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Abstract

We propose a novel stochastic method to generate Brownian paths conditioned to start at

an initial point and end at a given final point during a fixed time t f under a given potential U(x).

These paths are sampled with a probability given by the overdamped Langevin dynamics. We

show that these paths can be exactly generated by a local Stochastic Partial Differential Equa-

tion (SPDE). This equation cannot be solved in general. We present several approximations

that are valid either in the low temperature regime or in the presence of barrier crossing. We

show that this method warrants the generation of statistically independent transition paths. It

is computationally very efficient. We illustrate the method on the two dimensional Mueller

potential as well as on the Mexican hat potential.
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Introduction

Chemical and biological are controlled by dynamics. Indeed, it is the ability of molecules to change

conformations that leads to their activity. Observing experimentally or predicting functional con-

formational changes is however a very difficult problem. At the core of this problem is the fact

that a transition between two conformations of a molecule is a rare event compared to the time

scale of the internal dynamics of the molecule. This event is a consequence of random perturba-

tions in the structure of the molecule, drawing its energy from the surrounding heat bath; it is rare

whenever the energy barrier that needs to be crossed is high compared to kBT . The transition state

theory (TST) offers a framework for studying such rare events.1,2 The main idea of the TST is that

the transition state is a saddle point of the energy surface for the molecule of interest. In many

cases, the most probable transition path is then simply the minimum energy path (MEP) along that

energy surface. The TST however is limited to situations in which the potential energy surface is

rather smooth; it also assumes that every crossing of the energy barrier through the transition state

gives rise to a successful reaction. For systems with a rugged potential energy landscape, or when

entropic effects matter, the saddle points do not necessarily play the role of transition states.3

To alleviate the shortcomings of the TST, Vanden Eijden and colleagues proposed an alternate

view of transitions, the Transition Path Theory (TPT).3–5 At zero temperature the TPT is deemed

exact. In principle, it eliminates the need for sampling the transition path ensemble. It also provides

a framework for finding the shortest, or most probable transition path between two conformations

of a molecule. As such, it has served as a touchstone for the development of many path finding

algorithms. Some of those were developed for finding the Minimum Energy Path on the energy

surface for a molecule, such as morphing techniques,6,7 gradient descent methods,8–11 the nudged

elastic band method (NEB)12–14 and the string method.15–20 Other algorithms are concerned with

either finding the Minimum Free Energy Path on the free energy surface for the molecule,.21–24 or

finding the path that minimizes a functional, as implemented in the Minimum Action Path meth-

ods.25–31 This list is not a comprehensive coverage of all existing techniques for finding transition

paths, as this is a very active area of research with many techniques proposed every year.

2



Due to the inherent fluctuations underlying the transition phenomenon there are many ways

however in which a transition can take place. The methods described above usually generate one

path along this transition, the most “probable" one, where probable refers to minimum energy, free

energy, or an action. Path sampling methods expand upon this view by using this path as a seed

to generate a Monte Carlo random walk in the path space of the transition trajectories, and thus

generate an approximation of the ensemble of all possible transition paths.32,33 All the relevant

kinetic and thermodynamic information related to the transition can then be extracted from the

ensemble, such as the reaction mechanism, the transition states, and the rate constants. The main

drawback of these methods however is that they are very time consuming and therefore limited to

small systems. In addition, they generate highly correlated trajectories in which case the space of

sampled trajectories depends strongly on the initial path.

In parallel to path sampling methods, much effort has recently been dedicated to the devel-

opment and analysis of Markov State Models (MSMs).34–36 MSMs aim at coarse-graining the

dynamics of the molecular system via mapping it onto a continuous-time Markov jump process,

that is, a process whose evolution involves jumps between discretized states representing typical

conformations of the original system. Much of the recent work focuses on generating those con-

formations and the dynamics between them, usually using molecular dynamics simulations. To

this day, MSMs remain computationally intensive methods.

In this paper we are concerned with the problem of path sampling. Following preliminary

work by one of us,37 we propose a novel method for generating paths using a Stochastic Partial

Differential Equation (SPDE). This equation cannot be solved in general but we were able to find

approximations that are valid for different regimes for the dynamics of the system.

The paper is organized as follows. In the next section, we derive the SPDE and describe the

different approximations we have implemented to solve this equation. In the following section,

we show applications to two well-studied 2D problems. Finally, we conclude the paper with a

discussion of the extension of the method to study transition pathways for bio-molecular systems.
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Theory

Derivation of the bridge equation

We assume that the system is driven by a force F(x, t) and is subject to stochastic dynamics in the

form of an overdamped Langevin equation.

For the sake of simplicity, we illustrate the method on a one-dimensional system, the general-

ization to higher dimensions or larger number of degrees of freedom being straightforward. We

follow closely the presentation given in Ref.37

The overdamped Langevin equation reads

dx
dt

=
1
γ

F(x(t), t)+

√
2kBT

γ
η(t) (1)

where x(t) is the position of the particle at time t, driven by the force F(x, t), γ is the friction

coefficient, related to the diffusion coefficient D through the Einstein relation D = kBT/γ , where

kB is the Boltzmann constant and T the temperature of the heat bath. In addition, η(t) is a Gaussian

white noise with moments given by

〈η(t)〉= 0 (2)

〈η(t)η(t ′)〉= δ (t− t ′) (3)

The probability distribution P(x, t) for the particle to be at point x at time t satisfies a Fokker-

Planck equation,38,39

∂P
∂ t

= D
∂

∂x

(
∂P
∂x
−βFP

)
(4)

where β = 1/kBT is the inverse temperature. This equation is to be supplemented by the initial

condition P(x,0) = δ (x−x0), where the particle is assumed to be at x0 at time t = 0. To emphasize

this initial condition, we will often use the notation P(x, t) = P(x, t|x0,0).
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We now study the probability over all paths starting at x0 at time 0 and conditioned to end at a

given point x f at time t f , to find the particle at point x at time t ∈ [0, t f ]. This probability can be

written as

P(x, t) =
1

P(x f , t f |x0,0)
Q(x, t)P(x, t)

where we use the notation

P(x, t) = P(x, t|x0,0)

Q(x, t) = P(x f , t f |x, t)

Indeed, the probability for a path starting from (x0,0) and ending at (x f , t f ) to go through x

at time t is the product of the probability P(x, t|x0,0) to start at (x0,0) and to end at (x, t) by the

probability P(x f , t f |x, t) to start at (x, t) and to end at (x f , t f ).

The equation satisfied by P is the Fokker-Planck equation mentioned above (??), whereas that

for Q is the so-called reverse or adjoint Fokker-Planck equation38,39 given by

∂Q
∂ t

=−D
∂ 2Q
∂x2 −DβF

∂Q
∂x

(5)

It can be easily checked that the conditional probability P(x, t) satisfies a new Fokker-Planck

equation

∂P

∂ t
= D

∂

∂x

(
∂P

∂x
−
(

βF +2
∂ lnQ

∂x

)
P

)
Comparing this equation with the initial Fokker-Planck (??) and Langevin (??) equations, one

sees that it can be obtained from a Langevin equation with an additional potential force

dx
dt

=
1
γ

F +2D
∂ lnQ

∂x
+

√
2kBT

γ
η(t) (6)

This equation has been previously obtained using the Doob transform40,41 in the probability

literature and provides a simple recipe to construct a generalized bridge. It generates Brownian

5



paths, starting at (x0,0) conditioned to end at (x f , t f ), with unbiased statistics. It is the additional

term 2D∂ lnQ
∂x in the Langevin equation that guarantees that the trajectories starting at (x0,0) and

ending at (x f , t f ) are statistically unbiased. This equation can be easily generalized to any number

of degrees of freedom.

In the following, we will specialize to the case where the force F is derived from a potential

U(x). The bridge equation becomes

dx
dt

=−1
γ

∂U
∂x

+2D
∂ lnQ

∂x
+

√
2kBT

γ
η(t) (7)

In that case, the Fokker-Planck equation corresponding to this modified Langevin equation can

be recast into an imaginary time Schrödinger equation,37 and the probability distribution function

P can be written as

Q(x, t) = P(x f , t f |x, t) = e−β (U(x f )−U(x))/2〈x f |e−H(t f−t)|x〉 (8)

where H is a "quantum Hamiltonian" defined by

H =−D
∂ 2

∂x2 +D
β 2

4
V (x) (9)

and the potential V by

V =

(
∂U
∂x

)2

−2kBT
∂ 2U
∂x2 (10)

We denote by M the matrix element of the Euclidian Schrödinger evolution operator

M(x, t) = 〈x f |e−H(t f−t)|x〉 (11)

Using eq.(??) for Q, one can write equation (??) as

dx
dt

= 2
kBT

γ

∂

∂x
lnM(x, t)+

√
2kBT

γ
η(t) (12)
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We see on the above form that when t→ t f , the matrix element M(x, t) converges to δ (x f −x),

and it is this singular attractive potential which drives all the paths to x f at time t f .

Transition paths

The bridge equations (??) or (??) can be solved exactly in a certain number of cases.42 However in

general, for systems with many degrees of freedom, the functions Q(x, t) or M(x, t) cannot be com-

puted exactly and one has to resort to some approximations. In the following, we will be mostly

interested in problems of energy or entropy barrier crossing, which are of utmost importance in

many chemical, biochemical, or biological reactions.

The matrix element M(x, t) can be written as a Feynman path integral

M(x, t) =
∫ x(t f )=x f

x(t)=x
Dx exp

(
−
∫ t f

t
dτ

(
1

4D

(
dx
dτ

)2

+
Dβ 2

4
V (x(τ))

))
(13)

The free case is defined as

M0(x, t) = P0(x f , t f |x, t)

=
∫ x(t f )=x f

x(t)=x
Dx exp

(
−
∫ t f

t
dτ

(
1

4D

(
dx
dτ

)2
))

=

(
1

4πD(t f − t)

)1/2

e
−(

x f−x)
2

4D(t f−t) (14)

where P0 is the probability distribution for a free particle.

Equation (??) can be rewritten as

M(x, t) = M0(x, t)〈exp
(
−Dβ 2

4

∫ t f

t
dτV (x(τ))

)
〉0

where the expression 〈...〉0 denotes the expectation value with the Brownian measure P0.

The convexity of the exponential function implies the Jensen inequality,43 which states that for
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any operator A and any probability measure, one has

〈e−A〉 ≥ e−〈A〉 (15)

Equality occurs when the probability is a δ−function; it is thus a good approximation when

the operator A has small fluctuations.Taking A to be

A =
Dβ 2

4

∫ t f

t
dτV (x(τ)) (16)

we have

M(x, t)'M0(x, t)exp
(
−Dβ 2

4

∫ t f

t
dτ〈V (x(τ))〉0

)
(17)

Using the expression

〈V (x(τ))〉0 =
1

M0(x, t)

∫
dzP0(x f , t f |z,τ)V (z)P0(z,τ|x, t),

after some calculations, we obtain

〈V (x(τ))〉0 =
(

θ1 +θ2

4πDθ1θ2

)1/2 ∫
dzexp

(
− θ1 +θ2

4Dθ1θ2

(
z−

x f θ2 + xθ1

θ1 +θ2

)2
)

V (z)

where

θ1 = t f − τ, θ2 = τ− t

After a change of variable, this expression becomes

〈V (x(τ))〉0 =
∫ dz

(2π)1/2 exp
(
−z2

2

)
V

(
X +

√
2Dθ1θ2

θ1 +θ2
z

)
where
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X =
x f θ2 + xθ1

θ1 +θ2

and the constrained Langevin equation (??) becomes

dx
dt

=
x f − x
t f − t

− (Dβ )2

2

∫ t f

t
dτ

(
t f − τ

t f − t

)∫ dz

(2π)1/2 exp
(
−z2

2

)
∂

∂X
V

(
X +

√
2D(t f − τ)(τ− t)

(t f − t)
z

)

+

√
2kBT

γ
η(t) (18)

or, after the change of variable u = τ−t
t f−t =

θ2
θ1+θ2

,

dx
dt

=
x f − x
t f − t

− (Dβ )2

2
(t f − t)

∫ 1

0
du(1−u)

∫ dz

(2π)1/2 exp
(
−z2

2

)
∂

∂X
V
(

X +
√

2D(t f − t)u(1−u)z
)

+

√
2kBT

γ
η(t) (19)

where

X = x f u+ x(1−u) (20)

Integration by part with respect to z yields the equivalent form

dx
dt

=
x f − x
t f − t

−
(

D
2

)3/2

β
2√t f − t

∫ 1

0
du

√
1−u

u

∫ dz

(2π)1/2 exp
(
−z2

2

)
zV
(

X +
√

2D(t f − t)u(1−u)z
)

+

√
2kBT

γ
η(t) (21)
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which does not require the cumbersome evaluation of ∂V/∂X . These forms require an integration

over the Gaussian variable z which can be performed by sampling this variable

∫ dz

(2π)1/2 exp
(
−z2

2

)
F(z)' 1

M ∑
i

F(zi)

where the M variables zi are Gaussian variables (with zero average and unit variance).

However, as we have seen, the approximation (??) is valid if the exponent A does not fluctuate

too much over the trajectories relevant to the transition. There are two cases when this approxima-

tion can be further simplified and where the z-integral can be avoided:

1. Low temperature

In that case, since D = kBT/γ , diffusion is small, thus V can be approximated as (∂U
∂x )

2. In

addition, the term
√

2D(t f − t)u(1−u)z in (19) is small compared to X and can be neglected.

Equation (18) can be simplified to

dx
dt

=
x f − x
t f − t

− (Dβ )2

2
(t f − t)

∫ 1

0
du(1−u)

∂

∂X

(
∂

∂X
U (X)

)2

+

√
2kBT

γ
η(t) (22)

2. Barrier crossing

According to Kramers theory, the total transition time τK (waiting + crossing) scales like

the exponential of the barrier height ∆E∗ while it has been shown that the crossing time

(Transition Path Time) τc scales like the logarithm of the barrier ∆E∗.44–46 We have thus

τc << τK .

As discussed before, the barrier crossing time is very short compared to the Kramers time.

Therefore the transition trajectories are very weakly diffusive, and are thus almost ballis-

tic. Consequently, we have
√

2Dt f � |x f − x0| and again we can neglect the z term in V .

Equation (18) becomes

dx
dt

=
x f − x
t f − t

− (Dβ )2

2
(t f − t)

∫ 1

0
du(1−u)

∂V (X)

∂X
+

√
2kBT

γ
η(t) (23)
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All the equations described above are easily generalized to any number of particles in any

dimension, interacting with any many-body potentials. They are integro-differential stochastic

Markov equations, as the variable X depends only on the stochastic variable x(t). One can generate

many independent trajectories by integrating these equations with different noise histories η(t).

To test the validity of the main approximation (??), one should compute the variance (∆A)2 =

〈A2〉−〈A〉2 of the random variable A in eq.(??) over all the trajectories generated. Computing the

correction to the Jensen inequality, it is easily seen that the approximation is reliable provided

R =
(∆A)2

2|〈A〉|
<< 1 (24)

Simulation Time

For barrier crossing, what simulation time t f should be used? Obviously, for any initial and final

state xi and x f , there is a set of Langevin trajectories which make the transition in any given time t f .

If the time t f is very short compared to the typical time scales of large motions of the system, there

is a small number of such trajectories, since they require a very specific noise history. As a result,

the approximations presented above are reliable and the factor R is much smaller than 1. However,

this is not a very interesting regime, as trajectories are driven by the boundary conditions. If we

are interested in simulating transition paths, the time t f should obviously be larger than the typical

TPT τc. Indeed, if t f is smaller than τc, we will simulate paths driven by the final state. On the

other hand, if t f is too large, then we will also simulate part of the waiting time in the wells, where

fluctuations are large (except maybe at low temperature). Therefore, in order to simulate transition

paths as accurately as possible, one should use a simulation time t f larger than the typical TPT τc,

but not much larger.
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Results

We now illustrate these concepts on two examples: the Mueller potential, and the Mexican hat

potential.

The Mueller potential

The Mueller potential is a standard benchmark potential to check the validity of methods for gen-

erating transition paths. It is a two dimensional potential given by

U(x,y) =
4

∑
i=1

Ai exp
(
ai(x− x0

i )
2 +bi(x− x0

i )(y− y0
i )+ ci(y− y0

i )
2) (25)

with

A = (−200,−100,−170,15) a = (−1,−1,−6.5,0.7) b = (0,0,11,0.6) (26)

This potential has 3 local minima denoted by A,B,C, separated by two barriers (Fig.1). The effec-

tive potential V (x,y) can be calculated analytically, as well as its gradient. Equations (18), (22)

and (??) can easily be solved numerically. We display only the trajectories generated by (??). The

simulation time t f is chosen so that we observe a small waiting time around the initial as well as

the final point, namely t f = 0.15. We use 50 points for the integration over u. We display a sample

of 500 trajectories obtained from eq. (??) with t f = 0.15, dt = 10−4, D = 1 at temperature T = 5.

We can compute the average trajectory as well as its variance. These trajectories are displayed on

Fig. 1, where we plot the AB, BC and AC trajectories.

To assess the quality of the approximations, we check the criterion (??). For the trajectories

AB, we obtain R≈ 5.310−2, R≈ 0.68 for BC and R≈ 1.13 for AC. Therefore, the approximation

is quite reliable for the AB trajectories, but less for the others. In fact, it is instructive to study

the accuracy of the method when varying t f . For that matter, in Fig. 2, we plot the factor R as

a function of t f , for the AB transition. We see that for both small and large t f , the factor R is

small, with a maximum at t f ≈ 0.05. For small t f , the trajectories fluctuate around the straight line

12



Figure 1: Langevin bridge trajectories on the Mueller potential. (A) Contour plot of the Mueller
potential, with the three minima labeled A, B, and C, and the two saddle points between those
minima indicated with an x. 500 converged trajectories between the minima A and B (B), B and C
(C), and A and C (D). The unweighted mean trajectories are shown in white.

.
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Figure 2: The quality factor R plotted as a function of the total duration of the transition t f , for the
AB trajectories.

trajectory joining A to B through high barriers (see Fig. 1A). For large t f , the trajectories fluctuate

around the potential energy valley joining A to B. As t f increases from small values, the ensemble

of trajectories include trajectories going through the high barrier and through the valley, and at

t f ≈ 0.05, there is a strong mixing of both types of trajectories, giving rise to a large value of R.

When t f increases further, the trajectories going through the barrier disappear from the ensemble,

and only valley trajectories remain, yielding a decrease of R.

The Mexican hat potential

The potential of the Mexican hat is given by

U(x,y) =
1
4
(x2 + y2−1)2 (27)

and has therefore a circle of minima for x2 + y2 = 1 with U = 0 and a maximum at (0,0) with

energy U = 1/4. Again we solve equations (??), using 50 points for the u integral. Given the

small barrier of this potential ∆U = 1/4, we go to low temperature. On Fig.3A, we plot 100

trajectories, generated at temperature T = 0.1, starting at (−1,0) and all ending at (1,0). The total

time is t f = 7 and the time step is dt = 10−4. The quality criterion (??) gives R = 0.345. The

trajectories divide into three dominant groups, those that take a northern route (30), those that take

a southern route (40) along the circle of minima, and those that go directly through the energy

14



Figure 3: Langevin bridge trajectories on the Mexican hat potential. (A) 100 converged tra-
jectories, all starting at (−1,0) and ending at (1,0), and generated at temperature T = 0.1 with a
duration t f = 7 . Note that with this short transition time, many trajectories go through the barrier
region. (B) Same as in (A), but with t f now set to 10. Most of the trajectories now follow the
circle of minima; those trajectories are nearly equally divided into two groups, those that follow
the upper side of the circle (44), and those that follow the lower side (47) (see text for details).

.

barrier (30). The distribution into those three groups was decided based on the mean value Ymean

for the y coordinates along the trajectories. If we take a longer duration, the fraction of trajectories

that go through the central barrier decreases. For example, for t f = 10, there are only 9 of those

trajectories , as seen on Fig. 3B. The quality criterion is then R = 0.266.

Conclusions

In summary, we show here a novel method to generate ab initio transition path trajectories using a

formalism called Conditioned Langevin dynamics. The most crucial parameter of the theory is the

total length of the simulation, which must be carefully chosen so as to allow short waiting times

around both the initial and final states. We define a quality criterion R that can be calculated a

posteriori to see if the approximation made to solve the underlying PDE is justified or not. Here

we have tested the method on simple one- or two-dimensional potentials, but our aim is to use it in
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more complicated situations, such as conformational transitions in proteins.

Proteins are small biopolymers (up to a few hundred amino-acids) that do not stay in one of

their two states (e.g. native or denatured, open or closed, apo or holo in the allosteric picture),

but rather make unfrequent stochastic transitions between them. They are usually represented in a

coarse-grained manner using one or two beads per amino-acid. The picture which emerges is that

of the system staying for a long time in one of the minima and then making stochastically rapid

transitions to the other minimum. It follows that for most of the time, the system performs har-

monic oscillations in one of the wells, which can be described by normal mode analysis. Rarely,

there is a very short but interesting physical phenomenon, where the system makes a fast transi-

tion between minima. This picture has been confirmed by single molecule experiments, where the

waiting time in one state can be measured, although the time for crossing is so short that it cannot

be resolved.47 This scenario has also been confirmed recently by very long millisecond molec-

ular dynamics simulations which for the first time show spontaneous thermal folding-unfolding

events.48

It is possible to model this behavior using a an energy function that is based on a simplified

Elastic Network Model that is a mixture of two Elastic Networks centered around each of the two

states of the macromolecule.8,49 We will present the results of the Conditioned Langevin Equation

applied to this situation in a forthcoming paper.
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