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Screening mechanisms are essential features of dark energy models mediating a fifth force on large scales.
We study the regime of strong scalar field nonlinearities, known as Vainshtein screening, in the most general
scalar-tensor theories propagating a single scalar degree of freedom. We first develop an effective approach
to parameterize cosmological perturbations beyond linear order for these theories. In the quasi-static limit,
the full nonlinear effective Lagrangian contains six independent terms, one of which starts at cubic order in
perturbations. We compute the two gravitational potentials around a spherical body. Outside and near the
body, screening reproduces standard gravity, with a modified gravitational coupling. Inside the body, the two
potentials are different and depend on the density profile, signalling the breaking of the Vainshtein screening.
We provide the most general expressions for these modifications, revising and extending previous results. We
apply our findings to show that the combination of the GW170817 event, the Hulse-Taylor pulsar and stellar
structure physics, constrain the parameters of these general theories at the level of a few ×10−1, and of GLPV
theories at the level of 10−2.

Introduction.— The recent simultaneous observation of
gravitational waves and gamma ray bursts from GW170817
[1] and GRB 170817A [2] has allowed to constrain very pre-
cisely the relative speed between gravitons and photons. This
measurement has had dramatic impact on the parameter space
of modified gravity theories characterized by a single scalar
degree of freedom [3–6]. In particular, the so-called Horn-
deski theories [7, 8], a class of well-studied scalar-tensor the-
ories that are often used as benchmarks to parameterize mod-
ifications of gravity, have been drastically simplified. Their
higher-order Lagrangian terms, quadratic and cubic in second
derivatives of the field, predict a speed of gravitational waves
that differ from that of light and are thus ruled out. This
fact has trigger renewed interest for the surviving theories,
i.e. those extending the Horndeski class that are compatible
with the GW170817 observation, such as certain subclasses
of GLPV theories [9, 10].

Lagrangian terms with higher-derivatives are crucial to sup-
press, via the so-called Vainshtein mechanism [11, 12], the
fifth force exchanged by the scalar and responsible for the
modifications of gravity on large scale. On the other hand,
theories extending the Horndeski class are known to display a
breaking of the Vainshtein screening inside matter [13], a phe-
nomenon that has allowed to constrain the parameter space of
these theories with astrophysical observations [14–18] .

The purpose of this paper is to study the Vainshtein mech-
anism in the general framework of the degenerate theories
introduced in [19, 20], which includes the Horndeski class
and theories beyond Horndeski [9, 10, 21]. We will consider
only theories that can be related to the Horndeski class by
an invertible metric redefinition [20, 22]. In the classification
of Ref. [19], they are called degenerate higher-order scalar-
tensor theories of Type Ia. Moreover, we will focus on the-
ories up to quadratic in the second derivative of the scalar
field. In particular, we do not consider the cubic theories [23],
whose Vainshtein mechanism has been poorly studied due to
its complexity, because they are anyway ruled out by the ob-
servation of GW170817 [3, 5, 6].

We do so by reducing these theories to their essential ele-
ments with the use of the Effective Field Theory of dark en-
ergy description developed in [24–29]. Moreover, we focus
on scales much smaller than the Hubble radius and we re-
strict to non-relativistic sources, in which case the scalar fluc-
tuations satisfy the quasi-static approximation. We will first
derive very general expressions for the two potentials in the
Vainshtein regime. This will be important to extend and clar-
ify previously obtained results. Then, restricting to theories
propagating gravitons at the speed of light, we will use our
expressions to show that a combination of constraints from
stellar structure [15, 30] and from precise measurements of
the decrease of the orbital period in the Hulse-Taylor binary
pulsar [31] severely constrain these scenarios.

During the preparation of this work, Refs. [32, 33] have
appeared, where some of the results derived in this article are
independently obtained using different approaches.

Degenerate Higher-Order Scalar-Tensor theories.— Let us
consider a tensor-scalar field theory described by an action
including all possible quadratic combinations up to second
derivatives of the field φ [19],

S =
∫

d4xL =
∫

d4x
√
−g
[
P(φ ,X)+Q(φ ,X)�φ

+ f (φ ,X)(4)R+
5

∑
I=1

aI(φ ,X)LI(φ ,φ;ν ,φ;ρσ )
]
,

(1)

where (4)R is the 4D Ricci scalar. A semicolon denotes the
covariant derivation, X ≡ −φ;µ φ ;µ/2, and the LI are defined
by

L1 = φ;µν φ
;µν , L2 = (φ

;µ
;µ )

2 , L3 = (φ
;µ
;µ )(φ

;ρ
φ;ρσ φ

;σ ) ,

L4 = φ
;µ

φ;µν φ
;νρ

φ;ρ , L5 = (φ ;ρ
φ;ρσ φ

;σ )2 .

(2)

In the following, we are going to focus on Type Ia theories,
which satisfy a1+a2 = 0 and two other degeneracy conditions
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[19] that fix two functions, for instance a4 and a5. Degenerate
theories that are not in this class have been shown to prop-
agate scalar fluctuations with sound speed squared with op-
posite sign to the sound speed squared of tensor fluctuations
[28] and we will not consider them here. The theory with
a3 +a4 = a5 = 0 is degenerate also in the absence of gravity.
In particular, this includes the case f =G4, a1 =−a2 =−G4,X
(a comma denotes the derivative with respect to the argument)
and a3 = a4 = a5 = 0, corresponding to quartic Horndeski
theories, and the case f = G4, a1 = −a2 = −G4,X + 2XF4,
a3 =−a4 =−2F4 and a5 = 0, corresponding to quartic GLPV
theories. The functions P and Q do not affect the degeneracy
character of the theory.

Effective Theory of Dark Energy.— To describe cosmolog-
ical perturbations around a FRW solution in theories with a
preferred slicing induced by a time-dependent scalar field,
it is convenient to use the EFT of dark energy. To formu-
late the action (1) with the conditions a1 + a2 = 0, we use
the ADM metric decomposition, where the line element reads
ds2 =−N2dt2 +hi j(dxi +Nidt)(dx j +N jdt), and we choose
the time as to coincide with the uniform field hypersurfaces.
Moreover, we are going to focus only on the operators that
contribute to the quasi-static limit.

In this gauge, expanded around a FRW background, the full
nonlinear action reads

SQS =
∫

d4x
√

h
M2

2
(
−δK2 + c2

T
(3)R+4HαBδKδN

+(1+αH)
(3)RδN +αVδNδK2 +4β1δKV +β2V 2 +β3aiai) .

(3)

Here H ≡ ȧ/a (a dot denotes the time derivative), δN ≡N−1,
δK j

i ≡ K j
i −Hδ

j
i is the perturbation of the extrinsic curva-

ture of the time hypersurfaces, δK its trace and (3)R is the
3D Ricci scalar of these hypersurfaces. Moreover, δK2 ≡
δK2−δK j

i δKi
j, V ≡ (Ṅ−Ni∂iN)/N and ai ≡ ∂iN/N.

We have also defined the effective Planck mass, which nor-
malizes the graviton kinetic energy, by M2 ≡ 2( f −2a2X) and
a few independent parameters, related to the functions in (1)
by

αB = αV + φ̇( fφ +2X f,φX +XQ,X )/(M2H) ,

c2
T = 2 f/M2 , αH = 4X(a2− f,X )/M2 ,

β1 = 2X( f,X −a2 +a3X)/M2 ,

αV = 4X( f,X −2a2−2Xa2,X )/M2 .

(4)

The function c2
T is the fractional difference between the speed

of gravitons and photons. Sometimes called braiding [34], the
function αB measures the kinetic mixing between metric and
scalar fluctuations [24]. The function αH measures the kinetic
mixing between matter and the scalar in GLPV theories [9, 10,
35] and vanishes for Horndeski theories. The functions β1,2,3
parameterize the presence of higher-order operators. In the
EFT of dark energy formulation, the degeneracy conditions
that ensure that the action (3) describes the propagation of a
single scalar degree of freedom are [28]

β2 =−6β
2
1 , β3 =−2β1

[
2(1+αH)+β1c2

T
]
, (5)

M2 αB c2
T −1 αV αH β1

P(φ ,X) 0 0 0 0 0 0
Q(φ ,X)�φ 0 X 0 0 0 0
Quartic Horndeski X X X X 0 0
Quartic GLPV X X X X X 0
Quadratic DHOST X X X X X X

After GW170817 free free 0 −αH free free

TABLE I. Lagrangian operators of the EFT of dark energy allowed in
various theories and the consequences of the equality between speed
of gravity and light on these theories.

so that we do not need the explicit expression for β2 and β3
in terms of the functions defining (1). We will impose these
conditions later. Finally, the operator proportional to αV is
the only one that starts cubic in the perturbations. In the non-
linear EFT action, it was introduced (as −αV1) in [29] to de-
scribe nonlinear dark energy perturbations. Notice that the ac-
tion (3) does not include the kineticity [34] Lagrangian term
αKδN2, because it can be neglected in the quasi-static limit
[29]. The total number of independent parameters, and thus
of Lagrangian operators, is thus six.

We summarize the relation between the EFT operators and
the corresponding covariant Lagrangians in Table I, where we
also state in which way these operators are affected by the
equality between the speed of gravity and light, see [3] and
discussion below.

Action in Newtonian gauge.— We now expand the La-
grangian (1) around an FRW background. We consider only
scalar fluctuations in the Newtonian gauge, where δN = Φ

and hi j = a(t)2(1− 2Ψ)δi j and Ni = 0. Without loss of gen-
erality, we take φ = t +π(t,~x).

In the quasi-static regime, time derivatives are of order
Hubble and the Lagrangian is dominated by terms with 2(n−
1) spatial derivatives for n fields. Considering only these
terms, one obtains

SQS =
∫

d4x
M2a

2

[(
c1Φ+ c2Ψ+ c3π

)
∇

2
π + c4Ψ∇

2
Φ

+ c5Ψ∇
2
Ψ+ c6Φ∇

2
Φ+

(
c7Ψ̇+ c8Φ̇+ c9π̈

)
∇

2
π

+
b1

a2 L Gal
3 +

1
a2

(
b2Φ+b3Ψ

)
E Gal

3 +
1
a2

(
b4∇iΨ+b5∇iΦ

+b6∇iπ̇
)
∇ jπΠ

i j +
1
a4

(
d1L

Gal
4 +d2∇iπ∇ jπ[Π

2]i j)] .
(6)

Here, adopting the notation of [13], Πi j ≡ ∇i∇ jπ , Πn
i j ≡

∇i∇
k1π∇k1∇k2π . . .∇kn−1∇ jπ and [Πn] ≡ δ i jΠn

i j we have
defined L Gal

3 ≡ − 1
2 (∇π)2[Π], L Gal

4 ≡ − 1
2 (∇π)2E Gal

3 and
E Gal

3 ≡ [Π]2− [Π2]. The coefficients ci, bi and di are time-
dependent functions related to the functions P, Q, f , aI defin-
ing (1), and their derivatives, evaluated on the background so-
lution.

Equivalently, eq. (6) can also be obtained from the EFT ac-
tion (3), after introducing the scalar fluctuation π by a time
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diffeomorphism t → t + π(t,~x) [36]. In this case, the coef-
ficients ci, bi and di can be expressed in terms of the EFT
parameters. The coefficients c1,2,3 and b1 are functions of M2,
αB, c2

T and H (and their time derivatives) but we do not need
their explicit expressions for the following discussion. The
other coefficients are given by

c4 = 4(1+αH) , c5 =−2c2
T , c6 =−β3 ,

c7 = 4αH , c8 =−2(2β1 +β3) , c9 = 4β1 +β3 ,

b2 = αV−αH−4β1 , b3 = c2
T −1 , b4 =−c7 ,

b5 =−c8 , b6 =−2c9 , d1 =−b3−b2 , d2 = c9 .

(7)

The relevant nonlinear couplings dominating in the Vainshtein
regime will be the quartic ones in (6), i.e. those proportional
to d1 and d2. Note that they contain c2

T , αH, αV, β1 and β3, but
not αB. See more on this below. For β1,2,3 = 0, it is straight-
forward to verify that the above action agrees with those given
in [37] for Horndeski and in [13] for GLPV theories.

To study the behaviour of Φ, Ψ and π around dense mat-
ter sources, we add to the action (6) the coupling with non-
relativistic matter with energy density ρm = ρ̄m(t)+δρm(t,~x),
i.e.,

Sm =−
∫

d4xa3
Φδρm . (8)

Vainshtein mechanism.— To study the Vainshtein regime,
we take matter to be described by some overdensity, spheri-
cally distributed around the origin. We define

x≡ 1
Λ3

π ′

a2r
, y≡ 1

Λ3
Φ′

a2r
, z≡ 1

Λ3
Ψ′

a2r
, A ≡ 1

8πMΛ3
m
r3 ,

(9)
where a prime denotes the derivative with respect to the ra-
dial distance r, m(t,r) ≡ 4π

∫ r
0 r̃2δρm(t, r̃)dr̃ and Λ is some

mass scale of order Λ∼ (MH2)1/3. Integrating over space the
equations obtained by varying the action (6) respectively with
respect to Φ and Ψ, and using Stokes theorem, we obtain

(c1− ċ8−3Hc8)x+2c6y+ c4z− c8ẋ

+2Λ
3x
[
(2b2−b5)x−b5rx′

]
= 2MA , (10)

(c2− ċ7−Hc7)x+ c4y+2c5z− c7ẋ

+2Λ
3x
[
(2b3−b4)x−b4rx′

]
= 0 . (11)

By applying the analogous procedure to the equation obtained
by varying the action with respect to π , we get

2c̃3x+ c̃1y+ c̃2z+2c̃9ẋ+ c8ẏ+ c7ż+2c9ẍ

+2Λ
3{2b̃1x2 +(5Hb6 + ḃ6)rxx′+b6(5xẋ+2rxẋ′+ rẋx′)

+ x
[
(4b2 +3b5)y+(4b3 +3b4)z+b5ry′+b4rz′

]}
+8Λ

6{(d1 +3d2)x3 +d2x
[
r2(x′)2 + rx(6x′+ rx′′)

]}
= 0 .

(12)

The coefficients with the tildes are related to those without the
tildes and to their time derivatives, but we do not need their
explicit expression for what follows. Notice that these equa-
tions contains terms with up to second derivatives (in time and

space), indicating that the equations of motion are higher than
second order.

Equations (10) and (11) are linear in y and z, and can be
solved for these two variables and their solutions can be re-
placed in eq. (12) to obtain an equation for x only. Using the
definitions (7) for the time-dependent coefficients ci, bi and
di and imposing the degeneracy conditions (5), the space and
time derivatives on x cancel and one remains with

x3 + v1x2 +(v2 + v3A + v4A
′)x+ v5A + v6 ˙A = 0 , (13)

where the coefficients vi are related to the original EFT func-
tions (4). The fact that x in this equation always appears with-
out derivatives is not surprising because the theory is degener-
ate and the scalar degree of freedom must satisfy second-order
equations of motion. For large overdensities A , this equation
can be solved by

x2 ≈−v3A − v4A
′ (A � 1) , (14)

which can be used to solve eqs. (10) and (11) for y and z in
the regime where π is nonlinear. Imposing the degeneracy
condition (5) on these coefficients, one finally obtains

Φ
′(r) = GN

(
m(r)

r2 + γ1m′′(r)
)

,

Ψ
′(r) = GN

(
m(r)

r2 + γ2
m′(r)

r
+ γ3m′′(r)

)
.

(15)

These expressions give the two gravitational potentials close
to the matter source, in the regime of large scalar field nonlin-
earities. Outside the matter source m′ = m′′ = 0 and one re-
covers the Newtonian behaviour, Φ = Ψ = GNm/r, although
the coupling constant GN is in general time-dependent and af-
fected by αV and β1. To parameterize this possible deviation
from standard gravity in screened regions, we introduce the
function

γ0 ≡ (8πGNM2)−1 = 1+αV−3β1 . (16)

Inside the matter source, the gravitational potentials are in
general different and receive corrections that depend on the
density profile of the source (and its radial derivative), simi-
larly to what happens in beyond Horndeski theories [13]. The
corrections are proportional to three time-dependent functions
parameterizing the breaking of the Vainshtein screening inside
matter, which can be expressed in terms of the parameters c2

T ,
αH, αV and β1 as

γ1 ≡
(αH + c2

T β1)
2

c2
T (1+αV−4β1)−αH−1

,

γ2 ≡−
αH(αH−αV +2(1+ c2

T )β1)+β1(c2
T −1)(1+ c2

T β1)

c2
T (1+αV−4β1)−αH−1

,

γ3 ≡−
β1(αH + c2

T β1)

c2
T (1+αV−4β1)−αH−1

.

(17)

The above expressions, derived here for the first time, are the
most general for scalar-tensor theories propagating a single



4

scalar degree of freedom. We now focus on specific cases and
compare with results previously found in the literature.

Beyond Horndeski theories.— Let us specialize eq. (17) to
the beyond-Horndeski (or GLPV) theories, which do not con-
tain higher derivatives in the EFT action (3), i.e. β1,2,3 = 0. In
this case, the expressions for the γI simplify, i.e. γ0 = 1+αV,

γ1 =
α2

H

c2
T (1+αV)−αH−1

, γ2 =−
αH(αH−αV)

c2
T (1+αV)−αH−1

,

(18)

and γ3 = 0.
These equations extend the expressions obtained in [14, 15]

under the assumption that Q = f,φ = 0, in the notation of
eq. (1). The expressions in those references are analogous to
the ones above but with αB replacing αV. At first, it is surpris-
ing that αB appears in those expressions because, in contrast
with αV, in the quasi-static limit the operator proportional to
αB does not contain terms quartic in the perturbations—such
as the last two terms in eq. (6)—and that hence contribute
to the Vainshtein mechanism. The explanation is that when
Q = f,φ = 0 one sees from eq. (4) that αV = αB, so that these
expressions can also be written in terms of αB. However, in
general γ1 and γ2 are independent of αB and one needs to go
beyond the quadratic action and introduce the dependence on
αV.

After GW170817.— The simultaneous observation of
GW170817 and GRB 170817A implies that gravitational
waves travel at the speed of light, with very small deviations
[38]. This has dramatically constrained the parameter space of
available theories. To avoid that even 10−5 fluctuations in the
matter overdensity and gravitational potentials along the path
of the gravitons affect their speed of propagation, some of the
coefficients of the EFT action must be simply set to zero.

It is straightforward to derive these consequences using
eq. (3). The coefficient c2

T −1 detunes the space kinetic term
of the gravitons, (∂kγi j)

2, contained in R, from their time ki-
netic term, γ̇2

i j, contained in δK2. Thus, one must require
cT = 1. This must be true also for small fluctuations around
the background solution. Small fluctuations of the back-
ground induce small changes in δN in front of δK2 and R,
which modify the speed of gravitons if the two coefficients
αH and −αV do not coincide. Therefore, gravitons travel at
the same speed as photons independently of small changes in
the background if [3]

cT = 1 , αV =−αH . (19)

In eq. (4), this translates into a2 = a2,X = 0. Remarkably, these
conditions are stable under quantum corrections [3, 39].

Using these conditions in eq. (17) we find γ0 = 1−αH−3β1
and

γ1 =−
(αH +β1)

2

2(αH +2β1)
, γ2 = αH , γ3 =−

β1(αH +β1)

2(αH +2β1)
.

(20)
These expressions, also obtained in [32, 33], are in general
valid independently of αB. For β1 = 0 and Q = f,φ = 0, they
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FIG. 1. Allowed region in the plane (β1,αH) after the GW170817
event, from the stellar structure condition γ1 > −1/6 [15] (vertical
grid), the minimal mass (MM) red dwarf γ1 < 0.4 (v3 of [30]) (hor-
izontal grid—the region with squares is allowed by both) and the
Hulse-Taylor pulsar −7.5× 10−3 ≤ γ0− 1 ≤ 2.5× 10−3 at 2σ (red
band) [31]. The region allowed by the three observations is given by
the overlap of the red band and the region with squares.

agree with [4] where αB = −αH and become γ1 = −αH/2,
γ2 = αH and γ3 = 0.

Before discussing the observational constraints on these ex-
pressions, we note that the second condition in eq. (19) does
not necessarily apply if dark energy has a fixed φ̇ independent
of H, in which case small changes around the background do
not induce a change in δN [3], and if (dark) matter is not cou-
pled to the same metric as photons [29]. In these cases one
must use the general expressions in eq. (17).

Observational constraints.— Several late-time observa-
tional bounds have been put on the parameters γI . The Newto-
nian potential Φ controls the stellar structure equation, so one
can bound γ1 independently of γ2 and γ3. A negative value of
γ1 means stronger gravity inside a star so that, for stars to exist
in hydrostatic equilibrium, one requires γ1 > −1/6 [15]. An
upper bound, γ1 < 0.4, comes from requiring that the smallest
observed red dwarf star has a mass larger than the minimum
mass allowing hydrogen to burn in stars, see v3 of Ref. [30].
Constraints on γ2 and γ3 require observations involving the
curvature potential Ψ and we do not discuss them here.

Let us turn now to γ0, i.e. the ratio between the screened ef-
fective Newton constant, GN, and the effective coupling con-
stant for gravitons, M−2. As shown in Ref. [31], the de-
crease of the orbital period of binary stars is proportional to
(M2GNcT )

−1. With cT = 1, γ0 can be constrained by the
40 year-long observation of the Hulse-Taylor pulsar (PSR
B1913+16) [40]. Using the results of this reference, one ob-
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tains−7.5×10−3≤ γ0−1≤ 2.5×10−3 at 2σ . This constraint
assumes that the scalar radiation does not participate to the en-
ergy loss. For cubic screening, the effect has been shown to
be suppressed by −3/2 powers of the product of the orbital
period and the Vainshtein radius [41, 42].

As shown in Fig. 1, combining these constraints places tight
bounds on αH and β1: only the tiny overlap between the red
band and the region with squares survives, which shows that
−0.59 ≤ αH ≤ 0.26 and −0.08 ≤ β1 ≤ 0.20. For GLPV the-
ories (β1 = 0), this leads to a very stringent bound on αH:
−2.5×10−3 ≤ αH ≤ 7.5×10−3 at 2σ .

Conclusions.— We have obtained the most general ex-
pression of the gravitational potentials in the Vainshtein
regime, for degenerate higher-order scalar-tensor theories
up to quadratic in second derivatives of the scalar. After
GW170817, these are the most general Lorentz-invariant the-
ories propagating a single scalar degree of freedom. To do so,
we have employed the EFT of dark energy approach at nonlin-
ear order and computed the deviations from general relativity,
outside and inside matter sources. In general, these modifica-

tions imply four observational parameters and depend on four
EFT parameters, but if gravitons travel at the same speed as
photons independently of small changes in the background,
they depend only on αH and β1, which measure the beyond-
Horndeski “character” of the theories, see Table I. Using these
results and those from astrophysical observations, we have
obtained stringent constraints on these two parameters. Our
bounds have been derived using only γ0 and γ1. Any con-
straints on γ2 and γ3 will exclude a new region of the (β1,αH)
plane, possibly ruling out theories beyond Horndeski.
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