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Abstract

We develop an approach to parametrize cosmological perturbations beyond linear order for
general dark energy and modified gravity models characterized by a single scalar degree of
freedom. We derive the full nonlinear action, focusing on Horndeski theories. In the quasi-
static, non-relativistic limit, there are a total of six independent relevant operators, three of
which start at nonlinear order. The new nonlinear couplings modify, beyond linear order, the
generalized Poisson equation relating the Newtonian potential to the matter density contrast.
We derive this equation up to cubic order in perturbations and, in a companion article [1],
we apply it to compute the one-loop matter power spectrum. Within this approach, we also
discuss the Vainshtein regime around spherical sources and the relation between the Vainshtein
scale and the nonlinear scale for structure formation.
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1 Introduction

One of the main goals of future Large-Scale Structure (LSS) surveys will be to accurately measure
the expansion history of the universe and the evolution of clustering of galaxies and dark mat-
ter as a function of redshift. Given that gravity has been so far poorly studied on cosmological
scales, these measurements could open a window on new physics. Indeed, dark energy, the mys-
terious component responsible for the accelerated expansion of the universe, could affect both the
expansion history and the growth of structures (see e.g. [2, 3] and references therein).

Initially implemented for inflation in [4, 5], a convenient way to describe dark energy and
modified gravity models characterized by a single scalar degree of freedom and to connect them
to observational predictions in terms of a minimal number of parameters is the Effective Field
Theory of Dark Energy (EFTofDE) [6–10] (see [11–13] for reviews); see also [14–17] for analogous
approaches in dark energy. In the EFTofDE approach, one assumes that the time-diffeomorphism
invariance of the gravitational sector is broken by the dark-energy field. In the so-called unitary
gauge, the gravitational action can be constructed as the sum of all possible operators in terms
of the metric, invariant under time-dependent spatial diffeomorphisms and ordered in the number
of perturbations and derivatives. Physical principles such as locality, causality, stability, and
unitarity can be imposed at the level of the Lagrangian, so that the predicted signatures are
physically acceptable.

This approach, sometimes combined with the dimensionless parametrization introduced in [18]
(see [13] for the relation between this parametrization and the one used in the EFT approach), has
been for instance efficiently applied to derive observational constraints [19–21], to study predictions
and forecasts [22–32], and to develop linear Einstein-Boltzmann codes [33, 20, 34] that can be
employed to compute standard linear observables, such as the Cosmic Microwave Background
(CMB) temperature and polarization anisotropies and the dark matter power spectrum. These
codes have been shown to agree well with each other, up to sub-percent level, for a wide range of
wavenumbers [35].

Apart from some exceptions (see e.g. [36, 37]), the EFTofDE has been developed to include
quadratic operators, sufficient to describe dark energy and modified gravity models in the linear
regime, which is applicable on scales above ∼ 10 Mpc. However, most of the data coming from
future surveys will be on shorter scales, where nonlinearities in matter fluctuations can not be
neglected. On these scales, dark matter density perturbations become large and can feed the dark
energy fluctuations. The quadratic EFTofDE operators are insufficient to describe the dynamics
of cosmological perturbations, and higher-order operators must be included.

This work is the first of two papers. The goal of the present article is to use the EFTofDE
to systematically determine the relevant linear and nonlinear operators that are important in the
regime of dark-matter clustering. Then, in [1], we use these results to compute the one-loop dark-
matter power spectrum in the presence of the dark-energy operators studied here. In this paper, we
determine the relevant operators in Sec. 2 (details can be found in App. A) where we also discuss
the quasi-static limit and the transformation of the action under change of frame. To decide
which are the relevant operators, we make two simplifying assumptions. First, we restrict the EFT
action to describe theories within the Horndeski class [38, 39], which includes all Lorentz-invariant
scalar-tensor theories with at most two derivatives in the field equations (see [40] for a study on
the radiative stability of these theories). Second, we focus on scales much smaller than both the
Hubble scale and the sound-horizon of the scalar fluctuations. Moreover, we assume that the mass
of the scalar field fluctuations is of order Hubble and hence that their dynamics is dominated by
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the spatial gradients. In this regime the scalar fluctuations satisfy the quasi-static approximation
(see e.g. [41]). Notice that, although it has a wide range of applicability, this approximation breaks
down in theories such as f(R) [42] or in models with Chameleon screening [43, 44], where the mass
of the field becomes much larger than Hubble. Another limiting case is when the sound speed of
dark energy is very small and on the scales of interest the dark energy clusters together with dark
matter [45, 46].

Each new operator at order higher than quadratic introduces a new time-dependent function
in the EFT action. Fortunately, under the assumptions outlined above one needs to introduce
only three new operators and, correspondingly, time-dependent functions. This small number
of new functions is due to the second-order character of Horndeski theories, combined with the
requirement that the equations of motion are dominated by terms with the highest number of
spatial derivatives.

To derive the three equations describing the relation among the two gravitational potentials,
the dark-energy field, and the matter fluctuations, we rewrite the nonlinear EFT action in New-
tonian gauge by explicitly re-introducing the field fluctuations by a time-coordinate change. The
coordinate change required to expand the action in Newtonian gauge has to be performed at up
to second order and we give the details on how to do that in App. B. We derive the Newtonian
gauge action in the quasi-static regime in Sec. 3, first in the linear and then in the nonlinear case.
Using this action, we derive the effective Poisson equation necessary to solve the dark matter fluid
dynamics in standard perturbation theory [47] (see e.g. [48–51] for other approaches that include
modifications of gravity from Horndeski theories in standard perturbation theory). This modified
Poisson equation is used to compute the one-loop matter power spectrum within the Effective
Field Theory of Large-Scale Structure (EFTofLSS) approach in [1].

In Sec. 4.1 we discuss the different scales relevant for our study: the nonlinear scale of pertur-
bations, the Vainshtein scale relevant for screening, and the strong coupling energy scale of dark
energy fluctuations. In particular, we show that the latter is typically much higher than the dark
matter nonlinear scale, which is consistent with the use of the EFTofDE in the nonlinear regime
of cosmological perturbations. Finally, in Sec. 4.2 we briefly discuss the Vainshtein scale around
spherical sources and compute when screening effects become important in the mildly nonlinear
scales studied in [1]. For earlier studies of the Vainshtein screening in Horndeski theories expanded
around a flat and cosmological background, see respectively [52] and [48, 53]. In Sec. 5 we com-
ment on the consequences on our nonlinear operators of the recent simultaneous observation of
gravitational waves and gamma ray bursts from the binary pulsars inspiral GW170817 [54, 55].
Finally, we conclude in Sec. 6.

2 The action

When approaching short scales, gravitational as well as scalar field nonlinearities become impor-
tant. To study this regime, we must extend the EFTofDE approach developed for linear pertur-
bations in [7, 9, 13] and introduce higher-order operators (see also [37]).
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2.1 Linear building blocks of Horndeski theories

Let us start reviewing the construction of the EFTofDE quadratic action for Horndeski theories.
The dynamics of Horndeski theories is governed by the action

SH =

∫
d4x
√
−gLH , (2.1)

with Lagrangian density [56]

LH = G2(φ,X) +G3(φ,X)2φ+G4(φ,X) (4)R− 2G4,X(φ,X)(2φ2 − φµνφµν)

+G5(φ,X) (4)Gµνφ
µν +

1

3
G5,X(φ,X)(2φ3 − 32φφµνφ

µν + 2φµνφ
µσφνσ) ,

(2.2)

where we have used the following definitions: φµ ≡ ∇µφ, φµν ≡ ∇ν∇µφ, 2φ ≡ ∇µ∇µφ, and
X ≡ gµν∇µφ∇νφ = φµφ

µ.
In the following, we assume that the scalar field is always spacelike. When this is the case,

as shown in [9] this action can be rewritten in the language of the EFTofDE approach, in the
so-called unitary gauge, where the time coordinate coincides with the hypersurfaces of uniform
scalar field. In this gauge, the operators in the action transform as scalars under time-dependent
spatial diffeomorphisms on the hypersurfaces of uniform scalar field.

To derive this action, one can proceed in two steps, reviewed in App. A. The detailed derivation
can be found in [9]. First, one can rewrite the action above in terms of geometrical quantities
defined on the uniform scalar field hypersurfaces. A single derivative on φ can be rewritten in
terms of the unit vector to the uniform-field hypersurfaces, nµ ≡ ∂µφ/

√
−X. Two derivatives on φ

can be written as a covariant derivative on nµ, which we can project on the spatial hyperfurfaces.
This gives the extrinsic curvature Kµ

ν ≡ hµρ∇ρnν , where hµν ≡ gµν + nµnν is the metric of
the spatial hypersurfaces. Finally, we can use the Gauss-Codazzi relation to decompose the 4-
dimensional curvature quantities (the Ricci scalar (4)R, and Einstein tensor (4)Gµν) in terms of the
extrinsic curvature and the 3-dimensional Ricci tensor of the spatial hypersurfaces, that we denote
by Rµν . After this long but straighforward decomposition, we can choose the unitary gauge. With
this choice, X = g00φ̇2(t) and the action can be written as

SH =

∫
d4x
√
−gLH

(
t, g00,Kν

µ, R
ν
µ

)
. (2.3)

In a second step, this action can be then expanded around a flat FLRW background metric,
ds2 = −dt2 + a2(t)d~x2. In particular, we can define 3-dimensional tensors vanishing on the back-
ground: δg00 ≡ 1 + g00 and δKµν ≡ Kµν − Hhµν , where H ≡ ȧ/a is the Hubble rate. Since
the homogeneous universe has no spatial curvature, the Ricci tensor Rµν is already a perturbed
quantity. Expanded at quadratic order in these quantities, the unitary gauge Horndeski action can
be written as [9, 13]∫

d4x
√
−g
{
M2
∗ f(t)

2
(4)R− Λ(t)− c(t)g00

+
m4

2(t)

2
(δg00)2 − m3

3(t)

2
δKδg00 +m2

4(t)

(
δKν

µδK
µ
ν − δK2 +

1

2
δg00R

)}
,

(2.4)

where Λ, c, m4
2, m3

3 and m2
4 are time dependent functions (note that m4

2, m3
3 and m2

4 are written
as mass to some power to keep track of the dimensions but can have either signs). For the
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matter sector, we describe dark-matter particles by a non-relativistic fluid minimally coupled to
the gravitational metric gµν (the action is explicitly given below in eq. (2.27)). The background
equations obtained by varying the first line of eq. (2.4) along with the background part of matter
action read [7]

c+ Λ = 3M2
∗

(
Hḟ + fH2

)
− ρ̄m , (2.5)

Λ− c = M2
∗

(
f̈ + 2Hḟ + 2fḢ + 3fH2

)
, (2.6)

which show that Λ and c can be expressed in terms of H, f and of ρ̄m, the homogeneous matter
energy density. Therefore, the action is described in terms of four independent operators [9].

Following the notation introduced in [18], we define the time-dependent effective Planck mass
as

M2 ≡M2
∗ f + 2m2

4 . (2.7)

This sets the normalization of the tensor perturbations of the metric and has to be strictly positive.
Moreover, it is convenient to define time-dependent functions, connected to the EFT parameters
by [13]

αK ≡
2c+ 4m4

2

M2H2
, αB ≡

M2
∗ ḟ −m3

3

2M2H
, αM ≡

M2
∗ ḟ + 2(m2

4)·

M2H
, αT ≡ −

2m2
4

M2
. (2.8)

These quantities are related to the background values of the functions GI(φ,X) of the Horndeski
action (2.1). The explicit relations are reported in App. A.

When expanded at quadratic order in the metric perturbations, the above action governs the
linear dynamics of scalar and tensor fluctuations. The details on the derivation of their quadratic
action can be found for instance in [9, 13]. The dispersion relations of these propagating modes
is respectively given by ω2 = c2

sk
2 for scalars and ω2 = c2

Tk
2 for tensors. The speed of scalar

fluctuations is given by

c2
s = − 2

α

{
(1 + αB)

[
αB(1 + αT) + αT − αM +

Ḣ

H2

]
+
α̇B

H
+

ρ̄m

2M2H2

}
, α ≡ αK + 6α2

B . (2.9)

The one for tensors is c2
T = 1 + αT. To avoid gradient instabilities, we require the speeds of

propagation to be always positive. Moreover, the kinetic energy of the scalar mode is proportional
to the parameter α defined in eq. (2.9), which has to be positive to avoid ghost instabilities [9]. In
summary, we require the usual four stability conditions on the above parameters, i.e.,

M2 > 0 , αT > −1 , α > 0 , c2
s > 0 . (2.10)

2.2 Quasi-static limit

As explained in the introduction, we concentrate on scales much shorter than the Hubble radius,
where relativistic effects due to the expansion of the universe can be neglected. Moreover, we
consider non-relativistic gravitational fields and velocities. For gravitational and field fluctuations
below the scalar field sound horizon, we can assume the quasi-static approximation and time
derivatives can be taken to be much smaller than spatial derivatives.
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For concreteness, let us consider an explicit gauge for the metric. In Newtonian gauge, focusing
only on scalar perturbations, the metric reads

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)δijdx
idxj . (2.11)

We then assume that dark energy is described by a dimensionless scalar field χ (this is explained
in more detail in Section 3). For convenience, here and below we will use the following notation,

ϕ1 ≡ Φ , ϕ2 ≡ Ψ , ϕ3 ≡ χ . (2.12)

At leading order in the quasi-static expansion, the relevant operators in the action are those with
the highest number of spatial derivatives per number of fields. More specifically, for operators
with n fields, the dominant ones contain 2(n − 1) spatial derivatives. Fortunately, their number
is finite. Because we restrict to Horndeski theories, which have second order equations of motion
both for the metric and the scalar field [38], we expect the operators in the gravitational action
to have the double ε structure of the Galileons [57]. In particular, they have either one of these
forms (see also explicit expressions in [48, 58]),

εiklεjkl∂iϕa∂jϕb ,

εikmεjlm∂iϕa∂jϕb∂k∂lϕc ,

εikmεjln∂iϕa∂jϕb∂k∂lϕc∂m∂nϕd ,

(2.13)

where εijk is the 3-dimensional Levi-Civita symbol. Since in 3+1-dimensions there are no operators
with 2(n − 1) spatial derivatives for n > 4, we can stop at quartic order in the number of fields.
As we will see below, the number of independent operators generating terms of the type (2.13)
are only six. Other operators with less spatial derivatives, such as for instance ϕ2

a, ϕa(∂ϕb)
2 and

(∂ϕa)
2(∂ϕb)

2, contribute to post-Newtonian corrections.
The operators of the action (2.4) can be expanded at higher order in the metric perturbations,

so that they also contribute to the interaction Lagrangian. However, in the quasi-static approxi-
mation, not all terms in this expansion are relevant. We are going to see this in more detail in the
next section, where we will move out of unitary gauge by reintroducing the scalar field fluctuations
via the Stueckelberg trick and write the action in Newtonian gauge. The explicit transformations
are given in App. B. Here we anticipate some of these results.

As we will see, since the highest interactions that we need to consider are quartic, we will only
need the expansion of δg00, δKµ

ν and Rµν up to quadratic order. Moreover, as mentioned above
the relevant Lagrangian terms in the quasi-static limit have the form (2.13). In Newtonian gauge
δg00 does not introduce any spatial derivative at linear order, while at second order it introduces
two spatial derivatives. Schematically,

δg00 → ϕa , (∂ϕa)
2 , (2.14)

while for the extrinsic and intrinsic curvature tensors we have

δK → ∂2ϕa , (∂ϕa)
2 , (2.15)

R → ∂2ϕa , (∂2ϕa)
2 . (2.16)

Therefore, in the quasi-static limit Λ, c and m4
2, and thus αK, do not contribute to the action at

quadratic order in perturbations. If f is time independent, the operator f (4)R generates the usual
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quadratic action in the quasi-static limit and does not contribute at higher-order. When f is time
dependent, f (4)R contains the operator ḟ δg00δK, as can be shown upon use of the Gauss-Codazzi
relation. This operator combines with m3

3 into αB and generates terms of the form (∂ϕa)
2∂2ϕb,

which contribute at most to the cubic order. Finally, the term δg00R in the operator m2
4 generates

relevant terms: (∂ϕa)
2∂2ϕb and (∂ϕa)

2(∂2ϕb)
2. Thus, αT contributes both to the cubic and quartic

interactions.

2.3 Nonlinear building blocks

Going back to the EFT action, let us consider operators cubic and quartic in δg00, δKν
µ and Rνµ

and construct the full nonlinear action in the quasi-static limit. The detailed calculation is given
in App. A, which also includes operators containing less spatial derivatives, which therefore do not
contribute to the quasi-static limit.

For convenience, let us define two quadratic combinations that systematically appear in the
nonlinear expansion,

δK2 ≡ δK2 − δKν
µδK

µ
ν , δG2 ≡ δKν

µR
µ
ν −

1

2
δKR , (2.17)

and the cubic combination

δK3 ≡ δK3 − 3 δKδKν
µδK

µ
ν + 2 δKν

µδK
µ
ρδK

ρ
ν . (2.18)

At cubic order, the expanded action contains five operators. These are

(δg00)3 , (δg00)2δK , (δg00)2R , δg00δK2 , δK3 + 3δg00δG2 , (2.19)

where only four are independent, because the coefficient in front of the third operator is linearly
related to other coefficients which have already been defined. See derivation in App. A. However,
following the discussion above it is straightforward to verify that the first three operators do not
contribute to the quasi-static limit.

At quartic order, instead, one has six operators,

(δg00)4 , (δg00)3δK , (δg00)3R , (δg00)2δK2 , (δg00)2δG2 , δg00δK3 . (2.20)

Only four of them are independent: the explicit expressions can be found in App. A, but only
the last one contributes to the quasi-static limit. At fifth order the operators are still six and can
be obtained by multiplying the quartic operators by δg00. The same logic applies to sixth and
higher-order operators. However, none of them contribute to the quasi-static limit.

In conclusion, the full nonlinear gravitational action for Horndeski theories in the quasi-static
limit can be written in terms of only six independent operators, as

Sg =

∫
d4x
√
−g
{
M2
∗ f(t)

2
(4)R− m3

3(t)

2
δKδg00 −m2

4(t)

(
δK2 −

1

2
δg00R

)
− m2

5(t)

2
δg00δK2 −

m6(t)

3
(δK3 + 3δg00δG2)− m7(t)

3
δg00δK3

}
,

(2.21)

where m2
5, m6 and m7 are new time-dependent functions. As for the linear theory, we can define

dimensionless time-dependent functions parametrizing the nonlinear action,

αV1 ≡
2m2

5 + 2Hm6

M2
, αV2 ≡

2Hm6

M2
, αV3 ≡

4Hm7 + 2Hm6

M2
. (2.22)
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The reason for the above combinations will become clear in Sec. 3.
In terms of the functions GI(φ,X) of the Lagrangian (2.2), these are given by

αV1 =
2X

M2

[
2G4,X + 4XG4,XX + 2H

(
φ̇G5,X + φ̇XG5,XX

)
+G5,φ +XG5,Xφ

]
,

αV2 = − 2H

M2
φ̇XG5,X ,

αV3 =
4H

M2
φ̇X
(
G5,X +XG5,XX

)
.

(2.23)

Quantities analogous to αV1 and αV2 have been introduced by Bellini et al. [51] and Yamauchi
et al. [59] in the calculation of the bispectrum. The relation between our notation and theirs is:

αV1 = −2α
(B)
4 +2α

(B)
5 and αV2 = −α(B)

5 for the comparison with [51] and αV1 = −2α
(Y)
V1 −2α

(Y)
V2 (1)

and αV2 = −α(Y)
V2 for the comparison with [59].

2.4 Matter coupling

We now need to consider the coupling of the gravitational metric to dark matter. Assuming
minimal coupling to gµν , this is described by

Sm = −1

2

∫
d4x
√
−gT (m)

µν δgµν , (2.24)

where T
(m)
µν is the stress-energy tensor of cold dark matter particles. In this work we describe cold

dark matter in the perfect fluid approximation with vanishing pressure. The stress-energy tensor
then reads

T (m)µ
ν = ρmu

µuν , (2.25)

where ρm is the energy density in the rest frame of the fluid and uµ its 4-velocity. At leading order
in small velocities and fields we have uµ = (1/

√
−g00, a

−1vi) and

T (m)0
0 = −ρm ≡ −ρ̄m(1 + δ) , T (m)0

i = ρmav
i = −a2T (m)i

0 , T (m)i
j = ρmv

ivj , (2.26)

where we have defined δ and vi, respectively the energy density contrast and 3-velocity of matter.
Using the metric in Newtonian gauge eq. (2.11) and dropping negligible terms in the short-scale
limit, the matter coupling to gravity is described by

Sm = −
∫
d3xdta3ρ̄m (1 + δ) Φ . (2.27)

We stress that even though we are assuming non-relativistic perturbations, this expression holds
also for large δ: it is thus the fully nonlinear matter coupling.

Matter density and velocity satisfy the usual continuity and Euler equations. In order to solve
them, we need a relation between Φ and δ, which in general relativity is given by the Poisson
equation. As we will see in Sec. 3.2, this relationship is altered and becomes nonlinear in the
presence of dark energy. Finding the expression for ∂iΦ in terms of δ will be one of the main
results of this paper.

1There is a typo in the expression of α
(Y)
V1 in eq. (47) of Ref. [59]. In their expression G4,φ should be read G5,φ.

We thank the authors of this reference for having checked and privately agreed on this correction.
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2.5 Frame dependence of the action

One can describe the gravitational action Sg by using a different metric. For instance, one can
consider the metric redefinition

gµν → ĝµν = C(φ)gµν +D(φ)∂µφ∂νφ , (2.28)

which is a disformal transformation with conformal and disformal factors that depend on φ, and
rewrite the action in terms of ĝµν . Of course, the matter coupling to the new gravitational metric
ĝµν is different from the coupling to gµν . For instance, if gµν is the Jordan frame metric, where
matter is minimally coupled, in the frame of ĝµν matter is explicitly coupled to the scalar.

It has been shown that the structure of the Horndeski action is preserved under the transfor-
mation above [60]. Therefore, we expect that the structure of Sg is as well preserved under this
transformation. Indeed, the transformed action has the same operators of (2.4), but with different
coefficients. Their transformations have been given explicitly in [61] in terms of how M2, H and
the time-dependent functions αK, αB, αM and αT change. This reads

M̂2 =
M2

C(1 + αD)
, Ĥ = H(1 + αC)

√
1 + αD

C
,

α̂B =
1 + αB

(1 + αC)(1 + αD)
− 1 ,

α̂M =
αM − 2αC

1 + αC
− α̇D

2H(1 + αD)(1 + αC)
,

α̂T = (1 + αT)(1 + αD)− 1 .

(2.29)

Here αC and αD are time-dependent functions respectively parametrizing the conformal and dis-
formal transformation and defined by

αC ≡
φ̇

2H

d lnC

d lnφ
, αD ≡ −

D

D + C/X
, (2.30)

where the right-hand side is evaluated on the background.
We then focus on how the nonlinear part of the action (2.21) transforms. In particular, the

time-dependent functions αV1, αV2 and αV3 are redefined by the transformation (2.28) as

α̂V1 =
αV1 + αD + 2αV2(αC + αD + αCαD)

1 + αD
,

α̂V2 = αV2(1 + αC) ,

α̂V3 = (1 + αC)
αV3 + 3αDαV2

1 + αD
.

(2.31)

We notice that, starting from a theory without nonlinear couplings, αV1 = αV2 = αV3 = 0, we can
generate only α̂V1 by the transformation (2.28).

3 Nonlinear equations

Focusing on the operators that dominate the short-scale regime, we now derive the nonlinear action
and the relevant equations in the Newtonian gauge, assuming minimal coupling of matter. As a
warm-up and to set up the notation, let us start discussing the quadratic action and the linear
equations.

10



3.1 Linear theory

We first want to move from unitary gauge and to do so we introduce the scalar field fluctuation
π via the time diffeomorphism t → t + π(t, ~x). For convenience, instead of π we will use the
dimensionless field χ, defined as

χ ≡ Hπ . (3.1)

We assume a perturbed FLRW metric in Newtonian gauge, see eq. (2.11). The effect of a time
coordinate transformation on g00, δKν

µ and R is derived in App. B, up to second-order in the
perturbations. Here we need only the linear transformations, i.e.,

δK → δK − 3Ḣπ − a−2∂2π +O(π2) ,

δKi
j → δKi

j − Ḣπδij − a−2∂i∂jπ +O(π2) ,

R→ R+ 4a−2H∂2π +O(π2) .

(3.2)

Following the notation introduced in Sec. 2, in order to write the quadratic action in compact
form we use the vector ϕa (a = 1, 2, 3),

ϕa ≡

 Φ
Ψ
χ

 . (3.3)

Using eq. (3.2) to transform the unitary gauge action (2.4) and keeping only terms quadratic in
the perturbations, this becomes

S(2)
g = −

∫
d3xdt aM2Aab∂iϕa∂iϕb , (3.4)

where Aab is a dimensionless symmetric matrix of components

Aab =

 0 1 −αB

1 −1− αT αM − αT

−αB αM − αT −C2

 , (3.5)

and we have used the functions αI , defined in terms of the EFT parameters in eq. (2.8). Moreover,
C2 is a time-dependent function explicitly given by

C2 = αT − αM + αB(1 + αM) + (1 + αB)
Ḣ

H2
+
α̇B

H
+

ρ̄m

2H2M2
, (3.6)

which is obtained after use of the background equations (2.5) and (2.6) to replace c(t) in the action.
In terms of the vector ϕa, the quadratic coupling to matter (2.27) reads

Sm = −
∫
d3xdta3ρ̄mϕ1δ . (3.7)

The variation of the sum of S(2) + Sm then gives the linear equations of motion

0 =
1

a2M2

δ(S(2) + Sm)

δϕa
= Aab∂

2ϕb − δ1a
ρ̄ma

2

2M2
δ , (3.8)

11



where δab denotes a Kronecker delta in field space. In particular, the variation with respect to
ϕ1 = Φ, ϕ2 = Ψ and ϕ3 = χ are respectively equivalent to the quasi-static limit of the (00) and
(ij) components of the full Einstein equations and Klein-Gordon equation for the scalar field.

The solution of eq. (3.8) for the Laplacian of the fields is

∂2ϕa =
ρ̄ma

2

2M2
A−1
a1 δ , (3.9)

where A−1
ab is the inverse matrix of Aab. Its components can be written as

A−1
ab =

 1 + αT + ξ2

ν 1 + ξαB
ν

ξ
ν

1 + ξαB
ν

α2
B
ν

αB
ν

ξ
ν

αB
ν

1
ν

 , (3.10)

where we have introduced two dimensionless time-dependent functions, ξ and ν, given as

ξ = αB(1 + αT) + αT − αM , ν = −C2 − αB (ξ + αT − αM) . (3.11)

Using the definition of the sound speed, eq. (2.9) and eq. (3.6), ν can be rewritten as

ν =
c2
sα

2
> 0 , (3.12)

where for the last inequality we have used the last two stability conditions (2.10). Specifically,
rewriting the solution (3.9) using the explicit components of the inverse matrix in eq. (3.10), we
find

∂2Φ =
ρ̄ma

2

2M2
µΦ δ , µΦ ≡ A−1

11 = 1 + αT +
ξ2

ν
, (3.13)

∂2Ψ =
ρ̄ma

2

2M2
µΨ δ , µΨ ≡ A−1

12 = 1 +
ξαB

ν
, (3.14)

∂2χ =
ρ̄ma

2

2M2
µχ δ , µχ ≡ A−1

13 =
ξ

ν
, (3.15)

where we have defined the time-dependent functions µΦ, µΨ and µχ. In the case of standard
gravity µΦ = 1, µΨ = 1 and µχ = 0. A generalization of these expressions to different species
non-minimally coupled to the metric and to the case of beyond-Horndeski theories can be found,
respectively, in Refs. [61] and [28].

3.2 Nonlinear theory

We can now expand the nonlinear action in the quasi-static approximation, eq. (2.21), to cubic
and quartic order in the perturbations. We obtain

S(3)
g =

∫
d3xdt

M2

3! aH2
Babc ε

ikmεjlm∂iϕa∂jϕb∂k∂lϕc , (3.16)

S(4)
g =

∫
d3xdt

M2

4! a3H4
Cabcd ε

ikmεjln∂iϕa∂jϕb∂k∂lϕc∂m∂nϕd , (3.17)
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where εijk is the 3-dimensional Levi-Civita symbol and Babc and Cabcd are dimensionless time-
dependent arrays, parametrizing the coupling strength between fields. They are symmetric under
exchange of the arguments and their non-vanishing elements are

B123 = B312 = B231 = B213 = B321 = B132 = αV2 ,

B133 = B313 = B331 = αV1 ,

B233 = B323 = B332 = C3 , B333 = C4 ,

C1333 = C3133 = C3313 = C3331 = −αV3 , C3333 = C5 ,

(3.18)

where we have introduced the following combinations of parameters,

C3 ≡ −αT − αV2(1− αM)− αV2
Ḣ

H2
+
α̇V2

H
, (3.19)

C4 ≡ −4αB + 2αM − 3αT − (αV1 + αV2)(1− αM)− 3αV2
Ḣ

H2
+
α̇V1 + α̇V2

H
, (3.20)

C5 ≡ 3 (αT − αV1 + αV2 + αV3)− (3αV2 + αV3)αM + (3αV2 + αV3)
Ḣ

H2
− 3α̇V2 + α̇V3

H
. (3.21)

The specific form of the interactions in eqs. (3.16) and (3.17) is dictated by the structure of the
Horndeski Lagrangian; in particular, as shown below they lead to equations with exactly two
spatial derivatives per field. As discussed above, in the quasi-static limit the action at order higher
than four vanishes. Thus, the sum of S(2), S(3) and S(4) represents the full nonlinear action in the
non-relativistic limit.

We can now derive the full nonlinear equations obtained by varying the total action S =

S
(2)
g + S

(3)
g + S

(4)
g + Sm. These can be written in compact form as

0 =
1

a2M2

δS

δϕd
(3.22)

= Ada∂
2ϕa − δd1

ρ̄ma
2

2M2
δ − Bdab

4H2a2
εikmεjlm∂i∂jϕa∂k∂lϕb −

Cdabc
12H4a4

εikmεjln∂i∂jϕa∂k∂lϕb∂m∂nϕc .

As we mentioned in Sec. 2.4, a main goal of this paper is to find the nonlinear relationship
between ∂2Φ and δ that is needed to solve continuity and Euler equations for matter. Because
those equations will be solved perturbatively, we can solve eq. (3.22) for small δ as well. With
an eye toward computing the one-loop power spectrum, we need its solution up to third order.
Formally, this reads

∂2ϕa = H2a2

{
3 Ωm

2
µϕaδ +

(
3 Ωm

2

)2

µϕa,2

[
δ2 −

(
∂−2∂i∂jδ

)2]
(3.23)

+

(
3 Ωm

2

)3

µϕa,22

[
δ −

(
∂−2∂i∂jδ

)
∂−2∂i∂j

] [
δ2 −

(
∂−2∂k∂lδ

)2]
+

(
3 Ωm

2

)3

µϕa,3

[
δ3 − 3δ

(
∂−2∂i∂jδ

)2
+ 2(∂−2∂i∂jδ)(∂

−2∂k∂jδ)(∂
−2∂i∂kδ)

]}
+O(δ4) ,

where we have defined the time dependent fractional matter energy density,

Ωm ≡
ρ̄m

3M2H2
. (3.24)
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Notice that this definition differs from the standard one, as we have normalized the energy density
to the effective Planck mass M2, which can depend on time. The explicit expressions for µϕa are
given in eqs. (3.13), (3.14) and (3.15). For the higher order terms, µϕa,2, µϕa,22 and µϕa,3 are given
by

µϕa,2 =
1

4
A−1
ad A

−1
1c A

−1
1b Bdcb ,

µϕa,22 =
1

8
A−1
ad A

−1
1c A

−1
1f A

−1
1g A

−1
be BdcbBefg ,

µϕa,3 =
1

12
A−1
ad A

−1
1e A

−1
1b A

−1
1c Cdebc .

(3.25)

Indeed, these expressions vanish for standard gravity, as expected. For ϕa = Φ, these are explicitly
given by

µΦ,2 =
µχ
4

(
6µΦµΨαV2 + 3µχµΦαV1 + 3µχµΨC3 + µ2

χC4

)
,

µΦ,22 =
1

8

{
5µΦµ

2
χ(µχαV1 + 2µΨαV2)2 + 2µ3

χ(3µΨC3 + µχC4)(µχαV1 + 2µΨαV2)

+
1

ν

[
2αV2µΦ(2µΨ − 1) + 2αV1µχµΦ + (3µΨ − 1)C3µχ + C4µ

2
χ

]2}
,

µΦ,3 =
µ3
χ

12

(
− 4µΦαV3 + µχC5

)
.

(3.26)

3.3 Time-dependent couplings

In this section, we give a sample of the size of the effects of the EFTofDE couplings on the
parameters µΦ,2, µΦ,22, and µΦ,3, given in eq. (3.26), which are relevant for dark matter clustering.
Because there are many parameter combinations, we do not present a detailed study of all of the
possibilities here, but we focus on the nonlinear couplings αB, αV1, αV2, and αV3, so that we set
αM = 0 and αT = 0. The first thing to notice is that αV3 only enters in the expression for µΦ,3, so
it does not affect µΦ,2 or µΦ,22.

In order to investigate these functions, we choose to parametrize the time-dependence of αI
and Ḣ/H2 by taking

αI(a) = αI,0
1− Ωm(a)

1− Ωm,0
,

Ḣ

H2
(a) = −3

2
Ωm(a) , Ωm(a) =

Ωm,0

Ωm,0 + (1− Ωm,0)(a/a0)3
,

(3.27)
where for the fractional energy density of dark matter today we set Ωm,0 = 0.281. In this way,
the dark energy has a vanishing effect in the past, which is reasonable because CMB experiments
place fairly tight constraints at early times, and the background evolution is that of ΛCDM.

In Fig. 1, we show a sample of the time dependent functions µΦ−1 and µΦ,I for different values
of αB, αV1, αV2, and αV3. We choose values of αB,0 so that, for Ωm,0 = 0.281, the speed of sound
of scalar propagation in eq. (2.9) is larger than zero. Since the standard vertices appearing in the
continuity and Euler equations are of order unity, the new vertices proportional to µΦ,I will have a
significant contribution when µΦ,I ∼ O(1), although this depends on the computed statistics and
its particular configuration in Fourier space. From Fig. 1, we see that in all three cases, the effect
is larger when |αB,0| is larger, which implies that there is also a significant change to the linear
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Figure 1: Linear deviation µΦ − 1 and nonlinear coupling functions µΦ,I , entering as coefficients to the nonlinear
vertices in the dark-matter clustering equations, as a function of a (see eq. (3.26)). Note that αV3 does not enter
in µΦ,2 or µΦ,22 and that for αT = 0, all contributions to µΦ,3 are proportional to either αV1, αV2 or αV3, which is
why the solid red and blue lines in the µΦ,3 plot are both at zero.

equations. If one wants a small change to the linear equations and a large change to the nonlinear
terms, this requires, for example, choosing αB,0 = −0.1 and αV3 = −4, for which µΦ,3(a0) ≈ −1.
We leave a detailed study of the various combinations of parameter for future work.

4 Nonlinear regime

4.1 Strong-coupling scale, nonlinear scale, and Vainshtein scale

Let us discuss the scales that characterize our system. We first discuss the strong-coupling scale,
i.e. the energy scale at which nonlinear interactions of (2.21) exit perturbative unitarity. Above this
scale, the EFTofDE is invalid and details about the UV completion, like the presence of additional
degrees of freedom, become important. This scale depends on which of the nonlinear interactions
is relevant in the particular setup. Since Horndeski theories have second-order equations of motion
and reduce to the Galileons [57] in the decoupling limit [52], the lowest ΛU is obtained when high-
derivative operators are relevant. In this case the strong-coupling scale is typically above 1000 km
[62], roughly 18 orders of magnitude larger than the nonlinear scale of LSS. Another situation is
when the nonlinear interactions are dominated by powers of δg00, such as for the Ghost Condensate,
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in which case the strong-coupling scale is much higher [63]. In all cases we can comfortably assume
that the EFTofDE is valid well above the nonlinear scale of structure formation.

Let us next discuss the nonlinear scale of dark matter clustering. In Ref. [1] we use the
EFTofLSS approach to compute the one-loop matter power spectrum. In this context, there exists
a scale, the nonlinear clustering scale kNL, at which the perturbative solution to the effective fluid
equations breaks down [64, 65]. Indeed, the EFTofLSS is a controlled expansion in k/kNL � 1;
near and above the scale kNL, the EFT does not converge and thus loses all predictability. Below
kNL, one can increase computational precision by including more and more loop corrections and
can estimate the theoretical error by the size of the next loop corrections which have not been
included in the computation.

Anticipating some of the results of Ref. [1], when computing the dark matter clustering in
perturbation theory in the presence of modifications of gravity, the nonlinear effects can have two
sources. First, there are the nonlinear vertices in the continuity and Euler equations. Since we
assume minimal coupling of matter, these are the same as in ΛCDM and become important when
density fluctuations become of order unity, i.e.,

δ ∼ 1 , k ∼ kNL . (4.1)

Secondly, there are the nonlinear operators in the dark-energy action (2.21), which lead to nonlinear
terms in the generalized Poisson equation (3.23). These nonlinearities are associated to the so-
called Vainshtein screening mechanism [66], which we describe in more detail in the next subsection.
We denote by kV , usually called the Vainshtein scale, the scale at which the nonlinearities of the
scalar fluctuations become important, i.e.,

∂2χ

H2a2
∼ 1 , k ∼ kV . (4.2)

Below this scale the system of equations (3.22) is dominated by its nonlinear terms, and instead
of the perturbative solution (3.23), one finds that scalar fluctuations are suppressed, as we show
below.

These two scales need not be the same [67] and we distinguish two cases. If kNL � kV , then
screening is weak and does not take place until beyond the nonlinear scale for clustering. In
this case the perturbative expansion is analogous to the one without modifications of gravity, but
there can be modifications due to the different linear evolution for µΦ 6= 1. On the contrary, if
kV � kNL, then the screening is strong and supplied by nonlinear terms in the dark-energy action.
Thus, our computation is most useful in the intermediate regime where scalar-field nonlinearities
are perturbative on mildly nonlinear scales. Let us now look at the Vainshtein scale in more detail.

4.2 Spherically symmetric solutions

We can study the Vainshtein screening regime [66] by considering a situation where density per-
turbations are spherically distributed around the origin. In this case, all fields depend only on
time and on the distance from the origin r. Let us define

x(a, r) ≡ 1

a2H2

χ′

r
, y(a, r) ≡ 1

a2H2

Φ′

r
, z(a, r) ≡ 1

a2H2

Ψ′

r
, A(a, r) ≡ 1

M2H2

m

8πr3
,

(4.3)
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(here π is the irrational number 3.14159) with

m(a, r) ≡ 4π

∫ r

0
r̃2δρm(a, r̃)dr̃ . (4.4)

By assuming spherical symmetry and applying Stokes theorem, eq. (3.22) can be rewritten as

z − αBx− αV2xz −
1

2
αV1x

2 +
1

6
αV3x

3 = A , (4.5)

(αM − αT)x+ y − (1 + αT)z − αV2xy −
1

2
C3x

2 = 0 , (4.6)

C2x+ αBy − (αM − αT)z +
1

2
C4x

2 + αV1xy + αV2yz + C3xz +
1

6
C5x

3 − 1

2
αV3x

2y = 0 . (4.7)

For small density fluctuations, A� 1, we find the solutions (see eqs. (3.13), (3.14) and (3.15))

x = µχA+O(A2) , y = µΦA+O(A2) , z = µΨA+O(A2) (A� 1) . (4.8)

Here we want to solve these equations for large A, A � 1, where the field nonlinearities become
important, triggering the Vainshtein regime.

Since eqs. (4.5) and (4.6) are linear in y and z, they can be solved for these two variables
and the solution used in eq. (4.7). In general, this yields a sextic equation for x. For αV2 = 0,
αV2 = αV3 = 0, and αT = αV2 = αV1 = αV3 = 0 this becomes, respectively, a quintic, a cubic,
and a quadratic equation. For simplicity, we are going to discuss only the last two cases.

4.2.1 Cubic screening

Let us consider αT = αV2 = αV1 = αV3 = 0. The quadratic equation for x is

C4

2ν
x2 − x+

ξ

ν
A = 0 , (4.9)

where ξ, ν and C4 are respectively defined in eqs. (3.11) and (3.20). For our choice of parameters,
ξ and C4 simplify to ξ = αB − αM and C4 = −4αB + 2αM.

The solution to this equation converging to the physical one for small A, eq. (4.8), is

x =
ν −

√
ν2 − 2AC4ξ

C4
. (4.10)

Assuming C4ξ < 0, at large A we obtain the asymptotic solution in the screened region,

x ' −
√
−2AξC4

C4
(A� 1) . (4.11)

The scale of transition from the linear to the nonlinear regime for χ can be obtained by matching
the two asymptotic solutions for x, eqs. (4.8) and (4.11), which gives

AV ≈
2ν2

|ξC4|
=

∣∣∣∣µΦ − 1

2µΦ,2

∣∣∣∣ . (4.12)

For the the second equality, we have used the expression for µΦ,2 in eq. (3.26) and that µΦ − 1 =
ξ2/ν = µ3

χν
2/ξ. The Vainshtein overdensity is thus set by the ratio between the linear and second-

order modification of the effective Poisson equation.
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For overdensities larger than AV , the corrections to the solutions for the metric fluctuations
y and z in eq. (4.14) becomes smaller than the effects of modified gravity in the linear regime in
eq. (4.8). This can be seen by rewriting the Vainshtein solution (4.12) as

x ' µχ
√
AAV (A� 1) , (4.13)

and inserting this in eqs. (4.5) and (4.6) to compute y and z. This gives

y ' A+ (µΦ − 1)
√
AAV , z ' A+ (µΨ − 1)

√
AAV (A� 1) . (4.14)

This shows that, for M2 constant, general relativity is recovered up to corrections of order ∼
(µΦ − 1)(AV /A)1/2. It is instructive to compare these solutions to those obtained from eqs. (4.5)–
(4.7) in the perturbative regime A� 1, i.e.,

x ' µχA
(

1− A

2AV

)
, y ' A

(
1 + (µΦ − 1)

(
1− A

2AV

))
(A� 1) (4.15)

(and an analogous expression for z). This shows that our perturbative solution (3.23) does not
hold in the Vainshtein regime.

We can compare the Vainshtein scale to the usual nonlinear scale for dark matter density
perturbations kNL, by looking at 〈A2〉R, defined as the mean squared fluctuations of A over a
sphere of radius R. We assume that the matter distribution is described by the power spectrum
of a scaling universe (see e.g. [68]), i.e.

〈δ~kδ~k′〉 = (2π)3δ(~k + ~k′)P (k) , P (k) =

(
2π

kNL

)3( k

kNL

)n
, (4.16)

where n ' −2 near the nonlinear scale in the real universe. In this case we have

〈A2〉R= 2π
k

=
π

3 + n
Ω2

m

(
k

kNL

)3+n

. (4.17)

Evaluating this at the onset of the Vainshtein regime using eq. (4.12), we find

kV
kNL

≈

(
1

Ωm

∣∣∣∣µΦ − 1

2µΦ,2

∣∣∣∣
√

3 + n

π

) 2
3+n

. (4.18)

For nonlinear couplings in the effective Poisson equation larger than the linear modifications,
|µΦ,2| & |µΦ − 1|, the Vainshtein screening becomes already important on mildly nonlinear scales,
i.e. kV . kNL, as expected.

4.2.2 Quartic screening

Let us now consider αV2 = αV3 = 0. The cubic equation obtained in this case is

(1− αV1)a3x
3 + a2x

2 − νx+A(ξ − 2a3x) = 0 , (4.19)

where

a2 ≡
1

2

(
C4 + 3ξαV1 − 3αBαT

)
, a3 ≡

1

2

(
αT − αV1(1 + αT)

)
. (4.20)
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In the large density region A� 1, there are three solutions,

x ' ±
√

2A

1− αV1
, x ' ξ

2 a3
(A� 1) , (4.21)

These can be matched to the ξA/ν solution for A� 1, depending on the parameters above. One
finds [48] (the symbols ∧ and ∨ respectively denote the logical “and” and “or”)

• αV1 < 1 , a3 < 0 :

x '
√

2A

1− αV1
(ξ > ξ∗ ∧ ξ > 0) , x ' −

√
2A

1− αV1
(ξ < ξ∗ ∧ ξ < 0) , (4.22)

where ξ∗ ≡ 2a3
2/[9(1− αV1)(a2

2 + 3ã3/4)] with ã3 ≡ 4a3(1− αV1)ν.

• αV1 < 1 , a3 > 0 :

x ' ξ

2 a3
(−ξ+ < ξ < −ξ−) , (4.23)

where ξ± = (a2 ±
√
a2

2 + ã3)/(1− αV1).

• αV1 > 1 , a3 > 0 :

x ' ξ

2 a3
(4.24)

(a2 >
√
−ã3 ∧ ξ < −ξ+) ∨ (a2 < −

√
−ã3 ∧ ξ > −ξ−) ∨ (−

√
−ã3 < a2 <

√
−ã3) .

• αV1 > 1 , a3 < 0 : There are no solutions for this case.

Using the first two solutions in eq. (4.21) to solve for y and z one finds

y ' A

1− αV1
± ξ
√

2A

1− αV1
, z ' A

1− αV1
± αB

√
2A

1− αV1
(A� 1) . (4.25)

Thus, general relativity is recovered for A � 1 when M2 = const. and αV1 = 0. In this case the
transition between the screening and linear regime takes place at AV ≈ 2ν2/

(
ξ2(1 − αV1)

)
. The

third solution instead gives

y = (1 + αT)A+O(A1/2) , z = A+O(A1/2) (A� 1) , (4.26)

which shows that general relativity is recovered for M2 = const. and αT = 0. In this case
AV ≈ ν/(2a3). Using αI , a3 ' −2

3µΦ,2/µ
2
χ and ν = (µΦ − 1 − αT)/µ2

χ valid for small αI and
following the procedure outlined above, the Vainshtein scale reads

kV
kNL

≈

(
3

4Ωm

∣∣∣∣µΦ − 1− αT

µΦ,2

∣∣∣∣
√

3 + n

π

) 2
3+n

, (4.27)

which leads to analogous conclusions as eq. (4.18) for the Vainshtein scale.
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5 After GW170817/GRB170817A

Recently, the association of GW170817 [54] and GRB 170817A [55] events allowed to establish
with very high precision that the speed of gravitational waves equals the one of light, cT = 1
[69]. To avoid tuning, the speed of gravitational waves must be unaffected not only for our
particular cosmological solution but also for nearby solutions obtained by slightly changing the
matter abundance [70–72].

Following [70], let us review the consequences of this result on Horndeski theories by using the
nonlinear action (2.21). The speed of propagation of tensors is affected by the operator m2

4, so that
we require m2

4 = 0. On the other hand, a small change of the background solution shifts δg00 and
δKij by some background values, respectively denoted by δg00

bkgd and δHbkgdhij . This generates

quadratic operators proportional to either δKµ
νδK

ν
µ or R, with the net effect of shifting m2

4 from
0 to

− 1

2
m2

5δg
00
bkgd +m6δHbkgd −

1

2
(m6δg

00
bkgd)· +m7δg

00
bkgdδHbkgd . (5.1)

Requiring that this expression vanishes for any δg00
bkgd, δġ00

bkgd and δHbkgd implies that [70]

m2
5 = m6 = m7 = 0 , (5.2)

or, using eq. (2.8), αV1 = αV2 = αV3 = 0. Since also αT = 0, the nonlinear couplings µΦ,2, µΦ,22

and µΦ,3 given in eq. (3.26) simplify considerably and reduce to

µΦ,2 =
αM − 2αB

2

(
µΦ − 1

ν

)3/2

, µΦ,22 = 0 , µΦ,3 = 0 . (5.3)

This means that any nonlinear effect is necessarily associated to a change in the linear solution
due to either αB 6= 0 or αM 6= 0, i.e. µΦ 6= 1.

As discussed in [70], these constraints can be relaxed if dark energy has a fixed φ̇ independent
of H. In this case αV2 = 0 but αV1 and αV3 can still be non-vanishing. Another way-out is to
assume that dark and visible matters couple to different metrics. In particular, the constraints from
GW170817/GRB170817A apply in the Jordan frame of visible matter. From the first equation of
(2.31) one sees that αV1 6= 0 in the dark matter frame is compatible with these constraints if dark
matter is disformally coupled to the metric of the visible matter frame. However, αV2 and αV3

must vanish in all frames.

6 Conclusions

We have developed the nonlinear interactions of dark energy and modified gravity in the Effective
Field Theory approach. Specifically, in Sec. 2 we have focused on the operators describing the
covariant Horndeski Lagrangians, assuming minimal coupling for matter. For these theories, we
have derived all the operators up to quartic order and provided a connection between the coefficients
in the Effective Field Theory of Dark Energy action and the coefficients in the covariant form of
the Horndeski action, see details in App. A.

Moreover, motivated by describing the clustering of dark matter in the presence of dark energy
and modified gravity, we have focused our analysis on the quasi-static non-relativistic limit, valid
on scales much smaller than the Hubble scale. We have shown that there are only six independent
operators in this limit, a result valid at any order in perturbation theory, see action in eq. (2.21),
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Sec. 2.3. Three of these operators contribute only beyond linear order and introduce three new
functions of time necessary to describe the nonlinear regime. The transformations of these time-
dependent functions under conformal and disformal metric redefinitions are discussed in Sec. 2.5.

Then, in Sec. 3 we have computed the equations of motion in Newtonian gauge. Since in the
quasi-static limit the scalar field is non-dynamical, the equations of motion are three constraints
that can be used to relate the two gravitational potentials and the scalar field fluctuations to
the matter density contrast. After a review of the linear case, we have computed the action and
constraint equations from the nonlinear operators. We have then used these equations to compute
the relation between the Newtonian potential and the matter density contrast, see eqs. (3.23) and
(3.26). Apart from the usual linear modification in the effective Newton constant, the nonlinear
couplings modify this equation beyond linear order. The new couplings in eq. (3.23) are relevant
for the computation of the one-loop dark matter power spectrum [1]. In order to understand the
size of the effects that we have computed, in Sec. 3.3 we have presented a sampling of plots of the
time-dependent parameters that are relevant for dark-matter clustering.

In Sec. 4 we have described the Vainshtein screening regime around spherical sources and the
relation between the Vainshtein scale and the nonlinear scale for dark matter clustering coming
from the nonlinear couplings in the continuity and Euler equations. We have shown that the
effective Poisson equation relating the Newtonian potential to the matter density contrast derived
in Sec. 3 does not hold inside the Vainshtein regime. Finally, we have discussed the implications
of the recent gravitational wave/gamma ray burst observations on our findings and possible ways
around these constraints.

This work could be extended in several directions. For instance, it is straightforward to include
in the action operators describing GLPV theories [73, 74] or higher-order degenerate theories
[75, 76] and derive analogous constraint equations. Another direction is to go beyond the quasi-
static approximation and include the effects of the dark-energy field’s propagation. This approach
could also be used in numerical simulations, such as e.g. [77], to parametrize in a general way the
effects of modified gravity.
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A Correspondence with the covariant theory

In this appendix we provide details on the connection between the covariant Horndeski action,
eq. (2.1), and the action written in the EFT language. In particular, we write the mI(t) functions
(or equivalently the αI(t)) appearing in the actions (2.4) and (2.21), in terms of the GI(φ,X).
While eq. (2.21) contains only terms relevant in the quasi-static limit, here we will present all
operators up to quartic order.

Our starting point is the covariant action, eq. (2.1), which we rewrite in unitary gauge. Follow-
ing Ref. [9], we perform a 3+1 decomposition of the derivatives of the scalar field and of the 4-d
Ricci and Einstein tensors, in terms of the extrinsic curvature and 3-d Ricci tensors. After some
cumbersome but straightforward manipulations [9] one finds (note that K0

0 = K0
i = 0)

S =

∫
d4x
√
−g
[
A2(t, g00) +A3(t, g00)K +A4(t, g00)

(
K2 −KijK

ij
)

+B4(t, g00)R

+A5(t, g00)
(
K3 − 3KKijK

ij + 2KijK
ikKj

k

)
+B5(t, g00)

(
KijR

ij −KR/2
)]
,

(A.1)

where the Ai and Bi are generic functions of time and g00, related to the coefficients in eq. (2.1)
through

A2 = G2 −
√
−X

∫
G3,φ

2
√
−X ′

dX ′ ,

A3 = −
∫
dX ′
√
−X ′G3,X′ − 2

√
−XG4,φ ,

A4 = −G4 + 2XG4,X +
X

2
G5,φ ,

A5 = −(−X)3/2

3
G5,X ,

B4 = G4 +
√
−X

∫
dX ′

G5,φ

4
√
−X ′

,

B5 = −
∫
dX ′
√
−X ′G5,X′ ,

(A.2)

where we remind that X = g00φ̇2(t) in unitary gauge. In this appendix φ̇ is evaluated on the
background. One can check that

A4 = −B4 + 2g00 ∂B4

∂ g00
, A5 = −1

3
g00 ∂B5

∂ g00
. (A.3)

Next, we expand the operators in eq. (A.1) as

g00 = −1 + δg00 , Rij = δRij , Ki
j = Hδij + δKi

j . (A.4)

Since we are going to be comparing to the EFTofDE action which does not have a linear term
proportional to δK, we first need to write the expression in eq. (A.1) so that it explicitly does not
contain such a term, which comes from the A3, A4, and A5 terms. To do that, we first find the
linear in K terms, which are A3(t,−1)K, A4(t,−1)HK, and A5(t,−1)6H2K. Then we use the
following identity in unitary gauge∫

d4x
√
−gλ(t)K = −

∫
d4x
√
−g n0∇0λ(t) = −

∫
d4x
√
−g λ̇(t)

√
−g00 , (A.5)

to add and subtract zero to eq. (A.1) in way that makes manifest that there are no δK terms. In
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particular, we add zero in the following three ways

0 =

∫
d4x
√
−g
(
−Ȧ3(t,−1)

√
−g00 −A3(t,−1)K

)
(A.6)

0 =

∫
d4x
√
−g
(
−∂t (HA4(t,−1))

√
−g00 −A4(t,−1)HK

)
(A.7)

0 =

∫
d4x
√
−g
(
−∂t

(
6H2A5(t,−1)

)√
−g00 − 6A5(t,−1)H2K

)
. (A.8)

which allows us to rewrite the action eq. (A.1) as

S =

∫
d4x
√
−g
{
A2(t, g00)−

√
−g00 Ȧ00

+
[
A3(t, g00)K −A3(t,−1)K

]
+
[
A4(t, g00)

(
K2 −KijK

ij
)
−A4(t,−1)HK

]
+
[
A5(t, g00)

(
K3 − 3KKijK

ij + 2KijK
ikKj

k

)
− 6A5(t,−1)H2K

]
+B4(t, g00)R+B5(t, g00)

(
KijR

ij −KR/2
)}

,

(A.9)

where
A00 ≡ A3(t,−1) +HA4(t,−1) + 6H2A5(t,−1) . (A.10)

Notice that now, in this equation we have transferred all of the linear terms proportional to δK
into the g00 dependent term on the first line.

In order to most easily compare with the EFT actions in eq. (2.4) and eq. (2.21), it is useful
to rewrite the (4)R part of the action as∫

d4x
√
−gM

2
∗ f(t)

2
(4)R =

∫
d4x
√
−gM

2
∗

2

[
f(t)

(
R+KijK

ij −K2
)
− 2ḟ(t)

√
−g00K

]
. (A.11)

Let us now expand the action (A.9) up to fourth order in the perturbations of eq. (A.4), writing
the n-th order Lagrangian as L(n), so that S =

∫
d4x
√
−g
∑

n L(n). At quadratic order, in terms
of the operators δK2 and δG2 defined in eq. (2.17), we have

L(2) = −M
2

2
δK2 +

m4
2

2
(δg00)2 +

(
M2
∗ ḟ

2
− m3

3

2

)
δK +

(
m2

4

2
+
B

(1,0)
5

4

)
δg00δR+B5δG2 , (A.12)

where

M2 = −2A4 − 6HA5 ,

m4
2 = A

(0,2)
2 + 3HA

(0,2)
3 + 6H2A

(0,2)
4 + 6H3A

(0,2)
5 +

Ȧ00

4
,

m3
3 = M2

∗ ḟ − 2A
(0,1)
3 − 8HA

(0,1)
4 − 12H2A

(0,1)
5 ,

m2
4 = 2B

(0,1)
4 −HB(0,1)

5 − 1

2
B

(1,0)
5 ,

(A.13)
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and we have used the notation A(m,n) ≡ ∂mt ∂ng00A|(t,−1). First, notice that eq. (A.12) is of the form

of the quadratic Lagrangian (2.4) (when (4)R is expanded as in eq. (A.11)), apart from the δG2

term. However, this term can be eliminated by using the identity [9]∫
d4x
√
−g
[
λ(t)

(
KijR

ij − 1

2
KR

)
− 1

2
λ̇(t)

√
−g00R

]
= 0 , (A.14)

and then expanding it around the FLRW background. This eliminates both the B
(1,0)
5 and B5 terms

in eq. (A.12) so that indeed the coefficient of δg00δR is m2
4/2, as desired. The other coefficients

given in eq. (A.12) are the ones that appear in the quadratic Lagrangian in eq. (2.4). In terms of
the α parameters in eq. (2.8), we have (using eq. (A.3))

αT ≡ −
2m2

4

M2
=

2

M2

(
A4 +B4 + 3HA5 +

1

2
B

(1,0)
5

)
,

αB ≡
M2
∗ ḟ −m3

3

2M2H
=

1

M2H

(
A

(0,1)
3 + 4HA

(0,1)
4 + 6H2A

(0,1)
5

)
,

αM ≡
M2
∗ ḟ + 2(m2

4)·

M2H
=
∂t(−2A4 − 6HA5)

M2H
.

(A.15)

Now we move on to the cubic Lagrangian. In terms of the operators δK2, δK3 and δG2 defined
in eqs. (2.17) and (2.18), at third order we have

L(3) = −m6

3

(
δK3 + 3δg00δG2

)
− m2

5

2
δg00δK2 (A.16)

+m4
(3),1(δg00)3 +

(
M2
∗ ḟ

8
+m2

(3),2

)
(δg00)2δK +m2

(3),d1
(δg00)2δR ,

with coefficients given by

m2
5 = −2

(
A

(0,1)
4 + 3HA

(0,1)
5

)
, m6 = −3A5 ,

m4
(3),1 =

1

6
A

(0,3)
2 +

1

2
HA

(0,3)
3 +H2A

(0,3)
4 +H3A

(0,3)
5 +

Ȧ00

16
,

m2
(3),2 = −M

2
∗ ḟ

8
+

1

2

(
A

(0,2)
3 + 4HA

(0,2)
4 + 6H2A

(0,2)
5

)
,

m2
(3),d1

=
1

4

(
2B

(0,2)
4 −HB(0,2)

5 − 1

4
B

(1,0)
5

)
=

1

8

(
m2

5 +m2
4 +Hm6

)
,

(A.17)

where we have used (A.3) in the second equality of the last line which shows that the coefficient
m2

(3),d1
is not an independent parameter (the subscript “d” stands for dependent). Notice that

only m6 and m2
5 are relevant in the quasi-static limit. The corresponding α parameters are

αV1 ≡
2m2

5 + 2Hm6

M2
= − 2

M2

(
2A

(0,1)
4 + 6HA

(0,1)
5 + 3HA5

)
,

αV2 ≡
2Hm6

M2
= −6HA5

M2
.

(A.18)
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Finally at fourth order we have

L(4) = −m7

3
δg00δK3 +m4

(4),1(δg00)4 +

(
M2
∗ ḟ

16
+m3

(4),2

)
(δg00)3δK +m2

(4),3(δg00)2δK2

+m3
(4),d1

(δg00)3δR+m(4),d2
(δg00)2δG2 ,

(A.19)

where the coefficients are given by

m7 = −3A
(0,1)
5 , (A.20)

m4
(4),1 =

1

24

(
A

(0,4)
2 + 3HA

(0,4)
3 + 6H2A

(0,4)
4 + 6H3A

(0,4)
5 +

15

16
Ȧ00

)
,

m3
(4),2 = −M

2
∗ ḟ

16
+

1

6

(
A

(0,3)
3 + 4HA

(0,3)
4 + 6H2A

(0,3)
5

)
, m2

(4),3 =
1

2

(
A

(0,2)
4 + 3HA

(0,2)
5

)
,

m2
(4),d1

=
1

12

(
2B

(0,3)
4 −HB(0,3)

5 − 3

8
B

(1,0)
5

)
, m(4),d2

=
1

2
B

(0,2)
5 .

Similar to the cubic case, the coefficients m2
(4),d1

and m(4),d2
are not independent parameters

because they can be written as

m2
(4),d1

=
1

48

(
3m2

4 + 3m2
5 + 2Hm7 + 5Hm6 − 8m2

(4),3

)
,

m(4),d2
= −1

2
(m6 +m7) .

(A.21)

Notice that only m7 is relevant in the quasi-static limit, and it is related to the α parameters by

αV3 ≡
4Hm7 + 2Hm6

M2
= −12HA

(0,1)
5 + 6HA5

M2
. (A.22)

Now that we have the mI parameters in terms of the AI and BI , we will use eq. (A.2) to
replace the AI and BI with the Horndeski GI functions to finally obtain the parameters of the
EFTofDE, the mI , in terms of the Horndeski GI . For the GI functions, we use the notation

G
(m,n)
I ≡ ∂mφ ∂

n
XGI |(φ,−φ̇2), and we use φ to denote the background value. We start with the

parameters that are relevant in the quasi-static limit

M2 = 2G4 + φ̇2
(

4G
(0,1)
4 +G

(1,0)
5

)
+ 2Hφ̇3G

(0,1)
5 ,

m2
4 = φ̇2

(
2G

(0,1)
4 +G

(1,0)
5

)
+Hφ̇3G

(0,1)
5 − φ̇2φ̈G

(0,1)
5 ,

m3
3 = M2

∗ ḟ − 2φ̇G
(1,0)
4 − φ̇2

(
8HG

(0,1)
4 + 4HG

(1,0)
5

)
+ φ̇3

(
2G

(0,1)
3 + 4G

(1,1)
4 − 6H2G

(0,1)
5

)
,

+ φ̇4
(

16HG
(0,2)
4 + 4HG

(1,1)
5

)
+ 4H2φ̇5G

(0,2)
5 ,

m2
5 = −φ̇2

(
2G

(0,1)
4 +G

(1,0)
5

)
− 3Hφ̇3G

(0,1)
5 + φ̇4

(
4G

(0,2)
4 +G

(1,1)
5

)
+ 2Hφ̇5G

(0,2)
5 ,

m6 = φ̇3G
(0,1)
5 ,

m7 = −3φ̇3

2
G

(0,1)
5 + φ̇5G

(0,2)
5 .

(A.23)
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The other parameters are given by

m4
2 =

Ȧ11

4
+

3

2
Hφ̇G

(1,0)
4 +

φ̇2

2

(
−G(2,0)

4 + φ̈G
(0,1)
3 + 2φ̈G

(1,1)
4

)
− 1

2
φ̈G

(1,0)
4

+
φ̇3

2
H
(

3G
(0,1)
3 + 12G

(1,1)
4 − 3H2G

(0,1)
5

)
+ φ̇4

(
G

(0,2)
2 − 1

2
G

(1,1)
3 + 18H2G

(0,2)
4 + 6H2G

(1,1)
5

)
− 3φ̇5H

(
G

(0,2)
3 + 2G

(1,2)
4 − 2H2G

(0,2)
5

)
− 3φ̇6H2

(
4G

(0,3)
4 +G

(1,2)
5

)
− 2φ̇7H3G

(0,3)
5 , (A.24)

m4
(3),1 =

Ȧ11

16
+

3

8
φ̇HG

(1,0)
4 +

φ̇2

8

(
−G(2,0)

4 + φ̈
(
G

(0,1)
3 + 2G

(1,1)
4

))
− 1

8
φ̈G

(1,0)
4

+
φ̇3

8
H
(
G

(0,1)
3 + 6G

(1,1)
4 −H2G

(0,1)
5

)
+
φ̇4

24
G

(1,1)
3 +

φ̇5

4
H
(

2G
(0,2)
3 + 6G

(1,2)
4 − 3H2G

(0,2)
5

)
+
φ̇6

12

(
2G

(0,3)
2 −G(1,2)

3 + 60H2G
(0,3)
4 + 18H2G

(1,2)
5

)
− φ̇7

2
H
(
G

(0,3)
3 + 2G

(1,3)
4 − 3H2G

(0,3)
5

)
− φ̇8H2

(
2G

(0,4)
4 +

1

2
G

(1,3)
5

)
− φ̇9

3
H3G

(0,4)
5 , (A.25)

m2
(3),2 = −M

2
∗ ḟ

8
+
φ̇G

(1,0)
4

4
+
φ̇3

4

(
G

(0,1)
3 + 4G

(1,1)
4 − 3H2G

(0,1)
5

)
+ 2φ̇4H

(
3G

(0,2)
4 +G

(1,1)
5

)
− φ̇5

2

(
G

(0,2)
3 + 2G

(1,2)
4 − 6H2G

(0,2)
5

)
− φ̇6

(
4HG

(0,3)
4 +HG

(1,2)
5

)
− φ̇7H2G

(0,3)
5 , (A.26)

m4
(4),1 =

5Ȧ11

128
+

15

64
Hφ̇G

(1,0)
4 +

φ̇2

64

(
−5G

(2,0)
4 + φ̈

(
5G

(0,1)
3 + 10G

(1,1)
4

))
+

3

64
φ̇3H

(
G

(0,1)
3 + 8G

(1,1)
4 −H2G

(0,1)
5

)
+

5φ̇4

192
G

(1,1)
3

+
φ̇5

32
H
(

3G
(0,2)
3 + 12G

(1,2)
4 − 4H2G

(0,2)
5

)
+
φ̇6

96
G

(1,2)
3 − 5

64
φ̈G

(1,0)
4

+
φ̇7

16
H
(

3G
(0,3)
3 + 8G

(1,3)
4 − 6H2G

(0,3)
5

)
+
φ̇8

48

(
2G

(0,4)
2 −G(1,3)

3 + 84H2G
(0,4)
4 + 24H2G

(1,3)
5

)
− φ̇9

8
H
(
G

(0,4)
3 + 2G

(1,4)
4 − 4H2G

(0,4)
5

)
− φ̇10

8
H2
(

4G
(0,5)
4 +G

(1,4)
5

)
− φ̇11

12
H3G

(0,5)
5 , (A.27)

m3
(4),2 = −M

2
∗ ḟ

16
+
φ̇

8
G

(1,0)
4 +

φ̇3
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(
G

(0,1)
3 + 6G

(1,1)
4 − 3H2G

(0,1)
5

)
+
φ̇5

12

(
2G

(0,2)
3 + 6G

(1,2)
4 − 9H2G

(0,2)
5

)
+
φ̇6

3
H
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m2
(4),3 = −3Hφ̇3

8
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φ̇4

2

(
3G

(0,2)
4 +G
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3Hφ̇5

2
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(
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4 +G
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5

)
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2
Hφ̇7G

(0,3)
5 .
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We have defined the function A11(t) = HA4(t,−1) + 6H2A5(t,−1) for convenience. The time
derivative that appears in the above equations is given explicitly as

Ȧ11 = −ḢG4 − φ̇H
(
G

(1,0)
4 + φ̈

(
2G

(0,1)
4 +G

(1,0)
5

))
− φ̇2

(
2ḢG

(0,1)
4 +

1

2
ḢG

(1,0)
5 + 6H2φ̈G

(0,1)
5

)
− φ̇3

2
H
(

4G
(1,1)
4 +G

(2,0)
5 + 8ḢG

(0,1)
5 − 2φ̈

(
4G

(0,2)
4 +G

(1,1)
5

))
− 2φ̇4H2

(
G

(1,1)
5 − 2φ̈G

(0,2)
5

)
.

(A.30)

B Stueckelberg trick up to second order

In this section we derive some useful relations to restore the general covariance of the action
and write it in a generic coordinate system. In unitary gauge, the action is constructed by writ-
ing all of the operators in terms of the metric that are invariant under time-dependent spatial
diffeomorphisms xi → xi − ξi(~x, t). This action has one extra scalar degree of freedom, asso-
ciated with the breaking of time diffeomorphisms, which can be explicitly introduced using the
Stueckelberg trick. To do this, one first performs a broken time diffeomorphism on the action:
t→ t̃ = t− ξ0(~x, t). Then one makes the replacement ξ0(x(x̃))→ −π̃(x̃), where π is the Goldstone
boson that nonlinearly realizes the time diffeomorphism symmetry, which is restored if π trans-
forms like π(~x, t) → π(~x, t) + ξ0(~x, t). Finally, one writes the integral in the action as being over
x̃ instead of x.

In the end, this has the effect that one can introduce the scalar by performing [63, 4, 5]

t→ t+ π(t, ~x) , (B.1)

in the action. Specifically, one can simply replace any function of time f(t) up to third order with

f → f + ḟπ +
1

2
f̈π2 +

1

6
f (3)π3 +O(π4) , (B.2)

and the metric with
gµν → (δµα + δµ0 ∂απ)(δνβ + δν0∂βπ)gαβ . (B.3)

In particular, the metric component g00 transforms exactly as

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ . (B.4)

For the other perturbed geometric quantities, we only need their change at quadratic order in
the perturbations. For those quantities, it is useful to write the metric in ADM form, i.e. as

ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj) , (B.5)

where N is the lapse, N i is the shift, and hij is the spatial metric. Then, using the usual ADM
metric relations, i.e.

g00 = − 1

N2
, g0i =

N i

N2
, hij = gij +

N iN j

N2
, (B.6)

g00 = −N2 + hijN
iN j , Ni = hijN

j , hij = gij , (B.7)
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and combined with the transformation eq. (B.3), we have

N → N

(
1− π̇ + π̇2 +N i∂iπ +

1

2
N2hij∂iπ∂iπ

)
+O(3) , (B.8)

N i → N i(1− π̇) + (1− 2π̇)N2hik∂kπ +O(3) , (B.9)

hij → hij −Ni∂jπ −Nj∂iπ −N2∂iπ∂jπ +O(3) . (B.10)

Other useful relations are the transformation for the derivatives,

∂0 → (1− π̇ + π̇2)∂0 +O(3) , ∂i → ∂i − (1− π̇)∂iπ∂0 +O(3) . (B.11)

Making use of the relations above, we can derive the transformations of the extrinsic curvature
and of the Ricci scalar and curvature from their definitions. We find

δK → δK − 3

(
Ḣπ +

1

2
Ḧπ2

)
− (1− π̇)Nhij∂i∂jπ +

1

2
a−4∂kπ (−∂khii + 2∂ihki)

+
H

2a2
(∂iπ)2 +

2

a2
∂iπ∂iπ̇ −

2

a2
∂iN∂iπ +O(3) , (B.12)

δKi
j → δKi

j −
(
Ḣπ +

1

2
Ḧπ2

)
δij − (1− π̇)Nhik∂k∂jπ +

1

2
a−4∂kπ (−∂khij + ∂ihkj + ∂jhki)

+
H

2a2
(∂kπ)2δij −

H

a2
∂iπ∂jπ +

2

a2
∂(iπ̇∂j)π −

2

a2
∂(iN∂j)π +O(3) , (B.13)

R→ R− 2(1− π̇)ḣij∂i∂jπ −
2

a2

[
4H∂kπ∂kπ̇ + (H2 + 2Ḣ)(∂kπ)2

]
+

1

a4

[
H(∂khii − ∂ihik) + ∂kḣii − ∂iḣik

]
∂kπ

− 1

a4
P2[π, π]− 2

a2
P2[π, ∂−2∂iN

i] +O(3) , (B.14)

Rij → Rij +H(∂i∂jπ + δij∂
2π) +O(2) , (B.15)

where
P2[ϕa, ϕb] = εikmεjlm∂i∂jϕa∂k∂lϕb . (B.16)

Although the metric appears through N , N i, and hij , the expressions above are only valid to
second order in perturbations. Note that we only computed the Stueckelberg transformation of
Rij to first order as we do not need higher orders.
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