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Two-time correlation and occupation time for the
Brownian bridge and tied-down renewal processes

Claude Godrèche

Institut de Physique Théorique, Université Paris-Saclay, CEA and CNRS, 91191
Gif-sur-Yvette, France

Abstract. Tied-down renewal processes are generalisations of the Brownian
bridge, where an event (or a zero crossing) occurs both at the origin of time
and at the final observation time t. We give an analytical derivation of the two-
time correlation function for such processes in the Laplace space of all temporal
variables. This yields the exact asymptotic expression of the correlation in the
Porod regime of short separations between the two times and in the persistence
regime of large separations. We also investigate other quantities, such as the
backward and forward recurrence times, as well as the occupation time of the
process. The latter has a broad distribution which is determined exactly. Physical
implications of these results for the Poland Scheraga and related models are given.
These results also give exact answers to questions posed in the past in the context
of stochastically evolving surfaces.
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1. Introduction

Tied-down renewal processes with power-law distributions of intervals are generalisa-
tions of the Brownian bridge, where an event (or a zero crossing) occurs both at the
origin of time and at the final observation time t [1, 2]. The Brownian bridge is itself
the continuum limit of the tied-down simple random walk, starting and ending at the
origin. The present work is a sequel of our previous study [2] mainly devoted to the
statistics of the longest interval of tied-down renewal processes. Here we investigate
further quantities of interest such as the two-time correlation function, the backward
and forward recurrence times and the occupation time of the process.

The present study parallels that done in [3], where the statistics of these quantities
were investigated in the unconstrained case (i.e., without the constraint of having an
event at the observation time t)‡, then these results were used to give analytical insight
in some simplified physical models. The results found here for tied-down renewal
processes provide analytical expressions of the pair correlation function in the Porod
and persistence regimes and of the distribution of the magnetisation for the Poland
Scheraga [5] and related models [6, 7]. They also give exact answers to questions posed
in the past in the context of stochastically evolving surfaces [8, 9].

This paper illustrates the importance of a systematic study of renewal processes
given their ubiquity and potential applications in statistical physics.

We shall rely on [2] for some background knowledge, in order to keep the present
paper short and avoid repeating the material contained in this reference. Nevertheless,
we shall start, in section 2, by giving a brief reminder of the most important definitions
needed in the subsequent sections 3-6, devoted respectively to the study of the
statistics of the forward and backward recurrence times, the number of renewals
between two times, the two-time correlation function and finally the occupation time
of the process. Section 7 gives applications of the present study to simple equilibrium
or nonequilibrium physical systems. Details of some derivations are relegated to
appendices.

2. Definitions

2.1. Renewal processes in general

We remind the definitions and notations used for renewal processes, following [3].
Events (or renewals) occur at the random epochs of time t1, t2, . . ., from some time
origin t = 0. These events are for instance the zero crossings of some stochastic
process. We take the origin of time on a zero crossing. When the intervals of time
between events, τ1 = t1, τ2 = t2 − t1, . . ., are independent and identically distributed
random variables with common density ρ(τ), the process thus formed is a renewal
process [10, 11].

The probability p0(t) that no event occurred up to time t is simply given by the
tail probability:

p0(t) = Prob(τ1 > t) =

∫ ∞
t

dτ ρ(τ). (2.1)

The density ρ(τ) can be either a narrow distribution with all moments finite, in which
case the decay of p0(t), as t → ∞, is faster than any power law, or a distribution

‡ The statistics of the longest interval for unconstrained renewal processes was investigated in [4].



Two-time correlation function and occupation time 3

characterised by a power-law fall-off with index θ > 0

p0(t) =

∫ ∞
t

dτ ρ(τ) ≈
(τ0
t

)θ
, (2.2)

where τ0 is a microscopic time scale. If θ < 1 all moments of ρ(τ) are divergent, if
1 < θ < 2, the first moment 〈τ〉 is finite but higher moments are divergent, and so on.
In Laplace space, where s is conjugate to τ , for a narrow distribution we have

L
τ
ρ(τ) = ρ̂(s) =

∫ ∞
0

dτ e−sτρ(τ) =
s→0

1− 〈τ〉 s+
1

2

〈
τ2
〉
s2 + · · · (2.3)

For a broad distribution, (2.2) yields

ρ̂(s) ≈
s→0

{
1− a sθ (θ < 1)
1− 〈τ〉 s+ a sθ (1 < θ < 2),

(2.4)

and so on, where

a = |Γ(1− θ)|τθ0 . (2.5)

From now on, unless otherwise stated, we shall only consider the case 0 < θ < 1.
The quantities naturally associated to a renewal process [3, 10, 11] are the

following. The number of events which occurred between 0 and t (without counting
the event at the origin), i.e., the largest n such that tn ≤ t, is a random variable
denoted by Nt. The time of occurrence of the last event before t, that is of the Nt−th
event, is therefore the sum of a random number of random variables

tNt
= τ1 + · · ·+ τNt

. (2.6)

The backward recurrence time At is defined as the length of time measured backwards
from t to the last event before t, i.e.,

At = t− tNt
. (2.7)

It is therefore the age of the current, unfinished, interval at time t. Finally the forward
recurrence time (or excess time) Et is the time interval between t and the next event

Et = tNt+1 − t. (2.8)

We have the simple relation At + Et = tNt+1 − tNt = τNt+1. The statistics of these
quantities is investigated in detail in [3].

2.2. Tied-down renewal processes

A tied-down renewal process is defined by the condition {tNt
= t}, or equivalently by

the condition {At = 0}, which both express that the Nt−th event occurred at time t.
This process generalises the Brownian bridge [2, 1].

The joint density associated to the realisation {`1, . . . , `n} of the sequence of
Nt = n intervals {τ1, . . . , τn}, conditioned by {tNt

= t}, is [2]

f?(t, `1, . . . , `n, n) =
ρ(`1) . . . ρ(`n)δ (

∑n
i=1 `i − t)

U(t)
, (2.9)

where the denominator is obtained from the numerator by integration on the `i and
summation on n,

U(t) =
∑
n≥0

∫ ∞
0

d`1 . . . d`n ρ(`1) . . . ρ(`n)δ
( n∑
i=1

`i − t
)
. (2.10)
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This quantity is the edge value of the probability density of tNt
at its maximal value

tNt
= t [2]. In Laplace space with respect to t, we have

Û(s) =L
t
U(t) =

∑
n≥0

ρ̂(s)n =
1

1− ρ̂(s)
. (2.11)

The right side behaves, when s is small, as s−θ/a. Thus, at long times, we finally
obtain, using (2.5),

U(t) ≈ sinπθ

π

tθ−1

τθ0
. (2.12)

Knowing the expression (2.9) of the conditional density allows to compute the
conditional average of any observable O, as

〈O〉 =
∑
n≥0

∫ ∞
0

d`1 . . . d`n f
?(t, `1, . . . , `n, n)O. (2.13)

The method used in the next sections consists in computing separately the numerator
of this expression, denoted by 〈O〉|num, then divide by the denominator, U(t).

3. Forward and backward recurrence times for the tied-down renewal
process

Consider the situation depicted in figure 1. The number of intervals between 0 and
the intermediate time 0 < T < t is denoted by NT . This is also the number of points
between 0 and T (without counting the point at the origin). Instead of (2.6) we have
now

tNT
= τ1 + · · ·+ τNT

. (3.1)

T t

ET

⌧NT +1

. . .. . .

AT

Figure 1. The excess time (or forward recurrence time) ET with respect to T
is the distance between T and the next event. The age of the last interval before
T (or backward recurrence time) AT is the distance between tNt and T . The
interval τNT+1 straddles T .

The excess time (or forward recurrence time) with respect to T is, as in (2.8), the time
interval between T and the next event

ET = tNT+1 − T, (3.2)
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where tNT+1 = tNT
+ τNT+1. Its density is

fE(t, T, y) = 〈δ(y − ET )〉 =
d

dy
Prob(ET < y|tNt=t). (3.3)

In Laplace space, where s, u, v are conjugate to the temporal variables t, T, y, we find
for the numerator (see Appendix A)§,

f̂E(s, u, v)|num = L
t,T,y

fE(t, T, y)|num = Û(s)Û(s+ u)
ρ̂(s+ v)− ρ̂(s+ u)

u− v
. (3.4)

This expression will be used in the next section.
The density fE(t, T, y) is well normalised, as can be seen by noting that

f̂E(s, u, 0)|num = Û(s)Û(s+ u)
ρ̂(s)− ρ̂(s+ u)

u
=
Û(s)− Û(s+ u)

u

= L
t,T

U(t)Θ(t− T ), (3.5)

where Θ is the Heaviside function. So, dividing by U(t),∫ ∞
0

dy fE(t, T, y) = Θ(t− T ). (3.6)

Similarly, one finds for the forward recurrence time AT = T − tNT
, also named

the age of the last interval before T (see Appendix B),

f̂A(s, u, v)|num = L
t,T,y

fA(t, T, y)|num = Û(s)Û(s+ u)
ρ̂(s)− ρ̂(s+ u+ v)

u+ v
. (3.7)

Remark. The limit t → ∞ (s → 0) corresponds to the unconstrained case. In this
limit (3.4) reads

f̂E(s→ 0, u, v)|num = Û(s→ 0)Û(u)
ρ̂(v)− ρ̂(u)

u− v
, (3.8)

which, after Laplace inversion with respect to s and division by U(t), yields, as it
should, the expression found for the unconstrained case (see equation (6.2) in [3]) up
to the change of u to s and v to u. The same holds for fA.

4. Number of renewals between two arbitrary times

Consider the number of events N(T, T + T ′) = NT+T ′ − NT occurring between the
two times T and T + T ′ (see figure 2). We denote the probability distribution of this
random variable by

pm(t, T, T + T ′) = Prob(N(T, T + T ′) = m|tNt = t). (4.1)

For m = 0 we have

p0(t, T, T + T ′) = Prob(ET > T ′) =

∫ ∞
T ′

dy fE(t, T, y). (4.2)

§ When no ambiguity arises, we drop the time dependence of the random variable if the latter is
itself in subscript.
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T T + T 0 t

tNT+T 0

tNT

. . . . . . . . .

Figure 2. There are NT events up to time T and N(T, T + T ′) events between
T and T + T ′.

In Laplace space with respect to the three temporal variables t, T, T ′, we find, for
m ≥ 1 (see Appendix C),

p̂m(s, u, v)|num = L
t,T,T ′

pm(t, T, T + T ′)|num

= f̂E(s, u, v)|num
ρ̂(s)− ρ̂(s+ v)

v
ρ̂(s+ v)m−1, (4.3)

and, for m = 0,

p̂0(s, u, v)|num = L
t,T,T ′

p0(t, T, T + T ′)|num

=
1

v

(
f̂E(s, u, 0)|num − f̂E(s, u, v)|num

)
, (4.4)

which is a simple consequence of (4.2) (an alternative proof is given in Appendix C).
The scaling behaviour of p0(t, T, T + T ′) in the temporal domain is analysed in the
next section.

The normalisation of the distribution pm can be checked by computing the sum∑
m≥0

p̂m(s, u, v)|num =
1

v

(
Û(s)− Û(s+ u)

u
− Û(s+ v)− Û(s+ u)

u− v

)
, (4.5)

the inverse Laplace transform of which is∑
m≥0

pm(t, T, T + T ′)|num = U(t)Θ(t− T )Θ(t− T − T ′), (4.6)

as can be easily checked (see (3.5)). So, finally, after division by U(t),∑
m≥0

pm(t, T, T + T ′) = Θ(t− T )Θ(t− T − T ′). (4.7)

5. Two-time correlation function

In the present section and the next one, we consider the random variable σT = ±1,
where T is the running time, linked to the renewal process as follows. Let σT = 1, for
all the duration of the first interval, then σT = −1, during the second interval, and
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t

τ1 τ2 τ3 τ4 τ5

σT

T

Figure 3. The σT = ±1 process where T is the running time. In this example
the initial condition is σ0 = +1.

so on, with alternating values, as depicted in figure 3. This process can be thought of
as the sign of the position of a one-dimensional underlying motion (such as Brownian
motion if θ = 1/2). In other words the random variable σT is the sign of the successive
excursions (positive if the motion is on the right side of the origin, negative otherwise).
We can also interpret σT as a spin variable (depending on time T ) and the intervals
τ1, τ2, . . . as the intervals between two flips [3, 12]. In the present case, the tied-down
constraint imposes that the sum of these intervals is given.

5.1. Analytic expression of the two-time correlation function in Laplace space

We want to compute the correlation

C(t, T, T + T ′) = 〈σTσT+T ′〉 = 〈(−1)N(T,T+T ′)〉 =
∑
m≥0

(−1)mpm(t, T, T + T ′), (5.1)

between the two times T and T + T ′. Using the expressions (4.3) and (4.4) above, we
obtain, in Laplace space,

Ĉ(s, u, v)|num =
1

v

(
f̂E(s, u, 0)|num − f̂E(s, u, v)|num

1 + ρ̂(s)

1 + ρ̂(s+ v)

)
. (5.2)

Taking successively the limits t → ∞, T → 0 and T ′ → 0 allows to check the
coherence of the formalism.

(i) The limit t→∞ (s→ 0) corresponds to the unconstrained case, as already noted
above. We find, after Laplace inversion with respect to s and division by U(t),

Ĉ(s→ 0, u, v) =
1

v

(
1

u
− Û(u)

ρ̂(v)− ρ̂(u)

u− v
2

1 + ρ̂(v)

)
. (5.3)

Changing u to s, and v to u in this expression yields equation (9.1) of [3], which
is the Laplace transform of the two-time correlation in the unconstrained case.

(ii) In order to take the limit T → 0, we multiply (5.2) by u then take the limit
u→∞. This yields

lim
u→∞

u Ĉ(s, u, v)|num = Û(s)
1

v

ρ̂(s)− ρ̂(s+ v)

1 + ρ̂(s+ v)
≡ L
t,T ′
〈(−1)NT ′ 〉|num, (5.4)
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which, after Laplace inversion and division by U(t), yields the correlation function
〈σ0σT ′〉.

(iii) Finally the limit T ′ → 0 is obtained by computing

lim
v→∞

v Ĉ(s, u, v)|num = f̂E(s, u, 0)|num, (5.5)

which, after Laplace inversion and division by U(t), yields unity as expected.

5.2. Asymptotic analysis in the Porod regime

At large and comparable times t, T, T ′, we have s ∼ u ∼ v � 1, hence

Ĉ(s, u, v)|num ≈ p̂0(s, u, v)|num, (5.6)

which is given by (4.4). In the present context, p0(t, T, T + T ′) is the probability that
the spin σT did not flip between T and T + T ′, or two-time persistence probability.
The inversion of the first term in the right side of (4.4) yields U(t)Θ(t − T ), which,
after division by U(t) yields 1 (since t > T ). Let us analyse the second term in the
right side of (4.4). In the regime s ∼ u ∼ v we have

1

v
f̂E(s, u, v)|num ≈

1

v

1

asθ(s+ u)θ
(s+ u)θ − (s+ v)θ

u− v
. (5.7)

Let us moreover focus on the regime of short separations between T and T + T ′, i.e.,
where 1 � T ′ � T ∼ t. In this regime we expect the following scaling form for the
two-time correlation function

C(t, T, T + T ′) ≈ 1−
(
T ′

t

)1−θ
g

(
T

t

)
, (5.8)

where the scaling function g(·) is to be determined. In the regime of interest
(s ∼ u� v), (5.7) simplifies into

1

v
f̂E(s, u, v)|num ≈

vθ−2

asθ(s+ u)θ
. (5.9)

Laplace inverting the right side of this equation with respect to v yields

T ′1−θ

aΓ(2− θ)sθ(s+ u)θ
, (5.10)

which, after Laplace inversion with respect to s and u and division by U(t), should be
identified with the second term of (5.8), i.e.,

1

U(t)

T ′1−θ

aΓ(2− θ) Ls,u
−1 1

sθ(s+ u)θ
=

(
T ′

t

)1−θ
g

(
T

t

)
. (5.11)

We thus have the following identification to perform

L
s,u

−1 1

sθ(s+ u)θ
= Γ(1− θ)Γ(2− θ) sinπθ

π
t2θ−2g

(
T

t

)
. (5.12)

We have, setting x = T/t,

L
t,T

t2θ−2g

(
T

t

)
=

∫ 1

0

dx g(x)

∫ ∞
0

dt t2θ−1e−t(s+ux)

=
Γ(2θ)

s2θ

∫ 1

0

dx
g(x)

(1 + ux/s)2θ
. (5.13)
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So, using (5.12), we finally obtain the equation determining the scaling function g(x),∫ 1

0

dx
g(x)

(1 + λx)2θ
=

Γ(θ)

Γ(2− θ)Γ(2θ)

1

(1 + λ)θ
, (5.14)

with the notation λ = u/s. Noting that∫ 1

0

dx
[x(1− x)]

θ−1

(1 + λx)2θ
=

Γ(θ)2

Γ(2θ)(1 + λ)θ
, (5.15)

we conclude that

g(x) =
sinπθ

π(1− θ)
[x(1− x)]

θ−1
, (5.16)

yielding the final result, in the regime of short separations between T and T + T ′

(1� T ′ � T ∼ t),

C(t, T, T + T ′) ≈ 1− sinπθ

π(1− θ)

[
T

t

(
1− T

t

)]θ−1(
T ′

t

)1−θ

≈ 1− sinπθ

π(1− θ)

(
T ′t

T (t− T )

)1−θ
. (5.17)

This expression is universal since it no longer depends on the microscopic scale τ0.
When t → ∞ we recover the result, easily extracted from [3], for the unconstrained
case in the same regime (1� T ′ � T ), namely

C(T, T + T ′) ≈ 1− sinπθ

π(1− θ)

(
T ′

T

)1−θ
. (5.18)

Remark. Let us apply this formalism to the case of an exponential distribution of
intervals, ρ(τ) = λe−λτ corresponding to a Poisson process for the renewal events. We
have, from (5.2),

Ĉ(s, u, v)|num =
λ

s(s+ u)(s+ v + 2λ)
. (5.19)

By Laplace inversion we obtain

C(t, T, T + T ′) = e−2λT
′
Θ(t− T )Θ(t− T − T ′), (5.20)

where we used the fact that U(t) = λ. The correlation is stationary, i.e., a function of
T ′ only, as expected. For time differences T ′ such that λT ′ is small, i.e., T ′ � λ−1, this
correlation reads C(T ′) ≈ 1−2λT ′. Interpreted in the spatial domain, this expression
is the usual Porod law [13], where λ is the density of defects (domain walls).

5.3. Asymptotic analysis in the persistence regime

Let us now focus on the regime of large separations between T and T +T ′, i.e., where
1� T � T ′ ∼ t. In this regime we expect the following scaling form for the two-time
correlation function

C(t, T, T + T ′) ≈ p0(t, T, T + T ′) ≈
(
T ′

T

)−θ
h

(
T ′

t

)
, (5.21)

where the scaling function h(·) is to be determined. In the regime of interest
(s ∼ v � u), (5.7) simplifies into

1

v
f̂E(s, u, v)|num ≈

1

v

1

asθuθ
uθ − (s+ v)θ

u
. (5.22)
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Therefore,

p̂0(s, u, v)|num =
1

v

(
f̂E(s, u, 0)|num − f̂E(s, u, v)|num

)
≈ 1

v

1

asθuθ
(s+ v)θ − sθ

u
. (5.23)

We proceed as above. Laplace inverting the right side of this equation with respect
to u yields

T θ

aΓ(1 + θ)

(s+ v)θ − sθ

vsθ
, (5.24)

which, after Laplace inversion with respect to s and v and division by U(t), should be
identified with the second term of (5.21), i.e.,

1

U(t)

T θ

aΓ(1 + θ)
L
s,v

−1 (s+ v)θ − sθ

vsθ
=

(
T ′

T

)−θ
h

(
T ′

t

)
. (5.25)

We thus have the following identification to perform

L
s,v

−1 (s+ v)θ − sθ

vsθ
=
θ

t

(
T ′

t

)−θ
h

(
T ′

t

)
. (5.26)

We have, setting x = T ′/t,

L
t,T ′

θ

t

(
T ′

t

)−θ
h

(
T ′

t

)
= θ

∫ 1

0

dxx−θh(x)

∫ ∞
0

dt e−t(s+vx)

=
θ

s

∫ 1

0

dx
x−θh(x)

1 + xv/s
. (5.27)

So, using (5.26), we finally obtain the equation determining the scaling function h(x),∫ 1

0

dx
x−θh(x)

1 + λx
=

(1 + λ)θ − 1

λ
, (5.28)

with the notation λ = v/s. Hence

h(x) =
sinπθ

πθ
(1− x)

θ
, (5.29)

yielding the final result, in the regime of large separations between T and T + T ′

(1� T � T ′ ∼ t),

C(t, T, T + T ′) ≈ p0(t, T, T + T ′) ≈ sinπθ

πθ

(
T ′

T

)−θ (
1− T ′

t

)θ
≈ sinπθ

πθ

(
T ′t

T (t− T ′)

)−θ
. (5.30)

This expression is universal since it no longer depends on the microscopic scale τ0.
When t → ∞ we recover the result, easily extracted from [3], for the unconstrained
case in the same regime (1� T � T ′), namely

C(T, T + T ′) ≈ p0(t, T, T + T ′) ≈ sinπθ

πθ

(
T ′

T

)−θ
. (5.31)
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5.4. Brownian bridge

For the Brownian bridge, the two-time correlation function (5.1) has an explicit
expression. Let t1 and t2 be two arbitrary times and xt1 and xt2 the corresponding
positions of the process. Then

〈σt1σt2〉 =
2

π
arcsin

〈xt1xt2〉√
〈x2t1〉〈x

2
t2〉
. (5.32)

For the Brownian bridge between 0 and t, the correlation of positions reads

〈xt1xt2〉 =
(t− t2)t1

t
. (5.33)

So

〈σt1σt2〉 =
2

π
arcsin

√
t1(t− t2)

t2(t− t1)
. (5.34)

In the present case, t1 ≡ T , t2 ≡ T + T ′. Hence the result

C(t, T, T + T ′) =
2

π
arcsin

√
T (t− T − T ′)

(T + T ′)(t− T )

= 1− 2

π
arccos

√
T (t− T − T ′)

(T + T ′)(t− T )
. (5.35)

In the regime of short separations between T and T +T ′ (1� T ′ � T ∼ t), we obtain

C(t, T, T + T ′) ≈ 1− 2

π

√
T ′t

T (t− T )
, (5.36)

which is (5.17) with θ = 1/2. In the regime of large separations between T and T +T ′

(1� T � T ′ ∼ t), we obtain

C(t, T, T + T ′) ≈ p0(t, T, T + T ′) ≈ 2

π

√
T (t− T ′)

T ′t
, (5.37)

which is (5.30) with θ = 1/2.

6. Occupation time

We turn to an investigation of the occupation time Tt spent by the process σT in the
(+) state up to time t, namely

Tt =

∫ t

0

dT
1 + σT

2
. (6.1)

We also consider the more symmetrical quantity

St =

∫ t

0

dT σT = 2Tt − t. (6.2)

We follow the line of thought of [3], which tackles the unconstrained case, in order to
analyse these observables. The expression of Tt depends both on the initial condition
σ0 and on the parity of the number of intervals Nt. If σ0 = +1, then

Tt = τ1 + τ3 + · · ·+ τ2k+1 (if Nt = 2k + 1) (6.3)

Tt = τ1 + τ3 + · · ·+ τ2k−1 (if Nt = 2k). (6.4)
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The first line is illustrated in figure 3. If σ0 = −1, then

Tt = τ2 + τ4 + · · ·+ τ2k (if Nt = 2k + 1) (6.5)

Tt = τ2 + τ4 + · · ·+ τ2k (if Nt = 2k). (6.6)

The probability density of Tt is

fT(t, y) = 〈δ(y −Tt)〉 =
∑
k≥0

fT,Nt
(t, y, k). (6.7)

In Laplace space, with s, u conjugate to the temporal variables t, y, we find, for the
numerator, if σ0 = +1,

L
t,y
fT,Nt

(t, y, k)|num =L
t
〈e−uTt〉|num = f̂T,Nt

(s, u, k)|num (6.8)

=

 ρ̂(s+ u)k+1ρ̂(s)k (Nt = 2k + 1)

ρ̂(s+ u)kρ̂(s)k (Nt = 2k).
(6.9)

If σ0 = −1,

f̂T,Nt
(s, u, k)|num (6.10)

=

 ρ̂(s+ u)kρ̂(s)k+1 (Nt = 2k + 1)

ρ̂(s+ u)kρ̂(s)k (Nt = 2k),
(6.11)

Summing on k, and adding the two contributions corresponding to σ0 = ±1 with equal
weight 1/2, we finally find

f̂T(s, u)|num =
1

1− ρ̂(s)ρ̂(s+ u)

(
1 +

ρ̂(s) + ρ̂(s+ u)

2

)
. (6.12)

Let us analyse this expression in the regime, 1 � t ∼ y, with y/t = x fixed, i.e.,
such that s ∼ u� 1, with u/s = λ fixed. This yields

f̂T(s, u)|num ≈
2

a (sθ + (s+ u)θ)
. (6.13)

This expression should be identified to

L
t,y
U(t)fT(t, y) ≈L

t,y

U(t)

t
ft−1T(t, x = y/t). (6.14)

In this regime, the limiting density ft−1T(t, x = y/t), denoted by fX(x), of the random
variable

X = lim
t→∞

t−1Tt, (6.15)

no longer depends on time t. So, we are left with the equation for the unknown density
fX(x),

2

a (sθ + (s+ u)θ)
=

∫ ∞
0

dx fX(x)

∫ ∞
0

dt e−t(s+ux)U(t)

=

∫ 1

0

dx fX(x)Û(s+ ux), (6.16)

that is ∫ 1

0

dx
fX(x)

(1 + λx)θ
=

〈
1

(1 + λX)θ

〉
=

2

1 + (1 + λ)θ
, (6.17)
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where the brackets correspond to averaging on the density fX(x) of X. Let us note
that fX(x) is well normalised, as can be seen by setting λ = 0 in both sides of the
equation. A second remark is that the result obtained is universal since the microscopic
scale τ0 is no longer present.

For θ = 1 the left side of (6.17) is the usual Stieltjes transform of fX(x), with
solution fX(x) = δ(x − 1/2). For θ = 1/2, the solution is fX(x) = 1. We thus
recover the well-known result, attributed to Lévy, stating that the occupation time
of the Brownian bridge is uniform on (0, t). More generally, the left side of (6.17)
is the generalised Stieltjes transform of index θ of fX(x)‖. A similar equation can
be found in [14, 15], in the context of the occupation time of Bessel bridges. Let
F (x) =

∫ x
0

du fX(u). Then F (x) is given by the fractional integral [15]

F (x) =

∫ x

0

du (x− u)θ−1h(u), (6.18)

where

h(u) =
sinπθ

π

2uθ

u2θ + (1− u)2θ + 2uθ(1− u)θ cosπθ
(0 < u < 1). (6.19)

So the result is

fX(x) =

∫ x

0

du (x− u)θ−1h′(u). (6.20)

This distribution is U-shaped for θ < 1/2, and has its concavity inverted for θ > 1/2
(see figure 4). It is universal with respect to the choice of distribution of intervals ρ(τ)
as it only depends on the tail exponent θ. For x→ 0, the density fX(x) behaves as

fX(x) ≈ 2Γ(1 + θ)

Γ(1− θ)Γ(2θ)
x2θ−1. (6.21)

For θ < 1/2 the density diverges at the origin, while for θ > 1/2 it vanishes.
Expanding the left and right sides of (6.17) yields the moments of the distribution

fX(x):

〈X〉 =
1

2
, 〈X2〉 =

1

2(1 + θ)
, 〈X3〉 =

2− θ
4(1 + θ)

,

〈X4〉 =
3(2− θ2)

2(1 + θ)(2 + θ)(3 + θ)
, (6.22)

and so on. For θ = 1/2 one recovers the moments of the uniform distribution on (0, 1).
Coming back to the quantity St, we have, using (6.2),

f̂S(s, u) = f̂T(s− u, 2u), (6.23)

so

f̂S(s, u)|num =
1

1− ρ̂(s− u)ρ̂(s+ u)

(
1 +

ρ̂(s− u) + ρ̂(s+ u)

2

)
. (6.24)

Here f̂S(s, u) is the bilateral Laplace transform of fS(t, y) with respect to y (see [3])
and its usual Laplace transform with respect to t. The scaled quantity Mt = t−1St
has, when t→∞, the limiting density

fM (m) =
1

2
fX

(
1 +m

2

)
, (6.25)

‖ Note a first occurrence of the generalised Stieltjes transform in (5.14).



Two-time correlation function and occupation time 14

0 0.2 0.4 0.6 0.8 1
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0.5

1

1.5

2

f X
(x

)

θ=0.45
θ=0.55

Figure 4. Density of the scaled occupation time X = limt→∞ t−1Tt for two
values of the tail exponent θ, illustrating the change of concavity when crossing
θ = 1/2 (Brownian bridge). For this latter value the distribution is uniform
between 0 and 1. The two values of θ in the figure were chosen not too far
from 1/2 because the further from this value, the more difficult is the numerical
evaluation of the distribution of the occupation time.

where −1 < m < 1, with vanishing odd moments and

〈M2〉 =
1− θ
1 + θ

, 〈M4〉 =
(1− θ)(6− 5θ)

(2 + θ)(3 + θ)
, (6.26)

and so on. Considering time as a distance, Mt has the interpretation of the
magnetisation of a simple spin system, as we shall discuss shortly.

7. In the spatial domain

Let us conclude by interpreting the results derived above in the spatial domain, where
time is now considered as a spatial coordinate. In this framework, the tied-down (or
pinning) condition is very natural since it amounts to saying that the size of the finite
system is fixed.

The σT process defined at the beginning of section 5 now represents a one-
dimensional spin system consisting of a fluctuating number NL of spin domains
spanning the total size of the system, denoted by L in this context. These domains have
lengths τi, which are discrete random variables with a common distribution denoted
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by f` = Prob(τ = `). The probability associated to the realisation {`1, . . . , `n} of the
sequence of NL = n intervals {τ1, . . . , τn}, is given by the transcription in the spatial
domain of (2.9)

p(L, `1, . . . , `n, n) =
f`1 . . . f`nδ (

∑n
i=1 `i, L)

Z(L)
, (7.1)

where the Kronecker delta δ(i, j) = 1 if i = j and 0 otherwise. The denominator is¶

Z(L) =
∑
n≥0

∑
`1...`n

f`1 . . . f`nδ
( n∑
i=1

`i, L
)
. (7.2)

Equation (7.1) can be interpreted as the Boltzmann distribution of an equilibrium
model with Hamiltonian (or energy)

E(n, {`i}) = − 1

β

n∑
i=1

ln f`i , (7.3)

where (n, {`i}) is a realisation of the set of observables (number of domains, lengths
of domains), with the constraint that the lengths of domains sum up to L. In this
context, Z(L) is simply the partition function. The expression (7.3) is precisely the
energy, at criticality, of the model defined in [6, 7], with the specific choice

f` =
1

ζ(c)

1

`c
, (7.4)

where c plays the role of 1+θ and ζ(c) is the Riemann zeta function ζ(c) =
∑
`≥1 `

−c.
This model is itself a simplified version of the Poland-Scheraga model [5], where the
bubbles are seen as spin domains.

The two-time correlation C(t, T, T + T ′) = 〈σTσT+T ′〉 becomes the spatial pair
correlation function C(L, x, x+ y) = 〈σxσx+y〉 (see figure 5). The scaled quantity Mt

has the interpretation of the magnetisation of the spin system, i.e., (skipping details
about the value of the spin located at the origin),

ML =
1

L

NL∑
i=1

(−)i`i. (7.5)

The transcription of (5.17) yields the pair correlation function in the Porod regime
y � x ∼ L (L is large)

〈σxσx+y〉 ≈ 1− sinπθ

π(1− θ)

[ x
L

(
1− x

L

)]θ−1 ( y
L

)1−θ
≈ 1− sinπθ

π(1− θ)

(
yL

x(L− x)

)1−θ
. (7.6)

This expression is universal. Likewise, the probability for two spins at distance y apart
to belong to the same domain is given in the persistence regime x � y ∼ L by the
transcription of (5.30), namely

p0(L, x, x+ y) ≈ sinπθ

πθ

(
yL

x(L− y)

)−θ
, (7.7)

¶ For the tied-down random walk, starting and ending at the origin, (7.1) and (7.2) have simple
interpretations. The former is the joint probability of a configuration for a walk of L steps, the latter
is the probability of return of the walk at time L (where L is necessarily even) [2].
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which is also universal.
The transcription of the results of section 6 predicts that the critical magnetisation

is fluctuating in the thermodynamical limit, with a broad distribution fM (m) given
by (6.25) and (6.20) (see figure 4), whenever the tail exponent θ of the distribution of
domain sizes f` is less than one (or 1 < c < 2 for the exponent c). The distribution
fM (m) is universal, i.e., does not depend on the details of f`. We refer to [2] for a
study of the distribution of the number of domains NL.

. . . . . . . . .

x x + y L

Figure 5. Spatial coordinates defining the pair correlation function 〈σxσx+y〉.

The results above also provide some answers to issues raised in the past in the
field of stochastically evolving surfaces. In [8, 9] coarse-grained depth models for
Edwards-Wilkinson and KPZ surfaces are considered. For one of them (the CD2 model
in the classification of [8, 9]) the surface profile is related to the tied-down random
walk (corresponding to θ = 1/2). The expression (7.6) can therefore be interpreted
as the pair correlation function of this model in the Porod regime. The prediction
〈σxσx+y〉 − 1 ∼ (y/L)1−θ given in [8, 9] for 0 < θ < 1 should also be compared
to (7.6). The largest interval for the CD2 model is found in [8, 9] by numerical

simulations to satisfy τ
(1)
max/L ≈ 0.48, the second largest to satisfy τ

(2)
max/L ≈ 0.16.

These values are consistent with the analytical predictions τ
(1)
max/L ≈ 0.483498 . . .,

τ
(2)
max/L ≈ 0.159987 . . . obtained from [2, 16] (see also [17]). Finally, the existence of a

broad distribution for the magnetisation of the tied-down renewal process (see (6.25)
and (6.20)), which can be seen as a generalisation of the CD2 model with a varying
exponent θ, is in line with the expected phenomenology put forward in [8, 9, 18, 19] for
fluctuation-dominated phase ordering phenomena. Thus tied-down renewal processes
with power-law distribution of intervals are minimal processes implementing a number
of the expected characteristics of fluctuation-dominated phase ordering phenomena.
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Appendix A. Derivation of equation (3.4)

The number NT of events up to time T takes the values m = 0, 1, . . . and the number
Nt of events up to time t takes the values n = m+1,m+2, . . . (see figure 1). Consider
the probability density

fE,NT ,Nt
(t, T,m, n, y) =

d

dy
Prob(ET < y,NT = m,Nt = n|tNt

= t)

= 〈δ(y − tm+1 + T )I(tm < T < tm+1)〉, (A.1)

where I(·) is the indicator function of the event inside the parentheses. Then by
summation upon m and n we get the density of ET

fE(t, T, y) =
∑
m≥0

∑
n≥m+1

fE,NT ,Nt
(t, T,m, n, y). (A.2)

The Laplace transform of (A.1) with respect to t, T, y (with s, u, v conjugate to these
variables) reads

L
t,T,y

fE,NT ,Nt(t, T,m, n, y) =L
t
〈
∫ tm+1

tm

dT e−uT e−v(tm+1−T )〉. (A.3)

Its numerator is

L
t,T,y

fE,NT ,Nt(t, T,m, n, y)|num =

∫ ∞
0

(
n∏
i=1

d`iρ(`i)e
−s`i

)
e−vtm+1

∫ tm+1

tm

dT e−T (u−v)

= ρ̂(s+ u)mρ̂(s)n−m−1
ρ̂(s+ u)− ρ̂(s+ v)

v − u
. (A.4)

Summing upon m and n yields (3.4).
Setting v = 0 in (A.4) yields the Laplace transform

L
t,T

Prob(NT = m,Nt = n|tNt = t)|num = ρ̂(s+ u)mρ̂(s)n−m−1
ρ̂(s)− ρ̂(s+ u)

u
. (A.5)

Summing this expression upon m and n gives back (3.5).

Appendix B. Derivation of equation (3.7)

This derivation is very similar to that given above for fE . Consider the probability
density

fA,NT ,Nt
(t, T,m, n, y) =

d

dy
Prob(AT < y,NT = m,Nt = n|tNt

= t)

= 〈δ(y − T + tm)I(tm < T < tm+1)〉. (B.1)

The Laplace transform of (B.1) with respect to t, T, y (with s, u, v conjugate to these
variables) reads

L
t,T,y

fA,NT ,Nt
(t, T,m, n, y) =L

t
〈
∫ tm+1

tm

dT e−uT e−v(T−tm)〉. (B.2)

Its numerator is

L
t,T,y

fA,NT ,Nt(t, T,m, n, y)|num = ρ̂(s+ u)mρ̂(s)n−m−1
ρ̂(s)− ρ̂(s+ u+ v)

u+ v
. (B.3)

Summing upon m and n yields (3.7).
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Appendix C. Derivations of equations (4.3) and (4.4)

Let the number of events NT up to time T take the value m1, and the number of
events N(T, T + T ′) = NT+T ′ − NT between T and T + T ′ take the value m2. We
consider the probability of this event (see figure 2)

Prob(NT = m1, N(T, T + T ′) = m2, Nt = n|tNt = t)

= 〈I(tm1 < T < tm1+1)I(tm1+m2 < T + T ′ < tm1+m2+1)〉. (C.1)

Consider first the case m2 ≥ 1. In Laplace space, where s, u, v are conjugate to the
temporal variables t, T, T ′, a simple computation gives

L
t,T,T ′

Prob(NT = m1, N(T, T + T ′) = m2, Nt = n|tNt = t)|num

= ρ̂(s)n−m1−m2−1ρ̂(s+ u)m1
ρ̂(s+ v)− ρ̂(s+ u)

u− v
ρ̂(s+ v)m2−1 ρ̂(s)− ρ̂(s+ v)

v
. (C.2)

Summing on m1 from 0 and on n from m1 +m2 + 1 yields

L
t,T,T ′

Prob(N(T, T + T ′) = m2|tNt = t)|num

=
1

1− ρ̂(s)

1

1− ρ̂(s+ u)

ρ̂(s+ v)− ρ̂(s+ u)

u− v
ρ̂(s)− ρ̂(s+ v)

v
ρ̂(s+ v)m2−1, (C.3)

which is (4.3) (with m ≡ m2).
Consider now the case m2 = 0. We have likewise

Prob(NT = m1, N(T, T + T ′) = 0, Nt = n|tNt = t)

= 〈I(tm1 < T < tm1+1)I(T + T ′ < tm1+1)〉. (C.4)

In Laplace space, where s, u, v are conjugate to the temporal variables t, T, T ′, a simple
computation gives

L
t,T,T ′

Prob(NT = m1, N(T, T + T ′) = 0, Nt = n|tNt
= t)|num

= ρ̂(s)n−m1−1ρ̂(s+ u)m1
1

v

[
ρ̂(s)− ρ̂(s+ u)

u
− ρ̂(s+ v)− ρ̂(s+ u)

u− v

]
. (C.5)

Summing on m1 from 0 and on n from m1 + 1 yields

L
t,T,T ′

Prob(N(T, T + T ′) = 0|tNt
= t)|num

=
1

1− ρ̂(s)

1

1− ρ̂(s+ u)

1

v

[
ρ̂(s)− ρ̂(s+ u)

u
− ρ̂(s+ v)− ρ̂(s+ u)

u− v

]
, (C.6)

which is (4.4).
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