
HAL Id: cea-01715161
https://cea.hal.science/cea-01715161v1

Submitted on 22 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ray-tracing and Fokker–Planck modelling of the effect
of plasma current on the propagation and absorption of

lower hybrid waves
Frédéric Imbeaux, Y. Peysson

To cite this version:
Frédéric Imbeaux, Y. Peysson. Ray-tracing and Fokker–Planck modelling of the effect of plasma
current on the propagation and absorption of lower hybrid waves. Plasma Physics and Controlled
Fusion, 2005, 47, pp.2041 - 2065. �10.1088/0741-3335/47/11/012�. �cea-01715161�

https://cea.hal.science/cea-01715161v1
https://hal.archives-ouvertes.fr


INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 47 (2005) 2041–2065 doi:10.1088/0741-3335/47/11/012

Ray-tracing and Fokker–Planck modelling of the
effect of plasma current on the propagation and
absorption of lower hybrid waves

F Imbeaux and Y Peysson

Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, 13108 Saint Paul lez
Durance, France

Received 23 March 2005, in final form 29 July 2005
Published 21 October 2005
Online at stacks.iop.org/PPCF/47/2041

Abstract
Waves at a frequency close to the lower hybrid (LH) resonance are widely used
in tokamaks for non-inductive current drive. Modelling of LH waves is usually
carried out by combining a Ray-tracing (RT) code for computing the LH waves
propagation to a solver of the Fokker–Planck (FP) equation which calculates
an electron distribution function self-consistently with the waves absorption.
The DELPHINE code has been developed along this approach with accurate
treatment of the magnetic equilibrium and the fast electrons dynamics in
momentum space. Using this code, the influence of the plasma current on the LH
waves propagation and absorption is investigated in detail. High plasma current
is found to broaden the absorbed LH spectrum towards high phase velocities,
thus increasing the current drive efficiency of the waves. The shape of the
current density profile also has an impact on the propagation of the waves and the
resulting power deposition. In discharges where the current profile is dominated
by LH current drive (LHCD), this dependence leads to the auto-regulation of
the LHCD via the current density profile. The RT/FP technique reproduces
at least qualitatively some of the experimental trends, though inconsistencies
still remain. Perspectives for improving the relevance of the modelling are
discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Waves at a frequency close to the lower hybrid (LH) resonance are widely used in tokamaks
for non-inductive current drive. Using these waves, steady-state plasma discharges could be
sustained for durations well beyond the current diffusion time [1,2]. In the JET tokamak, LH
waves are used to preform the current profile in order to trigger internal transport barriers and
also to sustain them during the main heating phase [3, 4]. Regimes with internal transport
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barriers at zero loop voltage have also been obtained in discharges with full LH current drive
(LHCD) [5, 6]. In a next step tokamak, LH waves appear as the only efficient method for
driving current far off-axis, providing access to advanced tokamak regimes [7].

Modelling of LH waves has also been extensively carried out for more than twenty years
[8–15]. A presently widely used method is to combine a Ray-tracing (RT) code for computing
the LH waves propagation to a solver of the Fokker–Planck (FP) equation which calculates
an electron distribution function self-consistently with the waves absorption. Recent efforts
have been carried out to provide more accurate predictions within the RT and quasilinear
approximations. For the RT codes, this leads to take into account accurately the plasma
geometry, i.e. using two-dimensional (2D) Grad–Shafranov magnetic equilibrium and also
including the effect of the toroidal magnetic field ripple because of the discrete number of
toroidal magnetic field coils [15]. For FP codes, this means describing the electron distribution
function in a 2D momentum space (in both parallel and perpendicular directions to the magnetic
field), including the effect of magnetic trapping, with fully relativistic equations. These efforts
lead to the code named DELPHINE, which is presented here.

As an example of the application of the DELPHINE code, the role of plasma current
density profile on LH waves propagation and absorption is investigated in detail. This
parameter is indeed critical for LH waves dynamics. First, it has an influence on the
propagation, since the dispersion relation involves the local magnetic field value. Using a
numerical mapping of the electrostatic cold plasma dispersion relation, it has been shown
that high plasma current and high magnetic shear tend to increase the rate of the toroidal
n‖-upshift [16], n‖ being the refractive index of the LH wave vector along the magnetic field.
These effects are still present in the full electromagnetic dispersion relation including hot
plasma effects that are considered in DELPHINE. Moreover, the plasma current also plays
a crucial role in the definition of the parallel refractive index domain in which the waves
can propagate, in particular its low boundary, and so determines the maximum velocity of
resonant electrons. This has a direct impact on the current drive efficiency of the waves,
which increases with this upper resonant velocity according to the well-known Fisch–Boozer
current drive theory [17]. Experimental observations of the effect of the total plasma current
on LH waves power deposition and current drive efficiency have been reported in [15, 18–
20]. The LH power deposition profile, measured by fast electron bremsstrahlung (FEB)
tomography [21], becomes broader at higher current, an effect which has also been observed
in JET [22] and FTU [23]. Moreover the current drive efficiency, determined at zero loop
voltage, is found to increase as a function of the plasma current [18–20]. In this work, we
interprete these phenomena using the RT/FP code DELPHINE. The underlying physics of this
tool is described in section 2. In section 3, the influence of the plasma current on the current
drive efficiency is investigated, keeping the shape of the equilibrium current density profile
constant. The behaviour of the rays is investigated in detail, in order to bring to light some
of the fundamental mechanisms of propagation as modelled by RT. The simulation results
are then discussed and compared with the experiments reported in [18]. In addition, RT/FP
modelling also predicts a strong dependence of LH waves propagation and absorption on
the shape of the current density profile, as reported in [16]. This dependence is described
in section 4. It has important consequences for the predictive modelling of scenarios with
dominant LHCD, which are discussed in section 5: it introduces a feedback loop between the
LH waves driven current and the plasma current density, which complicates the modelling
of such discharges. Finally, in section 6, the predictions of RT/FP modelling about this
dependence on plasma current density is compared with experimental data. This leads to some
considerations on the present capability of RT/FP codes to model the LH waves propagation and
absorption.
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2. Presentation of the code

The code DELPHINE includes an RT module, which calculates the LH waves propagation
and the absorption along the rays for a given electron distribution function. In order to take
quasilinear effects into account, the RT part is coupled to an FP solver, which calculates
the deformation of the distribution function in momentum space due to a given quasilinear
diffusion coefficient (calculated by the module which computes the absorption along the rays).
Following the usual method, the absorption and FP modules are iterated successively until they
have converged towards consistent power deposition and electron distribution function.

The main features of the RT are the following: the waves dispersion relation equation is
solved in the LH frequency approximation, including thermal corrections to the cold plasma
dielectric tensor with the assumption of strongly magnetized electrons and weakly magnetized
ions [9]: i.e.
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where ω is the wave frequency multiplied by 2π , c is the light speed in vacuum and
vi = √

2Ti/mi and ve = √
2Te/me are the most probable velocity of thermal ions and electrons

(following notations of [9], equal to the thermal velocity multiplied by
√

2) of respective
temperature Ti and Te. ωpe is the electron plasma frequency and ωpi the one of the ions. In the
expression of ωpi, e is the absolute value of the electron charge, ε0 the dielectric permittivity
of vacuum, Zeff the effective charge of the plasma, me the electron mass at rest and mmain the
mass of the main ion species.

The ray equations are solved in the spatial co-ordinates (R, φ, Z), respectively, major
radius, toroidal angle, altitude with respect to the equatorial mid-plane, and their canonical
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variables (kR, n = Rkφ, kZ), where (kR, kφ, kZ) are the components of the wave vector in the
co-ordinate system (R, φ, Z) and n is the toroidal mode number:

dR

dt
= −∂D/∂kR

∂D/∂ω
,

dφ

dt
= −∂D/∂nφ

∂D/∂ω
,

dZ

dt
= −∂D/∂kZ

∂D/∂ω
,

dkR

dt
= −∂D/∂R

∂D/∂ω
,

dnφ

dt
= − ∂D/∂φ

∂D/∂ω
,

dkZ

dt
= −∂D/∂Z

∂D/∂ω
. (2)

A fifth order Runge–Kutta algorithm with adaptative time step is used for calculating the ray
trajectories [24]. The rays are computed for a given number of radial steps or are stopped
before when the quasilinear electron Landau damping (ELD) criterion n‖ ≈ 6.5/

√
Te is met

with a significant margin, i.e. when n‖ � 9/
√

Te.
The equilibrium magnetic field and the toroidal flux co-ordinate are mapped on a poloidal

(R, Z) grid, as input of the code, and numerically interpolated during the RT. This procedure
allows us to use DELPHINE in any tokamak magnetic configuration and arbitrary shape of
the current profile that is consistent with the magnetic equilibrium. In most cases, the magnetic
equilibrium used in DELPHINE is directly given by a 2D solver, which provides calculations
in a realistic geometry. The electron density and temperature profiles are mapped as a function
of the toroidal flux co-ordinate and also interpolated numerically during the RT calculations.
DELPHINE is able to take into account the toroidal magnetic field ripple in a perturbative
way, using the method described in [15] and transposed in (R, φ, Z) geometry. The input n‖
spectrum is usually limited to two Gaussian peaks but can be extended to any number of peaks,
including negative n‖ contributions (for counter-current drive). It is decomposed into a series
of rays, which are distributed both in n‖ and initial position, hence covering the n‖ spectrum
and geometrical extent of the antenna, as prescribed in [11].

Once rays are calculated, the absorption module calculates the power damped resonantly
on electrons along each ray according to the equation [10, 25]

�P = −2γabsP�t, (3)

where P is the power carried by the ray, �t is the propagation time interval between two
calculated points of the ray. The absorption coefficient γabs is given by
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where p‖ is the electron momentum in the direction parallel to the local magnetic field, γ is
the relativistic factor evaluated at the resonance condition v‖ = ω/k‖ and f‖ is the electron
distribution function averaged over the perpendicular direction f‖ = ∫ ∞

0 2πp⊥dp⊥f , with
the electron distribution function f normalized as

∫ ∞
−∞ dp‖

∫ ∞
0 2πp⊥dp⊥f = 1. Note that

expression (4) is derived assuming that most of the LH power is absorbed by fast electrons
with v‖ � v⊥, i.e. neglecting the dependence of γ on v⊥. This approximation allows us to use
directly f‖ instead of integrating γf over the perpendicular direction for each evaluation of
γabs and reduces significantly the computation time. Therefore γ is evaluated in expression (4)

using the relation γ ≈ 1/

√
1 − (1/n2

‖). For a typical Tore Supra case, this approximation

leads to an underestimation of γabs of only 2%, since the dominant contribution to the
integral

∫ ∞
0 2πp⊥dp⊥γ (∂f /∂p‖)|p‖=γme(ω/k‖) occurs indeed for small values of v⊥ (typically

v⊥/ve ∼ 1). Moreover, this already small underestimation of γabs is more or less compensated
by the omission of the factor [J0(k⊥p⊥/me�ce)]2 under the integral above, which is replaced
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by 1 in deriving expression (4) in the p⊥ ≈ 0 approximation. See the appendix for the detail
of the calculation of γabs and the quasilinear diffusion coefficient.

Following the usual method, the plasma is divided into several radial shells (typically 20).
It is assumed that the electron distribution function depends only on the radius; therefore f is
constant within a radial shell. A local quasilinear diffusion coefficient is calculated for each
shell. Each time step of each ray which is located in the given plasma shell contributes to the
quasilinear diffusion coefficient, by adding to it:

�DQL(p‖, p⊥) = 2P�t

neV
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where V is the volume of the plasma shell, γ is the relativistic factor evaluated at the resonance
condition as explained above. Expression (5) is derived so that the power corresponding to
the quasilinear diffusion coefficient �DQL is equal to the power damped along one step of the
ray, calculated from equations (3) and the full 2D expression of γabs. The evaluation of the
quasilinear diffusion coefficient therefore takes into account the 2D momentum dependence,
with the relativistic factor γ depending on p⊥ and the factor [J0(k⊥p⊥/me�ce)]2.

In order to evaluate expression (5) numerically, for a discrete 2D momentum grid, the
Dirac distribution is replaced by a Gaussian with a fixed width � using the relation

δ(x) = lim
�→0

1

�
√

π
e−x2/�2

. (6)

The spectral width of the resonance � is chosen equal to 0.1. This value results as a trade-off
between (i) providing a sufficiently smooth DQL with respect to resolution of the momentum
grid used in the FP code and (ii) avoiding spectral overlap between neighbouring rays. The
latter constraint is critical not only for preventing the irrelevant acceleration of non-resonant
electrons but also because it is a key element of the WKB assumptions. Indeed, rays can
be considered independent only if the spectral overlap is negligible, since diffraction effects
are then very small. This well-known limitation of the RT model can only be solved by
considering a beam tracing approach when absorption is strong (single pass) [26, 27] or a
full-wave description in weaker absorption regimes [28, 29]. It has been verified that the
power deposition profile does not change significantly when varying � from 0.03 to 0.3. This
means that the code results are stable around the chosen � value, even if criterion (ii) becomes
marginally satisfied as � increases.

The local FP equation which gives the electron distribution function in momentum space,
neglecting any radial transport of fast electrons, may be expressed as

∂f

∂t
= ∂

∂p‖
DQL

∂f

∂p‖
+

(
∂f

∂t

)
coll

− E‖
∂f

∂p‖
. (7)

The first right hand term represents the quasilinear diffusion of electrons by the LH waves, the
second term models the collisions with the various plasma species (electrons and ions) and the
third term corresponds to the ohmic electric field. The FP module used in DELPHINE solves
equation (7) in a 2D momentum space (p, ξ), where p is the modulus of the electron momentum
and ξ = p‖/p. It uses a symmetrization procedure in momentum space to account for the
effect of particle trapping, using analytical bounce integrals for circular concentric magnetic
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flux surfaces [30]. The collision operator (∂f /∂t)coll is fully relativistic and corresponds to
the results obtained in [31]. More details on the FP module can be found in [32]. In relations
(4) and (5), the electron momentum distribution function used by the code corresponds to its
value at the minimum of the magnetic field in the plasma equatorial mid-plane. Therefore,
the poloidal dependence of f is neglected as well as the bounce-averaging of the quasilinear
diffusion operator. This simplified approach is again consistent with the assumption that
electrons with large p⊥ have a small contribution to the LH wave absorption process.

About eight iterations between the FP module and the absorption calculation are usually
sufficient in order to converge towards consistent electron distribution function and LH power
absorption in the various plasma shells. At each iteration, the FP solver evolves the distribution
function on a rather long duration, of the order of 50 ν−1 with respect to the reference time
scale ν−1, where ν is the local electron collision frequency. The inverse time or fully implicit
scheme used in the 2D FP solver allows us indeed to use integration time step much larger
than ν−1. In principle, it is possible to take values larger than 50 ν−1 in order to speed up
the convergence and reduce the computer time consumption. If this turns out to be effective
when power absorption takes place predominantly around one radial location, a too large
time step may lead to bistable oscillations of the {FP + absorption} calculation when power
is spread into two main peaks for example. In that case, the power may be alternatively
absorbed at one of the two peak positions. This is the consequence of the strong dependence
of the power absorption process on the shape of the distribution in momentum space. Such
a limitation can be only avoided by enforcing the consistency between f and the quasilinear
diffusion coefficient on a shorter time scale. The value 50ν−1 is then a trade-off between
numerical stability and rate of convergence, and the wave damping can be correctly described
at all radial positions without spurious behaviours, whatever the shape of the power deposition
profile.

Once the iteration between the FP module and the absorption calculation has converged, the
consistency of the result is checked by comparing the total LH power absorbed in each shell—
on the one hand (PABS) by summing the local contributions �P obtained from equation (3)
and on the other hand (PFP) by calculating the power corresponding to the quasilinear diffusion
process:

PFP = −2π

∫ +1

−1
dξ

∫ +∞

0
ξDQL

∂f

∂p‖

p3

γrel
dp, (8)

where γrel is the relativistic factor corresponding to momentum p. Some deviation is
unavoidable, mainly because it is numerically difficult to make a continuous description like
a distribution function correspond to a discrete Dirac contribution (equation (6) is rigorously
valid only for � → 0). When the convergence is successful, deviations PABS − PFP less than
20% of PABS are obtained and considered acceptable. However, owing to these deviations, the
total absorbed power in the plasma as calculated by the FP module

∑
shells PFPV can become

slightly larger than the launched power PLH, while by construction
∑

shells PABSV = PLH in
case of full absorption. In order to be consistent with the launched power when comparing
with experiments, PABS is used as the power deposition profile, and the LH driven current jLH

is multiplied by the local value of PABS/PFP, which conserves the local current drive efficiency
calculated by the FP module. It is worth noting that the absorbed LH power PFP is always
consistent with the power transferred by collisions to the electrons Pcoll within the FP solver
which indicates that this one runs consistently on its side without numerical problems. This
condition is well fulfilled provided the value of DQL never reaches too large values. Indeed, in
that case, the matrix conditioning of the 2D FP solver becomes poor leading often to unphysical
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Figure 1. Profiles used for the computation of the equilibria: electron density ne (——), electron
temperature Te (- - - -), plasma current density j (· · · · · ·).

solutions with too large current drive efficiencies. Though DQL may be in principle much larger
than unity (in normalized units) from the physics point of view, its value is limited to 10 in
this version of the code. This means that when DQL(ρ, p‖, p⊥) reaches 10, all following ray
steps which would normally contribute to an additional �DQL at the same (ρ, p‖, p⊥) have
their γabs set to zero. This approach is relevant since above DQL = 10, the plateau formed
in the distribution is already saturated, and the absorption of additional ray steps becomes
negligible. A detailed discussion of the numerical problems for the LHCD may be found
in [33].

The code outputs is the LH power deposition, the driven current and the electron
distribution function (2D in momentum space, plus the radial dimension). The main calculation
subroutines of the code are written in C (RT) or Fortran (FP solver), compiled into MEX-
functions to run in a Matlab® environment. All the other subroutines which do not require
intensive and fast calculations are Matlab® functions, therefore the whole package is running
under Matlab®, taking advantage of its graphic and interactive features [34].

3. Effect of plasma current on absorption and propagation of LH waves

In order to investigate the dependence of the LH power deposition and driven current on the
value of the total plasma current, a series of equilibria in the geometry of the Tore Supra
tokamak have been prepared using the HELENA equilibrium solver [35]. Those equilibria
have the same input pressure and normalized current density profiles (figure 1) but various
values of the total current (0.4 to 1.4 MA). The propagation and absorption of the LH waves
are computed using the DELPHINE code for each of these equilibria. The launched power
spectrum is centred on n‖0 = 2.0 and discretized into 60 rays. This procedure allows us to
determine the direct influence of the plasma current on the LH propagation and absorption,
keeping all other parameters constant. It is usually not possible to do such a single-parameter
scan in experiments, since for instance the temperature is expected to increase with the plasma
current, owing to a better energy confinement.
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Figure 2. Propagation of a ray in the 1.4 MA configuration (a) in the (R, Z) co-ordinates, (b) in
the (n‖, ρ) co-ordinates. The red star shows the launching point of the ray and in (a) the blue
circle is the vacuum vessel and a blue ‘+’ shows the magnetic axis. The ray is plotted with red dots
where the absorption of the LH waves is significant, in green dots otherwise. In (b) the red dashed
line is the quasilinear Landau Damping criterion n‖ ≈ 6.5/

√
Te, the purple dash–dotted line is the

accessibility limit n‖acc = (ωpe/�ce) +
√

ε⊥.

In the configuration chosen here, which is typical of Tore Supra low density shots, the LH
power deposition is strongly dependent on the detail of the wave propagation: first, the low
density makes the whole plasma accessible to the LH waves. Second, the moderate values
of the electron temperature (Te0 ≈ 3.6 keV) and the fact that the Te profile does not feature
strong gradients make the absorption likely at any radial point inside ρ = 0.6. Therefore,
the localization of the power deposition is not known a priori and the results of the detail
of the wave propagation as well. Moreover the simulations show that the rays do a few
passes through the plasma before being absorbed. Hence neither the case of single-pass
absorption (rays absorbed rapidly after their launch, which would occur for much larger electron
temperature) nor that of multi-pass absorption (slow variation of n‖ per pass, so that the wave
fills the entire propagation domain in the (n‖, ρ) space [36]) is achieved. In the former case,
the propagation time is so short that the power deposition is determined almost completely
by the wave characteristics at launch. In the latter, the absorption occurs necessarily at the
intersection between the propagation domain and the Landau damping curve [36]. Conversely,
in the few pass regime, the rays characteristics evolve rapidly and significantly between the
launch and the absorption; therefore the propagation must be followed carefully in order to
predict the location of the power deposition.

During the propagation, the parallel refractive index of some rays may increase owing to
the toroidal geometry. These rays go through the spectral gap and drive a short electron tail
just above the Maxwellian level. The condition for this linear ELD is approximately given by
n‖ ≈ 6.5/

√
Te [37]. Due to quasilinear effects, rays with lower n‖ are absorbed in turn by

this suprathermal seed, which result in a fully developed suprathermal plateau in the electron
distribution. Because the fast electron seed is very efficient at absorbing low n‖ rays, the
quasilinear process leads often to narrow power deposition profiles, which peak at the position
of the seed. As a consequence, the power deposition is mainly determined by the occurrence of
high n‖-upshift along some rays. A typical trajectory which provides high n‖-upshift is when
the ray propagates towards the edge density cut-off at the top of the chamber and then bounces
back towards the plasma centre [8] (in fact, the sign of the n‖ variation depends on the direction
of the rays rotation in the poloidal plane, e.g. if they turn counter-clockwise, n‖-upshift occurs
at the bottom of the chamber). Figure 2 shows the typical behaviour of a ray which starts
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Figure 3. Propagation of the rays in the 0.4 MA configuration (a) in the (R, Z) co-ordinates, (b) in
the (n‖, ρ) co-ordinates. Same drawings and colour code as in figure 2.
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Figure 4. Propagation of the rays in the 0.7 MA configuration (a) in the (R, Z) co-ordinates, (b) in
the (n‖, ρ) co-ordinates. Same drawings and colour code as in figure 2.

doing a few passes near the equatorial mid-plane, with only a weak variation of its n‖. Then,
after it bounces back from the top of the vaccum vessel, its n‖ increases rapidly, and the ray
is fully absorbed. Such rays tend to be damped off-axis, because their n‖ increases rapidly
above the local ELD limit as they propagate towards the centre of the plasma (see figure 2).
Conversely, rays with slower n‖-upshift will first meet the ELD condition near the axis, where
the electron temperature is usually maximum.

The propagation of the rays is clearly affected by the plasma current (see figures 3–5).
The poloidal rotation of the rays increases as a function of the plasma current, as shown by the
projections of the rays in the (R, Z) space. Indeed, in the electrostatic approximation, the group
velocity of the LH slow waves tends to be parallel to the local magnetic field [25]. Therefore the
rays tend to follow the magnetic field lines, which have a higher rotational transform at higher
plasma current. At Ip = 0.4 MA (figure 3), the rays, which are launched around the equatorial
mid-plane from the low field side, do only a quarter of a turn in projection in a poloidal cross
section before being absorbed. Since they travel through the top region of the plasma, their n‖
undergoes a fast upshift. At Ip = 0.7 MA (figure 4), the rays do approximately half a turn in
the poloidal cross section and stay around the equatorial mid-plane. As a consequence, their
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Figure 5. Propagation of the rays in the 1.4 MA configuration (a) in the (R, Z) co-ordinates, (b) in
the (n‖, ρ) co-ordinates. Same drawings and colour code as in figure 2.

n‖-upshift is slower. At Ip = 1.4 MA (figure 5), the rays rotate faster and are being spread also
much more through the poloidal cross section. From one ray to the other, quite different kinds
of propagation are obtained: some rays undergo slow n‖-upshift and are absorbed preferentially
near the magnetic axis, while the others undergoing fast n‖-upshift are absorbed in a more outer
region (ρ = 0.4–0.6). This behaviour is thought to be at the origin of the broadening of the
measured hard-x rays profiles at high plasma current, as reported in [18]. In an experiment, this
effect is amplified by the simultaneous increase of electron temperature and energy confinement
with the plasma current. Indeed, increasing and broadening the electron temperature profile
will move the power deposition of fast n‖-upshifted rays more off-axis. Conversely, for colder
plasmas (on-axis Te � 2 keV) with narrow Te profile, the ELD limit is so high off-axis that even
such rays can reach it only close to the axis. This explains why the measured FEB emission is
usually narrow at Ip = 0.4 MA on Tore Supra, in spite of the fast n‖-upshift predicted in the
present simulation.

The plasma current is also found to influence the lower bound of the n‖ of the rays
bundle, which is a determinant factor for the current drive efficiency since it corresponds to the
maximum velocity of the accelerated electrons. At low Ip (figure 3), the n‖ of the rays increases
during their first pass from the launching point to the plasma centre, while it decreases at high
Ip (figure 5). As a consequence, the minimum n‖ reached by the rays is found to decrease
with increasing plasma current. Then, the rays undergo n‖-upshift, which can be quite strong
in the high plasma current equilibrium (Ip = 1.4 MA, see figure 5 and previous paragraph),
hence providing an efficient filling of the spectral gap, even off-axis. These conditions are
ideal to form a continuous quasilinear plateau in the electron distribution function, whose high
velocity limit increases with the plasma current, resulting in a higher current drive efficiency
(figure 6).

Note that such a dependence can be qualitatively expected when considering the lower
bound of the LH waves propagation domain [38]. In the electrostatic limit and doing a
development to the first order in Bθ/B (where Bθ is the poloidal magnetic field and B the
total magnetic field), the lower k‖ boundary of the wave propagation domain is given by

k‖min ≈ n/R

1 + (Bθ/B)(ωpe/ω)
. (9)

From this equation, the lower boundary decreases when the plasma current increases, through
Bθ in the denominator. The present RT simulations show a similar dependence but in a stronger
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way. Indeed, the rays do not reach necessarily the lower bound of the propagation domain.
This is particularly true for the Ip = 0.4 MA equilibrium, where the rays n‖ increase almost
constantly until full absorption. Therefore the dependence on plasma current of the minimum
n‖ of the rays bundle predicted by the RT simulations is stronger than the variation of the
lower bound of the propagation domain. This stresses the importance of the RT approach in
cases where the waves do only a few passes before being absorbed and do not fill the whole
propagation domain.

As shown in figure 6, an offset linear dependence of the current drive efficiency on the
plasma current is obtained from the simulations. This effect appears more as a global trend
than an accurate and systematic rule. Indeed the behaviour of the rays is quite complex, and the
resulting detailed dependences cannot be captured in a simple picture. The power deposition
profile changes with plasma current, which can affect the current drive efficiency since the
electron temperature and density are not constant through the plasma. However the main
trend deduced from figure 6 (offset linear dependence of ηLH on Ip) is ascribed to the spectral
characteristics of the rays at the location of absorption. Indeed, the local current drive efficiency
increases with the plasma current, as shown in figure 7. Therefore the main behaviour of the
global efficiency is not due to variations of the radial power deposition profile but to the local
LH wave spectrum. For instance, both the Ip = 0.4 MA and Ip = 0.7 MA cases feature a
minimum n‖ of about 1.9 in the absorbed wave spectrum, but the Ip = 0.4 MA case has a
lower current drive efficiency because a gap remains around n‖ = 3 in the ray distribution (see
figure 3(b), around ρ = 0.5). This gap induces a break in the quasilinear plateau of the electron
distribution, i.e. the density of suprathermal electrons drops for velocities above c/3. The high
current case Ip = 1.4 MA features both a low value of the minimum n‖ (∼1.5) in the absorbed
wave spectrum and a continuous filling of the spectral gap, as explained above. Therefore it
features a high local current drive efficiency, 10 to 20% higher than the Ip = 0.7 MA case in
the region 0.1 < ρ < 0.6 (figure 7).

The dependence of ηLH on Ip deduced from the simulations is qualitatively consistent with
the experimental observations reported in figure 6(b) of [18]. Moreover, the interpretation in
terms of increase of the upper velocity limit of the quasilinear plateau with increasing plasma
current is fully consistent with the experimental observations. The photon temperature of



2052 F Imbeaux and Y Peysson

6.0

5.5

5.0

4.5

4.0

3.5

3.0

j L
H

/p
L

H
 (

A
.m

/W
)

0.60.50.40.30.20.10.0
ρ

 Ip = 0.4 MA
 Ip = 0.7 MA
 Ip = 1.4 MA

Figure 7. Ratio of the local LH driven current density (in A/m2) to the local power deposition
(in W/m3), as a function of the normalized toroidal flux co-ordinate, obtained from the simulations
at Ip = 0.4(+), 0.7 (×) and 1.4 MA (◦). This local current drive efficiency is calculated where
the main part of the power is deposited (i.e. where the power deposition is above 10% of its peak
value).

the FEB and the energy of the fast electron ripple losses have been found to increase with
Ip, which is experimental evidence of the extension of the quasilinear plateau towards higher
velocities [39]. The simulations show that the Ip dependence of the wave propagation can
explain this behaviour, at least qualitatively.

Quantitatively, the magnitude of the effect is less important in the simulations than in the
experimental data: between Ip = 0.4 and Ip = 0.8 MA, the current drive efficiency increase
is of the order of 12% from the simulation, while it is of the order of 33% in the experimental
case. Despite the large error bars on this experimental value, mainly due to uncertainty on
the effective charge Zeff , this suggests that other plasma parameters could amplify the trend
due only to the plasma current in the simulations. For instance, the electron temperature
increases with Ip, and it is expected that the LHCD efficiency also increases with the electron
temperature [40, 41]. In the simulations, the electron temperature has been kept constant in
order to isolate the effect of the plasma current on the power deposition profile. Another source
of inconsistency between the simulations and the experiments is that a prescribed normalized
plasma current density profile has been used. The experiments which showed the current
drive efficiency dependence on Ip have been carried out at zero loop voltage. This means
that the plasma current density profile should be almost identical to the LH driven current
density, the typical bootstrap fraction being of the order of 10–15%. This may be a source of
discrepancy in the magnitude of the effect between the simulations and the experiments. In
the next two sections of this paper, some issues related to the calculation of the self-consistent
solution for zero loop voltage discharges with dominant LHCD are addressed.

In summary, these RT/FP simulations capture, at least partially, the trend of increasing
current drive efficiency with increasing plasma current, which has been observed on Tore Supra
using a dataset of zero loop voltage steady-state discharges. The phenomenon is explained
by the decrease of the minimum n‖ reached by the quasilinear plateau as a result of the rays
propagation, which is more important than what could be deduced by considering only the wave
propagation domain. This interpretation implies an upper limit for this dependence: in any
case, the n‖ cannot go below the accessibility limit of the waves, which depends essentially
on the electron density and the toroidal field (n‖acc = (ωpe/�ce) +

√
ε⊥, see, e.g. [25]).



Ray-tracing and Fokker–Planck modelling 2053

Figure 8. Successive steps (from left to right) of the DELPHINE/ASTRA convergence procedure,
using n‖0 = 2.0. Bottom row: propagation of the rays in the (n‖, ρ) co-ordinates, calculated by
DELPHINE using the equilibrium current density of the previous column. Top row: current density
profiles calculated by ASTRA using the LH power deposition given by DELPHINE (graph from
below in the same column), - - - -: bootstrap, ◦: LH, ——: total.

Therefore the decrease of the minimum n‖ with increasing plasma current will stop at the
accessibility limit, and no further increase of current drive efficiency can be expected. Some
other mechanisms which may also limit this effect are discussed in [39].

4. Effect of q-profile shape on the propagation and absorption of LH waves

In the previous paragraph, we have analysed the influence of the current profile on the LH
waves propagation, varying the total plasma current while keeping the shape of the profile
constant. We address now the issue of varying the current density profile at constant plasma
current.

Figure 8 shows DELPHINE simulations related to high power and high density deuterium
discharges, whose parameters correspond to the forecoming upgrade of Tore Supra heating
systems (CIMES project [42]): volume-averaged electron density 〈ne〉 = 5.0 × 10+19 m−3,
effective charge Zeff = 1.72, toroidal field Bt = 4 T, major radius R = 2.4 m, minor radius
a = 0.72 m and circular cross section. Heating and current drive powers are PICRH = 10 MW
(hydrogen minority heating scheme, 50% of power deposited on electrons, broad central
deposition), PECRH = 2 MW (central deposition) and PLH = 12 MW (3 grills) with 60% of the
LH power contained in the main peak of the launched n‖-spectrum, whose central value n‖0 is
equal to 2.0. These discharges are expected to be carried out at zero loop voltage, purely driven
by LHCD and bootstrap current. In order to obtain an equilibrium and energy confinement
consistent with the non-inductively driven current, the ASTRA transport code [43] is used to
recalculate them, given the LH power deposition calculated by DELPHINE as input. Since
DELPHINE is not directly coupled to ASTRA, the following coupling method is used: ASTRA
calculates a standard plasma evolution towards a steady-state with fixed LH power deposition
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and driven current density profiles, as given by the RT/FP code. The obtained steady-state
plasma equilibrium and electron temperature profile are then used as input in DELPHINE to
calculate a new LH current and power deposition. Note that this coupling method is rather
crude, especially for LHCD dominated discharges and is presented here only to illustrate the
impact of magnetic shear on the LH wave propagation and absorption. Accurate integrated
modelling strategies for LHCD dominated discharges are discussed below in section 5. Though
radial diffusion of fast electrons is likely to be negligible in such plasmas [44], these LH profiles
are smoothed using an ad hoc radial diffusion coefficient of the order of 0.5 m2 s−1. This is not
only done mainly to avoid the formation of too strong internal transport barriers in combination
with the transport model described below, but also to account for the fact that measured LH
power deposition profiles are systematically broader than the prediction of standard RT/FP
codes [18,45]. The smoothed LH profiles are then given as input for a new ASTRA calculation.
This process is iterated until a constant LH power deposition profile is reached. In ASTRA
calculations, the density profile is kept constant, and electron heat transport is computed using
the mixed Bohm–gyroBohm model with shear function described in [6]. This model takes
into account a reduction of the electron heat diffusion coefficient for low or negative magnetic
shear and has been extensively validated on Tore Supra. Bootstrap current is self-consistently
calculated in ASTRA using the Hirschmann model [46] and represents 30 to 60% of the total
current in these simulations, the rest of the current being driven by LH waves. The total plasma
current remains nearly constant during the successive steps of the convergence procedure, at a
value of 1.1 MA (relative variation lower than 10%).

Comparing the successive steps of this convergence procedure provides clear evidence
of the influence of the q-profile shape of the LH waves propagation and absorption, at fixed
plasma current. Starting from a rather hollow current density profile (maximum at normalized
radius ρ = 0.5), the calculated LH power deposition is more central (max. at ρ = 0.35). In
turn, starting from this more peaked current density profile, the updated LH power deposition
becomes strongly hollow (max. at ρ = 0.6). The influence of the current density profile is
clearly dominant with respect to the electron temperature, as shown in the (n‖, ρ) propagation
diagrams, where the characteristics of the n‖-upshift of the rays are modified by the change of
the current profile while the ELD curve stays approximately at the same position. As shown
in figure 8, the n‖-upshift is rather fast (resp. slow) when the plasma equilibrium has a peaked
(resp. hollow) current density profile, which provides off-axis (resp. central) absorption. The
mechanism at work here is similar to the one described in section 3, i.e. the influence of
the local poloidal magnetic field on the ray trajectories in the poloidal cross section and its
consequences on the toroidal n‖-upshift. Note that this dependence of the rate of the n‖
variation on the magnetic shear can be predicted in the case of the electrostatic dispersion
relation using the numerical mapping derived in [16].

Hence LHCD systematically tends to broaden and smooth the initial current density profile,
whatever its shape. In discharges dominated by LHCD, this gives rise to a self-regulating
mechanism of the LH power deposition, through its dependence on the total current density
profile. From the point of view of tokamak operation, a major consequence of this process is the
reduction of the current profile control capability expected by tuning the launched n‖-spectrum.
One could also expect such a non-linear mechanism to play a role in the periodic electron
temperature oscillation regime recently discovered in Tore Supra during steady-state LHCD
discharges (‘O-regime’ [47,48]). Of course, in an experiment, the coupled LH and total current
density profiles evolve in a continuous way and do not feature the large jumps observed between
successive steps of the crude and indirect coupling method used in this section. Nevertheless,
these results emphasize the need for a more accurate integrated modelling strategy for LHCD
dominated discharges, which is discussed below.
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Figure 9. Power spectra of the two LH launchers of Tore Supra for shot #32299, as calculated by
the SWAN code.

5. Implications for self-consistent modelling of discharges dominantly driven by LH
waves

In discharges where most of the current is driven by LH waves, the total current profile is
close to the LHCD profile. Since, as shown in the previous paragraph, the LHCD profile
itself depends on the total current profile, the self-consistency of LHCD and the total current
density profile is essential for the modelling of such discharges. Several integrated modelling
codes (e.g. ASTRA, JETTO) now include a direct coupling of the transport equations to a
RT/FP solver (see for instance [23, 49]). In a similar way, the RT/FP package DELPHINE
has been coupled to the CRONOS integrated modelling code [50], which allows us to do
simulations where the transport properties, the plasma equilibrium and the various sources
and sinks (heating, current drive, particles, rotation . . .) are calculated in a fully consistent
way. Therefore, it is possible to carry out LHCD calculations with DELPHINE in a time
dependent transport simulation, during which the current profile is evolving due to the resistive
diffusion and possible variations of the current sources. In this paragraph, we show that
the high sensitivity of LHCD on the total current profile puts strong constraints on the rate
at which the LHCD package must be called, in order to converge towards the self-consistent
solution.

Our analysis is based on a simulation of Tore Supra discharge #32299, the longest pulse
achieved up to now in this tokamak, with a world record in injected then exhausted energy
of the plasma of more than 1 GJ [51]. The discharge remains in pure steady state for more
than 6 min, with zero loop voltage enforced by feedback loop on the transformer. The plasma
current is sustained at 80% by means of 2.9 MW LHCD (with peak refractive parallel index
n‖0 = 1.7), the remaining 20% being driven by bootsrap current. The plasma has the following
characteristics: main gas deuterium, circular cross section, major radius R0 = 2.37 m, minor
radius a = 0.70 m, central electron density ne0 = 2.6 × 10+19 m−3, on-axis toroidal magnetic
field Bt = 3.4 T and plasma current Ip = 0.5 MA. The full launched n‖ spectrum of the LH
waves is used in the RT calculation, as estimated by the SWAN code [52] (figure 9). The power
deposition profiles from DELPHINE are slightly smoothed with a radial diffusion coefficient
of fast electrons of 0.1 m2 s−1, in order to get rid of sharp peaks which may cause numerical
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Figure 10. Time evolution of the LH driven current density profile, CRONOS simulation of Tore
Supra shot #32299, using 100 rays per antenna and call to DELPHINE every 0.4 s.

difficulties in the current diffusion. Notice that such a small diffusion coefficient does not
broaden significantly the LH power deposition. Finally, the LH driven current density profile
is normalized in order to impose a constant total LH current, corresponding to 80% of the
plasma current.

In a first simulation, DELPHINE is called every 0.4 s. The RT/FP calculation uses 100
rays for each antenna (there are 2 LH launchers in Tore Supra), which represents a step
between two rays of �n‖ = 2 × 10−2. The current diffusion is calculated during 10 s, all
the other profiles (density, temperatures) being taken from the experiment and stationary.
As shown in figure 10, the LH power deposition is not fully stabilized, even after 10 s. The
position of its maximum oscillates between ρ = 0.15 and 0.4, reflecting in this time-dependent
simulation the trend described in the previous paragraph with stationary solutions: a slightly
more peaked jLH profile yields a more peaked total current profile, which in turn provides a more
hollow jLH profile at the next RT/FP calculation (figure 11). As a consequence, the internal
inductance also oscillates between 1.9 and 2.0. In order to stabilize this bi-stable behaviour,
we now increase the calling rate to DELPHINE, as well as the number of rays used in the
calculation.

In this second simulation, DELPHINE is called every 0.1 s and uses about 400 rays for
each antenna, which represents a spacing between two rays of �n‖ = 5×10−3 (figure 12). As
shown in figure 13, the internal inductance is now stabilized after 4 s of current diffusion, at a
value of 2.05. The amplitude of variation of the position of the peak deposition is much smaller
than in the previous case, i.e. it varies between ρ = 0.1 and ρ = 0.25. In those conditions, the
maximum variation of safety factor q at ρ = 0.2 (in the vicinity of LH maximum deposition)
after t = 54 s is only of 0.1, while it is of the order of 0.6 in the previous case (figure 14).
Therefore a quasi-stationary state is obtained, within this quite satisfying error bar on the
q-profile.

It becomes possible then to compare this result with the prediction of q-profile obtained
using the bremsstrahlung emission of fast electrons as a measurement of the LH power
deposition profile and driven current. This simple assumption is justified by the fact that
when reconstructing the FEB emission from an FP calculated electron distribution function,
the three profiles have very similar shapes. Therefore a reference CRONOS simulation is
done using as jLH the emission profile measured by FEB tomography [21], normalized to the
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Figure 11. CRONOS simulation of Tore Supra shot #32299, using 100 rays per antenna and call to
DELPHINE every 0.4 s. Top row: q-profile for t = 53.9, 54.3 and 54.7 s, resulting from the current
diffusion. Bottom row: LH-driven current density calculated by DELPHINE using the q-profile
just above.
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Figure 12. Time evolution of the LH driven current density profile, CRONOS simulation of Tore
Supra shot #32299, using 400 rays per antenna and call to DELPHINE every 0.1 s.

relevant constant current drive efficiency in order to obtain zero loop voltage. The method
is also a fortiori validated since it yields an internal inductance in excellent agreement with
the experimental one (1.69 ± 0.02 in the simulation against 1.70 ± 0.05 measured) and a
q-profile compatible with a 3/2 MHD mode which is observed experimentally throughout the
discharge (figure 15). As shown in figure 16, the jLH profile deduced from FEB and the one
calculated by DELPHINE have similar shapes: both have their maximum at the same position
ρ = 0.2 and comparable slope in their gradient region (ρ = 0.3–0.4). The DELPHINE jLH

exhibits a negative bump around ρ = 0.65, due to the negative high |n‖| component of the n‖
spectrum. This bump is positive on the FEB-deduced jLH, since by definition we assume only
positive current drive. This difference around ρ = 0.65 has a significant impact on the value
of jLH around ρ = 0.2, since the profiles are normalized to produce the same total current
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(jLH integrated over the whole poloidal cross section). In spite of this effect on the absolute
values of jLH, the shapes of the profiles are quite similar around their maximum. The excellent
agreement of the FEB-deduced current profile with the measured internal inductance and MHD
behaviour of this shot suggests that this one is closer to reality than the DELPHINE calculation.
The main conclusion from this comparison is that it is needed to use the full n‖ spectrum in
order to obtain the correct width of the power deposition (no power deposition at ρ = 0.6 is
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obtained if only the main peak around n‖0 = 1.7 is considered). Nevertheless, the off-axis
negative current driven by the negative high |n‖| components seems to be in contradiction to the
real situation, since the CRONOS simulation using a positive current density around ρ = 0.65
yields excellent agreement on li. We cannot consider the neutralization of the negative off-axis
current by the parallel electric field, which is zero in such a steady-state discharge with zero
loop voltage. It might be that some mechanism broadens the jLH profile by moving co-current
driving electrons around ρ = 0.65, which would balance the negative current at this point.
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6. Discussion: capability of present LH modelling

In this work we have illustrated the impact of the total current profile on the LH waves
propagation and its consequences on the power deposition and driven current. The RT/FP
method is able to grasp some qualitative features of this dependence, like the broadening of
jLH at high plasma current and the increase of current drive efficiency. The RT technique
also shows a strong dependence of the LH waves propagation on the current profile shape. In
the situation considered here (no accessibility constraints and moderate Te < 10 keV which
allows us to absorb the waves along most of the plasma radius), which is typical of present day
L-mode discharges, the trend of LH waves is to balance the peakedness (resp. hollowness) of
the total current profile by driving more hollow (resp. peaked) non-inductive current profile.

In discharges where the current profile is dominated by LHCD, this implies some auto-
regulation of j and jLH towards a medium peakedness. The auto-regulation mechanism should
reduce the ability to control the LH power deposition by tuning the launched n‖ spectrum,
though not completely hindering it [53]. However, this process makes the consistent current
diffusion modelling of such discharges extremely challenging and demanding in computation
time. Nevertheless, it has been possible to find a steady-state solution for an 80% LH driven
discharge, at the cost of one RT/FP calculation every 0.1 s of simulation time. The calculated
LHCD profile was close to the experiment, though the measured FEB emission provides a
more accurate determination of jLH.

Do we have any evidence of such a self-regulation process of j and jLH in experiments?
Tore Supra has quite a large database of zero loop voltage shots dominated by LHCD, which
provide some information relative to this issue. After the switch on of the LH power, the current
profile of those shots evolves from its ohmic shape towards a new shape driven by fully non-
inductive means. On Tore Supra, this current profile evolution takes typically a few seconds,
according to resistive current diffusion simulations. If the self-regulation process would play a
significant role, then the FEB emission should evolve simultaneously with the plasma current
profile, until this one has reached its final stationary state. In Tore Supra zero loop voltage
experiments with dominant LHCD, the FEB profile is found to broaden during the LH power
ramp-up (figure 17). This evolution might be related to the self-regulation mechanism but
might also be the evidence of a correlation between LH power and its deposition profile width.
Nevertheless, once the plateau LH power is reached, the FEB emission does not vary anymore,
while the current profile is expected to continue to evolve during a few seconds (figure 17).
Therefore it appears that the FEB emission profile is much less sensitive to the shape of the
current profile than the LH driven current profile predicted by RT/FP calculations.

This is a general trend of the comparison between the experiment and the RT/FP results:
the latter are usually quite sensitive to variations of input profiles (current density but also
electron temperature, electron density), even when the number of rays is high enough to
provide a relevant stochastic description of the wave propagation. Conversely, the measured
FEB emission, which is the most direct representation of LHCD available, is generally
less sensitive to these parameters. This suggests that some physics must be added to the
classical RT/FP approach to account for the experimental phenomenology. There are several
candidate broadening mechanisms, which may account for such a reduced sensitivity of the
LH current profile with respect to the plasma profiles, at least qualitatively: radial transport
of fast electrons [44, 54], induced either by turbulence or by the LH waves themselves [55],
scattering of the waves by density fluctuations [8,13], broadening of the launched n‖ spectrum
by parametric instabilities [56], wave diffraction [26, 27] and breaking up of the quasilinear
approximation [57]. Most of these effects are however very difficult to assess quantitatively by
measurements. The only way to proceed further is to dedicate new efforts both to the modelling
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Figure 17. Time traces during the onset of LH power, shot 28334: LH power (solid, blue), width
of the HXR inverted profile (dash, green), loop voltage (dash–dot, red), safety factor at the centre
(dots, purple) from resistive current diffusion simulation.

of those complex phenomena and their careful benchmarking with a wide set of experiments.
Until those developments are carried out, RT coupled to 2D in momentum space relativistic FP
codes like DELPHINE remain the most precise tools available for LHCD predictions and have
proved to account for at least some of the dependences observed during LHCD experiments.

Appendix. Derivation of the equations for the Landau damping of LH waves on
electrons

The purpose of this appendix is to show in detail the derivation of equations (4) and (5) used
by DELPHINE for the damping of LH waves on electrons. Though the method used is quite
common, the detail of the calculations is often absent in the publications. Therefore it seems
worthwhile to describe them thoroughly.

The Landau damping of LH waves is a kinetic effect since the resonance involves the
velocity of the electrons. We have then to consider the hot plasma dielectric tensor, which is
derived from a linearized treatment of the Vlasov equation and can be written in the general
case as [58]

K̄ = 1̄ +
ω2

p

ω2

∫ ∞

0
2πp⊥dp⊥

∫ ∞

−∞
dp‖

∞∑
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γ −1S̄
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iv⊥U
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v⊥U(J ′

m)2 −iv⊥WJmJ ′
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where

U = Mω
∂f

∂p⊥
+ k‖

(
∂f

∂p‖
p⊥ − ∂f

∂p⊥
p‖

)
,

W = Mω
∂f

∂p‖
− Mm

�c

p⊥

(
∂f

∂p‖
p⊥ − ∂f

∂p⊥
p‖

)
.

(A2)

M is the relativistic mass (M = m0γ ) and x = k⊥v⊥/�c. The argument of the Bessel
functions Jm is x. J ′

m denotes the derivative of Jm. The integer m characterizes the harmonic
of the possible cyclotron resonances. The electron distribution function f is normalized as
the following:

∫ ∞
−∞ dp‖

∫ ∞
0 2πp⊥dp⊥f = 1, and p‖ and p⊥ correspond respectively to the

parallel and perpendicular components of the electron momentum with respect to the direction
of the local magnetic field.

ELD is an m = 0 resonance (Cerenkov condition ω−k‖v‖ = 0), along the direction of the
local magnetic field, i.e. corresponds to the zz term of the dielectric tensor. At the resonance,
the denominator of (A1) tends towards 0, so it is useful to write the fraction as

1

ω − k‖v‖
= P

(
1

ω − k‖v‖

)
− iπδ(ω − k‖v‖), (A3)

where δ is the Dirac distribution and P denotes the principal value (i.e. the value of the argument
when it is finite, or 0 when ω − k‖v‖ = 0). At the resonance, the zz term of the dielectric
tensor reduces then to

Kzz = 1 − iπ
ω2

pe

ω2

∫ ∞

0
2πp⊥dp⊥

∫ ∞

−∞
dp‖mev‖J 2

0 ω
∂f

∂p‖
δ(ω − k‖v‖). (A4)

Using p‖ = γmev‖ and integrating over p‖

Kzz = 1 − iπsgn(k‖)
ω2

p

k2
‖

∫ ∞

0
2πp⊥dp⊥γm2

eJ
2
0

∂f

∂p‖

∣∣∣∣
p‖=γme(ω/k‖)

, (A5)

where γ is evaluated at the resonance.
In the quasilinear theory, the damping phenomena correspond to the antihermitian terms of

the dielectric tensor [10], which for ELD is the imaginary part of Kzz. The damping rate along
the rays is calculated by evaluating the impact of the imaginary part of Kzz on the dispersion
relation. We recall here that everywhere in the plasma, the electric field of the wave must
satisfy the equation [59]

�k × (�k × �E) +
(ω

c

)2
K̄ · �E = �0 (A6)

which can be written as M̄ · �E = �0, with

M̄ =




ε⊥ − n2
‖ −iεxy n‖n⊥

iεxy ε⊥ − n2 0

n‖n⊥ 0 Kzz − n2
⊥


 , (A7)

where all elements of the dielectric tensor but Kzz have been written in the cold plasma
approximation, since we consider only the kinetic effects corresponding to Landau damping
on electrons. The plasma dispersion relation is obtained by writing that equation (A6) should
admit a nontrivial solution, i.e. the determinant of M̄ should be zero. Therefore the imaginary
part of Kzz introduces an imaginary part in the dispersion relation D, which can be written as

Im(D) = Im(Kzz)[(ε⊥ − n2
‖)(ε⊥ − n2) − ε2

xy]. (A8)
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In order to fulfil the dispersion relation D = 0, the wave frequency should also have an
imaginary part ω = ωr − iγabs; therefore γabs defines the damping rate of the LH wave electric
field. By linearizing D(ωr − iγabs) = 0 in the weak absorption limit (γabs � ωr), we obtain

γabs = Im(D(ωr))

∂Re(D(ωr))/∂ω
. (A9)

Therefore we obtain

γabs = [(ε⊥ − n2
‖)(ε⊥ − n2) − ε2

xy]

∂Re(D(ωr))/∂ω

×
(
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eJ
2
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∂f

∂p‖

∣∣∣∣
p‖=γme(ω/k‖)

)
. (A10)

As discussed in the main text (section 2), in typical Tore Supra cases, the dominant contribution
to the integral occurs for small values of p⊥. Therefore we evaluate the expression under the
integral in the limit p⊥ ≈ 0, which yields J 2

0 ≈ 1, and γ is evaluated at the resonance as

γ ≈ 1
√

1 − (1/n2
‖). Introducing f‖ = ∫ ∞

0 2πp⊥dp⊥f , we obtain the expression (4) used to

calculate the damping in the DELPHINE code:

γabs = [(ε⊥ − n2
‖)(ε⊥ − n2) − ε2

xy]

∂Re(D(ωr))/∂ω

(
−πsgn(k‖)

ω2
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‖

γm2
e

∂f‖
∂p‖

∣∣∣∣
p‖=γme(ω/k‖)

)
. (A11)

The energy being proportional to the square of the WKB electric field �E = �E0ei(�k,�r−ωt),
the power P carried along the ray is damped following

dP

dt
= −2γabsP. (A12)

In order to calculate the electron distribution function self-consistently with the power
absorption along the rays, it is useful to derive the expression of the quasilinear diffusion
coefficient which appears in the FP equation. An incremental quasilinear diffusion coefficient
�DQL is associated with each time step �t along the ray path. In the momentum space, the
electron flux along the parallel direction associated with this quasilinear diffusion coefficient
is equal to

− neV

∫ ∞

0
2πp⊥dp⊥�DQL

∂f

∂p‖
, (A13)

where the density ne has been multiplied by the volume of the real space V , so that this flux
represents a number of electron diffusing through the point p‖ per unit of time. Hence the
power associated with the quasilinear diffusion of electrons between p‖ and p‖ + dp‖ is

dP |p‖+dp‖
p‖ = −neV

∫ ∞

0
2πp⊥dp⊥�DQL

∂f

∂p‖
d(γmec

2)

= −neV

∫ ∞

0
2πp⊥dp⊥�DQL

∂f

∂p‖

p‖
γme

dp‖. (A14)

From the RT point of view, the power damped during a progress in time �t along the ray path is
equal to 2γabsP�t . Using the expression of γabs prior to the integration over p‖ (equation (A4)),
this yields the power absorbed by electrons whose parallel momentum lies between p‖ and
p‖ + dp‖ as

dP |p‖+dp‖
p‖ = 2P�t

[(ε⊥ − n2
‖)(ε⊥ − n2) − ε2

xy]

∂D/∂ω
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δ
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ω
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dp‖. (A15)
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The comparison of (A14) and (A15) provides the expression of the quasilinear diffusion
coefficient as

�DQL = 2P�t

neV

[(ε⊥ − n2
‖)(ε⊥ − n2) − ε2

xy]

∂D/∂ω

(
π

ω2
pe

ω
γm2

eJ
2
0

1

|k‖|δ
(

p‖ − γme
ω

k‖

))

(A16)

which is the expression used in the DELPHINE code.
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