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Cosmological Attractors and Initial Conditions for Inflation

John Joseph M. Carrasco, Renata Kallosh and Andrei Linde
Department of Physics and SITP, Stanford University,

Stanford, California 94305 USA

Inflationary α-attractor models in supergravity, which provide excellent fits to the latest obser-
vational data, are based on the Poincaré disk hyperbolic geometry. We refine these models by
constructing Kähler potentials with built-in inflaton shift symmetry and by making a canonical
choice of the goldstino Kähler potential. The refined models are stable with respect to all scalar
fields at all α, no additional stabilization terms are required. The scalar potential V has a nearly
Minkowski minimum at small values of the inflaton field ϕ, and an infinitely long dS valley of
constant depth and width at large ϕ. Because of the infinite length of this shift-symmetric valley,
the initial value of the inflaton field at the Planck density is expected to be extremely large. We
show that the inflaton field ϕ does not change much until all fields lose their energy and fall to the
bottom of the dS valley at large ϕ. This provides natural initial conditions for inflation driven by
the inflaton field slowly rolling along the dS valley towards the minimum of the potential at small
ϕ. A detailed description of this process is given for α-attractors in supergravity, but we believe
that our general conclusions concerning naturalness of initial conditions for inflation are valid for a
broad class of inflationary models with sufficiently flat potentials.

1. INTRODUCTION

During the last two years, a new class of inflationary the-
ories have been discovered: “cosmological attractors.” This
class is very broad, including conformal attractors [1], uni-
versal attractors with non-minimal coupling to gravity [2],
and α-attractors [3–6], and it also incorporates many pre-
viously existing models such as Starobinsky model [7], GL
model [8, 9], and Higgs inflation model [10]. Despite very
different origins, all of these models make very similar cos-
mological predictions providing an excellent match to the
latest cosmological data [11, 12]. Moreover, these models
can be further extended to describe not only inflation, but
also the theory of dark energy/cosmological constant and
supersymmetry breaking [13].

On a purely phenomenological level, the main features of
inflation in all of these models can be represented in terms
of a single-field toy model with the Lagrangian [14, 15]

1√
−g
LT =

1

2
R− 1

2

∂φ2

(1− φ2

6α )2
− V (φ) . (1.1)

Here φ(x) is the scalar field, the inflaton. The parameter α
can take any positive value. In the limit α→∞ this model
coincides with the standard chaotic inflation models with
a canonically normalized field φ and the inflaton potential
V (φ) [16].

However, the field φ in (1.1) is not canonically normalized.
It must satisfy the condition φ2 < 6α, for the sign of the
inflaton kinetic term to remain positive. One can easily go
to canonically normalized variables ϕ by solving the equation
∂φ

1−φ26α

= ∂ϕ, which yields

φ =
√

6α tanh
ϕ√
6α

. (1.2)

In terms of these variables, a tiny vicinity of the singular
boundary of the moduli space at φ =

√
6α stretches and

extends to infinitely large ϕ. As a result, generic potentials
V (φ) = V (

√
6α tanh ϕ√

6α
) at large ϕ approach an infinitely

long dS inflationary plateau with the height corresponding
to the value of V (φ) at the boundary:

VdS = V (φ)|φ=±
√

6α . (1.3)

This universal origin of the shape of these potentials leads
to universality in their predictions, as explained in [1, 3, 4]
and formulated in a particularly general way in [14]: The ki-
netic term in this class of models has a pole at the boundary
of the moduli space. If inflation occurs in a vicinity of such
a pole, and the potential near the pole can be well repre-
sented by its value and its first derivative near the pole, all
other details of the potential far away from the pole (from
the boundary of the moduli space) become unimportant for
making cosmological predictions. In particular, the spec-
tral index depends solely on the order of the pole, and the
tensor-to-scalar ratio relies on the residue [14]. All the rest is
practically irrelevant, as long as the field after inflation falls
into a stable minimum of the potential, with a tiny value of
the vacuum energy, and stays there.

This new class of models accomplishes for inflationary the-
ory something similar to what inflation does for cosmology.
Inflation stretches the universe making it flat and homoge-
neous, and the structure of the observable part of the uni-
verse becomes very stable with respect to the choice of initial
conditions in the early universe. Similarly, stretching of the
moduli space near its boundary upon transition to canonical
variables makes inflationary potentials very flat and results
in predictions which are very stable with respect to the choice
of the inflaton potential.

The present work will pursue two different goals simulta-
neously. First of all, we will study geometrical properties
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of the moduli space in the supergravity realizations of these
models, following [15, 17]. We will reformulate these models
in terms of Kähler potentials and field variables which keep
their geometric properties manifest. This new formulation
will allow us to approach the problem of initial conditions for
inflation in these models in a novel, more transparent way.

The problem of initial conditions in these models is not
quite trivial. In the simplest chaotic inflation models such
as m2

2 φ
2 inflation may start very close to the Planck density.

According to [16, 18–22], this makes initial conditions for
inflation quite natural. However, in the new class of mod-
els discussed above, as well as in the Starobinsky model and
Higgs inflation, the inflationary regime begins at the energy
density 10 orders below the Planck energy density. A solu-
tion of the problem of initial conditions in such models was
discussed in [23]. Here we will revisit it; we will show how
this problem can be solved in the supergravity realizations
of α-attractors. Most of our conclusions will have more gen-
eral validity, being applicable, in particular, to generic non-
supersymmetric attractor models (1.1). We will also show
that in some cases, such as supergravity α-attractors with
α � 1, inflation can begin at the density approaching the
Planck density, thus reducing the problem of initial condi-
tions to the one already addressed in [16, 18–22].

There are two types of technical improvements of our α-
models which we will develop in this paper. The first one,
following [15, 17], will allow us to use the Kähler frame where
the inflaton shift symmetry is present in the new Kähler
potentials. The second improvement with respect to earlier
models corresponds to changing the Kähler potential for the
goldstino multiplet, making it canonical rather than part
of the logarithmic structure, which has a consequence: an
improved manifest stability.

We will make a choice of variables in which the infla-
ton forms a Killing direction of the moduli space geometry.
Namely, our holomorphic disk variable Z and the half-plane
variable T used in [1, 4, 5] will be represented by the Killing
adapted moduli space coordinates

Z =
T − 1

T + 1
= tanh

ϕ+ iϑ√
6α

. (1.4)

Here the inflaton ϕ and the orthogonal field ϑ form a geom-
etry independent on a Killing direction ϕ:

gϕϕ(ϑ) = gϑϑ(ϑ) =
1

cos2
√

2
3αϑ

(1.5)

As a result, the time evolution in our models with initial large
kinetic energy, when the role of the potential is negligible,
will be controlled by the fact that the momentum in the
inflaton direction is preserved, namely

Ṗϕ = 0 where Pϕ = a3(t)gϕϕ(ϑ)ϕ̇ (1.6)

This geometric fact helps us to argue that the total shift of
the field ϕ due to its initial velocity is about 10 Planck units

or less, after which all memory about the initial velocity of
the field ϕ at the Planckian time completely disappears.

We will also numerically solve the Friedmann equations in
FRW space-time metric for generic initial values of ϑ, ϕ, ϑ̇, ϕ̇
confirming our analytic analysis: we have an inflationary
attractor behavior, where the memory about initial values
of ϑ, ϕ, ϑ̇, ϕ̇ disappears and period of slow-roll inflation at
the minimum of the potential at ϑ = 0 takes place.

We will show that with new Kähler potentials which have
the inflaton shift symmetry in Z or T variables, the superpo-
tentials are simpler and the relation between models in disk
and half-plane variables simplifies.

We will than proceed with the analysis of initial condi-
tions for inflation in these models, with our new choice of
variables, by making choices of initial values of the inflaton
and its partner and by studying the time evolution of these
fields, before and during inflation. The geometric nature of
our models, and the existence of infinite dS valleys of con-
stant width in our potentials, help to resolve this issue and
allowing us to argue that the vast majority of initial condi-
tions in these models leads to successful inflation.

2. FROM DISK TO HALF-PLANE: NEW KÄHLER
POTENTIALS

The cosmological attractor models can be described either
in disk or in half-plane variables [5, 15]. The corresponding
boundary of the moduli space, which plays an important role
in these models, is either at ZZ̄ < 1, or a half-plane with
T + T̄ > 0.

Here we summarize the relation between disk and half-
plane variables for generic case of 2-superfield models with
our choice of the Kähler potentials and most general super-
potentials.

The relation between the Kähler potentials and superpo-
tentials in the disk and half-plane variables requires a simple
Caley transform, as suggested in [5]

Z =
T − 1

T + 1
, T =

1 + Z

1− Z
. (2.1)

We will represent the Kähler potential in the following form:

KD = −3α

2
log

[
(1− ZZ̄)2

(1− Z2)(1− Z̄2)

]
+ SS̄ , (2.2)

WD = A(Z) + S B(Z) . (2.3)

where S is a supermultiplet with a goldstino fermion and a
sgoldstino scalar. This field may either belong to the usual
unconstrained chiral multiplet, or it may be a nilpotent su-
perfield as studied in [13]. We will discuss both options in
this paper.



3

We present our models as functions of a complex variable

Φ ≡ ϕ+ iϑ , (2.4)

where ϕ will be the inflaton in cosmological models and ϑ
will describe the orthogonal direction and

Z = tanh
Φ√
6α

. (2.5)

Our Kähler potential (2.2) in these variables has a manifest
inflaton shift symmetry, ϕ′ = ϕ+ c

KD(Z, Z̄) ⇒ K = −3α log
[

cosh
(Φ− Φ̄√

6α

)]
+ SS̄ .

(2.6)
The superpotential is now

WD ⇒ W = A
(

tanh
Φ√
6α

)
+S B

(
tanh

Φ√
6α

)
. (2.7)

Note that in our models ϑ = 0 during inflation and therefore
the new holomorphic variable Φ during inflation becomes a
real canonical variable. This is also easy to see from the
kinetic terms in these variables, which are conformal to flat,

ds2 =
dϕ2 + dϑ2

2 cos2
√

2
3αϑ

=
1

2
gϕϕdϕ

2 +
1

2
gϑϑdϑ

2 . (2.8)

At ϑ = 0 they are canonical

ds2|ϑ=0 =
dϕ2 + dϑ2

2
. (2.9)

We can also use the half-plane variables T + T̄ > 0 where we
have

KH = −3α

2
log

[(
T + T̄

)2
4T T̄

]
+ SS̄, (2.10)

WH = G(T ) + SF (T ) . (2.11)

Now the disk and the half-plane models are related simply
by the Caley transform (2.1), so that transition from one
picture to the other is a simple substitution

KD

(
Z =

T − 1

T + 1
, Z̄ =

T̄ − 1

T̄ + 1

)
= KH(T, T̄ ) . (2.12)

and

WD

(
Z =

T − 1

T + 1
, S
)

= WH(T ) . (2.13)

This also means that

G(T ) = A
(
Z =

T − 1

T + 1

)
, F (T ) = B

(
Z =

T − 1

T + 1

)
.

(2.14)
When we hold SS̄ outside of the log part of the Kähler po-
tential, the field S does not change from one picture to the
other. However, for any models with SS̄ inside the log part

of the Kähler the potential which we used before, the rela-
tion between the goldstino multiplets in Z and T variables
involves the dependence on the inflaton superfield, as shown
in [5]. We will explain below that when the field S is outside
the log in the Kähler potential the inflaton partner is sta-
ble for any α. Therefore we will focus here on models with
canonical Kähler potentials for the S field as shown in eqs.
(2.2), (2.6) and (2.10).

3. α-ATTRACTORS AND THEIR STABILITY

We will begin with a rather simple and general class of α-
attractors in disk variables, with the Kähler potential (2.2)
and superpotential

WD =
√
αµ S f(Z) . (3.1)

Investigation of this theories simplifies considerably if during
and after inflation the field S vanishes, along with the imag-
inary part of the field Z. Indeed, as explained in [17], the
Kähler potential (2.2) has a shift symmetry under the shift
of the inflaton field during inflation, when x = ImZ = 0:
The Kähler potential vanishes independently of the value of
the inflaton field z = ReZ.

In that case, one can show that the potential of the canon-
ically normalized inflaton field ϕ, which is defined by the
relation z = tanh ϕ√

6α
, is given by

V = αµ2f2(z) = αµ2f2
(
tanh

ϕ√
6α

)
. (3.2)

The potential has an infinitely long dS plateau at ϕ � α,
exponentially rapidly approaching its asymptotic value

VdS = αµ2 . (3.3)

Predictions from such theories provide a very good fit to
observational data for a broad class of functions f(Z) as
discussed in [1, 4].

However, for such analysis to hold, it is important to verify
that S = s ei γ = 0, and x = ImZ = 0, or to find a way to
stabilize these fields at their zero values. The point S = x =
0 is indeed an extremum of the potential for S and x, but
one should also check whether this extremum is a minimum,
or a maximum of the potential.

Let us start with the field x. One can show that its mass
squared is given by

m2
x(z) =

VdS
3

(6αf2(z) + (1− z2)2[(f ′(z))2 − f(z)f ′′(z)]) .

(3.4)
If we consider potentials V = αµ2f2(z) vanishing at z = 0,
then at the minimum one has f(0) = 0, and m2

x(0) is positive
and coincides with the inflaton mass squared at that point,

m2
x(0) = m2

z(0) =
1

3
[(f ′(0))2]) . (3.5)
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Meanwhile (3.4) implies that during inflation

m2
x(z) = 2V (z) = 6H2, (3.6)

up to small corrections suppressed by the slow-roll param-
eters. Thus during inflation this field is strongly stabilized
for all values of α and tends to rapidly roll down to x = 0
and stay there.

The condition S = 0 can be satisfied e.g. if the goldstino
superfield is nilpotent [13], or if it is strongly stabilized at
S = 0 by terms ∼ (SS̄)2 which can be added to the Kähler
potential [24], [4]. Indeed, one of these two options is com-
pulsory in many theories where the Kähler potential has the
term SS̄ under the logarithm. However, in the theories with
the Kähler potential (2.2) considered in this section the situ-
ation is much better: The mass squared of the field S = s ei γ

at s = x = 0 does not depend on γ and is given by

m2
s(z) =

VdS
9

(1− z2)4(f ′(z))2 ≥ 0 . (3.7)

This mass becomes much smaller than H during inflation
at z ≈ 1, but the point s = 0 is always the minimum of
the potential with respect to the field S. This field cannot
change much because of the overall fast growing factor es

2

in
its potential. Thus, the classical field s rolls down towards
s = 0 and stays there even without adding any stabilization
terms to the theory. Since its mass is small, it can experience
small inflationary perturbations in the vicinity of s = 0,
but these perturbations are inconsequential unless one makes
some radical assumptions about strong suppression of the
probability of decay of the field S in the process of reheating
[25].

The same models can be discussed in terms of half-plane
variables, with Z ⇒ T−1

T+1 . Thus, one can use the Kähler
potential (2.10) and

W general-T
H ≡

√
αµS f

(T − 1

T + 1

)
. (3.8)

In what follows we will give some simple examples of these
models, both in disk variables and in half-plane ones.

4. T-MODELS

The simplest α-attractor T-model has Kähler potential
(2.2) and superpotential (3.1) with f(Z) = Z:

W simple-T
D =

√
αµS Z . (4.1)

The inflationary potential for the canonical field ϕ is

V = αµ2 tanh2 ϕ√
6α

. (4.2)

We show these potentials in Fig. 1 for few values of α.

-20 -10 10 20
φ

0.2

0.4

0.6

0.8

1.0

�

FIG. 1. T-model potential V = αµ2 tanh2n ϕ√
6α

for α = 1, ..., 5 at

ImZ = 0. It is plotted in units αµ2 = 1. The potential has two

symmetric shoulders.

ns#

log10r#

FIG. 2. Here we present the cosmological observables ns and

r for simple T-models with different monomial potentials V =

αµ2
(

tanh(ϕ/
√

6α)
)2n

with n = (1/2, 3/4, 7/8, 1, 3/2, 2, 3) starting

from the right, increasing to the left, with the purple line for n = 1

in the middle. We use the logarithmic scale in r.

One may also consider a more general case where f [Z] =
Zn and

V = αµ2 tanh2n ϕ√
6α

. (4.3)

We illustrate the attractor properties of these models in
Fig. 2 in the logarithmic scale in r. The attractor line, start-
ing at r = 10−3 towards smaller r, remains universal, the
value of r depends linearly on α and looses any dependence
on n:

1− ns =
2

Ne
, r =

12α

N2
e

, (4.4)

where Ne is the number of e-foldings. In the simplest T-
models (4.2) the amplitude of the scalar perturbations also
does not depend on α and matches the Planck 2015 normal-
ization for µ ≈ 10−5 [6].

Same models in half-plane variables are found by using the
Kähler potential (2.10) and replacing Z ⇒ T−1

T+1 in equations
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of the previous section. In particular, the model with f(Z) =
Z becomes

W simple-T
H =

√
αµS

T − 1

T + 1
. (4.5)

5. E-MODELS

Another interesting class of models, called E-models, ap-
pears if one uses KD (2.2) and the following superpotentials

W simple-E
D ≡

√
αµS

2Z

Z + 1
. (5.1)

The inflationary potential for the canonical field ϕ is

V = αµ2
(

1− e−
√

2
3αϕ
)2

. (5.2)

We show these potentials in Fig. 3 for few values of α.

0 5 10 15 20
φ

0.2

0.4

0.6

0.8

1.0

1.2
�

FIG. 3. Potentials of simple E-models V =
(

1 − e−
√

2
3α
ϕ
)2

for α =

1, 2, 3, 4, 5. It has an inflationary plateau for large positive ϕ and a wall

at small negative ϕ.

ns#

log10r#

FIG. 4. Here we present the cosmological observables ns and r for E-

models with different monomial potentials V = (1 − e−
√

2
3α
ϕ

)2n with

n = (1/2, 3/4, 7/8, 1, 3/2, 2, 3) starting from the right, increasing to the

left, with the line for n = 1 in the middle. The scale in r is logarithmic.

In more general case

W general-E
D ≡

√
αµS f

( 2Z

Z + 1

)
(5.3)

and the potentials are

V = αµ2f2
[
(1− e−

√
2
3αϕ
)]
. (5.4)

Let us take a simple example of a general case where
f
[

2Z
Z+1

]
=
[

2Z
Z+1

]n
and

V = αµ2
(

1− e−
√

2
3αϕ
)2n

. (5.5)

We illustrate the attractor properties of these models in
Fig. 4 using a logarithmic scale in r. The attractor line,
starting at r ∼ 5 ·10−4 towards smaller r, remains universal,
the value of r depends on α linearly and becomes completely
independent of n: r = α 12

N2

During inflation, in all of these models, the effective mass
of the inflaton partner, taking into account the non-minimal
kinetic term, is given by 6H2, up to slow roll parameters,
where H is a Hubble parameter during inflation. Thus in this
class of improved α-attractor models in supergravity there
is no need for stabilization terms.

The models in half-plane variables are found by using the
Kähler potential (2.10) and replacing Z ⇒ T−1

T+1 in equations
of the previous section. In particular, the model with f(Z) =
2Z
Z+1 becomes

W simple-E
H ≡

√
αµS

T − 1

T
. (5.6)

6. ASYMMETRIC T-MODELS

In section 4, we considered the simplest T-models which
have potentials with two shoulders of equal height. In com-
parison, E-models have only one inflationary plateau, with
the potential infinitely rising at large negative values of the
field ϕ, without forming a second inflationary plateau. In
this section we will consider an intermediate class of mod-
els, where the potentials have two shoulders with differing
heights [6, 26, 27]. In a certain sense, one can think about
such models as interpolating between the simplest T-models
and E-models, but they are different because each of these
two asymmetric shoulders may serve as an independent in-
flationary plateau. Such models offer additional flexibility,
which, as we will see, may be quite handy.

Let us use disk Kähler potential (2.2) and a superpotential
in (3.1) with f [Z] = (1− cZ):

W linear
D =

√
αµS (1− cZ) . (6.1)

The resulting potential in the inflaton direction in Z vari-
ables is

V = αµ2(1− cZ)2 . (6.2)
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We will assume for definiteness that c > 0. The potential
has a minimum at Z = 1/c, which belongs to the required
range |Z| < 1 for c > 1. In terms of the canonical field ϕ,
the potential is

V = αµ2

(
c tanh

ϕ√
6α
− 1

)2

. (6.3)

At large negative values of the inflaton field, the potential
has a “shoulder” at V− = (c+1)2, and at large positive ϕ the
potential has a shoulder of a different height, V+ = (c− 1)2,
so that

V+

V−
=

(
c− 1

c+ 1

)2

. (6.4)

This ratio can be arbitrarily small for 0 < c− 1� 1.

The situation becomes even more interesting in the theory

W exp
D =

√
αµS (1− e−β Z) (6.5)

with β � 1. Exponentially suppressed terms e−β Z may
appear e.g. due to non-perturbative effects [42]. The po-
tential in this case has a minimum at Z = ϕ = 0. It has
two shoulders of different height, each of which is capable of
supporting inflation, with the inflaton potential

V = αµ2 (1− e−β tanh2n ϕ√
6α )2 . (6.6)

Independently of α, for β � 1, the two shoulders have rela-
tive height V+/V− ≈ e−2β . Thus for large β the potential has
two shoulders of exponentially different heights, see Fig. 5 for
a particular case of a potential with α = 1, β = 2.

-15 -10 -5 5 10
φ

10

20

30

40

V

FIG. 5. Asymmetric shoulders.

Despite the exponential difference in the height the values
of the inflationary parameters ns and r for inflation at each
of these two shoulders coincide and are given by (4.4), at
least for not too large values of α. However, the amplitudes
of scalar perturbations produced at these two branches are
exponentially different from each other. At the upper branch
the amplitude of the perturbations is proportional to µ(eβ−
1), and at the lower branch it is proportional to µ(1− e−β),
thus smaller by a factor of e−β .

Suppose that the last stage of inflation, which determines
the large scale structure of our universe, occurs at the lower
shoulder with large positive ϕ. Then, according to [6], one
should take

V+/α ≈ µ2 ≈ 10−10 (6.7)

in Planck units. Considering α = O(1), one finds V+ ∼
10−10. However, the left shoulder can be arbitrarily high,
e.g, by taking β ∼ 11 one can easily have V− = O(1) in
Planck units in this model. This fact will be important for
the discussion of the problem of initial conditions in this
scenario. But before discussing the cosmological evolution
in these models, we will return to the simplest symmetric
T-models and study their potentials more attentively.

7. HYPERBOLIC GEOMETRY AND PROPERTIES
OF T-MODEL POTENTIAL

Consider the simplest T-model (4.1), (4.2), see Fig. 1. We
would like to describe this model in a more detailed way,
which should help us to analyze initial conditions for inflation
and the probability that it will take place in this model and
its generalizations. In order to do so, we will the inflationary
potential in a form most suitable for our investigation.

In terms of Z = z + ix the metric of the moduli space,
which determines kinetic terms, and the potential are given
by

ds2 =
3α

(1− ZZ̄)2
dZdZ̄ = 3α

dz2 + dx2

(1− z2 − x2)2
, (7.1)

V = αµ2 (z2 + x2)
[z4 + 2z2(x2 − 1) + (x2 + 1)2

(1− z2 − x2)2

] 3α
2

. (7.2)

The existence of the flat inflaton direction is not obvious if
one is looking at the potential (7.2) in the original variables
z and x, see Fig. 6. That is why one should try to represent
the potential in terms of more adequate variables.

One can understand the situation better by making a
change of variables z = tanh ϕ√

6α
. For x = 0, the field ϕ

plays a role of a canonically normalized inflaton field, and
the existence of the inflationary shoulders of the potential
becomes manifest in the variables ϕ, x, see Fig. 7.

By looking at Fig. 7 one could get a wrong impression that
the potential in the vicinity of the inflationary trajectory at
x = 0 is incredibly steep: it looks like a gorge which becomes
more and more narrow at large |ϕ|. However, this is just an
illusion. As we have found, the curvature of this potential
in the direction orthogonal to the inflationary trajectory is
given by 2V (ϕ) = 6H2, which is almost exactly constant
during inflation, see (3.6). We found this result by taking
into account that the field x is not canonically normalized.
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FIG. 6. Inflation, in terms of the variables z and x, takes place in

the two corners of the potential. The existence of the inflationary flat

directions for |z| − 1� 1 is not apparent in these variables.

FIG. 7. A narrowing trench in the potential in terms of ϕ and x

variables. We see here the same effect as a decreasing size of angels and

devils towards the boundary of the Poincaré disk in Escher’s picture

Circle Limit IV. However, this narrowing of the trench is just an illusion,

which disappears when one plots the potential in proper coordinates,

as shown in Fig. 8.

Now we will make this conclusion manifest by plotting the
potential in terms of more adequate variables.

We will use the Φ variables as shown in eq. (2.5) with the
kinetic terms in (2.8) The potential in these variables is

V = αµ2

∣∣∣∣tanh
ϕ+ iϑ√

6α

∣∣∣∣2 · ( cos

√
2

3α
ϑ
)−3α

, (7.3)

where
∣∣ tanh ϕ+iϑ√

6α

∣∣2 = tanh ϕ+iϑ√
6α
· tanh ϕ−iϑ√

6α
. We may also

present it in the form

V = αµ2
cosh

√
2

3αϕ− cos
√

2
3αϑ

cosh
√

2
3αϕ+ cos

√
2

3αϑ
·
(

cos

√
2

3α
ϑ
)−3α

. (7.4)

FIG. 8. The T-model potential in terms of the variables ϕ and ϑ has

two infinitely long dS valleys of constant width.

This potential is shown in Fig. 8. It has a minimum at ϑ =
0 where the kinetic terms of both fields become canonical,
ds2 → 1

2 (dϕ2 + dϑ2) at ϑ → 0. At large values of ϕ where
tanh ϕ√

6α
approaches 1, the plot of the potential in terms of

ϕ and ϑ has a dS valley of constant, ϕ-independent width,
instead of the rapidly narrowing gorge shown in Fig. 7. This
fact will be very important for us shortly, when we will study
the cosmological evolution of the fields ϕ and ϑ and initial
conditions for inflation in these models.

For a better understanding of the structure of this po-
tential, it is instructive to simplify even a little further the
superpotential of our simplest T-model: Instead of W =√
αµS Z (4.1), let us consider a Z-independent superpo-

tential

W =
√
αµS . (7.5)

The potential in this model in the ϕ and ϑ variables is

V = αµ2
(

cos

√
2

3α
ϑ
)−3α

. (7.6)

Note that this potential does not depend on the inflaton field
ϕ, and has a dS minimum V = αµ2 at ϑ = 0. It represents
an infinite ϕ-independent dS valley as shown in Fig. 9.

As one can easily check, the shape of this valley coin-
cides with the shape of the dS valley in the simplest T-
model (7.4) in the large ϕ limit. This potential is manifestly
shift-symmetric with respect to the field ϕ. It is singular at

cos
√

2
3αϑ → 0, but this singularity disappears if one uses

canonical variables χ defined by dχ = dϑ

cos
√

2
3α

. In the limit

cos
√

2
3α � 1, which corresponds to V � αµ2, the potential

of the field ϑ in terms of the canonically normalized field χ
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FIG. 9. An infinite ϕ-independent dS valley (7.6) in the theory (7.5)

in ϕ, ϑ coordinates.

acquires the following simple form:

V (χ) = αµ2

(
3α

2

)3a/2

e
√

6αχ . (7.7)

For α & 1, this potential grows exponentially fast, and there-
fore the field χ should rapidly fall to the minimum of the po-
tential and stay there. Meanwhile the situation for α� 1/3
is quite different. It is well known that the potentials of that
type are sufficiently flat to support inflation [28]. Indeed, in
the theory (7.7) the universe expands as t1/3α. The defin-
ing condition for inflation is Ḣ � H2, which means that
the Hubble parameter (and the size of the horizon) does not
change much during the Hubble time H−1. This condition
is satisfied for α � 1/3. Thus for α � 1/3 inflation can
begin at very large values of V (ϕ, ϑ) corresponding to large
values of χ, and then the universe inflates while the field χ
slowly rolls down to the bottom of the dS valley. After that,
inflation becomes driven by the field ϕ.

The existence of the dS valley of a constant, ϕ-independent
width will play a crucial role in our discussion of initial con-
ditions for inflation. Therefore we would like to emphasize
that the existence of such dS valleys is not just a property
of the simplest T-model (4.1), (7.4), but a general property
of the class of models (2.2), (3.1) studied in this paper. In
particular, the potential of the asymmetric T-models (6.3),
(6.5) exhibits two infinite dS valleys of constant width but
different height, as shown in Fig. 10. Meanwhile in E-models,
there is one infinite dS valley at ϕ > 0.

In the next sections, we will describe the cosmological
evolution in the simplest T-model with potential (7.4) for
α > 1/3, as well as for α� 1/3.

FIG. 10. Two-shoulder potential in the theory (6.5) in ϕ, ϑ coordi-

nates.

8. OTHER EXAMPLES OF α-ATTRACTORS

Before moving further to the discussion of the cosmologi-
cal evolution in this class of models, we will consider another
class of α-attractors, with a slightly different Kähler poten-
tial as compared to (2.6), with SS̄ placed under the sign of
the logarithm:

K = −3α log
[

cosh
(Φ− Φ̄√

6α

)
− SS̄

]
. (8.1)

We will consider the simplest superpotential W =√
αµS Z =

√
αµ tanh Φ√

6α
. In this case, the scalar potential

is

V = αµ2
cosh

√
2

3αϕ− cos
√

2
3αϑ

cosh
√

2
3αϕ+ cos

√
2

3αϑ
·
(

cos

√
2

3α
ϑ
)1−3α

. (8.2)

Note that this potential almost exactly coincides with
(7.4). The only difference is that instead of the term(

cos
√

2
3αϑ

)−3α
in (7.4) now we have

(
cos
√

2
3αϑ

)1−3α
. This

leads to the stability condition α ≥ 1/3. For α > 1/3 the
potential has a dS valley very similar to the one shown in
Fig. 8, with curvature given by m2

ϑ = 6H2(1− 1
3α ). For the

special case α = 1/3, the potential looks like a disk [15], see
Fig. 17 in Section 12.

9. INFLATION IN A HOMOGENEOUS UNIVERSE

In this section we will study the evolution of the fields ϕ
and ϑ during inflation in the FRW background with various
initial conditions. Before analyzing this evolution numeri-
cally, we first study it analytically in simplified cases, which
will help us to build intuition instead of fully relying on re-
sults of numerical investigation.
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Consider the evolution of the field ϕ along the inflationary
dS valley at ϑ = 0 in the limiting case ϕ/

√
α� 1, when the

potential in the ϕ direction is constant, VdS = αµ2, with
exponentially good accuracy. Suppose that V � 1 but the
initial velocity of the field ϕ is extremely large, so that its
kinetic energy is much greater than the potential energy,
ϕ̇2/2 � VdS = αµ2. Note that µ2 ≈ 10−10 in the models
describing inflationary spectra with Planck 2015 normaliza-
tion [6], so for α = O(1) one should have VdS ∼ 10−10. How
far will the field ϕ travel from its initial value φ0 in a space
with energy density ϕ2/2 + VdS , if initially the universe was
in the Planck energy state dominated by kinetic energy of
the field ϕ̇2/2 = 1?

The equation of motion of the canonical field ϕ at ϑ = 0
is ϕ̈+ 3Hϕ̇ = 0, which in our case satisfies:

ϕ̈+
√

3ϕ̇
√
ϕ̇2/2 + V = 0. (9.1)

This is simple enough so as to allow a full analytical solution,
but instead we will solve it approximately, which will be
helpful for understanding the general situation.

We will start with initial conditions such that ϕ̇2/2 =
Nk V , where Nk is some number much greater than 1. If
initially the kinetic energy of the scalar field was Planckian
and VdS ∼ 10−10, we have Nk ∼ 1010. Then, during the first
stage of the field evolution, one can entirely ignore its poten-
tial energy, so that the equation becomes ϕ̈ = −

√
3/2 ϕ̇2,

with the solution [29]

ϕ̇2

2
=

1

3t2
, ϕ(t)− ϕ0 =

√
2

3
ln

t

t0
. (9.2)

This kinetic energy dominated regime continues from the

initial state with ϕ̇2

2 = NkVdS to the point where it becomes
approximately equal to VdS . During this time, the field ϕ
moves by ∆ϕ = 1√

6
lnNk ∼ 9.4 in Planck units, for Nk ∼

1010.

After that, the kinetic energy of the field becomes sub-
dominant, and it continues moving in accordance with equa-
tion ϕ̈ = −ϕ̇

√
3VdS . One can show that it passes a distance

slightly smaller than 1 and stops. Thus the total shift of the
field ϕ due to its initial velocity is about 10 Planck units,
independently of α, after which all memory about the ini-
tial velocity of the field at the Planckian time completely
disappears. This conclusion is confirmed by the results of
numerical calculations.

In this investigation, we ignored the motion of the field ϑ.
A combined motion of these two fields for various α is more
difficult to analyze, but our numerical calculations show that
the final result remains the same: If one starts with general
initial conditions corresponding to the Planck energy density,
including kinetic and potential energy of all fields, and follow
the evolution of these fields at large ϕ where the potential is
shift-symmetric with respect to ϕ, then the maximal distance
the field ϕ may travel from its initial position until it enters
the slow-roll inflationary regime is ∆ϕ = 1√

6
lnNk ∼ 9.4.

In the slow-roll inflationary regime, which starts when
nearly all of the initial kinetic energy of the field ϕ is lost,
this field ϕ rolls towards the minimum of the potential by the

distance δϕ =
√

3α
2 ln 8Ne

3 until inflation ends [1, 4]. Here

Ne is the number of e-foldings during inflation. For example,
for α = 1 and Ne = 60 one has δϕ ≈ 6.

Thus we are coming to a rather interesting conclusion:
Even if the inflationary plateau is extremely low, compared
to the Planck density, VdS ∼ 10−10, initial motion of the
fields ϕ and ϑ does not affect the onset of the inflationary
regime, at this plateau, if inflation begins at a distance δϕ &
10 from the initial value of the field ϕ0 at the Planck time.
For the simple T-models with α = O(1), this means that
the last 60 e-folds of inflation do not depend on the initial
velocities and of the fields ϕ and ϑ if the initial value of the
field ϕ was |ϕ0| > ∆ϕ + δϕ & 16. This conclusion will be
important for us later, when we will discuss a more general
situation where the universe in the beginning of its evolution
may be very inhomogeneous.

To illustrate this conclusion, we present here some of the
results of our numerical calculations for a particular case
α = 1, using a code developed in [30]. Using the kinetic
term in (2.8), and the potential in (7.4) given as a function
of ϕ and ϑ, we solve the Friedmann equations for the time
evolution of scalars for a set of initial conditions. We plot
the trajectories on a contour plot of the potential, the values
of the fields as a function of time and the scale factor as a
function of time. The examples here involve various choices
of initial positions, as shown in Fig. 11 and vanishing initial
velocities.

To develop some intuition, we begin with the case with
α = 1 where the scalar fields start with zero initial velocities
at the height 10 times above the bottom of the dS valley with
VdS = αµ2. This will show us what the fields ’want’ to do if
not pushed hard, and whether this may lead to inflationary
regime.

Figs. 11, 12, 13 and 14 show 12 different trajectories with
different initial values of the fields such that V (φ0, θ0) =
10αµ2. The initial positions of the fields are shown by small
circles. In all cases, the field ϑ rapidly rolls down to the
bottom of the valley, oscillates and relaxes there. After that,
for ϕ0 & 3 (in Planck units), the universe enters the stage of
inflation driven by the field ϕ. This stage is longer than 60
e-foldings for ϕ0 & 6.

Examples above and the corresponding Figures had same
value of the initial energy density due to a proper choice of
the initial values of ϕ0 and ϑ0 at t = 0. However, the initial
values of velocities were chosen to be zero, and the initial
values of the potential energy was sub-Planckian. Here we
would like to analyze a situation where the total value of
the initial energy, kinetic and potential, is of a Planckian
scale. Namely, here we will start with initial condition with
velocities and positions such that at a(0) = 1 the initial
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FIG. 11. Time evolution of scalars on a contour plot of the potential.

In the beginning, the field ϑ moves towards the minimum of the dS val-

ley, whereas the field ϕ remains nearly constant, if its initial value was

large. Then after a short stage of oscillations, the field ϑ vanishes, and

the cosmological expansion becomes determined only by the inflaton

field ϕ, which slowly moves towards ϕ = 0 and oscillates there.
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FIG. 12. The field ϑ moves quickly towards the minimum, at the

bottom of the dS valley. Then after a short stage of oscillations, the

field ϑ vanishes and remains in all cases at the bottom of the dS valley.

energy in Planck units Mp = 1 is

E0 = E0
kin + V0 = 1, (9.3)

where

Ekin =
ϕ̇2 + ϑ̇2

2 cos2
√

2
3αϑ

, (9.4)

and the potential is given by (7.4). For the numerical calcu-
lations we took the height of the dS valley of the potential
at ϑ = 0 and large ϕ as αµ2 = 10−10 in Planck units.

Our potential has a dS valley at a very small height VdS ∼
10−10 in Planck units, however, when ϑ is close to the value

100 200 300 400 500
t
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10

�

t 

ln a 

'

FIG. 13. The field ϕ remains nearly constant and very slowly moves

towards ϕ = 0 and oscillates there. The cases with smaller initial values

of ϕ < 6 reach the minimum earlier and inflate less.
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FIG. 14. The log of a scale factor is plotted, as a function of time. The

models with smallest, in our examples, initial values of ϕ < 6 produce

less than 50 e-foldings, however, all other cases with ϕ > 6 easily lead

to more than 60.

where cos
√

2
3αϑ vanishes, the potential (7.4) is extremely

steep and easily reaches the Planck values V = O(1). A
more proper way to understand the growth of the potential
at large ϑ is to replace ϑ by its canonical counterpart χ, as
we did in (7.7). The singular growth of potential close to the

point where cos
√

2
3αϑ = 0 is replaced by exponential growth

at large χ. For α & 1/3 the potential (7.7) is very steep
and field χ rapidly falls towards the dS valley. However, for
α� 1/3 the potential is sufficiently flat to allow inflation at
all sufficiently large values of V � VdS ∼ 10−10.

We start at Planckian energies E0 by making random
choices of ϑ, ϕ, ϑ̇, ϕ̇ such that Eq. (9.3) is satisfied and solve
all equations numerically. Our goal is to find the trajectory
of the fields starting from the Planckian total energy and
find out how they reach the bottom of the dS valley loosing
the total energy by 10 orders of magnitude. We show a sam-
ple of such trajectories on the contour plot of the potential
in Fig. 15. For illustration purposes, we took all initial con-
ditions at ϕ & 9 to illustrate what happens at sufficiently
large ϕ along the infinitely long dS valley, where the poten-
tial practically does not depend on ϕ.
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FIG. 15. Evolution of the fields ϕ and ϑ starting at the Planck energy

density.The fields start on the wall with near maximal ϑ or anywhere

between the wall and the bottom of the dS valley with velocities such

that the total energy is always E0
kin + V0 = 1. In this process their

total energy is decreasing to ∼ 10−10 when they reach the bottom of

the valley.
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FIG. 16. The Hubble parameter for all initial conditions in Fig. 15

starts at 3H2
0 = 1, H0 = 1√

3
, and ends at the bottom of dS valley with

V ∼ 10−10. The intermediate stage is somewhat different for examples

with various positions and velocities.

The fields start on the wall with near maximal ϑ or any-
where between the wall and the bottom of the dS valley with
velocities such that the total energy is always E0

kin+V0 = 1.
In this process their total energy is decreasing to VdS ∼ 10−10

when they reach the bottom of the valley. It may not be ap-
parent from this figure, but after a series of oscillations with
a rapidly decreasing amplitude, similar to what was shown
in Fig. 13, the fields relax at the bottom of the valley. For
large values of ϕ, the potential along the valley is almost ex-
actly flat. Therefore the inflaton field stay almost still for a
long time until it start slowly rolling to the minimum of the
potential at ϕ = 0. The beginning of this slow motion is only
barely seen here in the end of the lower (yellow) trajectory,

which just starts to move to smaller values of ϕ.

In Fig. 16 we show the time evolution of the Hubble pa-
rameter. For all initial conditions in Fig. 15, the Hubble
constant H starts at 3H2

0 = E0 = 1, i.e. H0 = 1√
3
, and ends

at the bottom of dS valley with V ∼ 10−10. The interme-
diate stage is somewhat different for examples with various
positions and velocities, however, eventually they all end up
with 3H2 ≈ VdS ≈ 10−10, H ≈ 1√

3
10−5. The intermediate

flattening of the Hubble parameter shown in the Figure has
an interesting origin: it is due to ϑ reaching its maximum,
before it goes down to zero.

As we see, if we start with sufficiently large initial value of
the field ϕ0 & 10, then, independently of the choice of other
initial conditions at the Planck density with E0

kin + V0 = 1,
the fields fall to the bottom of the valley and slow down
there in such a way that the field ϕ does not change much in
this process, in complete agreement with our general expec-
tations. Thus, all choices of initial conditions with arbitrary
velocities of the fields and arbitrary deviations of ϑ from zero
(from the bottom of the valley) will lead to inflation if the
initial value of the field ϕ took any value in the infinitely
long interval 10 . |ϕ0| <∞.

So far, we studied the cosmological evolution in a homoge-
neous universe, with the same values of the fields everywhere.
Now we are going to discuss a more general case where the
universe may be non-uniform. Before doing it, we will give a
brief review of the problem of initial conditions for inflation
in an inhomogeneous universe, and later on we will return
to the cosmological attractors in this context.

10. INITIAL CONDITIONS FOR INFLATION IN
AN INHOMOGENEOUS UNIVERSE: A BRIEF

REVIEW

The theory of initial conditions for inflation was developed
simultaneously with the invention of the chaotic inflation
scenario [16, 18–22], see [23] for a recent discussion. In the
previous sections we discussed only the homogeneous uni-
verse case, where the situation is relatively simple. Now we
are going to consider the initial condition problem in a more
general situation, when the universe may be inhomogeneous.

Let us remember first what was the main problem with
the hot Big Bang scenario in this respect. In that model,
the universe was born at the cosmological singularity, but it
was possible to describe it in terms of classical space-time
only when time is greater than the Planck time tp ∼ 1.
At that time, the temperature of matter was given by the
Planck temperature Tp ∼ 1, and the density of the universe
was given by the Planck density ρp ∼ 1. The size of the
causally connected part of the universe at the Planck time
was ctp ∼ 1. Each such part contained a single particle with
the Planck temperature. The subsequent evolution was sup-
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posed to be adiabatic. As such, the total number of such
particles is approximately conserved, so it must be greater
than the total number of particles in the observable part of
the universe, n ∼ 1090. This means that the universe at the
Planck time consisted of 1090 causally disconnected parts.
The probability that all of these independent parts emerged
from singularity at the same time with the same energy den-
sity and pressure is smaller than e−1090

, and the probability
that our universe from the very beginning was uniform with
an accuracy better than 10−4 is even much smaller.

The change of the perspective brought by the invention
of the chaotic inflation scenario was quite dramatic. The
main condition required in the simplest models of chaotic
inflation was the existence of a single Planck size domain
where the kinetic and gradient energy of the scalar field is
few times smaller than its potential energy V (φ) ∼ 1. For
sufficiently flat potentials, it leads to inflation, so the whole
universe appears as a result of expansion of a single Planck
size domain. According to [16, 18–22], the probability of
this process is not exponentially suppressed. After that, the
universe enters an infinite process of self-reproduction [19].

However, in the argument given above it was assumed
that inflation may start at the densities comparable with
the Planck density. This condition is not satisfied in hilltop
models [31], in the Starobinsky model [7], in the Higgs in-
flation model [10], and in the simplest versions of the broad
class of the cosmological attractor models discussed in this
paper and in [2, 14], where inflation occurs only at V � 1.
Thus the issue of initial conditions in these models should
be addressed.

To explain the main problem, we will consider the new in-
flation/hilltop models [31] and follow the argument against
them and in favor of chaotic inflation given in [22]. Inflation
in such models begins at the density about 10 orders of mag-
nitude below the Planck density. If the universe is closed,
then a typical closed universe born at the Planck density and
filled with relativistic particles collapses within the Planck
time, unless it is extremely large from the very beginning
[22]. But then inflation does not explain why our universe is
large. Rather, inflation in such models requires the universe
to be large.

Moreover, it is hard to expect a large universe to be uni-
form on the scale H−1, as required for inflation, at the time
when the energy density of normal matter drops down to
the energy density at the top of the inflationary potential
V ∼ 10−10. Indeed, the size of the Hubble domain at that
time is about t ∼ 105, but the total size of the hot uni-
verse was growing only as

√
t. As a result, the Hubble size

domain at the moment when inflation could start contains
t3/2 ∼ 107 parts which had the Planck size and were causally
disconnected at the Planck time. The probability that the
universe in all of such domains had the same density can
be estimated by e−107

. It is much better than e−1090

, but
it is still highly unsatisfactory [22]. Recently, a very simi-

lar argument against naturalness of initial conditions in the
Starobinsky model was given in [32]. Does it mean that all
such models are in trouble?

Fortunately, several ways to solve the problem of initial
conditions in the models with low scale of inflation have been
proposed more than 10 years ago, see a discussion of this
issue in [23] and references therein. One of the simplest
solutions is to consider a flat compact universe having the
topology of a torus, S3

1 ,

ds2 = dt2 − a2
i (t) dx

2
i (10.1)

with identification xi + 1 = xi for each of the three dimen-
sions [33]. Whereas this may sound exotic, such models are
routinely used by string theorists who assume that 6 inter-
nal dimensions are compactified, and by experts in numerical
relativity who study the universe on a lattice with periodic
boundary conditions. The trick is to make this box expo-
nentially big and its periodicity unobservable, which can be
easily done by inflation.

Suppose, for simplicity, that a1 = a2 = a3 = a(t). In this
case the curvature of the universe and the Einstein equa-
tions in terms of a(t) will be the same as in an infinite flat
Friedmann universe with the metric ds2 = dt2 − a2(t) dx2.
In our notation, the scale factor a(t) is equal to the size of
the universe in Planck units.

Let us assume that at the Planck time tp ∼ 1 the universe
was radiation dominated, V � T 4 = O(1) and that at the
Planck time the total size of the box was Planckian, a(tp) =
O(1). Then the whole universe initially contained only O(1)
relativistic particles such as photons or gravitons, so that the
total entropy of the whole universe was O(1).

The size of the universe dominated by relativistic parti-
cles grows as a(t) ∼

√
t, whereas the mean free path of the

gravitons grows as H−1 ∼ t. If the initial size of the universe
was O(1), then at the time t � 1 each particle (or gravita-
tional perturbation of the metric) within one cosmological
time would run all over the torus many times, appearing in
all of its parts with nearly equal probability. This effect,
called “chaotic mixing,” should lead to a rapid homogeniza-
tion of the universe [33–35].

In fact, to achieve a modest degree of homogeneity we do
not even need chaotic mixing. Indeed, density perturbations
do not grow in a universe dominated by ultra-relativistic par-
ticles if the size of the universe is smaller than H−1. This
is exactly what happens in our model before inflation be-
gins. Therefore the universe should remain relatively homo-
geneous until the thermal energy density drops below VdS .
Once it happens, the universe rapidly becomes exponentially
large and homogeneous due to inflation.

The only issue with this scenario is that at the time when
the thermal energy density drops below VdS , the scalar field
should be at the position where the potential V (φ) is flat and
inflation is possible. This is not easy to achieve in the new
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inflation/hilltop inflation scenario because the probability to
land by chance at the tiny vicinity of a maximum of the
potential in these models is not very high. However, in the
models with long inflationary slopes of the potential, such
as the simplest chaotic inflation models [16] or especially in
the models discussed in this paper, where the inflationary
slope of the potential is infinitely long, this last part should
be very easy.

Thus in this scenario, just as in the simplest chaotic infla-
tion scenario, inflation may begin if we had a sufficiently ho-
mogeneous domain of a smallest possible size (Planck scale),
with the smallest possible mass (Planck mass), and with the
total entropy O(1). We see no reason to expect that the
probability of formation of such universes is strongly sup-
pressed.

One can arrive at a similar conclusion from a completely
different point of view. Investigation of the quantum cre-
ation of a closed or an infinite open inflationary universe
with V � 1 shows that this process is forbidden at the clas-
sical level, and therefore only occurs by tunneling. The main
reason for this result is that closed de Sitter space always
has its size greater than H−1 ∼ 1/

√
V , and the total energy

greater than H−3V ∼ 1/
√
V . Than is why the universe with

V � 1 is large, heavy and difficult to create. As a result,
the probability of this process is exponentially suppressed
[20, 21]. Meanwhile, creation of flat or open compact uni-
verses is possible without any need for tunneling, and there
would be no exponential suppression for the probability of
quantum creation [33, 36, 37]. This suggests that the prob-
lem of initial conditions for low energy scale inflation can be
easily solved if one considers topologically nontrivial com-
pact universes. This possibility is completely consistent with
observations, since inflation lasting more than 60 e-foldings
makes all topological effects unobservable.

Thus we believe that there is no real problem with ini-
tial conditions for inflation in a broad class of inflationary
models even if inflation may occur only at V � 1. Other
ways to solve the problem of initial conditions for low en-
ergy scale inflation, including the possibilities related to the
string landscape scenario [38–44], can be found in [23]. As
we will see now, the cosmological attractor models studied
in this paper have additional advantages in this respect.

11. COSMOLOGICAL ATTRACTORS, DS VALLEY,
AND INITIAL CONDITIONS FOR INFLATION

In order to make our basic idea clear, we would like to
start with a discussion of a simple toy model of a massless
scalar field with gravity and a cosmological constant V =
const� 1:

1√
−g
L =

1

2
R− 1

2
∂ϕ2 − VdS . (11.1)

The description of the evolution of the universe in terms of
classical space-time begins when the sum of the kinetic and
gradient energy of the field ϕ and the vacuum energy V for
the first time becomes equal to the Planck energy density:
1
2 (ϕ̇2 + ∂iϕ

2) + VdS = 1. For VdS � 1, this means that
1
2 (ϕ̇2 + ∂iϕ

2) ≈ 1.

What happens with such a universe in the future? If it
is a compact open or flat universe, then we believe that
the answer is already given in the previous section. The
field φ is massless, its perturbations represent relativistic
waves/particles, and because of their ultra-relativistic equa-
tion of state combined with the chaotic mixing, the uni-
verse stays small and relatively homogeneous, of the size
a(t) � H−1. Its size grows as

√
t until the energy density

of the scalar field ρϕ(t) ∼ t−2 drops below V . After that,
the universe becomes an exponentially expanding dS space,
which will contain perturbations of the scalar field with an
exponentially decreasing amplitude. No other choice is avail-
able for the system.

One may consider a more complicated case: the same
model (11.1), but the universe was born large from the very
beginning. In our opinion, this assumption is problematic
and unnecessary. If everything that we see now could origi-
nate from something small, why should we consider a much
more complicated way to reach the same goal? One of the
problems addressed by inflation was to explain its huge size.
Since we know how to solve this problem using inflation, an
assumption that the universe was large prior to inflation is
no longer required. Nevertheless, for the sake of argument,
and to cover all options, we will consider this possibility as
well. Then there are two basic possibilities:

1) The whole universe collapses before the onset of ex-
ponential expansion in dS space with the cosmological con-
stant V . But this is possible only if the collapse occurs very
quickly, before the energy density of the initially expanding
universe becomes smaller than VdS and dS inflation takes
over. For VdS ∼ 10−10, this may happen only if the whole
universe collapses almost instantly, within about 10−28 sec-
onds from the birth of the universe, which means that we are
not talking about a universe with human observers trying to
explain its homogeneity, but about a short-living quantum
fluctuation.

2) If we are not talking about a small instantly collapsing
“virtual” universe, then the next possibility to consider is a
large expanding universe with initial inhomogeneities, which
may grow and become large in some parts of the universe,
but not everywhere. For example, the universe may contain
such local inhomogeneities as primordial black holes. But if
the universe as a whole continues to expand, then density
of matter in all of its expanding parts rapidly drops down
to VdS . These parts will continue to grow exponentially,
whereas the collapsing parts of the universe will not. As a
result, the volume of the universe will become dominated by
the exponentially large volume of dS space. Even if it con-
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tains black holes or other large inhomogeneous stable struc-
tures, they will move away from each other exponentially fast
and therefore eventually they will become irrelevant. This is
the similar to the fate that awaits all of us if the dark energy
is a cosmological constant: Eventually all distant galaxies
and other inhomogeneities will move exponentially far away
from us, and the universe will become an empty dS space.

Thus we expect that in the presence of a sufficiently large
cosmological constant VdS , at least some parts of a large
expanding universe do not collapse. The collapsed parts are
of little interest to us, whereas all parts that did not collapse
within the first 10−28 seconds join the exponential expansion
driven by the positive cosmological constant VdS .

In other words, in the context of this simple model, the
problem of initial conditions all but disappears. Instead of
asking whether it is probable that a large inhomogeneous ex-
panding universe enters a stage of inflation, one may wonder
what kind of miracle may prevent at least some parts of the
universe to enter the process of exponential expansion in an
eternally growing dS space?

To explain the relation between this toy model of dS space
and the theory of initial conditions for inflation, let us take
the next step and consider yet another toy model (7.5) with
an exactly shift-symmetric dS valley potential (7.6) shown
in Fig. 9. This potential represents an infinite dS valley with
the shape coinciding with the shape of the dS valley in the
simplest T-model (7.4) in the large ϕ limit. According to
the argument given above, the universe in the model (7.5)
should end up at the bottom of dS valley and enter the state
of exponential expansion in dS state at ϑ = 0.

Note that even after rolling to the dS valley at ϑ = 0,
different parts of the universe may contain different values
of the field ϕ, depending on the initial conditions at the
Planck time. Indeed, the theory (7.5), (7.6) is exactly shift-
symmetric with respect to the field ϕ. This means that all
initial conditions for the field ϕ are equally probable. There-
fore all values of this field after it falls to the dS valley are also
equally probable: A large dS universe becomes populated
with all possible values of the field ϕ in its different parts,
but the gradients of this field rapidly become exponentially
small due to dS inflation, and the universe becomes locally
uniform, up to small inflationary quantum fluctuations of
the field ϕ.

This is not a complete inflationary scenario yet, because in
this model the universe is forever trapped in dS space. In or-
der to implement the standard slow-roll inflation, one should
return to realistic models with Z-dependent superpotentials
discussed in our paper, such as W =

√
αµS Z proposed in

eq. (4.1). These models were studied in Section 7. In such
models, the field does not stay in dS valley but slowly rolls to
the minimum of the potential at small ϕ. But from the point
of view of the theory of initial conditions, these models do
not differ much from the toy models of dS space considered

above.

Indeed, the kinetic terms in all of these models coincide
with the kinetic terms of the theory (7.5), and the potential
of the simplest T-models (7.4) coincides with the dS val-
ley potential (7.6) with exponentially good accuracy every-
where except a finite interval of width |ϕ| .

√
α. According

to our results, even if the kinetic energy of the field ϕ ini-
tially was as large as the Planckian energy, this field does
not move by more than |∆ϕ| = 10 until it slows down and
reaches the slow-roll inflationary regime along the dS valley.
Therefore for an infinitely large range of initial conditions√
α+O(10) . |ϕ0| <∞, the first stages of the cosmological

evolution in T-models coincide with the evolution in the sim-
ple dS model (7.5), (7.6) with exponentially good accuracy.
More generally, one can show that the inflationary regime in
this class of models occurs if, after the stage of rolling, the
value of the inflaton field at the bottom of the dS valley re-
laxes at |ϕ| > min

[
O(
√
α), O(1)

]
. This means that the stage

of slow-roll inflation occurs for all values of ϕ0 at the Planck
density such that O(10) . |ϕ0| <∞.

The phase volume of initial conditions with |ϕ| .
√
α +

O(10) is finite. Meanwhile the phase volume of all possi-
ble inflationary initial conditions in these models is much
greater: it is infinitely large, with all values with |ϕ| �√
α+O(10) being equally probable because of the shift sym-

metry. For all values of the field ϕ in this infinitely large
interval, the probability of the slow-roll inflation in the cos-
mological attractors studied in this paper coincides with the
probability that the universe ends up in an exponentially
expanding dS space in the dS valley model (7.5). In accor-
dance with the arguments given in this section, this means
that initial conditions for inflation in the family of cosmo-
logical attractors studied in this paper are quite natural.

12. FURTHER GENERALIZATIONS

Before concluding our general investigation of initial con-
ditions for inflation for cosmological attractors, we would
like to point out some special cases where this investigation
is even simpler, and also to extend our results to other infla-
tionary models.

The first case involves asymmetric T-models (6.3), (6.5)
shown in Figs. 5 and 10. In these models, for appropriate
choice of parameters, the hight of the upper shoulder (i.e. of
the dS valley at a higher altitude) can be Planckian. Thus
inflation may start at the Planck density, as in the simplest
models of chaotic inflation, in which case the problem of ini-
tial conditions is easily solved [16, 18–22]. When inflation
ends at the upper shoulder, the field ϕ rolls down to ϕ = 0
and, by inertia, climbs the lower shoulder. As we have al-
ready shown, the field cannot move by more than ∆ϕ ∼ 10.
After that, the field stops, and the second (last) stage of in-
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flation begins, which is responsible for the structure forma-
tion in the observable part of the universe. We checked that
for α = O(1) the duration of the second stage of inflation is
more than sufficient to account for the last 60 e-foldings of
inflation.

Another interesting possibility emerges in supergravity
models with the Kähler potential (2.2) and α � 1/3, as
well as in the models with the Kähler potential (8.1) and
α = 1/3 + δ where 0 < δ � 1/3. In such models, inflation
can begin directly at the Planck boundary with large val-
ues of the canonical field χ in Eq. (7.7). Then the problem
of initial conditions for such models is resolved in exactly
the same way as in other versions of chaotic inflation where
inflation may start at the Planckian values of the potential
V = O(1) [16, 18–22].

The arguments given above can be easily extended to the
models discussed in Section 8 with the Kähler potential (8.1).
As we already mentioned, the potential in these models for
α > 1/3 also has an infinite dS valley (8.2) with the ϕ-
independent curvature m2

ϑ = 6H2(1 − 1
3α ), so most of our

arguments apply there for the case α > 1/3. The special case
α = 1/3 is particularly interesting from the point of view of
the theory of initial conditions, as already discussed in [15].
Indeed, in this case it is convenient to use a different set of
coordinates Z = eiθ tanh ϕ

2 and find that, for the simplest
superpotential W =

√
αµ S Z, the inflaton potential does

not depend on the angular variable θ and is given by V =
αµ2 tanh2 ϕ√

2
.

FIG. 17. The potential V in the theory (8.1) with W =
√
αµS Z for

α = 1/3 in terms of the inflaton field ϕ and the angular variable θ.

Everywhere except for the region with ϕ . 4, the potential is flat with

exponentially good accuracy, which provides perfect initial conditions

for inflation [15].

The shape of the potential in these variables is shown in
Fig. 17. The last 60 e-foldings of inflation in this model
are determined by a tiny part of this figure at ϕ . 4. The
potential V at large ϕ is almost exactly constant, and the
phase volume for initial conditions corresponding to ϕ > 4
is infinitely large. This provides perfect initial conditions for
inflation. Independently of the initial velocity of the scalar
fields, their kinetic energy rapidly dissipates due to the cos-
mological evolution. The fields freeze at some point of the
infinitely large plateau, until the exponentially slow descent
in the radial direction towards the minimum of the poten-

tial shown in Fig. 17 begins [15]. All of the arguments given
above concerning initial conditions for exponential expansion
in dS space are immediately applicable to this model.

Up to now, we concentrated on a special class of α-
attractors in supergravity, describing a combined cosmolog-
ical evolution of two fields, ϕ and ϑ. We found that in some
exceptional cases the field ϑ can help inflation to begin (e.g.
in the model (8.1) with α � 1/3), but in general it does
not play much role in the discussion of initial conditions for
inflation: If the field ϕ initially was very large, then it falls
to the dS valley at very large values of ϕ independently of
the behavior of the field ϑ. Our main arguments concern-
ing naturalness of initial conditions for inflation in Section
11 take this fact into account. Therefore they equally well
apply to all cosmological attractor models based on a single
inflaton field with a plateau dS potential, such as (1.1). This
includes the Starobinsky model [7], Higgs inflation [10], con-
formal attractors [1], single-field supergravity attractors [3],
and universal attractors with non-minimal coupling to grav-
ity [2, 14]. More generally, these arguments should apply to
any model where the inflaton potential has a sufficiently long
and flat slope, as in the simplest models of chaotic inflation
[16].

13. SUMMARY

In this paper we described some simple versions of the
theory of the cosmological attractor models [1, 4, 5, 15, 17].
We have used a novel set of coordinates describing the ge-
ometry of scalar fields. It corresponds to a choice of the
Killing adapted geometry where the inflaton shift symme-
try, ϕ→ ϕ+ const of the Kähler potential, is manifest and
is only broken by the superpotential. As the result, the po-
tential of these refined models has an interesting universal
property: at large values of the inflaton field ϕ it looks like
an infinite dS valley of nearly exactly constant depth and
width, see Fig. 8. In other words, at large ϕ the poten-
tial has shift symmetry with respect to the shift of the field
ϕ. This property of the theory is not immediately appar-
ent from its formulation, but can be established using the
properties of the hyperbolic geometry of the moduli space
discussed in [15, 17] and further studied in our paper. The
novel element contained in this paper is the choice of con-
formally flat coordinates, and also a particular choice of the
Kähler potential, which makes the shift symmetry manifest
and ensures stability of the dS extremum.

We believe that this interesting property is sufficient for
solving the problem of initial conditions in this class of infla-
tionary models. This can be done in several different ways
discussed in [23] and in Section 10 of our paper, but the ex-
istence of the shift symmetry revealed in this paper allows
for yet another solution which is rather simple and general.
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Our investigation shows that during the pre-inflationary
stage of expansion of the universe, the canonically normal-
ized inflaton field ϕ cannot change by more than O(10).
Therefore for all initial conditions for the field ϕ, except
for a finite interval near the minimum of the potential at
ϕ = 0, the fields roll down to the lower part of the dS valley
far from ϕ = 0, and inflation almost inevitably begins there.
This argument is directly applicable as well to all cosmolog-
ical attractor models, such as (1.1), based on a single real
inflaton field φ with a plateau potential, and to any other
model where the inflaton potential has a sufficiently long
and flat slope.
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