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Abstract. We focus in this paper on generating models of quantified
first-order formulas over built-in theories, which is paramount in software
verification and bug finding. While standard methods are either geared
toward proving the absence of solution or targeted to specific theories,
we propose a generic approach based on a reduction to the quantifier-
free case. Our technique allows thus to reuse all the efficient machinery
developed for that context. Experiments show a substantial improvement
over state-of-the-art methods.
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1 Introduction

Context. Software verification methods have come to rely increasingly on rea-
soning over logical formulas modulo theory. In particular, the ability to generate
models (i.e., find solutions) of a formula is of utmost importance, typically in the
context of bug finding or intensive testing — symbolic execution [19] or bounded
model checking [7]. Since quantifier-free first-order formulas on well-suited theo-
ries are sufficient to represent many reachability properties of interest, the Satis-
fiability Modulo Theory (SMT) [6,22] community has primarily dedicated itself
to designing solvers able to efficiently handle such problems.

Yet, universal quantifiers are sometimes needed, typically when considering
preconditions or code abstraction. Unfortunately, most theories handled by SMT-
solvers are undecidable in the presence of universal quantifiers. There exist ded-
icated methods for a few decidable quantified theories, such as Presburger arith-
metic [9] or the array property fragment [8], but there is no general and effective
enough approach for the model generation problem over universally quantified
formulas. Indeed, generic solutions for quantified formulas involving heuristic in-
stantiation and refutation are geared at proving the unsatisfiability of a formula
(i.e., absence of solution) [12,18], while recent proposals such as local theory
extensions [2], finite instantiation [27,28] or model-based instantiation [25,18] ei-
ther are too narrow in scope, or handle quantifiers on free sorts only, or restrict
themselves to finite models, or may get stuck in infinite refinement loops.



Goal and challenge. Our goal is to propose a generic and efficient approach to
the model generation problem over arbitrary quantified formulas with support
for theories commonly found in software verification. Due to the huge effort made
by the community to produce state-of-the-art solvers for quantifier-free theories
(QF-solvers), it is highly desirable for this solution to be compatible with current
leading decision procedures, namely SMT approaches.

Proposal. Our approach turns a quantified formula into a quantifier-free for-
mula with the guarantee that any model of the later contains a model of the
former. The benefits are threefold: the transformed formula is easier to solve,
it can be sent to standard QF-solvers, and a model for the initial formula is
deducible from a model of the transformed one. The idea is to ignore quanti-
fiers but strengthen the quantifier-free part of the formula with an independence
condition constraining models to be independent from the (initially) quantified
variables.

Contributions. This paper makes the following contributions:
We propose a novel and generic framework for model generation of quantified

formula (Sec. 5, Alg. 1) relying on the inference of sufficient independence con-
dition (Sec. 4). We prove its correctness (Thm. 1, mechanized in Coq) and its
efficiency under reasonable assumptions (Prop. 4 and 5). Especially our ap-
proach implies only a linear overhead in the formula size. We also briefly study
its completeness, related to the notion of weakest independence condition.

We define a taint-based procedure for the inference of independence condi-
tions (Sec. 5.2), composed of a theory-independent core (Alg. 2) together with
theory-dependent refinements. We propose such refinements for a large class
of operators (Sec. 6.2), encompassing notably arrays and bitvectors.

Finally, we present a concrete implementation of our method specialized on
arrays and bitvectors (Sec. 7). Experiments on SMT-LIB benchmarks and
software verification problems demonstrate that we are able not only to very
effectively lift quantifier-free decision procedures to the quantified case, but
also to supplement recent advances, such as finite or model-based quantifier
instantiation [27,28,25,18]. Indeed, we concretely supply SMT solvers with the
ability to efficiently address an extended set of software verification questions.

Discussions. Our approach supplements state-of-the-art model generation on
quantified formulas by providing a more generic handling of satisfiable problems.
We can deal with quantifiers on any sort and we are not restricted to finite mod-
els. Moreover, this is a lightweight preprocessing approach requiring a single
call to the underlying quantifier-free solver. The method also extends to partial
elimination of universal quantifiers, or reduction to quantified-but-decidable for-
mulas (Sec. 5.4). While techniques a la E-matching allow to lift quantifier-free
solvers to the unsatisfiability checking of quantified formulas, this works provides
a mechanism to lift them to the satisfiability checking and model generation of
quantified formulas, yielding a more symmetric handling of quantified formulas
in SMT. This new approach paves the way to future developments such as the
definition of more precise inference mechanisms of independence conditions, the



identification of subclasses for which inferring weakest independence conditions
is feasible, and the combination with other quantifier instantiation techniques.

2 Motivation

Let us take the code sample in Fig. 1 and suppose we want to reach function
analyze_me. For this purpose, we need a model (a.k.a., solution) of the reachabil-
ity condition φ , ax+ b > 0, where a, b and x are symbolic variables associated
to the program variables a, b and x. However, while the values of a and b are user-
controlled, the value of x is not. Therefore if we want to reach analyze_me in
a reproducible manner, we actually need a model of φ∀ , ∀x.ax + b > 0, which
involves universal quantification. While this specific formula is simple, model
generation for quantified formulas is notoriously difficult: PSPACE-complete for
booleans, undecidable for uninterpreted functions or arrays.

int main () {

int a = input ();

int b = input ();

int x = rand ();

if (a * x + b > 0) {

analyze_me ();

}

else {

...;

}

}

Quantified reachability condition

(1) ∀x.ax+ b > 0

Taint variable constraint
(2) a• ∧ b• ∧ ¬ (x•) (a•, b•, x• : fresh boolean)

Independence condition

(3) ((a• ∧ x•) ∨ (a• ∧ a = 0) ∨ (x• ∧ x = 0)) ∧ b•

(4) ((⊤ ∧ ⊥) ∨ (⊤ ∧ a = 0) ∨ (⊥ ∧ x = 0)) ∧ ⊤

(5) a = 0

Quantifier-free approximation of (1)

(6) (ax+ b > 0) ∧ (a = 0)

Fig. 1: Motivating example

Reduction to the quantifier-free case through independence. We pro-
pose to ignore the universal quantification over x, but restrict models to those
which do not depend on x. For example, model {a = 1, x = 1, b = 0} does depend
on x, as taking x = 0 invalidates the formula, while model {a = 0, x = 1, b = 1}
is independent of x. We call constraint ψ , (a = 0) an independence condition:
any interpretation of φ satisfying ψ will be independent of x, and therefore a
model of φ ∧ ψ will give us a model of φ∀.

Inference of independence conditions through tainting. Fig. 1 details in
its right part a way to infer such independence conditions. Given a quantified
reachability condition (1), we first associate to every variable v a (boolean) taint
variable v• indicating whether the solution may depend on v (value ⊤) or not
(value ⊥). Here, x• is set to ⊥, a• and b• are set to ⊤ (2). An independence
condition (3) — a formula modulo theory — is then constructed using both
initial and taint variables. We extend taint constraints to terms, t• indicating
here whether t may depend on x or not, and we require the top-level term



(i.e., the formula) to be tainted to ⊤ (i.e., to be indep. from x). Condition (3)
reads as follows: in order to enforce that (ax + b > 0)• holds, we enforce that
(ax)• and b• hold, and for (ax)• we require that either a• and x• hold, or a•

holds and a = 0 (absorbing the value of x), or the symmetric case. We see
that ·• is defined recursively and combines a systematic part (if t• holds then
f(t)• holds, for any f) with a theory-dependent part (here, based on ×). After
simplifications (4), we obtain a = 0 as an independence condition (5) which is
adjoined to the reachability condition freed of its universal quantification (6).
A QF-solver provides a model of (6) (e.g., {a = 0, b = 1, x = 5}), lifted into a
model of (1) by discarding the valuation of x (e.g., {a = 0, b = 1}).

In this specific example the inferred independence condition (5) is the most
generic one and (1) and (6) are equisatisfiable. Yet, in general it may be an
under-approximation, constraining the variables more than needed and yielding
a correct but incomplete decision method: a model of (6) can still be turned into
a model of (1), but (6) might not have a model while (1) has.

3 Notations

We consider the framework of many-sorted first-order logic with equality, and
we assume standard definitions of sorts, signatures and terms. Given a tuple of
variables x , (x1, . . . , xn) and a quantifier Q (∀ or ∃), we shorten Qx1 . . .Qxn.Φ

as Qx.Φ. A formula is in prenex normal form if it is written as Q1x1 . . .Qnxn.Φ

with Φ a quantifier-free formula. A formula is in Skolem normal form if it is in
prenex normal form with only universal quantifiers. We write Φ (x) to denote
that the free variables of Φ are in x. Let t , (t1, . . . , tn) be a term tuple, we
write Φ (t) for the formula obtained from Φ by replacing each occurrence of xi

in Φ by ti. An interpretation I associates a domain to each sort of a signature
and a value to each symbol of a formula, and J∆KI denotes the evaluation of
term ∆ over I. A satisfiability relation |= between interpretations and formulas
is defined inductively as usual. A model of Φ is an interpretation I satisfying
I |= Φ. We sometimes refer to models as “solutions”. Formula Ψ entails formula
Φ, written Ψ |= Φ, if every interpretation satisfying Ψ satisfies Φ as well. Two
formula are equivalent, denoted Ψ ≡ Φ, if they have the same models. A theory
T , (Σ,I) restricts symbols in Σ to be interpreted in I. The quantifier-free
fragment of T is denoted QF-T .

Convention. Letters a, b, c . . . denote uninterpreted symbols and variables. Let-
ters x, y, z . . . denote quantified variables. a, b, c denote sets of uninterpreted
symbols. x,y, z . . . denote sets of quantified variables. Finally, a, b, c . . . denote
valuations of associated (sets of) symbols.

In the rest of this paper, we assume w.l.o.g. that all formulas are in Skolem
normal form. Recall that any formula φ in classical logic can be normalized into
a formula ψ in Skolem normal form such that any model of φ can be lifted
into a model of ψ, and vice versa. This strong relation, much closer to formula
equivalence than to formula equisatisfiability, ensures that our correctness and
completeness results all along the paper hold for arbitrarily quantified formula.



Appendix. Additional technical details (proofs, experiments, etc.) are provided
in appendix. This content will be made available in an online technical report.

4 Musing with independence

4.1 Independent interpretations, terms and formulas

A solution (x, a) of Φ does not depend on x if Φ(x,a) is always true or always
false, for all possible valuations of x as long as a is set to a. More formally, we
define the independence of an interpretation of Φ w.r.t. x as follows:

Definition 1 (Independent interpretation).
– Let Φ (x,a) a formula with free variables x and a. Then an interpretation I

of Φ (x,a) is independent of x if for all interpretations J equal to I except
on x, I |= Φ if and only if J |= Φ.

– Let ∆ (x,a) a term with free variables x and a. Then an interpretation I
of ∆ (x,a) is independent of x if for all interpretations J equal to I except
on x, J∆ (x,a)KI = J∆ (x,a)KJ .

Regarding formula ax+ b > 0 from Fig. 1, {a = 0, b = 1, x = 1} is indepen-
dent of x while {a = 1, b = 0, x = 1} is not. Considering term (t [a← b]) [c], with
t an array written at index a then read at index c, {a = 0, b = 42, c = 0, t = [. . . ]}
is independent of t (evaluates to 42) while {a = 0, b = 1, c = 2, t = [. . . ]} is not
(evaluates to t [2]). We now define independence for formulas and terms.

Definition 2 (Independent formula and term).
– Let Φ (x,a) a formula with free variables x and a. Then Φ (x,a) is indepen-

dent of x if ∀x.∀y. (Φ (x,a)⇔ Φ (y,a)) holds true for any value of a.
– Let ∆ (x,a) a term with free variables x and a. Then ∆ (x,a) is independent

of x if ∀x.∀y. (∆ (x,a) = ∆ (y,a)) holds true for any value of a.

Def. 2 of formula and term independence is far stronger than Def. 1 of in-
terpretation independence. Indeed, it can easily be checked that if a formula Φ
(resp. a term ∆) is independent of x, then any interpretation of Φ (resp. ∆) is
independent of x. However, the converse is false as formula ax + b > 0 is not
independent of x, but has an interpretation {a = 0, b = 1, x = 1} which is.

4.2 Independence conditions

Since it is rarely the case that a formula (resp. term) is independent from a set
of variables x, we are interested in Sufficient Independence Conditions. These
conditions are additional constraints that can be added to a formula (resp. term)
in such a way that they make the formula (resp. term) independent of x.

Definition 3 (Sufficient Independence Condition (SIC)).
– A Sufficient Independence Condition for a formula Φ (x,a) with regard to x

is a formula Ψ (a) such that Ψ (a) |= (∀x.∀y.Φ (x,a)⇔ Φ (y,a)).



– A Sufficient Independence Condition for a term ∆ (x,a) with regard to x, is
a formula Ψ (a) such that Ψ (a) |= (∀x.∀y.∆ (x,a) = ∆ (y,a)).

We denote by sicΦ,x (resp. sic∆,x) a Sufficient Independence Condition for
a formula Φ (x,a) (resp. for a term ∆ (x,a)) with regard to x. For example,
a = 0 is a sicΦ,x for formula Φ , ax+ b > 0, and a = c is a sic∆,t for term

∆ , (t [a← b]) [c]. Note that ⊥ is always a sic, and that sic are closed under ∧
and ∨. Prop. 1 clarifies the interest of sic for model generation.

Proposition 1 (Model generalization). Let Φ (x,a) a formula and Ψ a sicΦ,x.
If there exists an interpretation {x, a} such that {x, a} |= Ψ (a) ∧ Φ (x,a), then
{a} |= ∀x.Φ (x,a).

Proof (sketch of). Appendix C.1.

For the sake of completeness, we introduce now the notion of Weakest In-
dependence Condition for a formula Φ (x,a) with regard to x (resp. a term
∆ (x,a)). We will denote such conditions wicΦ,x (resp. wic∆,x).

Definition 4 (Weakest Independence Condition (WIC)).
– A Weakest Independence Condition for a formula Φ (x,a) with regard to x

is a sicΦ,x Π such that, for any other sicΦ,x Ψ , Ψ |= Π.
– A Weakest Independence Condition for a term ∆ (x,a) with regard to x is

a sic∆,x Π such that, for any other sic∆,x Ψ , Ψ |= Π.

Note that Ω , ∀x.∀y. (Φ (x,a)⇔ Φ (y,a)) is always a wicΦ,x, and any
formula Π is a wicΦ,x if and only if Π ≡ Ω. Therefore all syntactically different
wic have the same semantics. As an example, both sic a = 0 and a = c presented
earlier are wic. Prop. 2 emphasizes the interest of wic for model generation.

Proposition 2 (Model specialization). Let Φ (x,a) a formula and Π(a) a
wicΦ,x. If there exists an interpretation {a} such that {a} |= ∀x.Φ (x,a), then
{x, a} |= Π (a) ∧ Φ (x,a) for any valuation x of x.

Proof (sketch of). Appendix C.2.

From now on, our goal is to infer from a formula ∀x.Φ (x,a) a sicΦ,x Ψ (a),
find a model for Ψ (a)∧Φ (x,a) and generalize it. This sicΦ,x should be as weak

— in the sense “less coercive” — as possible, as otherwise ⊥ could always be
used, which would not be very interesting for our overall purpose.

For the sake of simplicity, previous definitions omit to mention the theory
to which the sic belongs. If the theory T of the quantified formula is decidable
we can always choose ∀x.∀y. (Φ (x,a)⇔ Φ (y,a)) as a sic, but it is simpler to
directly use a T -solver. The challenge is, for formulas in an undecidable theory
T , to find a non-trivial sic in its quantifier-free fragment QF-T .

Under this constraint, we cannot expect a systematic construction of wic,
as it would allow to decide the satisfiability of any quantified theory with a
decidable quantifier-free fragment. Yet informally, the closer a sic is to be a
wic, the closer our approach is to completeness. Therefore this notion might be
seen as a fair gauge of the quality of a sic. Having said that, we leave a deeper
study on the inference of wic as future work.



5 Generic framework for SIC-based model generation

We describe now our overall approach. Alg. 1 presents our sic-based generic
framework for model generation (Sec. 5.1). Then, Alg. 2 proposes a taint-based
approach for sic inference (Sec. 5.2). Finally, we discuss complexity and effi-
ciency issues (Sec. 5.3) and detail extensions (Sec. 5.4), such as partial elimina-
tion.

From now on, we do not distinguish anymore between terms and formulas,
their treatment being symmetric, and we call targeted variables the variables we
want to be independent of.

5.1 SIC-based model generation

Algorithm 1: SIC-based model generation for quantified formulas

Parameter: solveQF
Input: Φ(v) a formula in QF-T
Output: sat (v) with v |= Φ, unsat or unknown

Parameter: inferSIC
Input: Φ a formula in QF-T , and x a set of targeted variables
Output: Ψ a sicΦ,x in QF-T

Function solveQ:
Input: ∀x.Φ (x,a) a universally quantified formula over theory T
Output: sat (a) with a |= ∀x.Φ (x,a), unsat or unknown

Let Ψ (a) , inferSIC (Φ (x,a) ,x)
match solveQF (Φ (x,a) ∧ Ψ (a))

with sat (x, a) return sat (a)
with unsat

if Ψ is a wicΦ,x then return unsat

else return unknown

with unknown return unknown

Our model generation technique is described in Alg. 1. Function solveQ takes
as input a formula ∀x.Φ (x,a) over a theory T . It first calculates a sicΦ,x Ψ (a)
in QF-T . Then it solves Φ (x,a) ∧ Ψ (a). Finally, depending on the result and
whether Ψ (a) is a wicΦ,x or not, it answers sat, unsat or unknown. solveQ

is parametrized by two functions solveQF and inferSIC:

– solveQF is a decision procedure (typically a SMT solver) for QF-T . solveQF

is said to be correct if each time it answers sat (resp. unsat) the formula is
satisfiable (resp. unsatisfiable); it is said to be complete if it always answers
sat or unsat, never unknown.

– inferSIC takes as input a formula Φ in QF-T and a set of targeted variables
x, and produces a sicΦ,x in QF-T . It is said to be correct if it always returns a
sic, and complete if all the sic it returns are wic. A possible implementation
of inferSIC is described in Alg. 2 (Sec. 5.2).



Function solveQ enjoys the two following properties, where correctness and com-
pleteness are defined as for solveQF.

Theorem 1 (Correctness and completeness).
– If solveQF and inferSIC are correct, then solveQ is correct.
– If solveQF and inferSIC are complete, then solveQ is complete.

Proof (sketch of). Follow directly from Prop. 1 and 2 (Sec. 4.2).

5.2 Taint-based SIC inference

Algorithm 2: Taint-based sic inference

Parameter: theorySIC
Input: f a function symbol, its parameters φi, x a set of targeted variables

and ψi their associated sicφi,x

Output: Ψ a sicf(φi),x

Default: Return ⊥

Function inferSIC(Φ,x):
Input: Φ a formula and x a set of targeted variables
Output: Ψ a sicΦ,x

either Φ is a constant return ⊤
either Φ is a variable v return v /∈ x

either Φ is a function f (φ1, . , φn)

Let ψi , inferSIC (φi,x) for all i ∈ {1, . , n}
Let Ψ , theorySIC (f, (φ1,., φn) , (ψ1,., ψn) ,x)
return Ψ ∨

∧
i
ψi

Alg. 2 presents a taint-based implementation of function inferSIC. It con-
sists in a (syntactic) core calculus described here, refined by a (semantic) theory-
dependent calculus theorySIC described in Sec. 6. From formula Φ (x,a) and
targeted variables x, inferSIC is defined recursively as follow.

If Φ is a constant it returns ⊤ as constants are independent of any variable.
If Φ is a variable v, it returns ⊤ if we may depend on v (i.e., v 6∈ x), ⊥ otherwise.
If Φ is a function f (φ1, . , φn), it first recursively computes for every sub-term φi

a sicφi,x ψi. Then these results are sent with Φ to theorySIC which computes a
sicΦ,x Ψ . The procedure returns the disjunction between Ψ and the conjunction
of the ψi’s. Note that theorySIC default value ⊥ is absorbed by the disjunction.

The intuition is that if the φi’s are independent of x, then f (φ1, . , φn) is.
Therefore Alg. 2 is said to be taint-based as, when theorySIC is left to its default
value, it acts as a form of taint tracking [14,24] inside the formula.

Proposition 3 (Correctness). Given a formula Φ (x,a) and assuming that
theorySIC is correct, then inferSIC (Φ,x) indeed computes a sicΦ,x.

Proof (sketch of). This proof has been mechanized in Coq.

Note that on the other hand, completeness does not hold: in general inferSIC

does not compute a wic, cf. discussion in Sec. 5.4.



5.3 Complexity and efficiency

We now evaluate the overhead induced by Alg. 1 in terms of formula size and
complexity of the resolution — the running time of Alg. 1 itself being expected
to be negligible (preprocessing).

Definition 5. The size of a term is inductively defined as size (x) , 1 for
x a variable, and size (f (t1, . , tn)) , 1 + Σi size (ti) otherwise. We say that
theorySIC is bounded in size if there exists K such that, for all term ∆,
size (theorySIC (∆, ·)) ≤ K.

Proposition 4 (Size bound). Let N be the maximal arity of symbols defined
by theory T . If theorySIC is bounded in size by K, then for all formula Φ in T ,
size (inferSIC (Φ, ·)) ≤ (K +N) · size (Φ).

Proposition 5 (Complexity bound). Let us suppose theorySIC bounded in
size, and let Φ be a formula belonging to a theory T with polynomial-time check-
able solutions. If Ψ is a sicΦ,· produced by inferSIC, then a solution for Φ ∧ Ψ
is checkable in time polynomial in size of Φ.

Proof (sketch of). Appendices C.3 and C.4

These propositions demonstrate that, for formula landing in complex enough
theories, our method lifts QF-solvers to the quantified case (in an approximated
way) without any significant overhead, as long as theorySIC is bounded in size.
This later constraint can be achieved by systematically binding sub-terms to
(constant-size) fresh names and having theorySIC manipulates these binders.

5.4 Discussions

Extension. Let us remarks that our framework encompasses partial quantifier
elimination as long as the remaining quantifiers are handled by solveQF. For
example, we may want to remove quantifications over arrays but keep those on
bitvectors. In this setting, inferSIC can also allow some level of quantification,
providing that solveQF handles them.

About WIC. As already stated, inferSIC does not propagate wic in gen-
eral. For example, considering formulas t1 , (x < 0) and t2 , (x ≥ 0), then
wict1,x = ⊥ and wict2,x = ⊥. Hence inferSIC returns ⊥ as sic for t1∨t2, while
actually wict1∨t2,x = ⊤. As a second example, let us consider term f(a, x) with
f uninterpreted. Then wicf(a,x),x = ⊤ while inferSIC returns ⊥.

Nevertheless, we can already highlight a few cases where wic can be com-
puted. inferSIC does propagate wic on one-to-one uninterpreted functions. If
no variable x is present in a sub-term, then the associated wic is ⊤. While a
priori naive, this case becomes interesting when combined with simplifications
(Sec. 7.1) that may eliminate x. If a sub-term falls in a sub-theory admitting
quantifier elimination, then the associated wic is computed by eliminating quan-
tifiers in (∀.x.y.Φ(x,a) ⇔ Φ(y,a)). We may also think of dedicated patterns:



regarding bitvectors, the wic for x ≤ a ∧ x ≤ x + k is a ≤ Max − k. Identify-
ing under which condition wic propagation holds is a strong direction for future
work.

6 Theory-dependent SIC refinements

We now present theory-dependent sic refinements for theories relevant to pro-
gram analysis: booleans, fixed-size bitvectors and arrays — recall that uninter-
preted functions are already handled by Alg. 2. We then propose a generalization
of these refinements together with a correctness proof for a larger class of oper-
ators.

6.1 Refinement on theories

We recall theorySIC takes four parameters: a function symbol f , its arguments
(t1, . , tn), their associated sic (t•1, . , t

•
n), and targeted variables x. theorySIC

pattern-matches the function symbol and returns the associated sic according
to rules in Fig. 2. If a function symbol is not supported, we return default value
⊥. Constants and variables are handled by inferSIC. For the sake of simplicity,
rules in Fig. 2 are defined recursively, but can easily fit the interface required for
theorySIC in Alg. 2 by turning recursive calls into parameters.

Booleans and ite. Rules for the boolean theory (Fig. 2a) handles ⇒, ∧, ∨
and ite (if-then-else). For binary operators, the sic is the conjunction of the
sic associated to one of the two sub-terms and a constraint on this sub-term
that forces the result of the operator to be constant — e.g., to be equal to ⊥
(resp. ⊤) for the antecedent (resp. consequent) of an implication. These equality
constraints are based on absorbing elements of operators.

Inference for the ite operator is more subtle. Intuitively, if its condition is
independent of some x, we use it to select the sicx of the sub-term that will be
selected by the ite operator. If the condition is dependent of x, then we cannot
use it anymore to select a sicx. In this case, we return the conjunction of the
sicx of both sub-terms and the constraint that the two sub-terms are equal.

Bitvectors and arrays. Rules for bitvectors (Fig. 2b) follow similar ideas, with
constant ⊤ (resp. ⊥) substituted by 1n (resp. 0n), the bitvector of size n full of
ones (resp. zeros). Rules for arrays (Fig. 2c) are derived from the theory axioms.
The definition is recursive: rules need be applied until reaching either a store at
the position where the select occurs, or the initial array variable.

As a rule of thumb, good sic can be derived from function axioms in the form
of rewriting rules, as done for arrays. Similar constructions can be obtained for
example for stacks or queues.

6.2 R-absorbing functions

We propose a generalization of the previous theory-dependent sic refinements
to a larger class of functions, and prove its correctness.



(a ⇒ b)•

, (a• ∧ a = ⊥) ∨ (b• ∧ b = ⊤)

(a ∧ b)•

, (a• ∧ a = ⊥) ∨ (b• ∧ b = ⊥)

(a ∨ b)•

, (a• ∧ a = ⊤) ∨ (b• ∧ b = ⊤)

(ite c a b)•

, (c• ∧ ite c a• b•) ∨ (a• ∧ b• ∧ a = b)

(a) Booleans and ite

(an ∧ bn)•

, (a•

n ∧ an = 0n) ∨ (b•

n ∧ bn = 0n)

(an ∨ bn)•

, (a•

n ∧ an = 1n) ∨ (b•

n ∧ bn = 1n)

(an × bn)•

, (a•

n ∧ an = 0n) ∨ (b•

n ∧ bn = 0n)

(an ≪ bn)•

, (b•

n ∧ bn ≥ n)

(b) Fixed-size bitvectors

(select (store a i e) j)•

, (ite (i = j) e (select a j))•

, ((i = j)• ∧ (ite (i = j) e• (select a j)•)) ∨ (e• ∧ (select a j)• ∧ (e = select a j))

, (i• ∧ j• ∧ (ite (i = j) e• (select a j)•)) ∨ (e• ∧ (select a j)• ∧ (e = select a j))

(c) Arrays

Fig. 2: Examples of refinements for theorySIC

Intuitively, if a function has an absorbing element, constraining one of its
operands to be equal to this element will ensure that the result of the function
is independent of the other operands. However, it is not enough when a relation
between some elements is needed, such as with (t[a← b]) [c] where constraint
a = c ensures the independence with regards to t. We thus generalize the notion
of absorption toR-absorption, whereR is a relation between function arguments.

Definition 6. Let f : τ1 × · · · × τn → τ a function. f is R-absorbing if there
exists IR ⊂ {1, · · · , n} and R a relation between αi : τi, i ∈ IR such that, for all
b , (b1, . . . , bn) and c , (c1, . . . , cn) ∈ τ1× · · · × τn, if R(b|

IR
) and b|

IR
= c|

IR

where ·|
IR

is the projection on IR, then f(b) = f(c).
IR is called the support of the relation of absorption R.

For example, (a, b) 7→ a ∨ b has two pairs 〈R, IR〉 coinciding with the usual
notion of absorption, 〈a=⊤, {1a}〉 and 〈b=⊤, {2b}〉. Function (x, y, z) 7→ xy + z

has among others the pair 〈x=0, {1x, 3z}〉, while (a, b, c, t) 7→ (t[a← b]) [c] has
the pair 〈a=c, {1a, 3c}〉. We can now state the following proposition:

Proposition 6. Let f (t1, . . . , tn) be a R-absorbing function of support IR, and
let t•i be a sicti,x for some x. Then R (ti∈IR

)
∧

i∈IR
t•i is a sicf,x.

Proof (sketch of). Appendix C.5

Previous examples (Sec. 6.1) can be recast in term of R-absorbing function,
proving their correctness (Fig. 5 in Appendix B.2). Note also that regarding our
end-goal, we should accept only R-absorbing functions in QF-T .

7 Experimental evaluation

This section describes the implementation of our method (Sec. 7.1) for bitvectors
and arrays (ABV), together with experimental evaluation (Sec. 7.2).



7.1 Implementation

Our prototype Tfml (Taint engine for ForMuLa) comprises 7 klocs of OCaml.
Given an input formula in the SMT-LIB format [5] (ABV theory), Tfml per-
forms several normalizations before adding taint information following Alg. 1.
The process ends with simplifications as taint usually introduces many constant
values, and a new SMT-LIB formula is output.

Sharing with let-binding. This stage is crucial as it allows to avoid term du-
plication in theorySIC (Alg. 2, Sec. 5.3, and Prop. 4). We introduce new names
for relevant sub-terms in order to easily share them.

Simplifications. We perform constant propagation and rewriting (standard
rules, e.g. x − x 7→ 0 or x × 1 7→ x) on both initial and transformed formulas –
equality is soundly approximated by syntactic equality.

Shadow arrays. We encode taint constraints over arrays through shadow arrays.
For each array declared in the formula, we declare a (taint) shadow array. The
default value for all cells of the shadow array is the taint of the original array, and
for each value stored (resp. read) in the original array, we store (resp. read) the
taint of the value in the shadow array. As logical arrays are infinite, we cannot
constraint all the values contained in the initial shadow array. Instead, we rely
on a common trick in array theory: we constraint only cells corresponding to a
relevant read index in the formula.

Iterative skolemization. While we have supposed along the paper to work on
skolemized formulas, we have to be more careful in practice. Indeed, skolemiza-
tion introduce dependencies between a skolemized variable and all its preceding
universally quantified variables, blurring our analysis and likely resulting in con-
sidering the whole formula as dependent. Instead, we follow an iterative process:
1. Skolemize the first block of existentially quantified variables; 2. Compute the
independence condition for any targeted variable in the first block of universal
quantifiers and remove these quantifiers; 3. Repeat. This results in full Skolemiza-
tion together with the construction of an independence condition, while avoiding
many unnecessary dependencies.

7.2 Evaluation

Objective. We experimentally evaluate the following research questions: RQ1 How
does our approach perform with regard to state-of-the-art approaches for model
generation of quantified formulas? RQ2 How effective is it at lifting quanti-
fier-free solvers into (sat-only) quantified solvers? RQ3 How efficient is it in
terms of preprocessing time and formula size overhead? We evaluate our method
on a set of formulas combining arrays and bitvectors (paramount in software
verification), against state-of-the-art solvers for these theories.

Protocol. The experimental setup below runs on an Intel(R) Xeon(R) E5-2660
v3 @ 2.60GHz, 4GB RAM per process, and a timeout of 1000s per formula.



Metrics For RQ1 we compare the number of sat and unknown answers
between solvers supporting quantification, with and without our approach.
For RQ2 , we compare the number of sat and unknown answers between
quantifier-free solvers enhanced by our approach and solvers supporting quan-
tification. For RQ3 , we measure preprocessing time and formulas size over-
head.

Benchmarks We consider two sets of ABV formulas. First, a set of 1421 formu-
las from (a modified version of) the symbolic execution tool Binsec [11] rep-
resenting quantified reachability queries (cf. Sec. 2) over Binsec benchmark
programs (security challenges, e.g. crackme or vulnerability finding). The ini-
tial (array) memory is quantified so that models depend only on user input.
Second, a set of 1269 ABV formulas generated from formulas of the QF-ABV

category of SMT-LIB [5] – sub-categories brummayerbiere, dwp formulas

and klee selected. The generation process consists in universally quanti-
fying some of the initial array variables, mimicking quantified reachability
problems.

Competitors For RQ1 , we compete against the two state-of-the-art SMT solvers
for quantified formulas CVC4 [4] (finite model instantiation [27]) and Z3 [13]
(mode-based instantiation [18]). We also consider degraded versions CVC4E

and Z3E that roughly represent standard E-matching [15]. For RQ2 we use
Boolector [10], one of the very best QF-ABV solvers.

Table 1: Answers and resolution time (in seconds, include timeout)
Boolector• CVC4 CVC4• CVC4E CVC4E• Z3 Z3• Z3E Z3E•

S
M

T
-L

IB sat 399 84 242 84 242 261 366 87 366
# unsat N/A 0 N/A 0 N/A 165 N/A 0 N/A

unknown 870 1185 1027 1185 1027 843 903 1182 903
total time 349 165 194 667 165 196 934 270 150 36 480 192 41 935

B
in

s
e

c sat 1042 951 954 951 954 953 1042 953 1042
# unsat N/A 62 N/A 62 N/A 319 N/A 62 N/A

unknown 379 408 467 408 467 149 379 406 379
total time 1152 64 761 76 811 64 772 77 009 30 235 11 415 135 11 604

solver•: solver enhanced with our method Z3E , CVC4E : essentially E-matching

Results. Tables 1 and 2 and Fig. 3 sum up our experimental results, which have
all been cross-checked for consistency. Table 1 reports the number of successes
(sat or unsat) and failures (unknown), plus total solving times (average time in
Appendix D). The • sign indicates formulas preprocessed with our approach. In
that case it is impossible to correctly answer unsat (no wic checking), the unsat

line is thus N/A. Since Boolector do not support quantified ABV formulas, we
only give results with our approach enabled. Table 1 reads as follow: of the 1269
SMT-LIB formulas, standalone Z3 solves 426 formulas (261 sat, 165 unsat),
and 366 (all sat) if preprocessed. Interestingly, our approach always improves



the underlying solver in terms of solved (sat) instances, either in a significant
way (SMT-LIB) or in a modest way (Binsec). Yet, recall that in a software
verification setting every win matters (possibly new bug found or new assertion
proved). For Z3•, it also strongly reduces computation time. Last but not least,
Boolector• (a pure QF-solver) turns out to have the best performance on sat-
instances, beating state-of-the-art approaches both in terms of solved instances
and computation time.

Table 2 substantiates the complementarity of the different methods, and
reads as follow: for SMT-LIB, Boolector• solves 224 (sat) formulas missed
by Z3, while Z3 solves 86 (sat) formulas missed by Boolector•, and 485 (sat)
formulas are solved by either one of them.

Fig. 3 shows formula size averaging a 9-fold increase (min 3, max 12): yet
they are easier to solve because more constrained. Regarding performance and
overhead of the tainting process, taint time is almost always less than 1s in
our experiments (not shown here), 4min for worst case, clearly dominated by
resolution time. The worst case is due to a pass of linearithmic complexity which
can be optimized to be logarithmic.

Table 2: Complementarity of our approach with existing solvers (sat instances)
CVC4• Z3• Boolector•

SMT-LIB
CVC4 -10 +168 [252] -10 +325 [409]

Z3 -119 +224 [485] -86 +224 [485]

Binsec
CVC4 -25 +28 [979] -25 +116 [1067]

Z3 -25 +114 [1067] -25 +114 [1067]

Pearls. We show hereafter two particular applications of our method. Table 3
reports results of another symbolic execution experiment, on the grub example.
On this example, Boolector• completely outperforms existing approaches. As a
second application, while the main drawback of our method is that it precludes
proving unsat, this is easily mitigated by complementing the approach with
another one geared at (or able to) proving unsat, yielding efficient solvers for
quantified formulas, as shown in Table 4.

Conclusion. Experiments demonstrate the relevance of our taint-based tech-
nique for model generation. (RQ1 ) Results in Table 1 shows that our approach
greatly facilitates the resolution process. On these examples, our method per-
forms better than state-of-the-art solvers but also strongly complements them
(Table 2). (RQ2 ) Moreover, Table 1 demonstrates that our technique is highly
effective at lifting quantifier-free solvers to quantified formulas, in both number
of sat answers and computation time. Indeed, once lifted, Boolector perform bet-
ter (for sat-only) than Z3 or CVC4 with full quantifier support. Finally (RQ3 )
our tainting method itself is very efficient both in time and space, making it
perfect either for a preprocessing step or for a deeper integration into a solver.
In our current prototype implementation, we consider the cost to be low.
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Table 3: GRUB example
Boolector• Z3

sat 540 1
# unsat N/A 42

unknown 355 852

total time 16 732 159 765

Table 4: Best approaches
former new

Z3 B• B• ⊲ Z3

S
M

T
-L

IB sat 261 399 485
unsat 165 N/A 165

unknown 843 870 619
time 270 150 350 94 610

B
in

s
e

c sat 953 1042 1067
unsat 319 N/A 319

unknown 149 379 35
time 64 761 1 152 1 169

8 Related work

Traditional approaches to solving quantified formulas essentially involve either
generic methods geared at proving unsatisfiability and validity [15], or complete
but dedicated approaches for particular theories [8,32]. Besides, some recent
methods [20,18,27] aim to be correct and complete for larger classes of theories.

Generic method for unsatisfiability. Broadly speaking, these methods it-
eratively instantiate axioms until a contradiction is found. They are generic
w.r.t. the underlying theory and allow to reuse standard theory solvers, but
termination is not guaranteed. Also, they are more suited to prove unsatisfia-
bility than to find models. In this family, E-matching [15,12] shows reasonable
cost when combined with conflict-based instantiation [26] or semantic triggers
[16,17]. In pure first-order logic (without theories), quantifiers are mainly han-
dled through resolution and superposition [1,23] as done in Vampire [29,21] and
E [30].

Complete methods for specific theories. Much work has been done on
designing complete decision procedures for quantified theories of interest, notably
array properties [8], quantified theory of bitvectors [32], Presburger arithmetic
or Real Linear Arithmetic [9]. Yet, They usually come at a high cost.

Generic methods for model generation. Some recent works detail attempts
at more general approaches to model generation.



Local theory extensions [20,2] provide means to extend some decidable theo-
ries with free symbols and quantifications, retaining decidability. The approach
identifies specific forms of formulas and quantifications (bounded), such that
these theory extensions can be solved using finite instantiation of quantifiers to-
gether with a decision procedure for the original theory. The main drawback is
that the formula size can highly increase.

Model-based quantifier instantiation is an active area of research notably de-
veloped in Z3 and CVC4. The basic line is to consider the partial model un-
der construction in order to find the right quantifier instantiations, typically in
a try-and-refine manner. Depending on the variants, these methods favors ei-
ther satisfiability or unsatisfiability. They build on the underlying quantifier-free
solver and can be mixed with E-matching techniques, yet each refinement yields
a solver call and the refinement process may not terminate. Ge and de Moura [18]
study decidable fragments of first-order logic modulo theories for which model-
based quantifier instantiation yields soundness and refutational completeness.
Reynolds et al. [26], in CVC4, and Barbosa [3], in veriT, use models to guide the
instantiation process towards instances refuting the current model. Finite model
quantifier instantiation [27,28] reduces the search to finite models, and is indeed
geared toward model generation rather than unsatisfiability. Similar techniques
have been used in program synthesis [25].

We drop support for the unsatisfiable case but get more flexibility: we deal
with quantifiers on any sort, the approach terminates and is lightweight, in the
sense that it requires a single call to the underlying quantifier-free solver.

Tainting and non-interference. Our method can be seen as taking inspiration
from program taint analysis [14,24] developed for checking the non-interference
[31] of public and secrete input in security-sensitive programs. As far as the
analogy goes, our approach should not be seen as checking non-interference,
but rather as inferring preconditions of non-interference. Moreover, our formula-
tainting technique is closer to dynamic program-tainting than to static program-
tainting, in the sense that precise dependency conditions are statically inserted
at preprocess-time, then precisely explored at solving-time.

9 Conclusion

This paper addresses the problem of generating models of quantified first-order
formulas over built-in theories. We propose a correct and generic approach based
on a reduction to the quantifier-free case through the inference of independence
conditions. The technique is applicable to any theory with a decidable quantifier-
free case and allows to reuse all the work done on quantifier-free solvers. The
method significantly enhances the performances of state-of-the-art SMT solvers
for the quantified case, and supplements the latest advances in the field.

Future developments aim to tackle the definition of more precise inference
mechanisms of independence conditions, the identification of interesting sub-
classes for which inferring weakest independence conditions is feasible, and the
combination with other quantifier instantiation techniques.
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Additional technical details are provided here for reviewer convenience. This con-
tent will be available in an online technical report.

A Background: detailed notations

This work uses many-sorted first-order logic with equality. Let S be the set of
sort symbols, and for every S ∈ S let X S be the set of variables of sort S. We
assume the sets X S to be pairwise disjoint and note X their union.

A signature Σ consists of a set Σs ⊆ S of sort symbols and a set Σf of sorted
functions symbols fS1,...,Sn,S , where n ≥ 0 and S1, . . . ,Sn,S ∈ Σs. Given a
signature Σ, well-sorted terms and (possibly quantified) formulas with variables
in X are inductively defined as usual. We refer to them respectively as Σ-terms
and Σ-formulas. A ground term (resp. formula) is a Σ-term (resp. formula)
without variables.

Given a tuple of variables x , (x1, . . . , xn) and a quantifier Q (∀ or ∃), we
shorten Qx1 . . .Qxn.Φ as Qx.Φ . A formula in prenex normal form has all its
quantifiers at head position and ranging over the whole quantifier-free formula,
so that it is written as Q1x1 . . .Qnxn.Φ where Φ is a quantifier-free formula.
A formula is in Skolem normal form if it is in prenex normal form with only
universal quantifiers. If Φ is a Σ-formula, we write Φ (x) to denote that the free
variables of Φ are in x. Let t , (t1, . . . , tn) be a term tuple, we write Φ (t) for
the formula obtained from Φ by simultaneously replacing each occurrence of xi

in Φ by ti.
A Σ-interpretation I maps each S ∈ Σs to a non-empty set SI , the domain

of S in I, each x ∈ X of sort S to an element xI ∈ SI , and each fS1,...,Sn,S ∈ Σf

to a total function fI : SI
1 × · · · × S

I
n → S

I . A satisfiability relation |= between
Σ-interpretations and Σ-formulas is defined inductively as usual. We sometimes
refer to models as “solutions”.

A theory is a pair T , (Σ,I) where Σ is a signature and I a class of Σ-
interpretations that is closed under variable reassignment and isomorphism. A
formula Φ (x) of T is valid in T (resp. satisfiable, resp. unsatisfiable) if it is
satisfied by all (resp. some, resp. no) interpretations I ∈ I. A set Γ of formulas
entails in T a Σ-formula Φ, written Γ |=T Φ, if every interpretation in I that
satisfies all formulas in Γ satisfies Φ as well.



B The ABV theory of SMT-LIB

B.1 Definition

Definition of boolean, fixed-size bitvector and array theories studied in Sec. 6.1.

⊤,⊥ : Bool
¬ : Bool → Bool

⇒,∧,∨,⊗ : Bool → Bool → Bool
= : A → A → Bool

ite : Bool → A → A → A

(a) Booleans and ite

concat : BitVec i → BitVec j → BitVec (i+ j) with i > 0, j > 0
extract i j : BitVecm → BitVec (i− j + 1) with m > i ≥ j ≥ 0

U : BitVecm → BitVecm with m > 0
B : BitVecm → BitVecm → BitVecm with m > 0
C : BitVecm → BitVecm → Bool with m > 0

U = {¬, . . . } , B = {∨,∧,+,−,×,÷,≪,≫, . . . } , C = {<,>,≤,≥, . . . }

(b) Fixed-size bitvectors

select : Array A B → A → B
store : Array A B → A → B → Array A B

∀a i e. select (store a i e) i = e
∀a i j e. (i 6= j) ⇒ select (store a i e) j = select a j
∀a b. (∀i. select a i = select b i) ⇒ a = b

(c) Arrays

Fig. 4: Definition of the ABV theory

B.2 Relation of absorption

Fig. 2 recast in term of of R-absorbing function, as mention in Sec. 6.2.

a ⇒ b : 〈a=⊥, {1a}〉 , 〈b=⊤, {2b}〉
a ∧ b : 〈a=⊥, {1a}〉 , 〈b=⊥, {2b}〉
a ∨ b : 〈a=⊤, {1a}〉 , 〈b=⊤, {2b}〉

(a) Booleans

an ∨ bn : 〈an =1n, {1a}〉 , 〈bn =1n, {2b}〉
an ∧ bn : 〈an =0n, {1a}〉 , 〈bn =0n, {2b}〉
an × bn : 〈an =0n, {1a}〉 , 〈bn =0n, {2b}〉

(b) Fixed-size bitvectors

ite c a b : 〈c=⊤, {1c, 2a}〉 , 〈c=⊥, {1c, 3b}〉 , 〈a=b, {2a, 3b}〉

(c) if then else

Fig. 5: Relation of absorption for some ABV function symbols.



C Proofs

C.1 Model generalization (Prop. 1)

Let Φ (x,a) a formula and Ψ a sicΦ,x. If there exists an interpretation {x, a}
such that {x, a} |= Ψ (a) ∧ Φ (x,a), then {a} |= ∀x.Φ (x,a).

Proof. Let (x, a) an interpretation of Φ (x,a), and let us assume that (x, a) |=
Ψ (a) ∧ Φ (x,a). It comes immediately that (x, a) |= Ψ (a) (E1) and (x, a) |=
Φ (x,a) (E2). From (E1) we deduce that a |= Ψ (a), since x does not appear
in Ψ . Then, Ψ being a sicΦ,x, we get that (∀x.∀y.Φ (x, a)⇔ Φ (y, a)) holds
true (E3). Combining (E3) with the fact that Φ (x, a) holds true (from E2), we
conclude that Φ (x, a) is satisfied for any value of x, hence a |= ∀x.Φ (x,a).

C.2 Model specialization (Prop. 2)

Let Φ (x,a) a formula and Π(a) a wicΦ,x. If there exists an interpretation {a}
such that {a} |= ∀x.Φ (x,a), then {x, a} |= Π (a) ∧ Φ (x,a) for any valuation x

of x.

Proof. Let a an interpretation such that a |= ∀x.Φ (x,a) (E1). Then by defini-
tion, ∀x.Φ (x, a) is true. Especially ∀x.∀y.Φ (x, a) ⇔ Φ (x, a) also is. Therefore
a ∈ JΠ(a)K, another way of stating that a |= Π(a) (E2). Let us now con-
sider an arbitrary value x for x. By combining (E2) and (E1), we obtain that
(x, a) |= Π (a) ∧ Φ (x,a).

C.3 Size bound (Prop. 4)

Let N be the maximal arity of symbols defined by theory T . If theorySIC is
bounded in size by K, then for all formula Φ in T , size (inferSIC (Φ, ·)) ≤
(K +N) · size (Φ).

Proof. Let Φ , f (φ1,., φn) be a formula, let ψi , inferSIC (φi) be results of
recursive calls, and let Ψ , theorySIC (f, (φ1,., φn) , (ψ1,., ψn) ,x).

size (inferSIC (f (φ1, . . . , φn))) = size (Ψ ∨
∧

i ψi)
= size (Ψ) + 1 + (n− 1) + Σisize (ψi)
≤ K + N + Σisize (ψi)

Then by structural induction we have size (inferSIC (Φ, ·)) ≤ (K +N) · size (Φ).

C.4 Complexity bound (Prop. 5)

Let us suppose theorySIC bounded in size, and let Φ be a formula belonging to
a theory T with polynomial-time checkable solutions. If Ψ is a sicΦ,· produced by
inferSIC, then a solution for Φ ∧ Ψ is checkable in time polynomial in size of
Φ.



Proof. If theorySIC is bounded in size, then inferSIC is linear in size by Propo-
sition 4. So for any formula Φ in a theory T , if Ψ is the sic produced by inferSIC,
then Φ∧ Ψ is linearly proportional to Φ. As Ψ lands in a sub-theory of T , Φ∧ Ψ
belongs to T and therefore is checkable in polynomial time with regard to the
size of Φ.

C.5 R-absorbing functions (Prop. 6)

Let f (t1, . . . , tn) be a R-absorbing function of support IR, and let t•i be a sicti,x

for some x. Then R (ti∈IR
)
∧

i∈IR
t•i is a sicf,x.

Proof. Let x be a set of variables, and let R be a relation of absorption with
support IR for f . For every i ∈ IR let t•i be a sicti,x. By definition t•i (a) |=
∀x.∀y.t (x,a) = t (y,a), and therefore

∧
i∈IR

t•i (a) |=
∧

i∈IR
∀x.∀y.ti (x,a) =

ti (y,a). Finally, as R is a relation of absorption for f , R (ti (a))
∧

i∈IR
t•i (a) |=

∀x.∀y.f (ti (x,a)) = f (ti (y,a)), i.e., R (ti∈IR
)

∧
i∈IR

t•i is a sicf,x.

D Benchmarks

Table 5: Number of successes (sat or unsat) and failures (unknown), and
average and total resolution time in seconds

Boolector• CVC4 CVC4• CVC4E CVC4E• Z3 Z3• Z3E Z3E•

S
M

T
-L

IB
fo

rm
u

la
s

sat 399 84 242 84 242 261 366 87 366
# unsat N/A 0 N/A 0 N/A 165 N/A 0 N/A

unknown 870 1185 1027 1185 1027 843 903 1182 903

re
so

lu
ti

o
n

ti
m

e

av
er

a
g
e sat 0.67 0.00 163.84 0.00 161.58 13.22 9.25 0.00 24.18

unsat N/A N/A N/A N/A N/A 0.02 N/A N/A N/A
unknown 0.09 0.14 1.23 0.14 1.16 9.20 0.11 0.16 1.10

to
ta

l sat 266.98 0.03 39 650 0.03 38 618 3 450.0 3 384.7 0.01 8 849.3
unsat N/A N/A N/A N/A N/A 3.73 N/A N/A N/A

unknown 82.39 165.51 1 069.4 165.46 1 009.9 2 981.2 96.94 192.64 88.60
all (with timeout) 349.37 165.54 194 667 165.49 196 934 270 150 36 480 192.74 41 935

B
in

s
e

c
fo

rm
u

la
s

sat 1042 951 954 951 954 953 1042 953 1042
# unsat N/A 62 N/A 62 N/A 319 N/A 62 N/A

unknown 379 408 467 408 467 149 379 406 379

re
so

lu
ti

o
n

ti
m

e

av
er

a
g
e sat 1.09 0.34 3.42 0.36 3.35 0.06 10.95 0.07 11.13

unsat N/A 0.01 N/A 0.01 N/A 0.04 N/A 0.01 N/A
unknown 0.04 15.59 31.01 15.59 31.67 191.61 0.02 0.17 0.02

to
ta

l sat 1 138.4 326.98 3 266.3 341.75 3 197.7 55.81 11 408 62.41 11 597
unsat N/A 0.61 N/A 0.39 N/A 14.17 N/A 0.23 N/A

unknown 13.78 5 442.4 12 591 5 441.9 12 875 28 167 6.15 73.03 7.05
all (with timeout) 1152.17 64 761 76 811 64 772 77 009 30 235 11 415 135.67 11 604

solver•: solver enhanced with our method Z3E: essentially E-matching
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