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We study, by incorporating short-range ion-surface interactions, ionic profiles of electrolyte so-
lutions close to a non-charged interface between two dielectric media. In order to account for
important correlation effects close to the interface, the ionic profiles are calculated beyond mean-
field theory, using the loop expansion of the free energy. We show how it is possible to overcome
the well-known deficiency of the regular loop expansion close to the dielectric jump, and treat the
non-linear boundary conditions within the framework of field theory. The ionic profiles are obtained
analytically to one-loop order in the free energy, and their dependence on different ion-surface in-
teractions is investigated. The Gibbs adsorption isotherm, as well as the ionic profiles are used to
calculate the surface tension, in agreement with the reverse Hofmeister series. Consequently, from
the experimentally-measured surface tension, one can extract a single adhesivity parameter, which
can be used within our model to quantitatively predict hard to measure ionic profiles.

I. INTRODUCTION

Ion-specific effects have already been observed in the
late 19th century, when Hofmeister [1] measured precip-
itation of proteins in various electrolyte solutions and
found a universal series of ionic activity. The same
Hofmeister series emerged in a large variety of experi-
ments in chemical and biological systems [2–4]. Among
them, we note measurements of forces between mica
or silica surfaces [5–7], osmotic pressure in presence of
(bio)macromolecules [8, 9], and surface tension of elec-
trolyte solutions [10, 11].

Various measurements of surface tension of electrolyte
solutions indicate that the surface tension increases as
function of ionic strength. Wagner [12] was the first
to connect this finding with the dielectric discontinu-
ity at the air/water interface. He suggested that image-
charge interactions (resulting from the dielectric discon-
tinuities) are the cause for this increase. Onsager and
Samaras (OS) implemented the same idea in their pio-
neering work in the 1930’s [13], and found a universal
limiting law at low salinity for the surface tension aug-
mentation. The OS calculation uses the Debye–Hückel
theory of electrolytes [14], and their result depends on
the dielectric mismatch at the interface and on the bulk
salt concentration. However, this simplified prediction is
not observed in many experimental situations [15] and
led, over the years, to numerous investigations of ion-

specific interactions of ions at surfaces (for a review, see
e.g., Refs. [15, 16]).

Recently, we have related the Hofmeister series with
ionic-specific ion-surface interaction [17, 18], through an
analytical calculation of the surface tension for different
electrolyte solutions. Using one fit parameter, the re-
verse Hofmeister series for air/water as well as oil/water
interfaces was obtained and compared favorably with ex-
periments. We have shown how image-charge and ionic-

specific interactions emerge naturally from the one-loop
expansion of the free energy.

Using a completely different approach, Netz and
coworkers calculated the surface tension [19, 20] as well
as ionic profiles [21] for both charged and neutral sur-
faces, using a two-scale (atomistic and continuum) mod-
eling approach. The ion-specific potential of mean force
was obtained using explicit solvent-atomistic molecular-
dynamics (MD) simulations. These interaction potentials
were then added to the Poisson-Boltzmann (PB) theory.
Within this framework, it was shown that the polarity of
the surface can reverse the order of the Hofmeister series.
It indicates that the Hofmeister series depends both on
the ionic specificity as well as on surface properties.

Another approach was suggested by Levin and cowork-
ers [22], who calculated numerically the surface tension
and ionic profiles of polarizable ions. Their model mod-
ifies the PB theory by adding an ion-surface interaction
potential. The ion-surface interaction includes several
terms that are added ad hoc to the Boltzmann weight fac-
tor. These terms include image-charge interaction, Stern
exclusion layer, ionic cavitation energy and ionic polariz-
ability. While the additional interaction terms may rep-
resent some physical mechanisms for ion-specific interac-
tion with the surface, this approach is not self-consistent.
One cannot, in general, add such terms to the mean-field
potential as they are not independent [1, 15].

In order to shed more light on the Hofmeister series
and to complement the above mentioned numerical and
two-scale studies, we propose an analytical approach to
calculate systematically ionic profiles close to a dielectric
jump. The profiles are calculated within one-loop order
of the free-energy, while accounting for ionic-specific in-
teractions. In this approach, the boundary condition be-
comes non-linear and depends on the ionic density itself.
Using the Gibbs adsorption isotherm, we are able to ob-
tain the air/water (and oil/water) surface tension of dif-
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ferent electrolyte solutions, in agreement with the reverse
Hofmeister series. Thus, by using a single fit parameter
for the macroscopic measurement of surface tension, we
are able to quantitatively predict the corresponding ionic
profiles, which are much harder to measure.

Ionic-specific interactions at the surface break the sym-
metry between anions and cations, essentially because
of the different hydration shell around cations and an-
ions. This gives rise to a non-zero mean-field (MF) elec-
trostatic surface potential. However, as will be demon-
strated in this work (see also Ref. [18]), when the sur-
face interactions are small compared with the thermal
energy, kBT , the dominant contribution to the surface
tension still comes from the OS mechanism. This means
that modeling the surface tension and ionic profiles at the
air/water interface (and similarly at other neutral inter-
faces), requires to take into account the OS image-charge
interactions. In our model, the OS mechanism is included
in the correlations calculated within a loop expansion of
the free energy [18].

The major difficulty in employing the loop expansion
for the ionic profile calculations is the well-known defi-
ciency the loop expansion close to dielectric discontinu-
ities [23, 24] (see also Appendix C for more details). In
the past, different approaches overcame this limitation
using techniques such as variational methods [24–26], or
the cumulant expansion method that is a re-summation
of the loop expansion [23, 27]. Using these methods,
ionic profiles and surface tension were calculated, but
ionic specific effects were not included.

In the present work we choose a different approach to
overcome the deficiency of the regular loop-expansion.
We do not expand the densities to one-loop order, but
employ a re-summed loop-expansion that is equivalent
to a cumulant expansion around a fixed (non-zero) value
of the electrostatic potential.

The outline of this paper is as follows. In Sec. II we
present the model and include a general derivation of
the grand-potential to one-loop order and the formal-
ism needed for the calculation of different thermody-
namical averages. We then discuss the loop expansion
(Sec. II.A) and the limit of the microscopic proximal
layer (Sec. II.B). The electrostatic potential is calculated
to one-loop order in Sec. II.C, the Green’s function is
computed in Sec. II.D, and in Sec. II.E we calculate the
fugacities to one-loop order. The main results of this pa-
per are the one-loop ionic profiles, presented in Sec. III.A,
and the resulting surface tension in Sec. III.B. Finally, we
discuss our results in Sec. IV and conclusions in Sec. V.
In Appendix A, we show in detail the formalism for calcu-
lating the electrostatic potential to one-loop order, and in
Appendix B we present the details of the Green’s func-
tion calculation. Appendix C includes a discussion on
the limitations of the regular loop-expansion close to a
dielectric jump.

II. THE MODEL

Consider an ionic solution that contains symmetric
monovalent (1:1) salt of charges ±e and of bulk concen-
tration nb as depicted in Fig. 1. The aqueous phase (wa-
ter) is a slab of volume V = AL with a cross-section A
and an arbitrary large length, L → ∞, separated from
the air phase by an interface at z = 0. The air and water
phases are taken as two continuum media with uniform
dielectric constant εw and εa, respectively,

ε(r) =

{

εa z < 0
εw z ≥ 0

. (1)

The model can also be applied to interfaces where the air
is substituted by another immiscible liquid, such as an oil
phase. In that case, εa is the oil dielectric constant.
Due to the large ion self-energy (∼ 100kBT in the air

or ∼ 25− 50kBT in oil, where kB is the Boltzmann con-
stant and T is the temperature), all ions are confined to
the water phase. Furthermore, we consider specific ion-
surface interactions within a proximal region inside the
water phase (see Refs. [18, 22] for physical justification
of such proximal layer). The width of this region is de-
noted by d, and the ion-surface interactions are modeled
by a potential V±(r) for anions and cations, respectively.
For uniform and flat surface, the ionic-specific potential
depends only on the z coordinate, V±(r) = V±(z).

waterair  or  oil
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FIG. 1. (color online). Schematic setup of the system. The
water and air phases have the same length L, which is taken
to be arbitrary large, L → ∞. A proximal region, 0 < z < d,
exists inside the water. Within this layer, the anions and cations
interaction with the surface is modeled by a non-electrostatic
potential, V±(z). This proximal region will be taken as a surface
layer of vanishing thickness in Sec. II.B.

The model Hamiltonian is:

H =
1

2

∑

i,j

qiqju(ri, rj)−
e2

2
Nuself(r, r) +

∑

i

V±(zi) ,

(2)
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where the summation is over all ions in the solution,
V±(z) is zero outside the proximal region, [0, d], and
qi = ±e are the charges of monovalent cations and an-
ions, respectively. The total number of ions in the system
is N = N++N−, where N± is the number of cations and
anions, respectively.
The first term in Eq. (2) is the usual Coulombic inter-

action between all ionic pairs satisfying:
∇ · [ε(r)∇u(r, r′)] = −4πδ(r− r

′), and the second term
is the subtraction of the diverging self-energy (i=j) of
point-like ions from the first term. This diverging self-
energy is independent of the dielectric discontinuity.
Namely, it represents the energy needed to produce a
single ion in bulk water, and does not depend on its spa-
tial coordinate, i.e., uself(r, r) ≡ ub → ∞. We have to
subtract this diverging self-energy as it only adds an in-
finite constant to the free-energy. As will be explained
below in Eq. (5), this self-energy term will be incorpo-
rated in the definition of the fugacities. The third term
is the ion-surface specific interaction, accounting for all
anions and cations inside the proximal layer.
The thermodynamical grand-partition function, Ξ, can

be written as

Ξ[ρf , h±] =

∞
∑

N±=0

(λ−)
N−

N−!

(λ+)
N+

N+!

∫ N−
∏

i=1

dri

N+
∏

j=1

drj

× exp

(

− β

∫

dr
(

n̂+(r) [V+(r) + h+(r)]

+ n̂−(r) [V−(r) + h−(r)]
)

−β
2

∫

drdr′ [ρ̂(r) + ρf (r)]u(r, r
′) [ρ̂(r′) + ρf (r

′)]

)

,

(3)

where β = 1/kBT . The grand-partition function traces
over all degrees of freedom of the mobile (cations/anions)
ions, including the ion-surface interaction inside the prox-
imal region, V±. In writing Ξ we have introduced an
external fixed charged density, ρf (r), and an external
potential, h±(r). These auxiliary fields are only used to
calculate thermodynamic averages of measurable quanti-
ties, and are set to zero at the end of the calculation. We
have also introduced the density operator, n̂±, for mobile
cations and anions,

n̂±(r) =
∑

j

δ(r − r
±
j ) , (4)

with
{

r
±
j

}

being the cation and anion positions and δ(r)
is the Dirac delta-function. The charge density opera-
tor of mobile ions is defined via the density operator as
ρ̂(r) = q+n̂+(r) + q−n̂−(r). The above introduced self-
energy, ub, is included in the definition of the fugacities,
λ±,

λ± = a−3 exp (βµ±) exp
(εw

2
ℓBub

)

, (5)

with µ± being the chemical potential of the cations and
anions, respectively, and ℓB = e2/εwkBT is the Bjerrum
length. The length-scale a is a microscopic length corre-
sponding to the ionic size, or equivalently, to the minimal
distance of approach between ions (to be discussed later).
For simplicity, anions and cations are taken to have the
same size, a.
We proceed by rewriting the grand-partition function

using the Hubbard-Stratonovich transformation [28]. It
introduces a new field, φ(r), conjugated to the external
fixed charge density ρf (r),

Ξ[ρf , h±] ≡
(2π)

−N/2
βN/2

√

det[u(r, r′)]
(6)

×
∫

Dφ exp

[

−S [φ, h±] + iβ

∫

drφ(r)ρf (r)

]

.

The Hubbard-Stratonovich transformation gives a new
functional, S, that plays the role of a field action, and is
defined as

S [φ, h±] ≡
∫

dr

[

βε(r)

8π
[∇φ(r)]2 (7)

−λ
(

e−iβeφ(r)−β[V+(r)+h+(r)] + eiβeφ(r)−β[V−(r)+h−(r)]
)

]

,

where the non-electrostatic potential V± is zero outside
the proximal layer, Eq. (2), and ε(r) is the dielectric func-
tion defined in Eq. (1).
In Eqs. (6)-(7), we have used the inverse Coulomb po-

tential u−1(r, r′) = − 1
4π∇ · [ε(r)∇δ(r − r

′)] that obeys
∫

dr′′u(r, r′′)u−1(r′′, r′) = δ(r − r
′). In addition, the

electro-neutrality condition, e(λ+ − λ−) = 0, requires
that λ+ = λ− ≡ λ.
The derivatives of the grand-potential, Ω[ρf , h±] =

−kBT ln Ξ, give thermodynamical averages of measurable
quantities. For example, the average mobile ion densities
can be calculated from Eq. (6), yielding

n±(r) ≡ 〈n̂±(r)〉 =
δΩ

δh±(r)

∣

∣

∣

∣

∣h±=0
ρf=0

= λ
〈

e∓iβeφ−βV±
〉

,

(8)

where 〈O〉 is the thermal average of an operator O,

〈O〉 =
∫

DφO e−S[φ]
∫

Dφ e−S[φ] , (9)

and S[φ] is evaluated at h± = 0.
Equation (8) gives the connection between the average

number of particles and bulk fugacity,

nb =
〈N±〉
V

=

∫

d3r

V
n±(r) ≃ λ

∫

d3r

V

〈

e∓iβeφ∞
〉

.

(10)

The main contribution to the integral comes from the
bulk solution, for which the ion-surface interaction is zero
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and the potential is constant and chosen to be zero, φ∞ =
0.
Similarly, the well-known thermally averaged electro-

static potential, ψ(r), is given by

ψ(r) ≡ 〈iφ(r)〉 = − δΩ

δρf (r)

∣

∣

∣

∣

∣h±=0
ρf=0

. (11)

It is not possible to calculate analytically the averaged
electrostatic potential and ionic densities without further
approximations of the action S. In order to proceed, we
will approximate S using the loop expansion method.

A. The Loop Expansion

We employ the loop expansion technique as was de-
scribed in detail elsewhere [29], and focus only on the
one-loop correction. To keep track of the expansion or-
ders we introduce an artificial parameter, ℓ, which plays
the role of a real coupling parameter. This parameter
will be set to unity (ℓ = 1) at the end of the calculation.
Using the standard saddle-point method, one can expand
the action around its saddle point, ψ0, satisfying,

δS[φ]

δφ(r)

∣

∣

∣

∣

∣φ=−iψ0
ρf=0

= 0 . (12)

We make use of the two-point Green’s function
G(r′, r′′;ψ), as the propagator

∫

dr′′S2(r, r
′′;ψ)G(r′, r′′;ψ) = δ(r− r

′) , (13)

with the Hessian, S2(r, r
′;ψ),

S2(r, r
′;ψ) =

δ2S[φ]

δφ(r)δφ(r′)

∣

∣

∣

∣

∣

φ=−iψ

, (14)

and ψ in Eqs. (13)-(14) has been defined in Eq. (11).
The grand potential, Ω[ρf , h±], is expanded in powers of
ℓ, and to one-loop order, this expansion gives [17, 18],

Ω≃ Ω0 + ℓΩ1

= kBTS0[−iψ0] +
ℓkBT

2
Tr lnS2(r, r

′;ψ0) , (15)

From Eq. (11) and the grand-potential expansion,
Eq. (15), it is clear that the electrostatic potential can
be written as, ψ = ψ0 + ℓψ1, to one-loop order. Nev-
ertheless, it can be shown in a straightforward way that
to the same one-loop order, Ω[ψ0 + ℓψ1] = Ω[ψ0]. Thus,
for the free energy calculation, it is sufficient to calculate
the potential at the saddle point, ψ = ψ0. Equations
(8) and (15) imply that the fugacity is also modified. To
one-loop order, it is expressed as the sum of two contri-
butions: λ = λ0 + ℓλ1, where the subscript in λi and
ψi, i = 0, 1, denotes the zeroth and first expansion order,
respectively.

It is known that the expansion around the saddle point
may lead to some inconsistencies due to mixing of differ-
ent loop orders (for more details, see Ref. [29]). A com-
mon way to avoid this difficulty is to perform a Legendre
transform of the grand potential, denoted by Γ[ψ, h±].
This functional is called the effective action [30], and it
depends on the thermally-averaged electrostatic poten-
tial, ψ(r),

Γ[ψ, h±] = Ω[ρf , h±] +

∫

drψ(r)ρf (r) . (16)

Using the definition of the electrostatic poten-
tial, Eq. (11), the Legendre transformation yields,
δΓ[ψ, h±]/δψ(r) = ρf (r). The equation of state is ob-
tained as a special case for ρf = 0,

δΓ[ψ]

δψ(r)

∣

∣

∣

∣

∣

ρf=0

= 0 , (17)

and determines completely the electrostatic potential,
ψ(r). The above equation means that ψ itself is the sad-
dle point of Γ, similarly to ψ0 being the saddle point of
the grand-potential, Ω. Expanding the effective action
to one-loop, while dropping irrelevant constant terms,
gives [29],

βΓ[ψ] = S[−iψ] + ℓ

2
Tr lnS2(r, r

′;ψ) , (18)

where the first term is the zeroth-loop order and the sec-
ond term is the one-loop correction.

B. The Microscopic Limit of the Proximal Layer,

d→ a

By using the action of Eq. (7) and the one-loop ex-
pansion, Eq. (18), it is possible, but cumbersome, to ob-
tain the ionic profiles for a proximal layer having a finite
width, d. Instead, we take a different route, and use
the fact that the width of the proximal region in which
the non-electrostatic ion-surface interactions are impor-
tant, is usually of order of the ionic size, d ≃ a, [18, 22].
Therefore, the potential V± can be averaged within this
proximal layer, yielding a new surface parameter, α±,
also known as adhesivity,

e−βα± = 〈V±〉d ≡ d−1

∫ d

0

dz e−βV±(z) . (19)

Note that to first order in a cumulant expansion, the
adhesivity simplifies to, α± ≃ 〈V±〉d. As the proximal
layer size is comparable to the ionic size, a, we treat it,
within our continuum approach, as a layer that collapses
onto a surface layer at z = 0, and is kept in contact with
the bulk ionic solution. The field action, S, of Eq. (7) is
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then expanded to first order in d, yielding [18]

S [φ, h±] =

∫

dr

[

βε(r)

8π
[∇φ(r)]2 (20)

−λ
(

e−iβeφ(r)−βh+(r) + eiβeφ(r)−βh−(r)
)

−λsδ(z)
(

χ+e
−iβeφ(r)−βh+(r) + χ−e

iβeφ(r)−βh−(r)

)]

,

with a conveniently defined new surface parameter,

χ± ≡ d
(

e−βα± − 1
)

, (21)

which depends only on α± and d.
Notice that a new surface fugacity λs 6= λ emerges

from the surface term. The surface fugacity is related
to the effective number of anions/cations on the sur-
face (or equivalently inside the collapsed proximal layer),
N±
s = −λ±s ∂Ω/∂λ±s , with λ±s ≡ λsχ±. In the limit of

vanishingly small proximal layer, some of the ions are ef-
fectively forced to reside on the interface. This is in con-
tradiction with our explicit (and well justified) assump-
tion that all ions are inside the water phase. To treat
this artificial situation, one has to take into account the
surface self-energy, us, that differs from the bulk one, ub.
This is the reason that we introduce the surface fugac-
ity, λs = λ exp[εwℓB(us − ub)/2], which includes the ion
self-energy on the surface, us 6= ub.
Because the field action, Eq. (20), is written as a sum

of surface and bulk terms, the corresponding densities
are then given separately by:

n±(r) =
δΩ

δh±(r)

∣

∣

∣

∣

∣h±=0
ρf=0

= λ
〈

e∓iβeφ
〉

,

n±
s =

〈N±
s 〉
A

= λsχ±

〈

e∓iβeφ(z=0)
〉

. (22)

It can be shown that the effective surface densities, n±
s ,

are equal to the difference between the densities in the
proximal region (0 < z < d) and sub-proximal one (d ≤
z ≤ 2d). Therefore, n±

s can be negative for repulsion of
ions from the proximal layer, α± > 0.
Hereafter, we will use the mapping into such a surface

layer of zero width, where the entire proximal layer is
collapsed to z = 0. Thus, all distances are measured
from the outer boundary of the proximal layer (z = d of
Fig. 1). In this mapping, the parameter d is only taken
into account implicitly via the surface parameter χ±.

C. Electrostatic Potential

As noted earlier, the electrostatic potential is deter-
mined by the equation of state, Eq. (17). Its general
formalism to one-loop order is presented Appendix A.
The zeroth order in the loop expansion, Eq. (A8), is the

well-known Poisson-Boltzmann (PB) equation for planar
geometry

ψ′′
0 (z) = 0 z < 0 ,

ψ′′
0 (z) =

8πeλ0
εw

sinh (βeψ0) z > 0 . (23)

The electrostatic boundary condition at z = 0, Eq. (A9),
is rather special and involves a relation between the sur-
face potential, ψs ≡ ψ0(0), and its left and right deriva-

tives, ψ′
0

∣

∣

∣

0±
= limz→0± [ψ

′(z)]:

εwψ
′
0|0+ − εaψ

′
0|0− = −4πeλ0

(

χ+e
−βeψs − χ−e

βeψs
)

.

(24)

Note that in the zero-loop order, the surface and bulk

fugacities are equal, λ0 = λ
(s)
0 , because the self-energy

affects only the one-loop fugacities.

For simplicity, we assume that the mean-field (MF)
potential is small, βeψ0 ≪ 1, and the PB equation for
z > 0 reduces to the Debye-Hückel (DH) equation,

ψ′′
0 = κ2Dψ0 , (25)

where

κD ≡ (8πℓBλ0)
1/2 (26)

is the inverse Debye length. The DH linearization can be
justified for α− ≃ α+, and, in particular, for βα± ≪ 1.
The asymmetry between cations and anions is manifested
in α±, but for similar adhesivities (α− ≃ α+), the asym-
metry between cations and anions is small, and the re-
sulting effective surface charge density is also small. In
this case, the linearized boundary condition yields,

εwψ
′
0

∣

∣

∣

0
+

− εaψ
′
0

∣

∣

∣

0
−

= (27)

−4πλ0e
[

χ+ (1− βeψs)− χ− (1 + βeψs)
]

.

To order O(χ+ − χ−), the DH solution for the MF po-
tential yields,

βeψ0(z = 0) ≡ βeψs =
κD (χ+ − χ−)

2 + κD (χ+ + χ−)
z < 0 ,

ψ0 = ψse
−κDz z ≥ 0 .

(28)

The one-loop potential is obtained in Appendix A
(Eq. (A10)). It is written in terms of the Green’s func-
tion and the one-loop correction to the fugacity to first
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order in ψ0,

ψ1(z) = βe

∫

d3r′G(r, r′)

[

2βeλ0ψ0

×
(

1

2
β2e2G(r′, r′)− λ1

λ0

)

− δ(z′)λ0

(

χ+ − χ− − βeψ0 [χ+ + χ−]
)

×
(1

2
β2e2G(r′, r′)− λ

(s)
1

λ0

)

]

.

(29)

For simplicity, in Eq. (29) and hereafter, we suppress
the explicit dependence of the Green’s function on the
electrostatic potential, i.e., G(r, r′;ψ0) → G(r, r′).
To complete the calculation of the one-loop potential,

we need to find the Green’s function and the one-loop
correction to the fugacities. This will be done in the
sections below.

D. Green’s Function

The Green’s function defined in Eq. (13) for the action
S of Eq. (20) satisfies

[

− β

4π
∇ ·
(

ε(z)∇
)

+ γ(z)

]

G (r, r′) = δ (r− r
′) ,(30)

where

γ(z) = 2λ0β
2e2 cosh(βeψ0) (31)

+β2e2λ0δ(z)
(

χ+e
−βeψ0 + χ−e

βeψ0
)

,

and λ0 is the zero-loop fugacity. The system is trans-
lational invariant in the transverse (x, y) directions, and
we can use the Fourier-Bessel transform by integrating
out the angular dependence in polar coordinates,

G(r, r′) =
1

4π2

∫

dk g(k; z, z′)eik·(ρ−ρ
′) =

=
1

2π

∫

dk k g(k; z, z′)J0(k|ρ− ρ
′|) , (32)

where J0 is the zeroth-order Bessel function of the 1st
kind, ρ = (x, y) is the in-plane radial vector and k = |k|.
As noted after Eq. (24), similar adhesivities corre-

sponds to weak MF potentials, βeψ0 ≪ 1, and the so-
lution for the Green’s function to first order in ψ0 (see
Appendix B for details) is:

g(k; z, z′) =
2π

βεwp
[1 + ξ(k)] ekz−pz

′

z < 0 ,

g(k; z, z′) =
2π

βεwp

[

e−p|z−z
′| + ξ(k)e−p(z+z

′)
]

z ≥ 0 ,

(33)

where we have defined (see also Appendix B),

ξ(k) ≡ εwp− εak − γs
εwp+ εak + γs

,

γs ≡
1

2
εwκ

2
D [χ+ (1− βeψs) + χ− (1 + βeψs)] , (34)

and recall that p =
√

k2 + κ2D. Because ψ ∼ χ+ − χ−,
we can write γs to order O(χ+ − χ−) as

γs ≃
1

2
εwκ

2
D (χ+ + χ−) . (35)

Of special interest is the equal-point Green’s function,

G(z) ≡ G(r, r) =

∫ Λ

0

dk
k

βεwp

[

1 + ξ(k)e−2pz
]

, (36)

where Λ = 2
√
π/a ∼ a−1 is a microscopic cutoff and a is

the minimal distance of approach between ions, defined
earlier. Note that for a → 0, the Green’s function di-
verges. This is an artifact of the electrostatic interaction
∼ 1/r between point-like ions, which diverges as r → 0.
In real systems, the ions have finite size that introduces a
minimal distance of approach. However, this distance is
usually much smaller than any other system length-scales
and can be taken safely to zero in many cases.

E. Fugacities

The ionic profiles can be calculated from Eq. (22),
while the fugacity, λ, is related to the bulk density, nb,
through Eq. (10). It is, therefore, necessary to compute
the thermal average,

〈

e∓iβeφ
〉

.
Employing the expansion of Eq. (18) and using once

again the Hubbard-Stratonovich transformation, yields

〈

e∓iβeφ
〉

= exp

[

∓βeψ − β2e2ℓ

2
G(z)

]

(37)

= exp

[

∓βe (ψ0 + ℓψ1)−
β2e2ℓ

2
G(z)

]

.

We proceed to determine the bulk fugacity from
Eqs. (10), (22) and the above equation. The bulk fu-
gacity is determined by the constraint that the densities
at z → ∞ should match the bulk density, nb,

nb = n± (z → ∞) ≃ λe−
1
2β

2e2ℓG(z→∞)

≃ λ0

(

1 + ℓ

[

λ1
λ0

− 1

2
β2e2G(z → ∞)

])

. (38)

The above equation and Eq. (36) for the Green’s function,
G(z), give the zeroth-order contribution and the one-loop
correction to the bulk fugacity,

λ0 = λ
(s)
0 = nb , (39)

λ1
λ0

=
1

2
β2e2G(z → ∞) =

ℓB
2

∫ Λ

0

dk
k

p
=
ℓB
2
(Λ− κD) ,
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FIG. 2. (color online). Ionic profiles as function of the distance z from the air/water interface. The one-loop ionic profiles for
cations and anions (Eq. (42)) are compared with the MF profiles (computed without taking into account ψ1 and Gs). In (a) we
use α± = ±0.1 kBT , while in (b) α+ = 0.1 kBT and α− = −0.5 kBT . Other parameters are: T = 300K, εw = 80, εa = 1,
d = a = 0.5 nm and nb = 0.1M. The z = 0 surface is taken as the outer boundary of the proximal layer (z = d in Fig. 1).

where βe2G(z → ∞)/2 = e2ub/2 is exactly half of the
electrostatic energy needed for adding an ion to the bulk
electrolyte solution.

A similar reasoning relates the one-loop surface fugac-
ity to the electrostatic energy, e2us, required to place
an ion onto the air/water interface, where salt is absent
(κD = 0). The one-loop correction to the surface fugacity
is then easily obtained from Eq. (36) as,

λ
(s)
1

λ0
=

1

2
β2e2G (z = 0;κD = 0) =

εwℓBΛ

εw + εa
, (40)

where βe2G (z=0;κD=0) /2 = e2us/2.

We note that the difference between λ1 and λ
(s)
1 is an

artifact arising from the decomposition of the free-energy
to bulk and surface terms. The surface ions are treated as
they are half in the water and half in the air (see Ref. [31]
for the calculation of the ion self-energy at the surface).

At this stage, we can write the one-loop potential by
substituting the MF potential of Eq. (28), the Fourier-
Bessel transform of the Green’s function, Eqs. (32) and
(33), as well as the above fugacity expression, Eqs. (39)-
(40), into Eq. (29). This then yields

ψ1(z) =
1

4
κDℓBψ0(z)

∫

dk
k

p
(41)

×
[

ξ(k)

(

1− e−2pz

2p
+
ξ(0) + e−2pz

2(p+ κD)

)

− 1 + ξ(0)

κD

(

1 + ξ(k)− 2εwp

(εw + εa)k

)

]

.

The above expression is one of our important results and
will be used in Sec. III to obtain the ionic profiles.

III. RESULTS

We first derive the expressions for the ionic profiles
close to the surface and the total amount of ions con-
tained within the proximal region. Then, we use the
Gibbs adsorption isotherm to obtain the interfacial ten-
sion and compare it to previous results.

A. Ionic Profiles

In order to obtain the analytical expression for the
ionic profiles, we substitute the electrostatic potential,
Eqs. (28) and (41), together with the equal-point Green’s
function, Eq. (36), into Eq. (22). The ion densities in wa-
ter (z > 0) as a function of the physical quantities, nb
and χ±, are:

n±(z) ≃ nb exp
[

− 1

2
β2e2ℓGs(z)∓ βe [ψ0(z) + ℓψ1(z)]

]

≃ nb e
− 1

2β
2e2ℓGs(z)

(

1∓ βe [ψ0(z) + ℓψ1(z)]
)

, (42)

where n±(z < 0) = 0 andGs(z) ≡ G(z)−G(z → ∞). We
recall that the parameter ℓ should be set to unity at the
end (see Sec. II.B). As we do not expand the densities to
order O(ℓ) (see Appendix C for further details), we need
for consistency to re-exponentiate the fugacity expres-
sion, λ ≃ λ0 + ℓλ1 ≃ λ0 exp (ℓλ1/λ0), and use Eq. (39).
In the second line of Eq. (42) we have expanded the ex-
ponent in order to keep only terms to order O(χ+−χ−).
We recall that the model does not apply to the densi-
ties inside the proximal layer, z ǫ [0, d] of Fig. 1, and the
above equation is valid only outside this layer.
Although we cannot calculate the ionic profiles inside

the proximal layer, we can approximate the total number
of cations/anions (per unit area) in this layer, defined
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FIG. 3. (color online). One-loop ionic profiles for cations
and anions obtained from Eq. (42) as function of the distance
z from the air/water interface for different values of α±. The
black lines are obtained for α+ = 0.1 kBT and α− = −1.0 kBT
(dotted for cations and solid for anions), while the blue lines
correspond to α+ = 0.1 kBT and α− = −0.5 kBT (dashed for
cations and dash-dotted for anions). In the inset (same units),
we present the profiles for α+ = 0.1 kBT , α− = −1.0 kBT (black
dotted for cations and black solid for anions) and α+ = 1.0 kBT ,
α− = −0.1 kBT (blue dash-dotted for cations and blue dashed
for anions) to show the asymmetry between positive and negative
values of α+ and α−. Other parameters are as in Fig. 2. The
z = 0 surface is taken as the outer boundary of the proximal
layer (z = d of Fig. 1).

as N±
p /A =

∫ d

0 dz n±(z). In the spirit of Sec. II.B, we
expand Eq. (8) to first order in d. Then, Eq. (42) is
evaluated at z = 0+ and used1 to derive N±

p :

N±
p

A
≃ nbd exp

[

− βα± − 1

2
β2e2ℓGs(0)

∓βe [ψ0(0) + ℓψ1(0)]
]

≃ nbd exp
[

− βα± − 1

2
β2e2ℓGs(0)

]

×
(

1∓ βe [ψ0(0) + ℓψ1(0)]
)

, (43)

where in the last equality the electrostatic potential is
expanded to first order since we are in the DH regime.
As explained after Eq. (22), we treat the proximal layer

as a collapsed surface layer lying at the water/air inter-
face, z = 0. Namely, all distances are measured from

1 In order to calculate macroscopic properties such as surface ten-
sion, one should use the effective densities n±

s . Similarly to
Eq. (42), these effective densities can be written as,

n
(s)
±

= nbχ± exp
[

−
1

2
β2e2ℓ G̃s(0)∓ βe [ψ0(0) + ℓψ1(0)]

]

≃ nbχ± e−
1
2
β2e2ℓ G̃s(0)

(

1∓ βe [ψ0(0) + ℓψ1(0)]
)

.

where G̃s(0) ≡ G(z = 0) −G (z = 0; κD = 0).

the outer boundary of the proximal region, z = d, in the
original system depicted in Fig. 1.

In Fig. 2 we compare the obtained one-loop and MF
ionic densities. The one-loop correction is significant
close to the dielectric discontinuity. For α± = ±0.1 kBT ,
the MF and one-loop concentrations coincide at z & 3d =
1.5 nm, while for α+ = 0.1 kBT and α− = −0.5 kBT , the
two profiles coincide at larger distances of z & 6d = 3nm.
At these distances and above them, the calculated den-
sities almost reach their bulk values.

The adhesivities in Fig. 2 correspond to repulsion of
cations and attraction of anions from/to the proximal
layer, reflecting an effective negative surface charge den-
sity. Therefore, the cations are attracted to an adja-
cent “secondary layer” (sub-proximal) where they accu-
mulate. When the bias, β|α+ −α−|, becomes larger, the
deviation of the one-loop profile from MF is noticeable
even farther away from the surface. However, the cations
density peak, which corresponds to their accumulation at
the secondary layer, moves closer to the surface. At dis-
tances larger than the peak position, z > z∗, the MF
and one-loop densities differ only quantitatively, whereas
the difference between the two is qualitative in the peak
region.

Figure 3 presents different values of the adhesivities,
α+ 6= α−. One can notice as a general trend that
when the bias becomes larger, the density peak of the
secondary layer increases in its height and shifts to-
wards the air/water interface. In the figure we show this
trend by fixing α+ = 0.1 kBT and plotting two differ-
ent values for the anions adhesivity, α− = −0.5 kBT and
α− = −1.0 kBT . For the former case, the density peak
n∗ ≃ 1.36nb is at z

∗ ≃ 0.45 nm, while for the latter, the
density peak n∗ ≃ 1.12nb is at z

∗ ≃ 0.71 nm.

In Fig. 4 we present the one-loop ionic profiles for
(a) different salt concentration nb, (b) different cutoff
Λ = 2

√
π/a, and (c) different proximal layer width, d.

We use α± = ±0.1 kBT , which yields an effective nega-
tive surface charge density. For higher salt concentration,
the “second layer” (sub-proximal) peak of the cation den-
sity becomes more pronounced and moves closer to the
interface (as occurs for higher bias). For concentration of
0.1M, the density peak, n∗ ≃ 1.07nb, is at z∗ ≃ 0.5 nm,
while for 0.5M, it is located at z∗ ≃ 1.28 nm with value
of n∗ ≃ 1.02nb. The variation of anion concentration
close to the surface increases with the salt concentration,
and both cation and anion profiles reach their bulk values
closer to the surface.

As seen in Fig. 4 (b), the different values of the cutoff,
Λ, only affect the Green’s function as both ψ0 and ψ1 do
not depend on the cutoff, Λ. Therefore, different cutoffs
only change the density very close to the interface, and
already at distances z & d = 0.5 nm, there is no differ-
ence between the ionic profiles for various cutoffs. This
means that our theory is quite robust for calculating ionic
profiles and does not depend strongly on the value of the
Λ cutoff.

Figure 4 (c) shows that by increasing the width of the
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FIG. 4. (color online). One-loop ionic profiles for cations and anions obtained from Eq. (42) as function of the distance z from
the air/water interface for: (a) different salt concentration, nb, with d = a = 0.5 nm, (b) different cutoff, Λ = 2

√
π/a, with

d = 0.5 nm and nb = 0.1M, and (c) different proximal layer width, d, with a = 0.3 nm and nb = 0.1M. Other parameters used are:
α± = ±0.1 kBT , and the rest are as in Fig. 2. The z = 0 surface is taken as the outer boundary of the proximal layer (z = d of
Fig. 1).

proximal layer, d, the density peak moves closer to the in-
terface and the difference between the anions and cations
profiles increases. A similar trend is observed by increas-
ing the salt concentration (see Fig. 4 (a)), but the de-
pendence on d is found to be somewhat weaker. For
proximal layer width of d = 0.5 nm, the density peak is
at z∗ ≃ 0.94 nm and its value is n∗ ≃ 1.05nb, while for
d = 1nm, the peak is located at z∗ ≃ 1.25 nm with value
of n∗ ≃ 1.02nb. Furthermore, unlike the salt concen-
tration effect, changing the proximal layer width reduces
the profiles slope. The limiting bulk values are obtained
farther away from the surface and its proximal layer.

B. Surface Tension

We calculate the excess surface tension, ∆γ, to one-
loop order through the Gibbs adsorption isotherm by
using the one-loop ionic specific profiles for anions and
cations. In order to test our model, the results are com-
pared with our previous work [17], where the surface ten-
sion was calculated in a different way, directly from the
free energy. The latter method is thermodynamically
equivalent to the Gibbs adsorption isotherm. Note that
α of Ref. [17] corresponds to α− of the present paper, and
in order to make the comparison we should set α+ = 0.
The Gibbs adsorption isotherm gives the excess surface

tension (with respect to the bare air/water interface),

∆γ = −kBT
∑

±

∫ n
(±)
b

0

ds

s

∫

dz [n±(z, s)− s] . (44)

For n±(z) we use Eq. (42) and the effective surface den-
sities, n±

s (see footnote before Eq. (43)), where the in-
tegration is performed on the bulk ionic concentration,
nb.

Although the loop expansion is not fully justified for
the densities, it is valid for free energy and other macro-
scopic quantities such as the surface tension, even in pres-
ence of a dielectric discontinuity (see Appendix C). When
calculating free energies (or surface tension), one has to
expand all terms to first order in ℓ. Hence, we expand the
surface tension to first order in ℓ and write the one-loop
surface tension in the DH regime, O (χ+ − χ−), as

∆γ ≃ ∆γ0 + ℓ∆γ1 = −nb (χ+ + χ−)

+ ℓ

∫ nb

0

dn′ ℓB
2

∫ Λ

0

dk

(

kξ (k, n′)

p2(n′)

+
k

p

[

1 + ξ (k, n′)
]

− 2εw
εw + εa

)

, (45)

where ℓ is set to unity.

Our results are shown in Fig. 5, and are indistinguish-
able from those of Ref. [17]. In fact, we have compared
numerically the surface tension of Eq. (45) with Eq. (24)
of Ref. [17], and they are equal for the same values of α±

(or equivalently, χ±).

We would like to emphasize that the surface tension
results can be used to predict quantitatively the cor-
responding ionic densities. The surface tension can be
measured with commonly available techniques (such as
the drop volume technique). Then, the experimental re-
sults can be fitted with Eq. (45) (or Eq. (24) of Ref. [17],
which are the same for α+ = 0) in order to obtain the
numerical values of the adhesivity parameter, α±. The
ionic densities can then be obtained from Eqs. (42) and
(43), where the only fitting parameter is the adhesivity,
α±.
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FIG. 5. Surface tension as a function of the salt bulk con-
centration, as calculated from the Gibbs adsorption isotherm of
Eq. (45). These lines are in perfect agreement with the sur-
face tension calculated directly from the free energy, Ref. [17].
The different lines refer to different values of α− ≡ α and
d (while keeping α+ = 0). The comparison is done for the
same parameters are used as in Ref. [17]: α = 0.18 kBT and
d = 0.71 nm (black dash-dotted line) as was fitted in Ref. [17]
for NaF, α = 0.135 kBT and d = 0.69 nm (red solid line) for
NaCl, α = 0.069 kBT and d = 0.69 nm (blue dashed line) for
NaBr, and α = 0.023 kBT d = 0.69 nm (green double-dotted
line) for NaI.

IV. DISCUSSION

Figure 2 shows large difference between our obtained
one-loop ionic profiles and the corresponding MF pro-
files. This difference is a result of the image-charge in-
teraction [13], which gives rise to strong repulsion of ions
from the surface at short distances, as demonstrated by
the Green’s function (see Gs(z) of Eqs. (42) and (43)).
This repulsion depends on the adhesivity, and can be
magnified (α± > 0) or reduced (α± < 0). This is due to
correlation effects that couple the ionic adhesivities with
their image-charge interaction at the surface. Although
at very small distances our continuum theory is not ac-
curate, it gives a qualitatively correct behavior, which is
not the case for the MF profiles.

The one-loop correction has a strong contribution close
to the interface. This is due to the Green’s function that
largely affects the density profile close to the interface.
Because the Green’s function is the same for cations and
anions, the cation/anion profiles at short distances (be-
fore the apparent density peak) are rather similar. For
larger distances, the Green’s function decays exponen-
tially, and the deviation becomes larger as function of
the α+ 6= α− bias.

On the other hand, the one-loop correction to the elec-
trostatic potential has an opposite effect on cations and
anions. Thus, it results in an increased deviation from
the cation/anion MF profiles at intermediate distances

from the interface. For a small bias, α+ ≃ α−, the den-
sity profiles calculated from one-loop and MF coincide
before reaching their bulk values, while for large bias,
α+ 6= α−, they only coincide farther from the surface,
when they reach their equal bulk value, nb. This effect
is mainly due to the one-loop correction of the electro-
static potential. Such a correction strongly depends on
the bias, and has a longer-range effect than the Green’s
function. The electrostatic potential (MF and one-loop)
also has an exponential decay, but slower than that of the
Green’s function. The range of the one-loop correction
increases with the bias, leading to quantitative deviation
from the MF profile.
Another remark is that there is no symmetry between

positive (repulsive) and negative (attractive) values of
α±. The dependence of χ± on the adhesivity through
exp(−βα±) is asymmetric with respect to α± ↔ −α∓.
This is clearly seen in the inset of Fig. 3, where we
compare the profiles for the same bias α+ = 0.1 kBT ,
α− = −1.0 kBT with the opposite case of α+ = 1.0 kBT ,
α− = −0.1 kBT . The two cases show quite different pro-
files. The density peak of ions accumulated in the “sec-
ondary layer” is higher and closer to the air/water in-
terface for the first case. This observation implies that
negative values of α± have stronger effect than the posi-
tive ones.
For repulsive and large ion-surface interaction, α± >

5 kBT , there is no observable difference between different
ionic profiles because the ions are completely expelled
from the proximal layer. This clearly is qualitatively
very different than the case of attractive ion-surface in-
teraction. In the latter case, the number of ions in the
proximal layer increases as α± becomes more negative.
The number of ions at the surface is not bounded as we
assume the ion-surface is repulsive or slightly attractive.
However, for highly negative α±, our theory is violated
as the weak coupling limit we employed is not valid any-
more. Furthermore, for such strong adsorption the steric
repulsion at the proximal layer has to be included, and
will give a bound to the number of ions at the surface.

A. Comparison with Previous Models

In Fig. 6 we compare our predictions for the ionic pro-
files with those obtained by Netz and co-workers (Fig. 3
B of Ref. [21]), and those of Levin and co-workers (Fig. 3
of Ref. [22]). In general, our analytical results compare
favorably with both previous models.
Figure 6 shows our computed ionic profiles, Eq. (42),

for NaI as obtained with the fitting parameters of Ta-
ble II, Ref. [18]: α+ = α

Na
= 0.11 kBT , α− = α

I
=

−0.071 kBT . The density peak of Fig. 6, related to the
accumulation of Na+ ions (dashed line) in the secondary
layer, lies at z∗ ≃ 0.25 nm, and its value is n∗ ≃ 1.2nb.
The density profiles reach their bulk value at z ≃ 1.5 nm.
As explained after Eq. (43), we treat the proximal layer
as a collapsed surface layer lying at z = 0. Namely, all
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FIG. 6. (color online). Ionic profiles for NaI obtained
from Eq. (42) (one-loop) with α± taken from the fitting pa-
rameters in Table II of Ref. [18]: α+ = αNa = 0.11 kBT ,
α− = αI = −0.071 kBT . The black dashed line and the solid
blue line correspond to the Na+ and I− ions, respectively. Other
parameters used are: d = a = 0.69 nm, nb = 1M and the rest
are as in Fig. 2. The profiles compare quite favorably with those
reported in Refs. [21] and [22].

distances are measured from the outer boundary of the
proximal layer.
The results in Fig. 6 are in good agreement with those

of Ref. [21]. As our proximal layer is collapsed onto z = 0,
only distances away from the first density peak of I− in
Fig. 3 B of Ref. [21] should be compared to ours. The
Na+ density peak of Ref. [21] is at distance z ≃ 0.3 nm
away from the I− peak, and the ionic profiles reach their
bulk values at distance z ≃ 1.4 nm away from the I−

peak. Moreover, the height of the Na+ density peak is
n∗ ≃ 1.2nb. All these findings agree with our results
(Fig. 6). The I− profile becomes similar to ours only at
distances z & 0.4 nm ≃ 0.58 · d away from the proximal
layer. This is not surprising as our results are not very
accurate for small distances, z . d.
Our profiles looks also quite similar to those of

Ref. [22]. Again, one should compare distances only out-
side the excluded region (where the Na+ density vanishes
in Fig. 3 of Ref. [22]), and not within the proximal layer of
the interface (the Gibbs dividing surface). The Na+ den-
sity peak of Ref. [22] is located at z∗ ≃ 0.35 nm away from
the excluded region, has a peak value of n∗ ≃ 1.1nb, while
the ionic profiles reach their bulk values at z ≃ 1.5 nm.

V. CONCLUSIONS

We have presented a model for ionic profiles in the
proximity of an interface that has a sharp dielectric jump.
We considered separately ionic-specific interactions for
anions and cations, modeled by two adhesivity param-
eters, α±. These added surface interactions are formu-

lated as a self-consistent non-linear boundary condition.
Ionic densities are calculated analytically from one-

loop order of the free energy in the Debye-Hückel (DH)
regime, assuming that the surface-induced bias towards
one of the ionic species, β|α−−α+|, is small. The theory
is less applicable for high biases because of the limita-
tion of the linear DH regime. However, one could apply
the same formalism to the full non-linear PB with the
same non-linear boundary condition and the appropriate
Green’s function [32]. It is more cumbersome but doable.
In order to simplify the calculation, we require that

the proximal layer is microscopically small. For proximal
layer with width comparable with the minimal distance
of approach of the ions, d ≃ a, there is not much sense
in discussing the profiles inside the proximal layer. It
is straightforward but tedious to calculate analytically
the ionic profiles for proximal layers of finite thickness.
This will allow calculations of the ionic profiles inside the
proximal layer.
It is important to stress that we do not use the regu-

lar loop-expansion for the densities, as it fails close to a
dielectric jump. Instead, we expand the free energy to
one-loop order and compute the corresponding ionic pro-
files from it. This re-summation of the loop expansion
is equivalent to a cumulant-expansion around a non-zero
value of the electrostatic potential.
Our analytical results present ionic-specific profiles

close to dielectric discontinuities, and are in agree-
ment with previous ionic profiles obtained from simu-
lations [21] and numerical calculations [22]. We have re-
covered the same surface tension results as in Refs. [17]
and [18], and they correspond to the reverse Hofmeis-
ter series. The method gives precisely the same results
as from direct free energy calculations of the surface
tension [17, 18]. Therefore, one can use the fitted α±

parameters, determined by macroscopic surface-tension
measurements of specific electrolyte solutions, to obtain
their ionic profiles close to the air/water interface. The
same calculations can be also performed at the oil/water
interface, with other fitted values of the adhesivity, α±.
It is possible to determine the adhesivities values, α±,

from quantum chemistry simulations, or from a more mi-
croscopic approach. As explained above, in a coarse-
grained theory one averages over length-scales of the
order of the ionic size, which is also the characteristic
length-scale of the ionic specific potential, V± [18, 22].
In the future, it will be of merit to calculate from the
ionic profiles, other macroscopic quantities (beside the
surface tension), such as the differential capacitance [33],
the solution dielectric constant [34] and the solution vis-
cosity [35].
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Appendix A: Electrostatic Potential Derivation

within One-Loop

We elaborate here on the general formalism for calcu-
lating the electrostatic potential to one-loop order. The
action for Coulombic systems is,

S [φ] =

∫

dr

[

βε(r)

8π
[∇φ(r)]2 + f(r;φ, λi)

]

, (A1)

where f(r;φ, λi) includes the entropy and the fixed
charge terms, with λi being the fugacities of the ith

species. By using the one-loop expansion of Γ, Eq. (18),
we write the equation of state, Eq. (17) as,

δS(ψ)

δψ(r)
+
ℓ

2
TrG(r, r′;ψ)

δS2(r, r
′;ψ)

δψ(r)
= 0 . (A2)

The electrostatic potential is completely determined by
this equation of state. We proceed by expanding the
fugacities and electrostatic potential, as explained after
Eq. (14),

ψ = ψ0 + ℓψ1 ,

λi = λ
(i)
0 + ℓλ

(i)
1 . (A3)

Then, by substituting Eq. (A1) into Eq. (A2), two equa-
tions are obtained. The first is for the saddle-point po-
tential,

βε

4π
∇2ψ0 +

∂f(ψ, λi, r)

∂ψ

∣

∣

∣

λ
(i)
0 ,ψ0

= 0 , (A4)

and the second is for the one-loop correction,

βε

4π
∇2ψ1 +

∂2f(φ, λi, r)

∂ψ2

∣

∣

∣

λ
(i)
0 ,ψ0

ψ1 (A5)

+
∑

i

∂2f(ψ, λi, r)

∂ψλi

∣

∣

∣

λ
(i)
0 ,ψ0

λ
(i)
1

− 1

2
G(r, r)

∂3f(ψ, λi, r)

∂ψ3

∣

∣

∣

λ
(i)
0 ,ψ0

= 0 .

The saddle-point equation, Eq. (A4), is obtained from
the variation principle, δS/δψ = 0, and gives a modified
PB equation. We use the relation between S2(r, r

′) and
G(r, r′) from Eq. (13) to write ψ1, the one-loop correction
of Eq. (A5), in the form,

ψ1(r) =

∫

dr′G(r, r′;ψ0)

[

∑

i

∂2f(ψ, λi, r
′)

∂ψ∂λi

∣

∣

∣

λ
(i)
0 ,ψ0

λ
(i)
1

− 1

2
G(r′, r′)

∂3f(ψ, λi, r
′)

∂ψ3

∣

∣

∣

λ
(i)
0 ,ψ0

]

. (A6)

To connect these general results with the present study,
we use Eqs. (20) and (A1) to get the form of f(ψ, λi, r),

f(ψ, λ, r) = −2λ cosh [βeψ(r)]

− δ(z)λs

(

χ+e
−βeψ(r) + χ−e

βeψ(r)
)

,(A7)

where λ = λ± is the bulk fugacity and λs is the surface
one. The zeroth order in the loop expansion, Eq. (A4),
with Eq. (A7), gives the PB equation for planar geometry

ψ′′
0 (z) = 0 z < 0 ,

ψ′′
0 (z) =

8πeλ0
εw

sinh (βeψ0) z > 0 , (A8)

with a special boundary condition at z = 0,

εwψ
′
0|0+ − εaψ

′
0|0− = −4πeλ0

(

χ+e
−βeψs − χ−e

βeψs
)

.

(A9)

To obtain the one-loop potential, we substitute
Eq. (A7) into Eq. (A6), yielding

ψ1(r) = βe

∫

dr′G(r, r′)

[

2λ0 sinh[βeψ0(r
′)]

×
(

1

2
β2e2G(r′, r′)− λ1

λ0

)

− δ(z′)λ0

(

χ+e
−βeψ0 − χ−e

βeψ0

)

×
(1

2
β2e2G(r′, r′)− λ

(s)
1

λ0

)

]

.

(A10)

Equations (A8)-(A10) are used in Sec. II.C to calculate
the electrostatic potential.

Appendix B: Green’s Function in the DH regime

Since we are in the DH regime, using Eqs. (30)-(32)
the equations for g(k; z1, z2) to first order in ψ0 are:

g′′(k; z1, z2)− k2g(k; z1, z2) = 0 z1 < 0 ,

g′′(k; z1, z2)− p2g(k; z1, z2) = − 4π

βεw
δ(z1 − z2) z1 ≥ 0 ,

(B1)

where g′ = dg/dz, g′′ = d2g/dz2 and p2 = k2 + κ2D. The
boundary conditions for g are:

εwg
′(k; 0+, z2)− εag

′(k; 0−, z2) = γsg(k; 0, z2) ,

g′(k; z+1 , z1)− g′(k; z−1 , z1) = − 4π

βεw
,

g′(k; z1 → ±∞, z2) = 0 , (B2)

with z1 ≥ 0, and γs is defined in Eq. (34).
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The solution for the Green’s function is then,

g(k; z1, z2) =
2π

βεwp
[1 + ξ(k)] ekz1−pz2 z1 < 0 ,

g(k; z1, z2) =
2π

βεwp

[

e−p|z1−z2| + ξ(k)e−p(z1+z2)
]

z1 ≥ 0 ,

(B3)

where ξ(k) defined in Eq. (34) is repeated here for con-
venience

ξ(k) ≡ εwp− εak − γs
εwp+ εak + γs

,

γs ≡
1

2
εwκ

2
D [χ+ (1− βeψs) + χ− (1 + βeψs)] , (B4)

We will use the Green’s function solution, Eq. (B3) to
compute the one-loop correction to the electrostatic po-
tential and the fugacities (Sec. II.E), and then to calcu-
late the one-loop ionic densities (Sec. III.A).

Appendix C: Limitations of the One-Loop Expansion

It is known that the loop expansion method has prob-
lems close to dielectric discontinuities [23, 24]. The small
parameter in such an expansion of the grand-partition
function depends on the system under consideration (see,
e.g., Ref. [36]). The expansion validity is determined by
its coupling parameters [37, 38], and is not related to the
existence of a dielectric jump.

The problem arises when one calculates microscopic
quantities, such as ionic profiles, beyond the MF approxi-
mation (zeroth-loop order), because there is no guarantee
that this is a valid expansion for these quantities. As we
will show below, the ionic densities can become negative
(i.e., nonphysical) close to the interface, when expanded
to one-loop order. This is not the case when calculating
macroscopic properties, such as the surface tension, for
which the loop-expansion validity is determined by the
coupling parameters.
Our results for the density profiles, Eqs. (42) and (43),

are exact to one-loop order in the free-energy. Neverthe-
less, in a consistent loop-expansion one should expand
the exponents in the above equations to first order in ℓ.
For example, Eq. (42), yields

n±(z) ≃ nbe
∓βeψ0(z)

[

1 + ℓ

(

∓βeψ1(z)−
β2e2

2
Gs(z)

)]

,

(C1)

where Gs(z) includes the one-loop correction to the fu-
gacity, as shown in Eq. (39). The problem with this
expansion is that Gs diverges as z → 0, Gs(0) ∼ Λ(εw −
εa)/(εw+εa) ∼ 1/a→ ∞. This gives negative (nonphys-
ical) densities at small values of z, and is a well-known
deficiency of the loop-expansion [23, 24].
The failure of the regular loop-expansion is an artifact

of the sharp dielectric jump at the air/water interface.
For this sharp jump, we do not expand the densities to
first order in ℓ, which amounts to perform a cumulant-
expansion around a non-zero value of the electrostatic
potential.
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