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Many simple RNA viruses enclose their genetic material by a protein shell called the capsid.
While the capsid structures are well characterized for most viruses, the structure of RNA inside the
shells and the factors contributing to it remain poorly understood. We study the impact of base
pairing on the conformations of RNA and find that it undergoes a swollen coil to globule continuous
transition as a function of the strength of the pairing interaction. We also observe a first order
transition and kink profile as a function of RNA length. All these transitions could explain the
different RNA profiles observed inside viral shells.

The simplest viruses are built from a protein shell
called the capsid that surrounds its genome (RNA or
DNA) [1]. Due to the electrostatic interactions, under
many in vitro conditions, capsid protein (CP) subunits
of many single-stranded RNA viruses assemble sponta-
neously around the genome or other negatively charged
polymers, to form symmetric shells with extraordinar-
ily monodisperse size distributions [2–5]. These features
have made viruses ideal for several material science and
bionanotechnology applications such as gene therapy and
drug delivery[6].

While the structure of capsids for most viruses is
completely understood from the cryoelectron microscopy
(cryo-EM) or x-ray analysis [7–10], despite ongoing in-
tense experimental studies [11–19] the structure and the
map density of RNA inside of viral shells and the fac-
tors contributing to it remain poorly understood [20, 21].
This is mainly due to the pairing of bases along the
backbone, which gives rise to the secondary or folded
structures of RNA. Figure 1 shows the cryo-EM im-
ages of three viruses: (a) Sindbis [13], (b) Flock house
virus (FHV) [14] and (c) Satellite tobacco mosaic virus
(STMV) [17]. The capsid structures of these viruses are
well characterized but the profile of their RNAs has re-
mained the focus of many studies [13, 14, 17, 19, 22, 23].
As illustrated in Fig. 1, for Sindbis, RNA fills out the
entire capsid while for STMV, RNA covers basically the
capsid wall. In case of FHV, RNA forms a thick layer
inside the capsid.

To date all theoretical studies deciphering the profile
of RNA inside the capsid have considered RNA either as
a linear or a branched polymer [24–35]. While treating
RNA as a branched polymer is a good first step, it does
not account for the presence of loops and for their en-
tropies, and it is known that base-pairing gives rise to
more complex structures like pseudoknots. Pseudoknots
have a strong effect on the compaction of the molecule
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by pairing together far apart bases along the chain and
making the structure globular and as such RNAs are
significantly more compact than self-avoiding branched
polymers [36–38].

Modeling RNA as a branched polymer, Lee and
Nguyen find that there are two different scenarios for
RNA profiles inside the capsid [39]. If the charge density
of the capsid is high, the genome mostly sits close to the
wall, otherwise, due to entropic effects for the low capsid
charge density, the RNA concentration is higher at the
center of the capsid [39].

(b)(a) (c)

FIG. 1: Image reconstruction of the Sindbis (a), FHV virus
(b) and STMV (c) obtained from cryoelectron micrographs
from Refs. [13, 14, 17] respectively. Their relative sizes are
not at scale.

In this Letter, we introduce a new model and show
that RNA can assume different profiles inside the capsid
as the ones presented in Fig. 1, almost independent of
the strength of capsid-genome interactions. The model
considers RNA base-pairing and its saturation, i.e., one
base can pair with at most one base at a time. We show
that the pairing can lead to a transition from an extended
to a compact globular structure, despite the saturation.
This transition is sharp (first order) as a function of the
genome length but it is smooth (second order) as a func-
tion of the number of base-pairs (BPs) per unit length or
the strength of interaction that depends on RNA primary
sequence dictating its secondary and tertiary structures.

In the collapsed regime, RNA mostly covers the sur-
face of the capsid (Figs. 1(c), 4, S2 and S3 solid lines)
whereas in the swollen regime it is uniformly distributed
inside the capsid with a density slightly higher at the at-
tractive wall (Figs. 1(a), 4, S2 and S3 dotted lines). We
also obtain a kink type profile (Figs. 4, S2 and S3 dashed
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red lines), associated with the first order transition. In
this case, there are three distinct regions for RNA den-
sity inside the capsid. In the vicinity of the capsid wall,
the genome density is very high, immediately followed
by an intermediate density regime before the start of the
kink. Towards the capsid center, the density is almost
zero. This profile is similar to the RNA concentration
presented in Fig. 1(b).

Unlike the previous work [39], we find that the profile
of RNA strongly depends on the genome base-pairing
and length. While the genome-capsid electrostatic inter-
action contributes to the RNA conformation inside viral
shells [40], here we show that regardless of the strength
of capsid-genome interaction, all three profiles illustrated
in Fig. 1 can be obtained for both high and low surface
charge densities as a result of base-pairing (Figs. 4, S2
and S3). Our findings are consistent with the experimen-
tal studies of CPs of CCMV with poly(styrene sulfonate)
(PSS)–a negatively charged linear polymer–in which de-
spite the strong capsid charge density, PSS fills out more
or less the entire shell [18].

The model also considers the presence of previously
ignored pseudoknots (see below). Experimental studies
on several viruses confirm the presence of pseudoknots in
viruses [19]. The role of pseudoknots in the RNA pack-
aging by CPs has not been thoroughly investigated, but
pseudoknots clearly make RNA more compact.

To obtain the profile of RNA inside the capsid, we
consider a model, where the interaction energy εij(r) is
independent of the nature of the bases i and j and de-
noted ε. This amounts to using an effective attractive
interaction, averaged over several bases within one RNA
persistence length [41]. This effective pairing interaction
ε could also be defined as the average pairing energy of
the RNA over the whole sequence. Note that it has been
found that the sequence of viral RNAs contains a larger
fraction of BPs than non-viral ones [42–45]. The corre-
sponding ε is thus larger in viral RNAs than in non-viral
ones.

The pairing partition function of the model reads

Z =

∫ { N∏
i=1

dri

}
e−

3
2a2

∑
i(ri+1−ri)2− υ02

∑
i,j δ(ri−rj)ZN

(1)

with a the Kuhn length and υ0 the excluded volume pa-
rameter. ZN is the contribution of the saturated base-
pairing to the partition function. Performing a virial ex-
pansion, we can write

ZN = 1+
∑
i<j

Vij+
∑

i<j<k<l

(VijVkl + VikVjl + VilVjk)+· · ·

(2)
with Vij = vδ(ri−rj) and v = eβε−1 the Mayer function
associated with the energy −ε of a bond (i, j). Note also
that the strength of the pairing depends on the temper-
ature, the salt concentration and the pH of the solution.
As noted above, it also depends on the number of BPs.

Based on Wick’s theorem, it can be shown [46, 47] that

ZN =
1

N

∫ N∏
i=1

dφie
− 1

2

∑
i,j φiV

−1
ij φj

N∏
i=1

(1 + φi) (3)

and < φiφj >= Vij = vδ(ri−rj). The expression in Eq. 2
reveals that ZN is the sum of all possible sets of base
pairings, with a weight v associated to each pairing. As
such, it comprises both planar and pseudoknotted struc-
tures. Consider for example the case with two pairings
with indices i < j < k < l. The pairing VilVjk represents
a helical fragment while VikVjl represents a pseudoknot
(see the supplemental material (SM)).

Using standard methods of polymer physics [48] and
introducing the new fields χ(r) and ϑ(r) (SM), the par-
tition function can be written as

Z =

∫
DχDϑe− v2

∫
drχ2(r)− υ02

∫
drϑ2(r)

∫
drdr′Q(r, r′)

(4)

where Q(r, r′) = 〈r|e−NĤ |r′〉 is the single chain parti-
tion function in an external field, and we use the Dirac
notation for the evolution operator of the Schrödinger
equation. The corresponding Hamiltonian is given by

Ĥ = −a
2

6 ∇
2 + iυ0ϑ(r) − log(1 + vχ(r)). In the limit of

long chains N → ∞, for collapsed or confined chains,
we employ the ground state dominance approximation
[24, 48, 49]. After standard calculations (SM), we find
the free energy of the system βF = − logZ as

βF =

∫
dr

{
a2

6
|∇ψ(r)|2 + f(ψ)− λ(ψ2(r)− N

V
)

}
(5)

with

f(ψ) =
1

2
υ0ψ

4(r) +
1

8v
(
√

1 + 4vψ2(r)− 1)2

− ψ2(r) log(
1

2
(1 +

√
1 + 4vψ2(r))) (6)

with ψ2(r) the genome monomer density at position r and
λ a Lagrange multiplier fixing the number of monomers
inside the capsid, N =

∫
drψ2(r) [50]. The gradient

term in Eq. S12 represents the elastic energy of the RNA
polymer chain, and the term proportional to υ0 is the
excluded volume contribution. The two other terms in
Eq. 6 represent the local pairing energy. The variation of
Eq. S12 with respect to ψ(r) gives,

a2

6
∇2ψ = −λψ+υ0ψ

3−ψ log(
1

2
(1+

√
1 + 4vψ2(r))) (7)

that can be solved numerically to obtain ψ(r). This
method also allows us to calculate the number of BPs,
see SM.

In order to find the encapsidation free energy, we con-
sider a polymer trapped inside an adsorbing sphere. The
free energy (Eq. S12) then becomes

βFint = βF − γβa3
∫
dSψ2(r) (8)
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The last term represents the interaction energy of RNA
with the capsid surface, with γ the (adsorption) energy
per unit area. Minimizing the free energy, Eq. 8, with
respect to ψ(r) gives the same equation as Eq. 7, but
subject to the BC, (n̂ · ∇ψ = κψ)|s, with κ−1 = 1

6βaγ

being a length representing the interaction strength be-
tween the RNA and the wall. Fig. S1 illustrates the
encapsidation free energy, Eq. 8, as a function of the
RNA length. For large pairing strength βε, the confine-
ment free energy does not increase for longer RNAs as
it does for weaker pairing indicating more stable system
with higher pairing strength (SM).

While the behavior of Fint vs N is rather expected, a
careful analysis of the “bulk” free energy density (Eq. 6)
indicates that there is a critical βεc beyond which, the
polymer will be in the collapsed phase. The plot of f(ψ)
vs ψ2 in Fig. 2 at a fixed RNA length shows a second
order phase transition as a function of βε. The effect is
visible in the inset near the origin. For large ψ2, con-
trary to the standard theta point for a polymer in a bad
solvent, there is no need to include a repulsive 3-body
interaction to avoid the collapse of the chain at infinite
density. This is because of the saturation effect included
in the model.

The profiles of RNA in the collapsed and extended
states in the “bulk” are illustrated in Fig. 3. To obtain
the profiles we solve Eq. 7 in a spherical geometry. For
the “bulk” system we employ Dirichlet boundary condi-
tions (BCs), ψ(r = R) = 0, where R is the radius of
a sphere to be taken large enough to mimic the bulk.
Dirichlet as well as Neumann conditions (both imply
∇ψ = 0 on the boundary) guarantee that the monomer
density is constant in the bulk. Due to the nature of the
symmetry we also have a BC at the center of the sphere
as ∇ψr=0 = 0.

Figure 3 shows a plot of the monomer density vs the
distance from the capsid center. As illustrated there is a
phase transition: while a strong interaction (βε = 5.0,
dot-dashed line) results in a collapsed phase, a weak
interaction (βε = 0.97, dotted line) corresponds to a
swollen phase, where the RNA spreads out uniformly.
For larger radii, R = 40 and 50 nm, we obtained the
same results indicating robustness of our findings.

Using Eq. 7 with (n̂ · ∇ψ = κψ)|s, we also obtained
the RNA density inside an adsorbing sphere for both a
strong (βε = 5.7, dot-dashed line) and a weak interaction
energies (βε = 0.97, dotted line). For a fixed genome
length and capsid radius, in case of strong interaction,
RNA mostly covers the surface of the capsid, whereas in
the weak case, the genome essentially fills out uniformly
the entire sphere. In the swollen regime the density is
slightly higher at the wall, due to the attraction (Fig. 3
inset, dotted profile), see below for the RNA profile as a
function of its length and capsid-genome interaction.

We also studied the RNA profile inside viral shells as
a function of its length for a fixed capsid-genome inter-
action (κ) and base-pairing strength (βε). Figure 4 il-
lustrates the impact of the RNA length on its density
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FIG. 2: Free energy density as a function of RNA density
for different base-pairing interaction energy values, βε = 0.7
(solid line), βε = 1.3 (dotted line) and βε = 1.7 (dashed line).
Here υ0 = 2 nm3 and inset shows the behavior around the
origin.
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FIG. 3: RNA density profile for N = 500 with an interaction
strength of βε = 5.0 (dot-dashed line) and βε = 0.97 (dotted
line). The inset shows RNA density profile inside an adsorb-
ing capsid for N = 3000 with βε = 5.7 (dot-dashed line) and
βε = 0.97 (dotted line). Other parameters are a = 1 nm,
υ0 = 2 nm3, R = 20 nm and κ = 0.5 nm−1.

profile, for a fixed value of βε = 1.7. A relatively short
chain N = 525 (solid line) covers entirely the inner sur-
face, leaving the interior of the shell empty (collapsed
phase, Fig. 4 solid line). The longer chains are swollen
throughout the shell with an increased density next to
the wall (swollen phase, Fig. 4 dotted and dot-dashed
lines). Quite interestingly, we observe a domain wall or
kink (a sharp drop from one value of minimum free en-
ergy to another minimum value of free energy [51, 52])
between the swollen and collapsed phases for N = 2200,
Fig. 4 dashed line. A simple scaling argument [51] shows

that the width of the kink region is `∗ ∼
√

a2

6
(ψ1−ψ2)2

Eb

where ψ1 and ψ2 are the density fields of RNA at the
minima of free energies (see below) and Eb the height of
the energy barrier between the two minima. The width
`∗ matches very well our numerical solutions. Note we
find all RNA profiles shown in Fig. 4 for both strong and
weak capsid-genome interactions (SM).

To better understand the kink behavior, we examine
the global and local minima of the Gibbs free energy den-
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FIG. 4: RNA density profile as a function of distance from the
center of the shell for different chain lengths N = 525 (solid
line), N = 2200 (dashed line), N = 3040 (dot-dashed line)
and N = 4000 (dotted line). Other parameters are βε = 1.7,
a = 1 nm, υ0 = 2 nm3, R = 15 nm and κ = 1.0 nm−1.
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FIG. 5: Energy density as a function of RNA density field ψ
for different chain lengths at λ = −0.217 (solid curve), λ =
−0.082 (dashed curve), λ = −0.071 (dot-dashed curve) and
λ = −0.017 (dotted curve). Other parameters are βε = 1.7,
a = 1 nm, and υ0 = 2 nm3. The λ values here correspond to
the N values presented in Fig. 4 (see the text).

sity (Eq. 6) in the bulk, ∆g(ψ) = f(ψ)−λψ2. Figure 5 is
a plot of ∆g(ψ) vs ψ, corresponding to theN (or λ) values
given in Fig. 4. As illustrated in Fig. 5, at λ = −0.082,
there are two minima at ψ = 0 and ψ = 0.4, which cor-
respond to the RNA densities (ψ2 = 0 and ψ2 = 0.16)
in different sides of kink (≈ r = 6 and r = 13) in Fig. 4,
the dashed line. For N = 4000 (Fig. 4), the interior den-
sity is fixed and is equal to the square of the minimum
of the corresponding free energy (ψ = 0.5) (Fig. 5, dot-
ted curve). Similarly, the solid curve in Fig. 5 has a
minimum at ψ = 0 and the corresponding density profile
(Fig. 4, solid line) is such that the density is constant and
zero in the interior of the sphere. The density increases
at the wall due to the attractive interaction between the
RNA and the wall for all profiles. For N = 3040 (Fig. 4),
the interior density is fixed to one of the three degener-
ate minima of the free energy (Fig. 5, dot-dashed curve)
in agreement with the first order phase transition in the

system.

We emphasize again that despite an intense ongoing
research, the precise profile of RNA in many viruses in-
cluding one of the most studied viruses, CCMV is not yet
clear. A careful analysis of many Cryo-EM images sug-
gests that the density of RNA in the interior of CCMV
capsid is almost zero and RNA is sitting in the vicinity
of the capsid wall [16], similar to our results in Fig. 4
(dashed line). Quite interestingly, Cryo-EM images of
virus-like-particles (VLPs) built from CCMV CPs and
PSS molecules with similar length as the native CCMV
RNA show that PSS almost completely fills out the cap-
sid [18]. Our results are consistent with these experi-
ments indicating that for a given capsid charge density
and chain length, it is the base-pairing that defines the
profile and stability of VLPs.

In summary, we introduced a simple model to explore
the profile of RNA inside viral shells. We showed that
there is a critical base-pairing strength βεc, below which
RNA is in an extended state and almost uniformly fills
out inside the capsid. For the strength larger than
βεc, RNA will be in a collapsed state and sits tightly
next to the wall inside the capsid. We note again
that the strength of interaction here is defined as the
average number of BPs per unit length. If an RNA
is designed to have more BPs per unit length, it will
have a larger βε. Furthermore, we found that for a
given capsid-genome attractive interaction (γ) and the
base-pairing strength βε, the profile of RNA could go
through a sharp transition (first order) from collapsed
to an extended state as a function of length of RNA.
We observed a kink-type profile (remnant of the first
order transition) revealing that there are three distinct
density regions inside the capsid (Fig. 4), a profile never
captured in previous models. While the size and charge
density of the capsids in Fig. 1 are different and the
electrostatic interactions are important, our goal in this
Letter was to single out the impact of base-pairing on
the profile of RNA. We showed that all three profiles are
possible regardless of the capsid size and charge density.
Our work shows that a slight change in the number
of RNA base-pairs and/or length can result in drastic
changes in the profile of RNA from a collapsed to an
extended form. Designing the appropriate RNA primary
sequence, which defines the number of base-pairs and
thus the behavior of RNA inside the shell, we can control
the encapsidation efficiency and stability of VLPs for
various material science and biological applications.

The authors would like to thank Jef Wagner and
Siyu Li for useful discussions. This work was supported
by the National Science Foundation through Grant No.
DMR-1310687 (R.Z.).
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RNA Base Pairing Determines the Conformations of RNA Inside Spherical Viruses
Supplemental Material

I. SUPPORTING FIGURES

Figure S1 illustrates the encapsidation free energy, Eq.
8, as a function of the RNA length for different base-
pairing strengths βε = 1.7 (dashed line), βε = 1.3 (dot-
ted line) and βε = 0.7 (solid line). As illustrated in the
figure, for large pairing strength βε, the confinement free
energy does not increase for longer RNAs as it does for
weaker pairing. In other words, as the pairing strength
increases, the minimum of the free energy moves towards
longer chains and becomes deeper indicting a more stable
system.
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FIG. S1: Encapsidation energy as a function of RNA length
for three different base-pairing strengths βε = 1.7 (dashed
line), βε = 1.3 (dotted line) and βε = 0.7 (solid line). Other
parameters are a = 1 nm, υ0 = 2 nm3, R = 15 nm and
κ = 1.0 nm−1.

Figures 4, S2 and S3 illustrate the impact of the
strength of the genome-capsid attractive interaction on
RNA profiles for κ = 1, κ = 0.5 and κ = 2.0, respec-
tively. Each of these figures shows the behavior of RNA
inside a viral shell as a function of its length for a fixed
capsid-genome interaction (κ) and base-pairing strength
βε. Figures S2 and S3 show the impact of the length of
RNA on its density profile inside the capsid for a stronger
κ = 2.0 and a weaker capsid-genome interactions κ = 0.5,
respectively. A relatively short chain (solid blue lines)
covers entirely the inner surface, leaving the interior of
the shell empty. The longer chain is extended through-
out the shell with an increased density next to the wall
(dotted black lines). There is also a domain wall (kink)
between the swollen and collapsed phases (dashed red
lines). We emphasize that all three RNA profiles (col-
lapsed, swollen and kink) are observed because of changes
in the length of the encapsidated RNA regardless of the
capsid-genome interaction, as revealed in Figs S2, S3 and
Fig. 4 in the text.
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FIG. S2: RNA density field as a function of distance from the
center of the shell for different chain lengths N = 525 (solid blue
line), N = 1610 (dashed red line), N = 2200 (short-dashed orange
line) and N = 4000 (dotted black line). Other parameters are
βε = 1.7, a = 1 nm, υ0 = 2 nm3, R = 15 nm and κ = 0.5 nm−1.
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FIG. S3: RNA density field as a function of distance from the
center of the shell for different chain lengths N = 525 (solid blue
line), N = 2200 (short-dashed orange line), N = 2700 (dashed
red line) and N = 4000 (dotted black line). Other parameters are
βε = 1.7, a = 1 nm, υ0 = 2 nm3, R = 15 nm and κ = 2.0 nm−1.

II. DERIVATION OF EQUATIONS 4 AND 5 IN
THE TEXT

Equation 3 in the main text can be rewritten as,

ZN =
1

N

∫ N∏
i=1

dφie
− 1

2

∑
i,j φiV

−1
ij φj

N∏
i=1

(1 + φi)

=

∫ N∏
i=1

dφi

N∏
i=1

dξie
− 1

2

∑
i,j ξiVijξj+i

∑
i φiξi

N∏
i=1

(1 + φi)

(S1)

where ξi is introduced in the Gaussian integral. The
exponential of the interaction terms in Eq. S1 can be
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written as

e−
1
2

∑
i,j ξiVijξj = e−

1
2 v

∫
dr(

∑
i ξiδ(r−ri))

2

=

∫
Dχe− v2

∫
drχ2(r)−iv

∑
i ξiχ(ri) (S2)

with the introduction of the auxiliary field χ(r) in terms
of the Gaussian integration. Plugging Eq. S2 into Eq. S1
gives

ZN =

∫ N∏
i=1

dφi

N∏
i=1

dξi

∫
Dχe− v2

∫
drχ2(r)+i

∑
i(φi−vχ(ri))ξi

N∏
i=1

(1 + φi)

=

∫
Dχe− v2

∫
drχ2(r)

N∏
i=1

(1 + vχ(ri)) (S3)

This new form of ZN can be inserted in the partition
function given in Eq. 1 in the paper and then we have,

Z =

∫ N∏
i=1

drie
− 3

2a2

∑
i(ri+1−ri)2− υ02

∑
i,j δ(ri−rj)

∫
Dχe− v2

∫
drχ2(r)

N∏
i=1

(1 + vχ(ri)) (S4)

Here the two-body excluded volume interaction can be
evaluated as

e−
υ0
2

∑
i,j δ(ri−rj) = e−

υ0
2

∫
drρ̂2m

=

∫
Dϑe−

υ0
2

∫
drϑ2(r)−iυ0

∫
drρ̂mϑ(r)

=

∫
Dϑe−

υ0
2

∫
drϑ2(r)−iυ0

∑
i ϑ(ri) (S5)

where we have introduced the field ϑ(r) conjugate to the
polymer density field ρ̂m =

∑
i δ(r − ri). Using Eq. S5,

in the continuous limit, the partition function becomes

Z =

∫
DχDϑe− v2

∫
drχ2(r)− υ02

∫
drϑ2(r)

×
∫
Dr(s)e−H(r(s))

(S6)

with

H(r(s)) =

∫ N

0

ds

(
3

2a2
(dr(s)

ds

)2
+ iυ0ϑ(r(s))− log(1 + vχ(r(s)))

)
(S7)

The chain part of the partition function can also be
rewritten as∫

Dr(s)e−H(r(s)) =

∫
drdr′Q(r, r′) (S8)

which together with Eq. S6 yields Eq. 4. From its defini-
tion, Q(r, r′) = 〈r|e−H |r′〉 satisfies the Schrödinger equa-
tion and assuming ground-state dominance, we have∫

drdr′Q(r, r′) ≈N→∞

Min{ψ(r)} exp

(
−
∫
dr
(a2

6
(∇ψ(r))2 + iυ0ϑ(r)ψ2(r),

− log(1 + vχ(r))ψ2(r)− λ(ψ2(r)− N

V
)
))
(S9)

where ψ(r) is the eigenfunction representing the
monomer density field. Inserting Eq. S9 into Eq. 4 and
integrating out the ϑ field, the partition function simply
becomes

Z =

∫
Dχ exp−βF (S10)

with the free energy

βF =

∫
dr

{
a2

6
|∇ψ(r)|2 +

1

2
υ0ψ

4(r) +
1

2
vχ2(r)

− ψ2(r) log(1 + vχ(r))− λ(ψ2(r)− N

V
)

}
(S11)

where ψ2(r) is the genome monomer density at position
r and λ is a Lagrange multiplier fixing the number of
monomers inside the capsid, N =

∫
drψ2(r).

The variation of Eq. S11 with respect to the field χ

results in χ =

√
1+4vψ2−1

2v , which when plugged back into
Eq. S11, yields Eq. 5 of the main text,

βF =

∫
dr

{
a2

6
|∇ψ(r)|2 + f(ψ)− λ(ψ2(r)− N

V
)

}
.

(S12)

III. THE NUMBER OF BASE-PAIRS

The model presented in the text allows us to calculate
the average number of base-pairs as follows,

Npb =
∂ log(Z)

∂βε
= −eβε ∂(βF)

∂v
(S13)

=
eβε

4v2

∫
dr [1 + 2vψ2(r)−

√
1 + 4vψ2(r))].

For the profile presented in Fig. 3, based on Eq. S13,
the number of base-pairs are Npb = 9 and Npb = 217 for
βε = 0.97 and βε = 5.0, respectively. As the strength
of base-pairing (βε) increases, the number of base-pairs
increases too. For the inset of Fig. 3, the length of RNA
is N = 3000 and the number of base-pairs are Npb =
1350 and Npb = 180 for the case of strong and weak
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pairing interactions. We also calculated the number of
base-pairs for each profile in Fig. 4. As the number of
encapsidated monomers increases, the ratio of number
of base-paired to the total monomer number increases.
For N = 525, 2200, 3040 and 4000, the ratio of Npb/N =
0.162, 0.189, 0.194, 0.213, respectively.

IV. PSEUDOKNOTS

The model allows pairing of far apart bases along the
chain giving rise to pseudoknots. While the appearance
of pseudoknots might not be obvious in the expression
for free energy, it is more transparent in the partition
function (Eq. 2), which considers RNA base-pairing with
“saturation”, i.e., one base can interact with at most one
base at a time. Figure S4 illustrates the arc diagram
representation of the interaction terms in Eq. 2 and how
the formation of pseudoknots is included in the model.

(a) (b)

(c)

FIG. S4: (a) Arc representation of the secondary structure
of RNA. (b) Diagram with crossing arcs and structure of an
RNA pseudo-knot. Crossing arcs indicate the presence of a
pseudo-knot. (c) Equation 2 of the main text and the appear-
ance of pseudo-knots in the sum.
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