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André Voros
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Abstract

The Keiper–Li sequence {λn} is most sensitive to the Riemann Hy-
pothesis asymptotically (n → ∞), but highly elusive both analytically
and numerically. We deform it to fully explicit sequences, simpler to
analyze and to compute (up to n = 5·105 by G. Misguich). We extend
that to the Davenport–Heilbronn counterexamples, then demonstrate
explicit tests that selectively react to zeros off the critical line.

The present text develops our computations announced from 2015 [34].

1 Main notations and background

• ζ(x) : the Riemann zeta function, x ∈ C \ {1}; (e.g., [30][10, chap. 8, 15])
• 2ξ(x) : a completed zeta function, obeying Riemann’s Functional Equation,

2ξ(x)
def
= x(x− 1)π−x/2 Γ(x/2) ζ(x) ≡ 2ξ(1− x), (1)

and better normalized for us than Riemann’s ξ-function: 2ξ(0) = 2ξ(1) = 1.
The symmetry in (1) makes us also denote x = 1

2
+ t + iT (t, T real).

• {ρ} : the set of zeros of ξ (the nontrivial zeros of ζ or Riemann zeros,
counted with multiplicities if any); this set has the symmetry axes R and
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L
def
= {Re x = 1

2
} (the critical line), it lies in the critical strip {0 < Re x < 1},

and its ordinate-counting function N(T )
def
= #{ρ | 0 ≤ Im ρ ≤ T} has the

Riemann–von Mangoldt asymptotic form

N(T ) =
T

2π

(
log

T

2π
− 1

)
+O(logT ), T → +∞ ; (2)

infinite summations over zeros are to be ordered symmetrically, as

∑

ρ

def
= lim

T→∞

∑

| Im ρ|≤T

. (3)

• The Riemann Hypothesis (RH): for all Riemann zeros, Re ρ ≡ 1
2
. [26]

This remains a major open problem. Up to bounded heights | Im ρ| < T0

on the other hand, Re ρ ≡ 1
2
has been systematically confirmed (by direct

checking), with T0 having currently reached the value [15]

T0 ≈ 2.4 · 1012 (as of 2004). (4)

Our goal is to present a novel type of explicit sequential criteria for RH, and
to see how these might work to test RH further (i.e., beyond T0).

We will dub ρ′ any zeros for which we assume Re ρ′ > 1
2
(violating RH).

• k!! : the double factorial, used here for odd integers k only, in which case

k!!
def
= k(k − 2) · · · 1 for odd k > 0,
def
= 2(k+1)/2 Γ(1

2
k + 1)/

√
π for odd k ≷ 0 (e.g., (−1)!! = 1). (5)

• B2m : Bernoulli numbers (m = 0, 1, 2, . . .); γ : Euler’s constant.

1.1 The Keiper and Li coefficients

In 1992 Keiper [18] considered a real sequence {λn} of generating function

ϕ(z)
def
= log 2ξ(M(z)) ≡

∞∑

n=1

λK
n zn, M(z)

def
=

1

1− z
, (6)

(we write λK
n for Keiper’s λn), deduced that

λK
n ≡ n−1

∑

ρ

[1− (1− 1/ρ)n], (7)
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and that RH ⇒ λK
n > 0 (∀n), then asserted (without proof nor elaboration):

“if we assume the Riemann hypothesis, and further that the zeros are very

evenly distributed, we can show that λm ≈ logm
2 − log(2π) + 1− γ

2 .” I.e.,

λK
m ≈ 1

2
logm+ c, c = 1

2
(γ − log 2π − 1) ≈ −1.130330700754 . (8)

The conformal mapping M : z 7→ x in (6) pulls back each zero ρ to

zρ
def
= M−1(ρ) = 1− 1/ρ, (9)

and the critical line L to the unit circle {|z| = 1}, ensuring that (Fig. 1):

RH ⇐⇒ |zρ| ≡ 1 (∀ρ) ⇐⇒ ϕ is regular in the full disk {|z| < 1}. (10)

In 1997 Li [20] independently introduced another sequence {λn}, through

λL
n =

1

(n− 1)!

dn

dxn
[xn−1 log 2ξ(x)]x=1, n = 1, 2, . . . , (11)

(we write λL
n for Li’s λn), deduced that

λL
n ≡

∑

ρ

[1− (1− 1/ρ)n], (12)

and proved the sharp equivalence (Li’s criterion):

RH ⇐⇒ λL
n > 0 for all n. (13)

As seen for instance by comparing (7) vs (12),

λL
n ≡ nλK

n for all n = 1, 2, . . . ; (14)

our superscripts K vs L will disambiguate λn whenever the factor n matters.

1.2 Probing RH through the Keiper–Li constants λn

Li’s criterion (13) makes it clear that the Keiper–Li sequence is RH-sensitive:
does it then provide new and more efficient ways to test RH?

3



Known results actually entail that, beyond the present frontier (4), the
sequence {λn} may effectively probe RH only in its tail n ≫ 1 and via its
asymptotic form for n → ∞.

In 2000 Oesterlé proved (but left unpublished) that [25, prop. 2][5, § 2.3]

Re ρ = 1
2
for all zeros with | Im ρ| ≤ T0 =⇒ λn ≥ 0 for all n ≤ T 2

0 , (15)

and that under RH, [25, § 2]

λL
n = n(1

2
log n+ c) + o(n)n→∞ with c = 1

2
(γ − log 2π − 1), (16)

which concurs with Keiper’s formula (8) but now assuming RH alone.
In 2004 Maślanka [21][22] computed a few thousand λL

n-values numerically
and inferred asymptotic conjectures on them for the case RH true.

In 2004–2006, inspired by the latter (but unaware of [25]), we used the
saddle-point method to draw an asymptotic criterion for RH: [31] as n → ∞,

• RH false: λL
n ∼ −

∑

Re ρ′> 1

2

z−n
ρ′ (mod o(r−n) ∀r < 1) (17)

(exponentially growing oscillations with both signs);1

• RH true: λL
n ∼ n(1

2
log n+ c) (mod o(n)) (18)

(implying asymptotic positivity).

Note: the remainder term o(n) in (16) got improved to O(
√
n log n) by

Lagarias [19] (2007), and to nyn with {yn} ∈ ℓ2 by Arias de Reyna [1] (2011).

Hence, even with the (fixed) sequence {λn}, violations of RH will get
increasingly harder to track as the floor height T0 (currently (4)) gets higher.

First, Li’s sign test (13) is, by (15), inactive up to n = T 2
0 (≈ 5 · 1024

today) at least. As for the asymptotic alternative (17)–(18): if a zero ρ′ =
1
2
+ t+iT violates RH then |T | ≥ T0 ≫ 1, and the effect z−n

ρ′ in (17) becomes
detectable against the background (18) only for n & T 2/|t|. [32] Now in the
z variable, that RH-violation is measured by δ|z| = |zρ′ | − 1 (Fig. 1 right);
but δ|z|/|z| ≈ |t|/T 2 as |T | ≫ 1, therefore n & T 2/|t| means n |δ log |z|| & 1

1Erratum: in [31][32] we missed the overall (−) sign (with no effect on our conclusions),
which we rectified in [33].

4



which is no less than the uncertainty principle, as (i log z) and n are Fourier-
conjugate variables in (6). Then, as that principle is universal, n & T 2/|t|
will bound any detection of ρ′ through λn. With |t| < 1

2
, the best possible

sensitivity domain of {λn} to RH is, finally,

n & 2T 2
0 , currently implying n & 1025. (19)

It is then no surprise that published λn-plots (having n . 7000) solely reflect
the RH-true pattern (18) (already from n ≈ 30). [18][21]

So, whether one would take (13) or (17)–(18) to track violations of RH,
the Keiper–Li sequence {λn} only matters in its asymptotic tail {n ≫ 1},
where the alternative (17)–(18) rules (and enacts Li’s sign property as well).

At the same time, the λn are quite elusive analytically [7][9]. Numerically
too, (see Maślanka [21][22] and Coffey [8]) their evaluation requires a recursive
machinery, of intricacy blowing up with n; [22, fig. 6] moreover reports a loss
of ca. 0.2 decimal place of precision per step n (when working ex nihilo -
i.e., using no Riemann zeros in input); only λn-values up to n ≈ 4000 were
thus accessed until recently, with n = 105 attained by Johansson [17, § 4.2]
(who states a loss of 1 bit ≈ 0.3 decimal place per step n). Even then, the
range (19) needed for new tests of RH stays out of reach, motivating quests
for more accessible sequences.

But first, as the asymptotic sensitivity to RH is the main property we
will prove to generalize, we review its mechanism for {λn} itself.

1

z

zρ′

−1 0

Im

M

0 1/2 1

xIm

L

ρ′

ρzM−1

Re x Re z

ρ

T

θ C

θ

Figure 1: Riemann zeros (•) depicted schematically in the x (left) and z (right)
upper half-planes (at mock locations, including a putative pair off the critical
line L). Symmetrical lower half-planes, and the zeros therein, are implied. In the
z-plane (right), we also plot the contour deformation used by Darboux’s method
upon the integral (21) for n → ∞.
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1.3 Asymptotic analysis of {λn} (to be generalized)

The forthcoming derivation of the large-n alternative (17)–(18) for λn readily
settles the RH-false case (17), then needs one more step for the RH-true
formula (18). (In [31] we obtained both cases in parallel by the saddle-point
method used on a single integral, but this approach does not yet extend.)

Within the broader setting of large-order asymptotics, we basically follow
the classic Darboux’s idea [12, § 7.2]: for a sequence like (6), the n → ∞
form is ruled by the radius of convergence of its generating function ϕ(z), by
use of the integral formula (equivalent to (6) by the residue theorem)

λK
n =

1

2πi

∮

C

dz

zn+1
ϕ(z), ϕ(z) ≡ log 2ξ

( 1

1− z

)
, (20)

where C is a positive contour close to z = 0 leaving all other singularities
(namely, those of ϕ(z)) outside.

1.3.1 Darboux’s method does the RH false case

Solely for this stage, it is worth integrating (20) by parts first, to

λL
n = (2πi)−1

∮

C

z−nϕ′(z) dz : (21)

ϕ′, a meromorphic function, will be simpler to use than the multiply-valued ϕ.
Since the integrand in (21) has the large-n form eΦn(z) where Φn tends to

∞ with n (Φn(z) ∼ −n log z), we may use the steepest-descent method [13,
§ 2.5] to deform the contour C toward decreasing Re (−n log z), i.e., as a circle
of radius r growing toward 1 (Fig. 1 right); then, by the residue theorem, each
singularity of ϕ′ swept in turn, namely a simple pole zρ′ per RH-violating
zero ρ′ on the {Re x > 1

2
} side, yields an asymptotic contribution (−z−n

ρ′ ) in
descending order, and these altogether add up to (17). [31]

If now RH is true, then as the radius of the contour attains r = 1−, (17)
reaches no better than λL

n = o(r−n) (∀r < 1); only a finer analysis of the
limiting integral at r = 1− pins down an asymptotic form for λn, see next.

1.3.2 Oesterlé’s argument for the RH true case [25]

(reworded by us). Its starting point will be the real-integral form (22) be-
low, which comes from letting the contour in (20) go up to {|z| = 1−}
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(unobstructed, under RH true), making the change of variable z = eiθ, and
reducing to an integral over real θ : [25][31]

λK
n = 2

∫ π

0

sin nθ N(1
2
cot(1

2
θ)) dθ. (22)

Now, θ real ⇐⇒ M(z) = 1
2
+ iT with real T ≡ 1

2
cot 1

2
θ, so θ is also

the angle subtended by the real vector (
−→
01) from the point 1

2
+ iT (Fig. 1

left); the counting function condenses to the critical line: N(T ) ≡ #{ρ ∈
[1
2
, 1
2
+iT ]}. An alternative validation of (22) is that its (Stieltjes) integral by

parts n−1
∫ π

0
2(1− cos nθ) dN at once yields the sum formula (7) under RH.

The n → ∞ form mod o(1) of (22) now directly stems from the Riemann–
von Mangoldt formula (2), N(T ) = T

2π
(log T

2π
− 1) +O(log T )T→+∞ :

1) O(log T ) is integrable in θ up to θ = 0, hence the Riemann–Lebesgue
lemma says that its integral against sinnθ in (22) is o(1), i.e., negligible;

2) we change to the variable Θn ≡ nθ; then, change the resulting upper
integration bound nπ to +∞ and use T ∼ 1/θ = n/Θn, all mod o(1), to get

λK
n ∼

∫ ∞

0

2 sinΘn
n

2πΘn

[
log

n

2πΘn

− 1
]dΘn

n
(mod o(1)). (23)

This finally reduces, by the classic formulae
∫∞

0
sin Θ dΘ/Θ = π/2 and∫∞

0
sinΘ logΘdΘ/Θ = −πγ/2 [16, eqs. (3.721(1)) and (4.421(1))], to

λK
n = 1

2
log n+ c+ o(1) (under RH true), (24)

amounting to (16). �

2 An explicit variant to the sequence {λK
n }

Given those difficulties with the original sequence {λn} (§ 1.2), we propose
to deform it (specifically, Keiper’s form (6)) into a simpler one, still RH-
sensitive but of elementary closed form.

While the original specification (6) for λn looks rigid, this is due to an
extraneous assumption implied on the mapping M : that the x-plane image

x0
def
= M(z = 0) has to be the pole of ζ , i.e., x0 ≡ 1. Indeed, (6) at once

builds {λn} upon the germ of log 2ξ(x) at x0 = M(0) (“basepoint” for {λn}),
and fixes M(0) ≡ 1 but this imposition is only optional. To wit, (6) with
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other conformal mappings M̃ 6= M gives RH-sensitivity just as well: the key
condition is (10), fulfilled if M̃−1({ρ}∩L) ⊂ {|z| = 1}, and this nowhere binds

the basepoint x0 (now: M̃(0)). Prime such examples are all M̃ = M ◦ Hz̃,
where Hz̃ conformally maps the unit disk onto itself as

z 7→ Hz̃(z)
def
= (z − z̃)/(1− z̃∗z) (Möbius transformation); (25)

these M̃ , for which x0 = (1 + z̃)−1, yield parametric coefficients λn(x0) in
terms of the derivatives (log ξ)(m)(x0); those are in fact Sekatskii’s [27] “gen-
eralized Li’s sums” kn,a with x0 ≡ (1−a) ∈ R\{1

2
}. Independently, different

(double-valued) conformal mappings M̃ yield “centered” λ0
n of basepoint pre-

cisely x0 =
1
2
, the symmetry center for ξ(x) ([33, § 3.4], and Appendix).

But to attain truly simpler and explicit results, neither of those alter-
ations goes far enough. As a further step, rather than depending on a single
basepoint (except, in a loose sense, x0 = ∞ ?), we will crucially discretize
the derivatives of log ξ within the original λn into selected finite differences
(and likewise in the Appendix for our centered λ0

n).

2.1 Construction of a new sequence {Λn}
The λn are qusite elusive as they involve derivatives of log 2ξ (and worse, of
growing order), cf. (11). On the integral form (20), that clearly ties to the
denominator zn+1 having its zeros degenerate (all at z = 0, see fig. 2 left).

1

z

zρ′

−1

Im

C

z

zρ′

−1

Im

C

0 zRe Re z1

Figure 2: As Fig. 1 right, but now showing the multiple pole z = 0 (left plot)
split into simple ones (right plot) without disrupting the large-n analysis of § 1.3.

Now at given n, if we split those zeros apart as 0, z1, . . . , zn (all distinct,
and still inside the contour: fig. 2 right), then by the residue theorem, (20)
will simplify to a linear combination of the ϕ(zm), i.e., a finite difference.
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Doing so by plain shifts of the factors z 7→ z − zm would also split their unit
disks apart, and thus ruin the setting of § 1.3 for asymptotic RH-sensitivity.
So to fix {|z| = 1}, we again use hyperbolic translations (25), but now a
different one upon each factor : z 7→ Hzm(z), instead of a common one on all
of zn+1 as done formerly (which left log 2ξ differentiated, only elsewhere).

The origin z = 0 has then lost all special status, hence so does the par-
ticular mapping M (selected to make z = 0 the preimage of the pole x = 1);
then the variable x, natural for the ζ-function, is also the simplest to use
here. Rewritten in the variable x, (20) reads as

λK
n =

1

2πi

∮
dx

x(x− 1)

( x

x− 1

)n

log 2ξ(x) (integrated around x = 1), (26)

and the deformations just introduced have the form

1

2πi

∮

Cn

dx

x(x− 1)

1

hx1
(x) . . . hxn

(x)
log 2ξ(x), hx̃(x) ≡

x̃∗

x̃

x− x̃

x+ x̃∗ − 1
, (27)

where the contour Cn encircles the set {1, x1, . . . , xn} positively (and may as
well depend on n). Then the integral in (27) readily evaluates to

n∑

m=1

Resx=xm
fn(x) log 2ξ(xm), fn(x)

def
=

1

x(x− 1)

1

[hx1
. . . hxn

](x)
, (28)

by the residue theorem (x = 1 contributes zero thanks to log 2ξ(1) = 0).
Now, we choose xm ≡ 2m for m = 1, 2, . . . (independently of n), to capi-

talize on the known values ζ(2m). That fixes

fn(x) =
gn(x)

x(x− 1)
(∼ 1/x2 for x → ∞), (29)

gn(x)
def
=

n∏

m=1

x+ 2m− 1

x− 2m
≡ Γ(1

2
x− n) Γ(1

2
(x+1) + n)

Γ(1
2
x) Γ(1

2
(x+1))

(30)

≡ g(x)(−1)n
Γ(1

2
(x+1) + n)

Γ(1− 1
2
x+ n)

, g(x)
def
=

√
π 2x−1

sin(πx/2) Γ(x)
(31)

(by the duplication and reflection formulae for Γ). The resulting residues are

Resx=1 fn = −(−1)n

An0
, Resx=2m fn = (−1)n+mAnm (m = 0, 1, 2, . . .),
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with

Anm = 2−2n (n+m,n−m, 2m)!

2m− 1
≡ 1

(2m−1) (n−m)!m!

Γ(n+m+1/2)

Γ(m+1/2)
, (32)

where (i, j, k)!
def
=

(i+j+k)!
i! j! k!

(multinomial coefficient).

For later use, the partial fraction decomposition itself of fn is

fn(x) = (−1)n
[ −1

An0

1

x− 1
+

n∑

m=0

(−1)mAnm

x− 2m

]
: (33)

enforcing fn(x) ∼
x→∞

1/x2 from (29) upon the right-hand side first confirms

the constant term therein to be 0 as shown, then yields two more identities:
n∑

m=0

(−1)mAnm ≡ 1

An0
, 2

n∑

m=1

(−1)mAnmm ≡ (−1)n +
1

An0
. (34)

Next, for each n we select a contour Cn that just encircles the real interval
[1, 2n] positively (to encircle the subinterval [2, 2n] would suffice, but here it
will always be beneficial to dilate, not shrink, Cn). Our final result is then

Λn
def
=

1

2πi

∮

Cn

fn(x) log 2ξ(x) dx (with fn from (29)) (35)

≡ (−1)n
n∑

m=1

(−1)mAnm log 2ξ(2m), n = 1, 2, . . . , (36)

and the latter form is fully explicit : Anm are given by (32), and

2ξ(2m) =
(−1)m+1B2m

(2m− 3)!!
(2π)m ≡ 2(−1)m+1B2m

Γ(m− 1
2
)

πm+1/2, m = 0, 1, . . . (37)

E.g., Λ1 =
3

2
log

π

3
, Λ2 =

5

24
log

[(2
5

)7311
π4

]
, Λ3 =

21

80
log

[ 525π8

23(32 · 7)11
]
.

(38)
So, we deformed Keiper’s {λK

n } by discretizing the derivatives on log 2ξ
to finite differences anchored at locations 1, {2m} where ξ has known values,
in a canonical way basically dictated by the preservation of RH-sensitivity.2

This discretized Keiper sequence {Λn} has the elementary closed form (36),
which is moreover directly computable at any n (in welcome contrast to the
original λn, which need an iterative procedure all the way up from n = 1).

2One still has the freedom to spread the xm further out by skipping some locations (2j),
(or inversely, to keep some residual degeneracy if ever this were to ease computations).
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2.2 Remarks.

1) Thanks to the second sum rule (34), the (log 2π)-contributions to (36)
from the first expression (37) can be summed, resulting in Λn ≡ 1

2
log 2π+un

with

un
def
= (−1)n

[
n∑

m=1

(−1)mAnm log
|B2m|

(2m− 3)!!
+

1

2An0

log 2π

]
: (39)

this sequence {un} is the one used in our first note [34]. Likewise, the right-
most expression (37) leads to the partially summed form

Λn ≡ 1
2
log π + (−1)n

[
n∑

m=1

(−1)mAnm log
|B2m|

Γ(m− 1
2
)

+
( 1

An0

−An0

)
log 2 +

( 1

An0

−An0

2

)
log π

]
, (40)

suitable for computer routines able to directly deliver (log Γ).

2) If in place of (37) we evaluate log 2ξ(2m) using (1) plus the expanded

logarithm of the Euler product: log ζ(x) ≡
∑

p prime

∞∑
r=1

p−rx

r
, then (36) gives

an arithmetic form for Λn, like Bombieri–Lagarias’s Thm 2 for λL
n. [7, § 3]

3) Báez-Duarte [2] has an equally explicit sequential criterion for RH in terms
of the B2m, but in which the critical threshold is inordinately large, n & eπT0

[23, § 4] ([14, § 7] quotes n & 10600,000,000); for our Λn the analogous n-value
will prove considerably lower (§ 4.2).
4) The whole scheme will be extended from the Riemann zeta function ζ
to certain Dirichlet L-functions in § 3.5, then to some linear combinations
thereof, specifically the Davenport–Heilbronn functions, in § 4.4.

2.3 Expression of Λn in terms of the Riemann zeros

Let the primitive Fn of the function fn in (29), (33) be defined by

Fn(x)
def
=

∫ x

∞

fn(y) dy (⇒ Fn(x) ∼ −1/x for x → ∞)

≡ (−1)n
[
− 1

An0

log(x− 1) +
n∑

m=0

(−1)mAnm log(x− 2m)
]

(41)
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and by single-valuedness in the whole x-plane minus the cut [0, 2n] : e.g.,
F1(x) =

1
2
log [x(x− 2)3/(x− 1)4].

Then in terms of (41), the Λn are expressible by summations over the
zeros (which converge like

∑
ρ 1/ρ for any n, hence need the rule (3)):

Λn ≡
∑

ρ

Fn(ρ), n = 1, 2, . . . . (42)

(In the original λK
n , (26) uses [x/(x−1)]n in place of gn(x), which exceptionally

yields rational functions n−1[1− (1− 1/(1− x))n] in place of the Fn(x), for
which (42) restores (7).)

x0 1/2 2n

Im x

CC’n

L

n

ρ′

ρ

21 Re

Figure 3: As Fig. 1 left, but superposing the deformation of the integration path
for the integral (43) in which the function ξ′/ξ has the Riemann zeros as simple
poles. A symmetrical lower half-plane is implied.

Proof of (42) (outlined, see fig. 3): first stretch the contour Cn in (35) to
C′
n fully enclosing the cut [0, 2n] of Fn (as allowed by log 2ξ(0) = 0). Since

Fn is single-valued on C′
n, the so modified (35) can be integrated by parts,

Λn
def
= − 1

2πi

∮

C′

n

Fn(x)

[
ξ′

ξ

]
(x) dx, (43)

then the contour C′
n can be further deformed into a sum of an outer anti-

clockwise circle CR centered at 1
2
of radius R → ∞ (not drawn), and of small

clockwise circles around the poles of the meromorphic function ξ′/ξ inside CR;
these poles are the Riemann zeros ρ therein, and each contributes Fn(ρ). By
the Functional Equation (1), the integral on CR is also

∮
CR
〈Fn(x)〉 [ ξ

′

ξ
](x)dx,

where 〈Fn(x)〉 def
= 1

2
[Fn(x) + Fn(1−x)] = O(1/x2); then this integral tends

12



to 0 if R → ∞ while keeping at a distance from ordinates of Riemann zeros
in a classic fashion (so that |ζ ′/ζ |(r+ iR) < K log2R for all r ∈ [−1,+2], cf.
[10, p. 108]), hence (42) results. �

3 Resulting new sequential criterion for RH

Like the elusive Keiper–Li sequence, the fully explicit one {Λn} proves RH-
sensitive (just slightly differently). The argument will use the function

Φ(X)
def
= X log

(
1− 1

X2

)
+ log

X + 1

X − 1
≡

∫ X

∞

log
(
1− 1

Y 2

)
dY on C \ [−1, 1].

(44)

3.1 Asymptotic criterion

Our main result is an asymptotic sensitivity to RH as n → ∞, through this
alternative for {Λn} which parallels (17)–(18) for {λn} :

• RH false: Λn ∼
∑

ρ′− 1

2
∈ 2nDR0

Fn(ρ
′) (mod o(Rn) ∀R > R0 > 1), (45)

where DR0

def
= {X ∈ C | Re Φ(X) > logR0}
⊂ {Re X > 0}, so the sum (45) is a truncation of

∑

Re ρ′> 1

2

,

and Fn(ρ
′) ∼ g(ρ′)

ρ′(ρ′ − 1)
(−1)n

nρ′− 1

2

log n
(n → ∞) for each given ρ′ (46)

(giving a power-like growing oscillation about 0, cf. (31));

• RH true: Λn ∼ log n+ C, C = 1
2
(γ−log π−1) ≈ −0.783757110474; (47)

(implying asymptotic positivity);

a comparison with (24) yields C ≡ c + 1
2
log 2, which testifies to a preserved

kinship of Λn to λK
n .

For the RH false case, the pair (45)–(46) is formally, in the variable logn,
an expansion in exponentials multiplied by divergent power series (i.e., a
transseries), to be interpreted with caveats as detailed in § 3.2.

The derivation scheme will transpose the arguments of § 1.3 to Λn ex-
pressed in an integral form and now in the x-plane: either (35) (using the

13



function gn(x)) in place of (20), or its integral by parts (43) (using Fn(x)) in
place of (21). Two new problems arise here: the large-n forms of gn(x) and
Fn(x) need to be worked out, and the geometry of the integrands is strongly
n-dependent hence the relative scales of n and x will matter.

- If we need uniform asymptotics in the integrands we must rescale the
geometry as, for instance, x = 1

2
+2nX : this condenses the singularities onto

the fixed X-segment [0, 1] as n → ∞. The Stirling formula applied to the
ratio of Γ functions in (30) then yields

gn(
1
2
+ 2nX) ∼

(X + 1

X − 1

)1/4

enΦ(X) for n → ∞, (48)

with the function Φ(X) from (44).

Next, integrating for Fn(x) =

∫ x

∞

gn(y)

y(y − 1)
dy, with y = 1

2
+ 2nY yields

Fn(
1
2
+ 2nX) ∼ 1

2n

∫ X

∞

dY

Y 2

(Y + 1

Y − 1

)1/4

enΦ(Y ), (49)

which is a Laplace transform in the integration variable Φ, hence it has an
asymptotic power series in (1/n) (usually divergent) starting as [13, eq. 2.2(2)]

Fn(
1
2
+ 2nX) ∼ 1

2n

1

X2

(X + 1

X − 1

)1/4 enΦ(X)

nΦ′(X)

=
1

2n2

1

X2

(X + 1

X − 1

)1/4 enΦ(X)

log(1− 1/X2)
(50)

- Whereas if we let n → ∞ at fixed x, (31) at once implies

gn(x) ∼ g(x)(−1)nnx−1/2 ∼ g(x)(−1)n elogn (x−1/2) . (51)

Here (log n) occupies the place of n as large parameter, and the same Laplace

argument for the integral Fn(x) =

∫ x

∞

gn(y)

y(y − 1)
dy now yields an asymptotic

series in powers of (1/ logn) (usually divergent), starting as

Fn(x) ∼
g(x)

x(x− 1)
(−1)n

nx−1/2

log n
. (52)

14



3.2 Details for the case RH false

As in § 1.3.1, we can apply the steepest-descent method to the integral (43)
written in the global variable X . We rescale the contour C′

n then deform it
toward level contours Re Φ(X) = Φ0 → 0+ : these approach the completed
critical line in the X-plane, {Re X = 0} ∪ {∞}, from the {Re X > 0} side
(fig. 4). Apart from staying on this side (and being rescaled to the X-plane),
the contour deformation is isotopic to that used in § 2.3, hence it likewise
yields a contribution Fn(ρ

′) per RH-violating zero ρ′ whose rescaled image
Xρ′ ≡ (ρ′ − 1

2
)/(2n) has Re Φ(Xρ′) > Φ0 > 0; i.e., overall,

∑

Re Φ(Xρ′ )>Φ0

Fn(ρ
′).

(The novelty vs (42) is that now the terms come asymptotically ordered.)
For X → ∞, Φ(X) ∼ 1/X , hence the level curves asymptotically become
{Re (1/X) = Φ0} (circles tangent to the imaginary X-axis at 0). Thus the
above sum over zeros has a natural cutoff | Im ρ′| .

√
n/Φ0, which is the

height above which the disk {Re (1/X) > Φ0} parts from the critical strip.

ρ

0 1/2 2n

Im

CC’n n

ρ′

21 Re x

x L

(from fig. 3)

Figure 4: (at right) as fig. 3 but using the global variable X
def
= (x − 1

2)/(2n)
in the integral (43) (fig. 3 now fills the rectangle R). Mathematica [35] con-
tour plots for Φ(X) of (44): in black, deformed integration contours (level curves
{Re Φ(X) = Φ0}, Φ0 ↓ 0+); in gray, steepest-descent lines (level curves of Im Φ).

When zooming in to the n → ∞, fixed-x regime, then by (52) the level
curves turn to parallel lines {Re x− 1

2
= t0}, and the deformation to t0 → 0+

15



(fig. 4 left). Only a portion of contour C′
n∩{Re x− 1

2
< ε} escapes the defor-

mation, but by (52) its contribution to the integral (43) is O(nε), ultimately
negligible. Therefore, Λn (mod o(Rn) ∀R > eΦ0) equals the above sum∑

ρ′ Fn(ρ
′), which proves (45) under the replacement R0 = eΦ0 .

This fixed-x regime actually governs each individual term of the sum
(45), since any given zero lives at fixed x: thus, setting x = ρ′ in (52)
directly yields the asymptotic form (46) which is explicit including the n-
dependence, unlike the Fn(ρ

′) for n → ∞. Now the sum (45) as a whole
cannot be reexpressed that way, because (46) is not uniform in x; and indeed,
a closed asymptotic form for Λn is out of reach: just as for λn in § 1.3.2 it
would encode the asymptotic distribution of the Riemann zeros, but this
stays fundamentally undetermined (because truly 2-dimensional) if RH is
false. Still, (46) correctly specifies the contribution to Λn from any single
RH-violating zero ρ′ ≡ 1

2
+ t+ iT (t > 0): i.e., a term cycling around zero of

amplitude growing with n as

|Fn(ρ
′)| ≈ 1

T 2 logn

( 2n

|T |
)t

for n ≫ |T | (53)

(upon using |g(ρ′)| ≈ (2/|T |)t for |T | > T0 ≫ 1).

If now RH is true then, as Φ0 attains 0+, (45) reaches no better than
Λn = o(Rn) (∀R > 1), and only a finer analysis of the limiting integral on
the critical line L will lead to a definite asymptotic form, as follows.

3.3 Details for the case RH true

Here our quickest path is to adapt Oesterlé’s argument from §1.3.2.
To deform {λn} to {Λn}, we replaced

( x

x− 1

)n

in (26) by gn(x) from (30).

That changes (22) to

Λn =

∫ π

0

2 sinΘn(θ) N(1
2
cot(1

2
θ)) dθ , (54)

where Θn ∈ (0, nπ] (previously for λn : Θn ≡ nθ) is now the sum of the
n angles subtended by the real vectors (

−−−−−−−→
1− 2m, 2m) from the point 1

2
+ iT ,

for m = 1, 2, . . . , n. The two endpoint slopes of the function Θn(θ) will then
play the main (independent) roles:

Θ′
n(0) =

n∑

m=1

(4m− 1) ≡ n(2n+ 1), (55)
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Θ′
n(π) =

n∑

m=1

(4m− 1)−1 ≡ 1
4
[(Γ′/Γ)(n+ 3

4
) + γ + 3 log 2− π/2]. (56)

We then follow the same steps as with λK
n in § 1.3.2.

1)
∫ π

0
2 sinΘn(θ) δN(1

2
cot(1

2
θ)) dθ = o(1) if a nonstationary-phase princi-

ple applies for the oscillatory function sinΘn(θ), i.e., the minimum slope of
Θn(θ) (θ ∈ [0, π]) must go to ∞ with n: previously (with Θn ≡ nθ) that slope
was n, now it is Θ′

n(π) ∼ 1
4
log n which still diverges for n → ∞ therefore

gives that o(1) bound (but due to Θ′
n(π) ≪ n, this o(1) might decay much

more slowly than the corresponding o(1) for λK
n ).

2) In this step (i.e., T → +∞), only θ → 0 behaviors enter; here
Θn(θ) ∼ Θ′

n(0) θ, vs nθ previously, so it suffices to substitute Θ′
n(0) for n

in the asymptotic result (24) for λK
n , to get

Λn ∼ 1
2
logΘ′

n(0) + c = 1
2
log[n(2n+ 1)] + c ∼ log n+ (c+ 1

2
log 2). (57)

�

3.4 Asymptotic or full-fledged Li’s criterion for {Λn}?
(a heuristic parenthesis).

A full Li’s crterion for the new sequence {Λn} would read as

RH ⇐⇒ Λn > 0 for all n (unproven)

but anyway, such a forcible inclusion of all n is not vital in our focus on
RH-sensitivity: already for the λn, only the n ≫ 1 region counted (§ 1.2);
and likewise, our criterion (45)–(47) entails Λn > 0 asymptotically if and only
if RH holds (fig. 9 will illustrate that on a counterexample to RH).

As for low n, Λn > 0 will prove numerically manifest there (see § 4.1).
All those observations make us conjecture that Li’s criterion fully holds

for the sequence {Λn} as well (but appears harder to prove than for {λn}).

3.5 Generalized-RH asymptotic alternative

All previous developments carry over from ζ(x) to Dirichlet L-functions,
which have the form (using the Hurwitz zeta function ζ(x, w))

Lχ(x)
def
=

∞∑

k=1

χ(k)

kx
≡ d−x

d∑

k=1

χ(k) ζ(x, k/d), (58)
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where χ is a special type of d-periodic function on Z (d > 1): a real primitive
Dirichlet character (which then has a definite parity, even or odd). [10,
chaps. 5–6] Such Lχ(x) have very close properties to Riemann’s ζ(x) :

• Functional equations: [10, chap. 9]

ξχ(x)
def
= (π/d)−x/2Γ(1

2
(x+b))Lχ(x) ≡ ξχ(1− x), b =

{
0 (χ even)
1 (χ odd)

. (59)

• Explicit values at integers, in terms of Bernoulli polynomials: by the clas-
sic identities (ℓ + 1) ζ(−ℓ, a) = −Bℓ+1(a) (ℓ = 0, 1, 2, . . .), (58) makes Lχ(x)
explicit at all x = −ℓ; the functional equation (59) then converts that to
explicit values for Lχ (and ξχ) at all even, resp. odd, positive integers ac-
cording to the even, resp. odd parity of χ. And Lχ(1) (hence ξχ(1)) is
explicitly computable also for even parity. [10, chap. 1][32, eq.(10.70)]

• Generalized Riemann Hypothesis (GRH): all zeros ρ of ξχ have Re ρ = 1
2
.

• A Keiper–Li sequence λχ,n exists for ξχ in full similarity to the case of
Riemann’s ξ. For GRH, the only change in our asymptotic alternative (17)–
(18) affects the constant c in (18) or (24) due to the replacement, in the
asymptotics of the counting function N(T ) as used in § 1.3.2, of the term
log(T/ 2π) by log(Td/ 2π), [10, chap. 16] which results in

GRH true: λK
χ,n ∼ 1

2
log n+ cd (mod o(1)), cd = c+ 1

2
log d. (60)

Then as before, the definition of {λK
χ,n} can be discretized to yield an

explicit sequence {Λχ,n} involving finite differences of elementary log ξχ-
values. For even χ, everything stays as in § 2.1 (where even parity is implied
throughout), hence Λχ,n are given by (36) with 2 ξ(2m) simply replaced by
1

ξχ(1)
ξχ(2m). For odd χ on the other hand, the points xm have to be relo-

cated from 2m to 2m+ 1, resulting in these main changes:

[(31) →] goddn (x)
def
=

n∏

m=1

x+ 2m

x− 2m− 1
≡ godd(x)(−1)n

Γ(1
2
x+ 1 + n)

Γ(1
2
(3−x)+n)

,

godd(x)
def
=

−√
π 2x−1

cos(πx/2) Γ(x)
, (61)

[(32) →] Aodd
nm = 2−2n(n+m,n−m, 2m+ 1)! /(2m+ 1), (62)
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[(41) →] F odd
n (x) = (−1)n

[ −1

Aodd
n0

log x+
n∑

m=0

(−1)mAodd
nm log(x−2m−1)

]
, (63)

[(36) →] Λχ,n ≡ (−1)n
n∑

m=1

(−1)mAodd
nm log

[ 1

ξχ(1)
ξχ(2m+1)

]
(χ odd). (64)

All in all, the asymptotic alternative (45)–(47) generalizes to one depending
on χ, via its parity on the “false” side, and period d on the “true” side:

• GRH false: Λχ,n ∼
∑

ρ′− 1

2
∈ 2nDR0

F#
n (ρ′) (mod o(Rn) ∀R > R0 > 1) (65)

and, for each given GRH-violating zero ρ′,

F#
n (ρ′) ∼ g#(ρ′)

ρ′(ρ′ − 1)
(−1)n

nρ′− 1

2

logn
(n → ∞), (66)

with (F#
n , g#)

def
=

{
(Fn, g) for χ even, cf. (41), (31)

(F odd
n , godd) for χ odd, cf. (63), (61)

; (67)

• GRH true: Λχ,n ∼ log n+ Cd (mod o(1)), Cd = C + 1
2
log d (68)

(≡ cd +
1
2
log 2), cf. (47), (60).

4 Quantitative aspects

We now discuss how the discretized Keiper sequence {Λn} vs the Keiper–Li
{λn} might serve as a practical probe for RH in a complementary perspective
to standard tests. (To rigorously (dis)prove RH using {Λn} is also a prospect
in theory, but we have not worked on that.)

4.1 Numerical data in the Riemann case

Low-n calculations of Λn (fig. 5) agree very early with the RH-true behavior

(here, (47)), just as was the case for λn [18][21]. The remainder term δΛn
def
=

Λn − (log n + C) looks compatible with an o(1) bound (fig. 6), albeit less
neatly than the analogous δλK

n [18, fig. 1][21, fig. 6b], (note: even Keiper [18]
plotted δλL

n = n δλK
n ). For the record,

Λ1 ≈ 0.069176395771, Λ2 ≈ 0.22745427267, Λ3 ≈ 0.45671413349; (cf. (38))

n = 2000 : Λn ≈ 6.815360445451163 (δΛn ≈ −0.0017849),
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Figure 5: The coefficients Λn computed by (36) up to n = 4000, on a logarithmic
n-scale (straight line: the RH-true form (log n+ C) of (47)).

n = 10000 : Λn ≈ 8.428662659671506 (δΛn ≈ +0.0020794),

n = 20000 : Λn ≈ 9.119244876955247 (δΛn ≈ −0.000485565), (69)

n = 100000 : Λn ≈ 10.729678153023 (δΛn ≈ +0.0005097985),

n = 200000 : Λn ≈ 11.42244991847 (δΛn ≈ +0.0001343834)

n = 500000 : Λn ≈ 12.33812102688 (δΛn ≈ −0.0004852401)

(n > 20000 samples: courtesy of G. Misguich, [24] see § 4.5).
The main oscillation in (−1)nδΛn (fig. 6) must come from Fn(ρ1) in (42)

for the lowest Riemann zero ρ1 : the (logn)-period agrees with 2π/ Im ρ1
(per the asymptotic form (52)), as 2π/14.1347 ≈ 0.44 .

4.2 Imprints of putative zeros violating RH

RH-violating zeros ρ′ (if any) seem to enter the picture just as for the λn:
their contributions (46) will asymptotically dominate log n, but numerically
they will emerge and take over extremely late. Indeed for such a zero ρ′ =
1
2
+ t + iT , with 0 < t < 1

2
and T & 2.4 · 1012 [15], its contribution scales like

T−2(2n/T )t/ logn in modulus, by (53). We then get its crossover threshold
(in order of magnitude, neglecting logarithms and constants against powers)
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Figure 6: The remainder sequence δΛn = Λn−(log n+C) (in gray: the connecting
segments are drawn as visual cues only), and a rectified form (−1)nδΛn (black dots)
to cancel the period-2 oscillations.

by solving

T−2(n/T )t ≈ 1 (70)

=⇒ n & T 1+2/t (best case: O(T 5+0) for t = 1
2
− 0). (71)

This is worse than (19) for λn, all the more if Λn < 0 were sought (the right-
hand side of (70) should then be log2 n). There is however room for possible
improvement: the core problem is to filter out a weak ρ′-signal from the given
background (47), therefore any predictable structure in the latter is liable to
boost the gain. For instance, the hyperfine structure of δΛn is oscillatory of
period 2 (fig. 6); this suggests to average over that period, which empirically
discloses a rather neat (1/n)-decay trend (fig. 7):

δΛn
def
= 1

2
(δΛn + δΛn−1) ≈ 0.25/n. (72)

The same operation on a ρ′-signal Fn(ρ
′) in (45) roughly applies 1

2
(d/dn) to

the factor nT therein (again neglecting t ≪ T and log n), i.e., multiplies it
by 1

2
(T/n). Thus heuristically, i.e., conjecturing the truth of (72) for n → ∞

under RH, the crossover condition improves from (70) to

(T/n) T−2(n/T )t ≈ δΛn ≈ 1/n

=⇒ n & T 1+1/t (best case: O(T 3+0) for t = 1
2
− 0). (73)
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Figure 7: The averaged remainder sequence (72) rescaled by n, namely: n δΛn .
(Some further values: 0.27027 for n = 10000, 0.23970 for n = 20000, 0.2559 for
n = 100000, 0.2683 for n = 200000, 0.27957 for n = 500000. [24])

We can hope that efficient signal-analysis techniques may still lower this
detection threshold. Even an empirical mindset may be acceptable there:
the {Λn} (like {λn}) should anyway work best for global coarse detection
of a possible RH-violation; this could then guide the classic algorithms [15]
(which are local) to concentrate on a smaller region, and then confirm (or
disprove) that RH-violating zero in full rigor.

4.3 The uncertainty principle for {Λn}
An absolute detection limit is however provided by the uncertainty principle,
and this has to be quantified here. Near the critical line {Re X = 0} and
for large n, Λn is an integral of the zeros’ distribution against essentially
enΦ(i Im X) (by (43), (50)), which is a distorted plane wave. To resolve t > 0
for a zero ρ′ = 1

2
+ t + iT ≡ 1

2
+ 2nX , the uncertainty principle asks its

scale (Re X = t/(2n) in the X-plane) to be at least of the order of the local
wavelength which is 1/[n log(1+1/(Im X)2)] by (44), with Im X = T/(2n) :
that means 1

2
t log(1 + 4n2/T 2) & 1 or, to a fair approximation when t < 1

2
,

n & 1
2
|T | e1/t . (74)
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Against the corresponding bound n & T 2/t for {λn} in § 1.2, at any given
t > 0 this will favor {Λn} once |T | & 1

2
t e1/t. E.g., at the current floor height

(4), the best possible n-threshold (i.e., for t = 1
2
− 0) gets improved to 1013,

from 1025 for {λn} in (19). That bound also allows for n to go well below the
detection thresholds (71), (73) - in principle: there still remains to actually
extract a putative ρ′-signal, extremely weak at such decreased n, from the
“noise” created by the many more zeros lying nearby on the critical line.

4.4 The Davenport–Heilbronn counterexamples

More tests of interest lie in the generalized setting of § 3.5 for odd parity. As
Dirichlet L-function we only tested the β-function (of period 4) and saw no
difference of behavior patterns in {Λβ,n} vs {Λn}. If we then go beyond, there
exist special periodic odd Dirichlet series that are not Dirichlet L-functions,
but obey similar functional equations and have many zeros off the critical
line L. [11][30, § 10.25][29][3][6, § 5] We may then seek a testing ground for
the RH-false branch of our asymptotic alternative (generalized, as (65)–(66)).

Specifically, for φ = 1
2
(1 +

√
5) (the golden ratio), let

τ±
def
= −φ±

√
1 + φ2 (τ+ ≈ 0.28407904384, τ− = −1/τ+ ≈ −3.52014702134);

(75)

ν±(k)
def
= {1,+τ±,−τ±,−1, 0, . . .}k=1,2,... periodically continued

(an odd function on the integers mod 5); and, similarly to (58),

f±(x)
def
=

∞∑

k=1

ν±(k)

kx
≡ 5−x{ζ(, 1

5
) + τ± [ζ(x, 2

5
)− ζ(x, 3

5
)]− ζ(x, 4

5
)}. (76)

These Davenport–Heilbronn (DH) functions f± (denoted f 1

2

in [3], f(· ; τ±)
in [6]) obey the functional equation of odd Dirichlet L-functions, namely (59)
with b = 1 and the period d = 5, up to a (±) sign: [3][6, § 5]

ξ±(x)
def
= (π/5)−x/2 Γ[1

2
(1 + x)] f±(x) ≡ ± ξ±(1− x). (77)

As in § 3.5, this makes f±, ξ± explicit at the positive odd integers:

ξ±(2m+ 1) = ∓ 2(−1)m

(2m+ 1)!!
[B2m+1(

1
5
) + τ±B2m+1(

2
5
)]
√
π (10 π)m ; (78)

e.g., ξ±(1) = ±1
5
(3 + τ±)

√
π

{
ξ+(1) ≈ 1.1641757096
ξ−(1) ≈ 0.1843873182

}
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Figure 8: As fig. 5, but for the Λ+,n of the Davenport–Heilbronn (DH) function f+
as given by (79), up to n = 1000; e.g., Λ+,1 ≈ 0.4653858106, Λ+,2 ≈ 1.063986745.
Straight line: the GRH-true form (log n+ C5) of (80).

(we also used B2m+1(1− a) ≡ −B2m+1(a)). So, in line with (64) we take

Λ±,n
def
= (−1)n

n∑

m=1

(−1)mAodd
mn log

[
1

ξ±(1)
ξ±(2m+1)

]
(79)

as explicit sequences to probe our asymptotic criterion for GRH (as (65)–(68)
with # = odd and d = 5) upon the DH functions f± respectively (as cases
with zeros off the critical line L).

Now the numerics break the formal (±)-symmetry to a surprising extent.
For ξ+, the lowest-T zero off the line L is ρ′+ ≈ 0.808517+85.699348 i. [29]

Then, for its detection through the sequence {Λ+,n}, our predicted threshold
(70) gives n ≈ T 1+2/t ≈ (85.7)7.48 ≈ 3 · 1014 : indeed, our low-n data (fig. 8)
solely reflect the GRH-true pattern (68) for d = 5,

Λ+,n ≈ log n+ C5, C5 = C + 1
2
log 5 ≈ +0.020961845743 . (80)

Whereas for ξ−, the lowest-T zero off L is ρ′− ≈ 2.30862 + 8.91836 i. [3]
(Notations therein: ξ ≡ τ+, f2 ≡ f−.) Now, not only is this zero well
detached from the next higher one (≈ 1.94374 + 18.8994 i), but above all it
gives a detection threshold n ≈ T 1+2/t ≈ (8.92)2.11 ≈ 100, extremely low!
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Figure 9: As fig. 8, but for the Λ−,n of the DH function f− (vertical scale shrunk);
e.g., Λ−,1 ≈ 1.661697636, Λ−,2 ≈ −0.3913729841 (already < 0). Straight line: the
GRH-true form (log n + C5) as in fig. 8; gray dots: the leading GRH-false form
2Re F odd

n (ρ′−) from (63), (81), with ρ′− ≈ 2.30862 + 8.91836 i.

Indeed, fig. 9 shows a neat crossover of Λ−,n from the GRH-true pattern (80)
at low n, toward the dominant GRH-false pattern (65) at higher n, namely

F odd
n (ρ′−) + F odd

n (ρ′
∗
−) ≡ 2Re F odd

n (ρ′−). (81)

Even though the form (80) is superseded by (81) asymptotically, its numerical
contribution to Λ−,n fully remains, hence to test (81) we first have to subtract
(80) from Λ−,n; then, the remainder

δΛ−,n
def
= Λ−,n − (logn+ C5) (82)

shows period-2 oscillations symmetrical about 0, so we rather plot (−1)nδΛ−,n :
now fig. 10 shows that this is very well fitted by (−1)n 2Re F odd

n (ρ′−) from
(81). In turn, (66) specifies the latter explicitly to first order in (1/ logn),
and this also reasonably fits the data (with (1/ logn) not being that small).

Thus, numerical data for the sequences {Λ±,n} support our asymptotic
alternative in full. We stress that fig. 9 models how, at some much higher n,
{Λn} itself will blow up if RH (for ζ(x)) is false. The Λ±,n also ought to be
a testing ground for any ideas to detect RH false earlier with the Λn.
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Figure 10: Asymptotics of the deviation (82) from GRH in the case of the DH
function f−. Black dots: the rectified remainder sequence (−1)nδΛ−,n. Gray dots:
the rectified asymptotic form (−1)n 2Re F odd

n (ρ′−) from (81). Dashed curve: its

large-(log n) explicit form 2Re
[

godd(ρ′
−
)

ρ′
−
(ρ′

−
−1)n

ρ′
−
−1/2

]
(log n)−1 from (61), (66).

4.5 The hitch

We now refocus on the numerical quest for {Λn} (the Riemann case), to
discuss a major issue. The (log n)-sized values Λn result from alternating
summations like (36) over terms growing much faster (exponentially) with n:
very deep cancellations must then take place, which may explain the sensitiv-
ity of Λn (to RH) but also create a computational hurdle for n ≫ 1, namely
a loss of precision growing linearly with n. For sums like (36),

∑
sm of order

comparable to unity, the slightest end accuracy requires each summand sm
to be input with a “base” precision ≈ log10 |sm| (working in decimal digits
throughout); plus uniformly adding D to reach

∑
sm accurate to D digits.

We can tune the required precision in (36) for each m-value at large
given n by using the Stirling formula, to find that m∗ ≈ n/

√
2 is where

|sm| is largest and the required base precision log10 |sm| culminates, reaching
log10 |Anm∗

log 2ξ(2m∗)| ∼ log10(3 + 2
√
2)n ≈ 0.76555n digits, see fig. 11

(vs (0.2 to 0.3)n digits for λn [22, fig. 6][17, § 4.2]). Even then, a crude
feed of (36) (or (39), (40)) into a mainstream arbitrary-precision system
(Mathematica 10 [35]) suffices to reap the Λn-values of § 4.1 effortlessly under
n ≈ 20000. Our computing times varied erratically but could go down to ca.
4 min for Λ10000, 43 min for Λ20000 using (40) (CPU times on an Intel Xeon
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Figure 11: Base decimal precisions needed for the summands of Λn in (36), as
estimated by log10 |Anm log 2ξ(2m)| which is plotted against m in axes rescaled by
1/n. Dotted curve: the case n = 200; continuous curve: the n → ∞ limiting form
̟ = −2 r log10 r+(1+r) log10(1+r)−(1−r) log10(1−r) (r = m/n). (This same
form occurs in a seemingly unrelated number-theoretical calculation. [4, § 6.3])

E5-2670 0 @ 2.6 GHz processor).
For higher n-values, G. Misguich kindly developed a much faster parallel

code (available on request), based on the multiple-precision GNU MPFR
library, [24] and ran it on a 20-core machine still @ 2.6 GHz with 256 Go of
memory. He reached CPU times ≈ 97 s for n = 20000, 5.6 h for n = 100000,
22.7 days for n = 500000 (without optimizing the precision by fig. 11; thus n
could still be raised, but not so far as to justify the much longer programming
and computing times then needed).

Now the true current challenge is to probe |T | & 2.4 · 1012 by (4), hence
to reach n & 2 · 1036 (assuming the more favorable estimate (73), 1060 oth-
erwise), which then needs a working precision & 1.6 · 1036 decimal places at
times. This need for a huge precision already burdened the original λn but
somewhat less and amidst several steeper complexities; now for the Λn, the
ill-conditioning increased while other difficulties waned. As current status,
the n-range needed for new tests of RH stays beyond reach for the Λn too.
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Still, {Λn} has assets to win over {λn} in the long run. The Λn are fully
explicit; their evaluations are recursion-free, thus very few samples (at high
enough n, for sure) might suffice to signal that RH is violated somewhere;
and the required working precision peaking at ≈ 0.766n stands as the only
stumbling block, but this is a purely logistic barrier, which might be lowered if
(36) ever grew better conditioned variants. Already, (39) needs a much lower
precision (∝ 1

2
log10 n) for log 2π as its coefficient (2An0)

−1 ∼ −1
2

√
πn grows

negligibly, compared to the Anm log(|B2m|/(2m− 3)!! : thus only the latter
simpler expressions demand the top precision, and mainly for m ≈ n/

√
2.

Further such improvements should be pursued in priority to allow for much
higher n. The slow growth of the uncertainty-principle threshold (74) is also
an aspect favoring {Λn}.

Concluding remark and acknowledgments

While other sequences sensitive to RH for large n are known [2][14], not to
mention Keiper–Li again, we are unaware of any previous case combining a
fully closed form like (36) with a practical sensitivity-threshold of tempered
growth n = O(T ν).

We are very grateful to G. Misguich (from our Institute) who wrote and
ran a special fast code for numerical calculations reaching n = 500000. [24]

Appendix: Centered variant

We sketch a treatment parallel to the main text for our Li-type sequences
using the alternative basepoint x0 =

1
2
, the center for the ξ-function [33, §3.4]

(and focusing on the Riemann zeros’ case, just for the sake of definiteness).
We recall that the Functional Equation ξ(1 − x) ≡ ξ(x) allows us, in

place of the mapping z 7→ x = (1 − z)−1 within ξ as in (6), to use the
double-valued map y 7→ xw̃(y) = 1

2
±

√
w̃ y1/2/(1 − y) (parametrized by

w̃ > 0) on the unit disk. That still maps the unit circle {|y| = 1} to the
completed critical line L∪{∞}, but now minus its interval {| Im x| < 1

2

√
w̃}.

As before, we ask all Riemann zeros on L to pull back to {|y| = 1}, which
imposes w̃ < w̃0

def
= 4minρ | Im ρ|2 ≈ 799.1618. We thus define the parametric
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sequence {λ0
n(w̃)}, for 0 < w̃ < w̃0, by

log 2ξ

(
1
2
±

√
w̃ y1/2

1− y

)
≡ log 2ξ(1

2
) +

∞∑

n=1

λ0
n(w̃)

n
yn (83)

([33, §3.4] where only the case w̃ = 1 was detailed, [28]); equivalently,

λ0
n(w̃)

n
≡ 1

2πi

∮
dy

yn+1
log 2ξ(xw̃(y)), n = 1, 2, . . . (84)

We now build an explicit variant for this sequence (84), similar to {Λn}
for {λK

n }. First, the deformations of (84) analogous to those in § 2.1 read as

1

2πi

∮
dy

Hy0(y) · · ·Hyn(y)
log 2ξ(x) (here x ≡ xw̃(y)), (85)

cf. (25), for which the simplest analytical form we found, mirroring (27), is

1

2πi

∮
2 dr

(r + 1)2

n∏

m=0

r + rm
r − rm

log 2ξ(x), rm
def
=

1 + ym
1− ym

, (86)

where now x ≡ x(r) with the new variable

r
def
=

1 + y

1− y
≡ [1 + (2x− 1)2/w̃]1/2 (Re r > 0). (87)

Then with xm ≡ 2m as before (but now including m = 0), the integral (86)
evaluated by the residue theorem yields the result (akin to (36))

Λ0
n(w̃)

def
=

n∑

m=1

2

(rm+1)2

n∏
k=0

(rm+rk)

∏
k 6=m

(rm−rk)
log 2ξ(2m), rm ≡

√
1 + (4m−1)2/w̃.

(88)
These coefficients, while still explicit, are less tractable than the Λn from
(36), (32); at the same time their design is more advanced, as it captures the
Functional Equation (through the λ0

n, and unlike the Λn and λn); nevertheless
we are yet to see any concrete benefit to using {Λ0

n} over {Λn}.
Numerical samples (for w̃ = 1, closest case to {Λn}; compare with (69)):

Λ0
1(1) ≈ 0.0881535583, Λ0

2(1) ≈ 0.237357366, . . . , Λ0
2000(1) ≈ 6.815307167 .
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The corresponding asymptotic alternative for RH analogous to (45)–(47)
reads as

• RH false: Λ0
n(w̃) ∼

{ ∑

Re ρ′>1/2

∆ρ′Λ
0
n(w̃)

}
(mod o(nε) ∀ε > 0) (89)

with log |∆ρ′Λ
0
n(w̃)| ∼ (ρ′ − 1/2) logn, (90)

• RH true: Λ0
n(w̃) ∼

√
w̃ (logn + C), C = 1

2
(γ−log π−1) as in (47). (91)

The latter is proved by extending Oesterlé’s method just as with Λn; whereas
the former needs large-n estimations of the product in (86), but our current
ones remain crude compared to the full Stirling formula available for (30);
that precludes us from reaching the absolute scales of the ∆ρ′Λ

0
n(w̃) and

hence the values of n from which any such terms might become detectable.
Numerically though (with all our tests of § 4 admitting centered variants),

we saw all changes from the non-centered data (main text) to be slight,
especially for n ≫ 1, aside from the overall factor

√
w̃ in (91).
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