M2
γ

− 1

)
φ2 +

λ

4
φ4 + const., (5.5)

with the constant determined by boundary conditions.
Inside the cavity, let us define an effective mass scale

µ2
0 = µ

2

(
1 − ρcav

µ2M2
s

− ρem

µ2M2
γ

)
, (5.6)

which must satisfy µ2
0 > 0 as a necessary condition if the

symmetron is to break its Z2 symmetry. When this is the case,
we expect the field to climb to an as-of-yet unknown value φ0
in the center, assumed to be a local maximum satisfying

dφ
dz

����
z=0
= 0. (5.7)

Indeed, if the cavity were infinitely large, the field would have
sufficient room to minimize its effective potential, such that
φ0 → ±µ0/

√
λ. As this gives the largest possible value for |φ0 |,

it is convenient to define a dimensionless scalar field

ϕ =
φ

µ0/
√
λ

(5.8)

with range ϕ ∈ [−1, 1]. With this definition, the symmetron
field equation inside the cavity (|z | ≤ l) becomes

1
µ2

0

(
dϕ
dz

)2
= −(ϕ2 − ϕ2

0) +
1
2
(ϕ4 − ϕ4

0), (5.9)

which crucially depends only on the parameter µ0. This first-
order differential equation can be integrated to yield [60]

− µ0z
ϕ0√
2v2
= F

(
sin−1

(
ϕ(z)
ϕ0

)
, v

)
− K(v), (5.10)

where we have chosen the positive branch ϕ(z) > 0 without
loss of generality, and have defined v2 = ϕ2

0/(2 − ϕ
2
0). This

result is expressed in terms of the elliptic integrals of the first
kind

F(u, v) =
∫ u

0

dθ
√

1 − v2 sin2 θ
, (5.11)

and K(v) = F(π/2, v). From the definitions of the Jacobi
elliptic functions

sn(u, v) = sin F−1(u, v),
cn(u, v) = cos F−1(u, v),

dn(u, v) =
√

1 − v2sn2(u, v), (5.12)

this can be inverted to give

ϕ(z) = ϕ0 sn
(
−µ0z

ϕ0√
2v2
+ K(v), v

)
. (5.13)

As a final step, note that the elliptic functions satisfy the iden-
tity

sn(u + K(v), v) = cn(u, v)
dn(u, v) =: cd(u, v), (5.14)

where the function cd is even in its first argument. Hence, the
exact solution for the symmetron field in the cavity is (see also
Ref. [61])

ϕ(z) = ϕ0 cd
(
µ0z

ϕ0√
2v2

, v

)
. (5.15)

Similarly, the solution in the walls (|z | ≥ l) is governed by
the equation

1
µ2

0

(
dϕ
dz

)2
=

(
µ∞
µ0

)2
ϕ2 +

1
2
ϕ4, (5.16)

made to satisfy the boundary condition ϕ(|z | → ∞) = 0. The
corresponding effective mass scale µ∞ is defined by

µ2
∞ = µ

2
(
ρwall

µ2M2
s

− 1
)
, (5.17)

which must be positive to restore the Z2 symmetry in this
region.
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FIG. 7. (a) The central field value ϕ0 of the symmetron in a plane-parallel cavity is determined by finding the root(s) of the function B(ϕ0),
shown for two illustrative values µ0 = 0.1meV (dashed line) and 0.45meV (solid line). (b) Symmetron profiles corresponding to the roots
ϕ0 ≈ {0.26, 0.90, 1.00} for µ0 = 0.45meV are shown as dashed, dotted, and solid lines, respectively. (c) The largest root ϕ0 as a function of
the mass scale µ0. In all three panels, illustrative values µ∞ = 1 eV and l = 3.5mm are used.

If we were so inclined, Eq. (5.16) can then be integrated to
give the exact solution in the walls, with the integration con-
stant determined by requiring continuity of ϕ at the boundary
|z | = l. A self-consistency equation for ϕ0 is then obtained by
also demanding continuity of the first derivatives. However,
as we are here only interested in the solution within the cavity,
this process can be sidestepped in favor of a shortcut. An
equivalent self-consistency condition can be obtained by sub-
stituting Eq. (5.15) into Eq. (5.16) evaluated at |z | = l. This
yields an implicit equation for the central field value ϕ0.

Said again in different words, we can solve for ϕ0 by search-
ing for the root of the function

B(ϕ0; µ0, µ∞, l) =
(
µ∞
µ0

)2
ϕ2 +

ϕ4

2
− 1
µ2

0

(
dϕ
dz

)2
�����
z=l

, (5.18)

where ϕ(z) on the rhs is given by Eq. (5.15). The function
B(ϕ0) is drawn for two illustrative values of µ0 in Fig. 7(a).
Above a certain threshold value of µ0, the function begins
to admit multiple roots. Each root is a valid solution of the
field equation, with smaller values of ϕ0 corresponding to
field configurations with an increasing number of nodes, as
seen in Fig. 7(b). For an intuitive picture, we should view a
symmetron bubble as a solitonic object of a certain minimum
width specified by µ0. If the length scale set by this mass
matches the size of the cavity, µ0l ∼ O(1), then a single
bubble can be contained within the walls. For larger values of
µ0, the characteristic size of each solitonic packet decreases,
and thus it becomes possible to fit multiple nodes within the
same available space. In fact, when this is the case, we can
relax the boundary condition in Eq. (5.7) to also allow for odd
solutions in the cavity. Such solutions are discussed further in
Ref. [61].

In an experimental setup, however, it is natural to expect
that the symmetron will occupy the state of lowest free energy,
corresponding to the solution with only one antinode. This is
given by the largest root ϕ0; which is shown as a function of µ0
in Fig. 7(c). This curve is also easy to understand intuitively:
For very small values of µ0, the symmetron has too large a
Compton wavelength and is unable to resolve the size of the
cavity, thus remains in its symmetry-unbroken phase, ϕ0 = 0.

At a threshold value of µ0l ∼ 1.6, the field is finally able to
support a bubble that can fit within the cavity, and the curve
starts to grow. For larger values of µ0, the curve starts its
plateau at ϕ0 ≈ 1 when the Compton wavelength is sufficiently
small that the field almost immediately reaches the minimum
of its effective potential once inside the cavity. This qualitative
picture holds also when we generalize to the two-dimensional
cylindrical case in the next subsection.

B. Numerical results

The same numerical scheme as discussed in Sec. IVB is
used to solve for the symmetron profile inside the cylindrical
vacuum cavity. As we saw earlier, for this model the presence
of piecewise-constant distributions of matter can be accounted
for exactly by defining effective mass scales µ0 and µ∞, hence
only the zero-skin-depth (ZSD) approximation is needed. To
recap, this assumes that the symmetron rapidly reaches its
limiting value φ = 0 once inside the walls, such that the field is
essentially decoupled from its greater surroundings. Formally
this is the limit ρwall or µ∞ → ∞, but will hold in practice
provided

µ2
0 � µ2

∞. (5.19)

We have performed the numerical integration for 15 val-
ues of µ0 in the range log10(µ0/eV) ∈ (−4,−3), with the
results of the dimensionless central field value ϕ0 shown in
Fig. 8. The curve has a similar shape to what we found in
the one-dimensional case, beginning its rise above zero at
µ0 ∼ 10−3.88 eV and reaching the plateau by µ0 ∼ 10−3.39 eV.
For illustrative purposes, the full symmetron profile for the
intermediate value µ0 = 10−3.82 eV is shown in Fig. 9.
With some educated guessing, we have found that the curve

in Fig. 8 can be well described by an empirical formula. Our
starting point is the function B(ϕ0) in Eq. (5.18), the roots of
which give the correct value of ϕ0 in the one-dimensional case.
Imposing the ZSD approximation, the limit µ∞ → ∞ reduces
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FIG. 8. Best-fitting analytic approximation (dashed line) to the di-
mensionless central field value ϕ0 of the symmetron in the cylindrical
vacuum cavity for different values of µ0, comparedwith the numerical
results (black dots). The lower plot displays the percentage difference
between the numerical and analytic results: All points agree to less
than one percent, except the first three near µ0 = 10−3.9 eV where ϕ0
differs from zero only in the eighth (or higher) decimal place. Any
discrepancy here is of no concern, since the numerical accuracy is
unreliable for such small values of the field.

FIG. 9. Symmetron profile in the cylindrical vacuum cavity for
µ0 = 10−3.82 eV. The field value along the innermost contour is 90%
of the value at the origin. Moving outwards, successive contours are
80%, 70%, etc. of the central field value. The field reaches φ = 0
once at the walls.

this to the problem of finding the root of

ϕ(z = l) = ϕ0 cd
(
µ0l

ϕ0√
2v2

, v

)
= 0. (5.20)

Finally, we introduce an ad hoc parameter δ that deforms the
solution away from the plane-parallel geometry, such that the
new implicit equation for ϕ0 is

ϕ0 cd
(
(µ0l)1+δ ϕ0√

2v2
, v

)
= 0. (5.21)

This is given in terms of two free parameters (l, δ) which
we should fit to the numerical data. Roughly speaking, the

role of the characteristic length scale l is to fix the point at
which the curve starts to rise above zero. The deformation
parameter δ then tells us how quickly the curve reaches its
plateau. The best-fitting parameters for the cylindrical Penning
trap considered here are

l = 1.96mm, δ = 0.70.

C. Constraints

The symmetron model is specified by four parameters
(µ, λ, Ms, Mγ) which we now constrain. In terms of these
parameters, the total deviation δa takes the form

δa =
µ4

0ϕ
2
0(1 − ϕ

2
0)

2ω2
cM2

s λ
+

(me

4π

)2 2µ2
0ϕ

2
0

M4
s λ

I1(m0/me)

+
(me

4π

)2 4µ2
0ϕ

2
0

M2
s M2

γλ
[1 + I2(m0/me)], (5.22)

where the first term is due to the cavity shift, while the re-
maining two arise from the quantum corrections. Unlike the
chameleon which always satisfies m0/me � 1, the effective
symmetron mass in the cavity

m2
0 = Veff,φφ(φ0) = µ2

0(3ϕ
2
0 − 1) (5.23)

can be made arbitrarily large by increasing the value of µ.
For this reason, we have retained the integrals I1 and I2 in
Eq. (5.22).

1. Matter coupling only

It is instructive to first neglect the photon coupling and
focus on the subspace (µ, λ, Ms). Regions excluded at the
95% confidence level are shown in Fig. 10. Notice that the
cavity shift term in Eq. (5.22) is proportional to ϕ2

0(1−ϕ
2
0), thus

switches offwhen ϕ0 = 0 or ϕ0 = 1. In terms of the symmetron
mass, this means that the cavity shift exerts an appreciable
force only in the small range µ ∈ [10−3.88, 10−3.39] eV (see
Fig. 8).10 In Fig. 10(a), constraints are shown for the illustrative
value µ = 10−3.82 eV = 0.15meV, which we have specifically
chosen because it maximizes the quantity ϕ2

0(1− ϕ
2
0), and thus

(approximately) maximizes the size of the cavity shift.
This sensitive dependence on µ is the reasonwhy other labo-

ratory experiments hitherto have left the symmetron parameter
space mostly unexplored. Atom interferometry experiments
[55, 62], for instance, place meaningful bounds only in the
range µ ∈ [10−5, 10−4] eV, whereas an analysis of torsion pen-
dula [60] has so far only considered the range [10−4, 10−2] eV.
This does not present an obstacle for the electronmagnetic mo-
ment experiment, however, because in addition to the cavity

10 In most of the parameter space probed by this experiment, the mass scales
µ and µ0 are essentially equivalent, and will be used interchangeably.
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FIG. 10. (Color online) Constraints on symmetron models due to the electron magnetic moment in the limit of a negligible photon coupling
Mγ → ∞. The shaded regions are excluded at the 95% confidence level. Constraints arising from the cavity shift (gray) and quantum
corrections (blue) are shown separately for the case µ = 10−3.82 eV in (a). Numerical limitations mean that these constraints can be computed
reliably only when the zero-skin-depth (ZSD) approximation is valid, which explains the sharp cutoff for large Ms , as indicated by the vertical
dashed line. Furthermore, the quantum correction terms are valid only in the weak coupling regime, corresponding to the region sandwiched
between the dotted lines. Finally, no constraints are given for sufficiently small values of λ when the EFT itself becomes unworkable, as shown
by the solid line (see text in Sec. VC 1 for more details). The combined constraints from the cavity shift and quantum corrections are shown
together as one shaded region in (b) and (c) for different values of µ. The same limits from assuming the ZSD approximation, weak coupling,
and a valid EFT apply to each shaded region. For comparison, the region ruled out by torsion balance experiments [60] for µ = 10−3 eV is
also shown in (b). In (c), observe that the parameter space is unconstrained for µ < 10−3.88 eV, which is when the symmetron remains in its
symmetry-unbroken phase inside the cavity. This same effect is responsible for the sharp cutoff at low Ms in (a) and (b).

shift, there exists also quantum correction terms that survive
up to much larger values of µ, which are primarily responsible
for the constraints in Figs. 10(b) and 10(c).

Having said that, not all of parameter space is accessible to
this experiment. As always with the symmetron, the parameter
space is unconstrained when spontaneous symmetry breaking
fails to occur inside the cavity. This is the case for all values of
(λ, Ms, Mγ) when µ < 10−3.88 eV. For larger masses, symme-
try breaking occurs only above a minimum value of Ms , which
explains the sharp cutoff at low Ms seen in Figs. 10(a) and
10(b). At the other end, the ZSD approximation breaks down
beyond a maximum value of Ms—shown by the right vertical
dashed line—at which point the central field value ϕ0 can no
longer be reliably predicted from Eq. (5.21). Since every term
in Eq. (5.22) depends strongly on ϕ0, constraints cannot be
reliably determined to the right of this boundary. (Appendix B
describes how this boundary is estimated.)

Further limitations must be taken into account when de-
termining the constraints arising from the quantum correc-
tions. First, our perturbative approach requires a weak self-
coupling11

λ . 1/6. (5.24a)

11 Recall that λ appears in the potential as V (φ) ⊃ λφ4/4. However, when
computing Feynman diagrams, the combinatorial factors are simplest if we
organize the perturbative expansion in powers of λ′, where λ′/4! = λ/4.
Imposing the condition λ′ . 1 explains the factor of 1/6 in Eq. (5.24a).

For the same reason, the Yukawa-like, scalar-matter coupling
must also be weak [cf. Eq. (2.7)],

βm(φ0)me

MPl
=
µ2

0ϕ0me
√
λM2

s

. 1. (5.24b)

For sufficiently small values of λ, the EFT itself becomes
unworkable. For a rough estimate of when this happens, we
shall deem it a necessary condition that the functions Ω(φ)
and ε(φ) do not deviate too far from unity. Inside the cavity,
the (classical) symmetron field reaches a maximum value of
at most φ0 = µ/

√
λ, so our condition is satisfied provided

µ2

2λM2
s

. 1,
µ2

2λM2
γ

. 1. (5.24c)

The boundary lines demarcating the regions in parameter space
that satisfy these conditions are shown in Fig. 10(a). To prevent
an overcrowded plot, they are not drawn again in Figs. 10(b)
and 10(c), nor in the remaining figures that follow, although it
should be understood that they continue to be in effect.
One last subtlety must be brought to light. Our calcula-

tions for the quantum corrections also fail to hold when the
symmetron becomes tachyonic at the center (m2

0 < 0). Rather
than signaling any kind of severe pathology with the theory,
this merely indicates that we can no longer neglect the spatial
variation of 〈φ〉 when computing the quantum corrections. As
such a calculation is beyond the scope of this paper, we have
simply forgone placing constraints when this occurs. Luckily
this does not affect the end results much, and explains why
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FIG. 11. Constraints on the µ = 10−3 eV symmetron due to the electron magnetic moment. The regions of parameter space excluded at the
95% confidence level are shown as two-dimensional slices for different values of (a) Mγ , (b) Ms , and (c) λ. We show constraints only for weak
couplings λ . 1/6 which are amenable to our perturbative approach. Other approximations are also responsible for moulding the final shape
of the shaded regions shown here. These are discussed towards the end of Sec. VC 1, and are primarily responsible for the awkward shapes of
the bottom edges.

FIG. 12. Constraints on the symmetron due to the electron magnetic moment for different values of µ. Shaded regions denote the values of the
parameters in the Ms–Mγ plane that are excluded at the 95% confidence level for each value of λ. We show constraints only for weak couplings
λ . 1/6 which are amenable to our perturbative approach. In the µ = 10−3.82 eV panel, the slice for the largest value of λ does not extend as far
to the left and bottom as the others. This is because the quantum correction terms responsible for this slice suffer from a tachyonic instability
near the edges, when ϕ0 < 1/

√
3 (see the last paragraph of Sec. VC 1 for details).
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the shaded region due to the quantum corrections in Fig. 10(a)
does not extend as far to the left as the cavity shift.

2. Photon coupling

We now discuss the constraints on the symmetron when the
photon coupling Mγ is included. For an illustrative value of
µ = 10−3 eV, the region in the (λ, Ms, Mγ) subspace that is
excluded is shown in Fig. 11. As before, the bottom edges
of each shaded region in Figs. 11(a) and 11(b) correspond
to the boundary beneath which the weak coupling limit and,
further down, the EFT itself stop being valid. These con-
ditions correspond to Eqs. (5.24b) and (5.24c), respectively,
and are universal to all experiments.12 For this reason, the
most essential information to be gained from this experiment
is encapsulated in the top edges of the shaded regions, which
give the lower bound on λ that remains viable. Evidently, this
lower bound on λ increases for fixed (µ, Ms) as we decrease
Mγ. This information is most efficiently conveyed in a ‘top
view’ plot as shown in Fig. 11(c).

To observe the dependence on the symmetron mass, top-
view plots for different values of µ are shown in Fig. 12. For
µ . 10−3 eV, the photon coupling has no noticeable effect,
whereas the shapes of the shaded regions are qualitatively
similar for all µ > 10−3 eV. As we increase µ, the left and
bottom edges of each slice in the Ms–Mγ plane move further
left and bottom, owing to the fact that spontaneous symmetry
breaking in the cavity can occur for smaller values of Ms and
Mγ. This continues on until about µ ∼ 10 eV, when the oppo-
site begins to occur and the edges retreat towards the top-right
corner of the plot. This happens simply because Eqs. (5.24b)
and (5.24c) break down in larger and larger regions of param-
eter space as µ increases. When we reach µ ∼ 108 eV, the
theory becomes completely unworkable in the range of Ms

and Mγ accessible to this experiment, such that no constraint
can be placed.

Viewed from this perspective, the shaded regions in the
Ms–Mγ plane for a given value of λ strongly resemble the
chameleon constraints in the Mc–Mγ plane of Fig. 4(a). The
effect of the photon coupling only becomes noticeable below
a certain value of Mγ, and the lower bound depends on the
specific value of Ms . This behavior can of course be traced
back to the quantum correction terms, where the photon cou-
pling always appears in tandem with the matter coupling when
restricted to leading one-loop order. Recall in the case of the
chameleon that we spent no effort illustrating the weak con-
straints on the photon coupling any further, since they were
found to be uncompetitivewith those already placed by collider
experiments [28]. The same might be true for the symmetron,
although no work has yet been done to translate the bounds
and demonstrate this definitively. Indeed, to our knowledge,

12 More precisely, Eq. (5.24b) applies only to experiments probing the quan-
tum nature of the symmetron for which a perturbative calculation is un-
avoidable, whereas Eq. (5.24c) applies in all cases.

this paper represents the first attempt at constraining the sym-
metron’s coupling to photons.

VI. CONCLUSION

Decades of exceptional work by theorists and experimen-
talists alike have now verified the accuracy of the Standard
Model, and QED in particular, to about one part per trillion.
Beyond achieving their original objective, we have shown that
precision tests of QED can also be used to place meaningful
constraints on the existence of chameleon-like particles (CLPs)
that mediate screened fifth forces. In this work, we considered
the implications of the precisionmeasurement of the electron’s
magneticmoment, focusing on twomain scalar-induced effects
that could arise.
First, the virtual exchange of CLPs generates additional loop

corrections to the QED vertex function, since the scalars are
assumed to couple to electrons and photons with gravitational
strength or greater (see Sec. II). This leads to an increase in
the intrinsic value of the magnetic moment, which must be
constrained to be less than ∼ 10−12 lest it ruin the remarkable
agreement between experiment and the Standard Model pre-
diction. Second, nonlinear self-interactions drive the scalar to
form a bubble-like profile within the cylindrical vacuum cavity
of the experiment. This scalar profile exerts an additional fifth
force on the electron confined to the Penning trap, thus per-
turbing its energy eigenvalues. A systematic shift of this form
can also be used to place constraints, since the magnetic mo-
ment is determined experimentally bymeasuring the transition
frequencies between energy levels (see Sec. III).
Accurate estimates of these effects require knowledge of the

value of the scalar field at the center of the cavity, which can
only be determined by fully solving the nonlinear field equa-
tion. The absence of any known closed-form solution—either
approximate or exact—for the case of the cylindrical geometry
considered here has led to a somewhat novel, semi-empirical
approach. It has already been shown that a chameleon in a vac-
uum cavity satisfies a resonance condition such that its local
Compton wavelength is dynamically adjusted to match the size
of the cavity [48]. In this paper, we have shown this explicitly
for the case of a plane-parallel cavity by obtaining an approx-
imate, one-dimensional solution. Through well-motivated ar-
guments, the solution to this toy model was then deformed to
describe more arbitrary convex cavity shapes. The resulting
empirical formula for the central field value is a function of
only two free parameters, which are tuned to best fit the full
numerical solutions carried out for a small number of points
in parameter space (see Sec. IV).
We found that the quantum corrections were able to place a

universal bound of log10(Mc/MPl) & −16.7 for the chameleon
model, independent of the values of (Λ, n). However, for val-
ues nearΛ ≈ 300 eV, the cavity shift dominates to give a much
better lower bound of log10(Mc/MPl) & −10. While this part
of parameter space is already constrained by other laboratory
experiments, the bound determined here represents the tight-
est constraint yet achieved by an experiment not originally
intended to search for fifth forces.
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Our results are able to break even more ground for the
symmetron (see Sec. V). Again, a deformation of the one-
dimensional solution to a plane-parallel cavity results in an
empirical formula with only two free parameters that can be
tuned to fit the numerical results with a high degree of accu-
racy. With this in hand, we saw that the cavity shift places
constraints only for a small range of the symmetron mass,
µ ∈ [10−3.88, 10−3.39] eV. This limitation is unsurprising, and
is generic to any laboratory experiment that probes the effect
of the symmetron’s fifth force. When µ is too small, the associ-
ated Compton wavelength is too large such that the symmetron
is unable to resolve the size of the vacuum cavity, and thus re-
mains in the symmetry-unbroken phase. On the other end
of the spectrum, the fifth force is strongly Yukawa-suppressed
when µ is too large, resulting in a field profile that is essentially
flat in the cavity except near the walls.

Nonetheless, the electron magnetic moment has an added
advantage over other experiments that have hitherto provided
constraints on the symmetron. The quantum corrections are
able to yield constraints regardless of the value of µ, pro-
vided only that the mass is large enough to enable spontaneous
symmetry breaking, and small enough that the effective field
theory remains valid. As a result, this experiment has probed,
and decisively ruled out, a large and previously unexplored
region of parameter space in the range µ ∈ [10−3.88, 108] eV
for couplings (Ms, Mγ) around the GeV scale.
To conclude, this work provides a clearer picture of the

space of CLP models that remain viable in this Universe, now
more than ever. Our results also suggest a new direction for
future work: While dedicated fifth-force experiments such as
atom interferometry and torsion balances may well provide the
best sensitivities in a given mass range near the meV scale, it
will be interesting to explore other experiments that exploit
the quantum nature of the symmetron in the hopes of covering
large regions of parameter space more efficiently.
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APPENDIX A: ONE-LOOP FEYNMAN DIAGRAMS

In this Appendix, we briefly outline the calculations that
lead to the results in Eqs. (2.8) and (2.9). The steps taken here
are all standard techniques; easily found in any introductory
QuantumFieldTheory textbook. Our conventions follow those
of Ref. [63], except that we take the electron to have charge
−e, meaning our constant e > 0.
The electron magnetic moment is determined by computing

the renormalized QED vertex function Γµ(p, p′), where we
take p to be the momentum of the incoming fermion, p′ to
be that of the outgoing fermion, and let q = p′ − p be the
momentum of the ingoing photon. We have normalized by a
factor of −ie, such that the tree-level contribution is

Γ
µ
tree-level = γ

µ .

Our theory respects Lorentz invariance,U(1) gauge invariance,
and CP-symmetry, hence the most general form of this vertex
is

Γ
µ = F1(q2)γµ + F2(q2)

(
−iSµνqν

me

)
(A1)

when the external fermions are on-shell. In Sec. II, recall we
defined Sµν = i

4 [γµ, γν], with the gamma matrices satisfying
{γµ, γν} = −2ηµν . The functions F1,2 are typically called the
electric and magnetic form factors. The constant electric part
F1(0) is a renormalization of the electron charge, which can be
set to F1(0) = 1 exactly in an on-shell renormalization scheme.
The constant magnetic part is exactly the anomalous magnetic
moment, F2(0) = a.
A scalar field, like the chameleon or symmetron, contributes

via three Feynman diagrams to this vertex at the one-loop level,
shown in Fig. 1. The first of these, in Fig. 1(a), involves only
the Yukawa-like matter coupling, and we shall refer to this as
the Yukawa-type diagram. The remaining diagrams involve
the photon coupling, and are sometimes called Barr-Zee-type
diagrams [32, 64].
For brevity, we shall soonwrite integrals over d-dimensional

loop momenta and over Feynman parameters, respectively, as∫
l

=

∫
ddl
(2π)d

,∫
[n]
= (n − 1)!

∫ 1

0
dx1· · ·

∫ 1

0
dxnδ

(∑
i

xi − 1

)
.

Yukawa-type diagram

Standard Feynman rules dictate that the contribution of
Fig. 1(a) to the vertex function is

iΓµ(a) =
β2
mm2

e

M2
Pl

∫
l

(−/l − /p′ + me)γµ(−/l − /p + me)
[(l + p′)2 + m2

e][(l + p)2 + m2
e][l2 + m2

0]
.
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Using Feynman parametrization and defining a new integration
variable k = l + x1p + x2p′, this becomes

iΓµ(a) =
β2
mm2

e

M2
Pl

∫
[3]

∫
k

Nµ
(a)

(k2 + D(a))3
, (A2)

where the numerator and denominator are

Nµ
(a) = (−/l − /p

′ + me)γµ(−/l − /p + me)|l=k−x1p−x2p′,

D(a) = x1(1 − x1)p2 + x2(1 − x2)p′2 − 2x1x2p · p′

+ (x1 + x2)m2
e + x3m2

0 . (A3)

As Nµ
(a) sits under an integral over all k, terms linear in k

vanish upon integration. For this same reason, terms quadratic
in k will simplify to

Nµ
(a) ⊃ /kγ

µ/k = d − 2
2

k2γµ, (A4)

where the equality holds only under the integral. The integrand
is now a function only of k2, and the loop integral can be
performed using the standard formula∫

k

(k2)a
(k2 + D)b

= i
Γ(b − a − d/2)Γ(a + d/2)
(4π)d/2Γ(b)Γ(d/2)

D−(b−a−d/2).

(A5)
The factor of i on the rhs appears from Wick rotation. The
terms in the numerator quadratic in k integrate to give a log-
divergent piece proportional to γµ. This is a contribution only
to F1, and is merely a renormalization of the electron charge.
For our purposes, the terms of interest sit in the k-independent
part of Nµ

(a). Let us refer to this as

Nµ
(a) ⊃ (/Q1 + me)γµ( /Q2 + me) =: nµ(a), (A6)

where Q1 = x1p − (1 − x2)p′ and Q2 = x2p′ − (1 − x1)p.
We can simplify this further, since we only care about Γµ

on-shell. This is when it sits in an S-matrix element of the
form u(p′)Γµu(p)Aµ(q). The external photon Aµ is classical
and off-shell, corresponding to the large magnetic field in the
cavity. Writing u ≡ u(p) and u′ ≡ u(p′), the momentum
eigenstates of the fermion satisfy

/pu = −meu, u′/p′ = −meu′. (A7)

The spin indices on u, u′ have been suppressed as they are not
essential here.

The name of the game now is to reorder the terms in nµ(a) by
using the anticommutation relations such that use can be made
of Eq. (A7). The end result is

nµ(a) = [4m2
e − (1 − x3)2m2

e − x1x2q2]γµ

− me(1 − x3)(1 + x3)(p′ + p)µ

+ me[(2x1 − x2
1) − (2x2 − x2

2)](p
′ − p)µ . (A8)

The final line changes sign under the exchange x1 ↔ x2,
whereas the remainder of the integrand is unchanged. Hence,

this term vanishes upon integration over the Feynman param-
eters. We then use the Gordon identity

u′(p′ + p)µu = u′(2meγ
µ + 2iSµνqν)u (A9)

to recast the second line into a form comparable to Eq. (A1).
As before, terms proportional to γµ contribute only to F1, and
are not interesting to us. After integration over k with d = 4,
the contribution to F2 is

F2,(a)(q2) = β2
m

(
me

4πMPl

)2 ∫
[3]

(1 − x3)(1 + x3)
D(a)(q2)/m2

e

. (A10)

Setting p2 = p′2 = −m2
e and q2 = 0, the denominator D(a)

when on-shell takes the form

D(a)(0) = (1 − x3)2m2
e + x3m2

0 .

Integrating over x1 and x2, and renaming x3 as just x returns
the desired result in Eq. (2.8).

Barr-Zee-type diagrams

We can now repeat the same steps for the remaining dia-
grams. The contribution from Fig. 1(b) is

iΓµ(b) =
βmβγme

M2
Pl

∫
l

(/l + me)γν[(l + p)µqν − q · (l + p)ηµν]
[l2 + m2

e][(l + p′)2 + m2
0](l + p)2

.

Defining k exactly as before, this can be rewritten as

iΓµ(b) =
βmβγme

M2
Pl

∫
[3]

∫
k

Nµ
(b)

(k2 + D(b))3
. (A11)

In terms of a constant matrix ∆µναβ = δ
µ
αδ

ν
β − ηαβηµν , the nu-

merator and denominator are

Nµ
(b) = (/l + me)γν(l + p)αqβ∆µναβ |l=k−x1p−x2p′,

D(b) = x1(1 − x1)p2 + x2(1 − x2)p′2 − 2x1x2p · p′

+ x2m2
0 + x3m2

e . (A12)

The terms in Nµ
(b) linear in k vanish upon integration, so

we need again only pay attention to the terms quadratic in and
independent of k. The former simplifies to

Nµ
(b) ⊃ /kγνkαqβ∆µναβ = −i

4k2

d
Sµνqν . (A13)

Again, we note that the second equality holds only under the
integral. This contributes a log-divergent piece to F2, which
we regulate by performing the integral in d = 4 − ε dimen-
sions. In the MS scheme, we keep the coupling strengths βi
dimensionless by pulling out an explicit mass dependence,

βi → βi µ̃
ε/2,
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where the arbitrary mass scale µ is defined via µ2 = 4πe−γE µ̃2

in terms of the Euler-Mascheroni constant γE . Performing the
momentum integral, we get

F2,(b)(q2) ⊃ βmβγ
(

me

4πMPl

)2 ∫
[3]

[
2
ε
+ log

(
µ2

D(b)

)]
. (A14)

The O(1/ε) term is removed by an appropriate counterterm
(discussed in Sec. II C). Working on-shell, the denominator is

D(b)(0) = x2
3m2

e + x2m2
0 .

We integrate over x1, rename x3 = x, and make the change of
variables x2 = (1 − x)y to bring this into the form

F2,(b)(0) ⊃ 2βmβγ
(

me

4πMPl

)2 [
log

(
µ

me

)
+ I2

(
m0

me

)]
, (A15)

where the integral I2 is given in Eq. (2.10b). This is half
of the desired result in Eq. (2.9). Unsurprisingly, the other
half comes from evaluating Fig. 1(c), which turns out to give
exactly the same contribution as Fig. 1(b) when on-shell.

Given we have already obtained the desired outcome, we
are left to show that the terms independent of k in Nµ

(b) and
Nµ
(c) do not contribute to F2(0). As the manipulations are near

identical, we shall describe the general procedure only for Nµ
(b).

Its k-independent terms are

Nµ
(b) ⊃ (/l + me)γν(l + p)αqβ∆µναβ |l=−x1p−x2p′ =: nµ(b). (A16)

Once again, we begin by employing the anticommutation
relations to reorder terms until Eq. (A7) can be judiciously
applied. We find

nµ(b) =

(
2x2 −

x2
3
2

)
q2meγ

µ + 2x1x2q2iSµνqν, (A17)

having also used the Gordon identity in Eq. (A9). Its contribu-
tions to both F1 and F2 are proportional to q2, so do not affect
either the electric charge or the anomalous magnetic moment.

APPENDIX B: NUMERICALLY ACCESSIBLE REGION

Several approximations had to be made in this paper in
order that the numerical work remain tractable. These approx-
imations are valid only in certain regions of parameter space,
outside of which our calculations are not trustworthy. In this
Appendix, we briefly discuss how we estimate the boundaries
of this so-called numerically accessible region (NAR).

Chameleon

For the chameleon model, we assumed the zero-skin-depth
(ZSD) and perfect-vacuum (PV) approximations, which cor-
respond to Eqs. (4.16) and (4.17), respectively. Here, we make
these statements more precise.

The ZSD approximation is implemented numerically by fix-
ing the field at the value that minimizes its local effective po-
tential once it reaches the walls. In reality, the field cannot
achieve this instanteously, but rather decays to the minimum
within a distance set by its Comptonwavelengthm−1

∞ . This fact
is compatible with the ZSD approximation provided m−1

∞ can-
not be resolved by our numerical code. Following Ref. [50],
we therefore require that the Compton wavelength be at least
an order of magnitude smaller than the numerical grid spacing
for this approximation to be valid,

m−1
∞ <

lgrid
10

. (B1)

We used a grid spacing lgrid = 0.1mm in all three spatial direc-
tions for the chameleon. Naturally, the Compton wavelength
in the vacuum chamber m−1

0 is much larger than lgrid, hence
satisfying Eq. (B1) is sufficient to guarantee we also satisfy
Eq. (4.16).
A different tactic is required to determine when the PV

approximation breaks down. To do so, we recast Eq. (4.17) as
an inequality

ρcav
Mc
+
ρem
Mγ

< εpv
nΛ4+n

φn+1
0

, (B2)

and shall utilize the approximate one-dimensional solutions
obtained in Sec. IVA to determine an appropriate value for εpv.
This is done as follows: Unlike in Sec. IVA, we now solve
Eq. (4.11) for φ0 without making the PV approximation. This
is only possible numerically. We subtitute in

V ′0 = −
nΛ4+n

φn+1
0
(1 − εpv)

into the equation and vary the value εpv, observing how the
solution φ0 changes. For the chameleon, we are typically in-
terested in constraining the order of magnitude of the coupling
scales Mi ∈ {Mc, Mγ} for given values of (Λ, n). Thus, our
criterion is to tolerate a value for εpv that leads to a change of
at most ±0.1 in the value of the constraint on log10(Mi/MPl).
We find that choosing

εpv ' 0.34

ensureswe satisfy this criterion. As Eq. (B2)makes no specific
reference to the geometry of the problem, and as the value
for εpv is small, we expect this result to be a good estimate also
for the two-dimensional cylindrical case.
The boundaries defined by Eqs. (B1) and (B2) demarcate the

region of parameter space outside of which calculations for the
cavity shift can no longer be trusted. However, the quantum
corrections calculated in Sec. II depend much more weakly
on φ0. As can be seen in Eqs. (2.8) and (2.9), φ0 enters only
through the ratio m0/me, which remains small long after both
the ZSD and PV approximations break down. Consequently,
the constraints from the quantum corrections hold well beyond
the NAR.We can determine when the approximation m0/me =

0 finally breaks down in a similar fashion. Again tolerating a
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change of at most ±0.1 in log10(Mi/MPl), we require that the
integrals I1,2(η), given in Eq. (2.11), decrease by at most 40%.
For small η = m0/me, it suffices to impose this just on I1(η).
This translates to the condition

m0

me
< 0.31. (B3)

Of course, we do not have a good way to determine the value of
m0 now that we are outside the NAR. A conservative estimate
is to replace m0 above with its maximum possible value, which
is when φ0 minimizes the effective potential in the cavity. For
n = 1 and Λ = 2.4meV, this puts the boundary at

log10(Mc/MPl) & −31.4, log10(Mγ/MPl) & −24.0.

Increasing either Λ or n pushes the boundary even further out.
Couplings much larger than this boundary are already in ten-
sionwith classical fifth force tests and constraints from particle
colliders [3, 4], hence we can be assured that the constraints
from quantum corrections hold throughout the region plotted
in Fig. 4.

Symmetron

Only the ZSD approximation is needed for the symmetron.
The condition, originally given in Eq. (5.19), can be replaced
by the inequality

µ−1
∞ <

lgrid
10

. (B4)

Like the chameleon, we again require that the Compton wave-
length of the symmetron be smaller than the numerical grid
spacing. Unlike the chameleon, however, a finer grid with
lgrid = 0.05mm in all three spatial directions was required to
ensure convergence, especially for solutions with values of ϕ0
close to zero.
Note that Eq. (B4) need only be imposed for symmetron

masses in the range µ = [10−3.88, 10−3.39] eV. For smaller val-
ues, the symmetron remains in the symmetry-unbroken phase
where no constraint can be placed. For larger values of µ, the
symmetron quickly reaches the local maximum ϕ0 = 1 inside
the cavity irrespective of what is happening in and beyond the
walls.
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