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Abstract

We present a new method for calculating loops in cosmological perturbation theory. This method

is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes.

The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies,

all loop integrals are formally equivalent to loop integrals of massless quantum field theory.

These integrals have analytic solutions in terms of generalized hypergeometric functions. We

provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop

bispectrum. A chief advantage of our approach is that the difficult part of the calculation is

cosmology independent, need be done only once, and can be recycled for any relevant predictions.

Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We

demonstrate the promise of this method for applications to higher multiplicity/loop correlation

functions.
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1 Introduction

Cosmological perturbation theory (PT) [1–4] offers a complementary approach to predicting and

interrogating large-scale structure (LSS) observables in the weakly non-linear regime. While

many investigations in the literature are aimed at understanding and exploiting the highly non-

linear regime (e.g. galaxy and cluster formation), it is clear that upcoming experiments (e.g.

CMB-S4, DESI, CHIME) will also provide voluminous datasets probing matter distribution on

very large scales. As we continue in this “era of precision cosmology”, it is critical to exploit this

investment of resources, to the fullest extent possible, in order to deliver on the promise of these

upcoming surveys to measure cosmological parameters and potentially probe new physics. The

PT approach, when recognized as a classical effective field theory [5–7], has a number of impor-

tant advantages. It converges to the correct answer for clustering statistics on large scales as more

orders are included. Its errors are parametrically controlled, so the typical size of the deviations

from the correct answer can be easily estimated. For the scales of relevance, it is rapidly com-

putable compared to the necessarily large and high-resolution cosmological simulations required

to attempt adequate comparison of theory and large-scale data. Simulation boxes are computed

with a single cosmology and thus many computations are required to investigate small changes

in cosmological parameters, the effects of cosmic variance, and to perform consistency checks of

scheme independence. PT works around these issues entirely. Indeed it can serve as a spectacular

large-scale (IR) complement to simulations, allowing them to focus their power in the incredibly

non-linear smaller-scale (UV) regimes where they excel.

In the PT approach one treats dark matter and baryons as non-ideal self-gravitating fluids. At

early times or on large scales these fluids are nearly homogeneous with small density fluctuations.

This allows for the equations of motion to be solved perturbatively. The rigorous foundation

of PT as an effective field theory of large scale structure (EFTofLSS) was recently made [5–

7], although many important results were known for a long time (for a review see [8]). One

feature of these perturbative solutions is that they convolve initial density fields. Therefore

observables, such as correlation functions of density-contrast, or overdensity, are efficiently written

as momentum integrals over a certain number of initial power spectra. These integrals are

refereed to as loop integrals. They admit a graphical organization which is why the atomic

units of loop contributions to correlation functions are often referred to as loop diagrams. Higher

multiplicity/loop correlation calculations are critical not only to extending the scale of relevance of

the analytic approach, but to break degeneracies and optimally extract cosmological parameters

from the real data.

While calculating loop integrals is a straightforward task in principle, the computational cost

of exact solution becomes prohibitive for higher points (multiplicity) as well as higher loop order

corrections. Higher multiplicity kernels quickly become complicated and every loop brings addi-

tional three-dimensional integral. The linear power spectrum that appears in the integrand for

real universe applications is known only as a numerical function which makes analytic solution of

non-trivial integrals impossible. Naive numerical integration, to desired precision, on the other

hand, quickly becomes slow even with advanced Monte Carlo methods, due to the growth in
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dimensionality. This poses a direct challenge to our ability to interrogate large datasets and one

that merely more and faster computers will not address.

In order to simplify and speed up loop calculations we require new ideas, new strategies, to

approach the problem. One inspiring idea, developed in [9] and [10], is to use Fast Fourier Trans-

form (FFT) for efficient evaluation of the one-loop power spectrum. After first “deconvolving”

the lowest order PT solutions, and performing all angular integrals, the one-loop expressions

reduce to a set of simple one-dimensional integrals that can be efficiently evaluated using FFT.

Unfortunately, deconvolving higher order perturbative solutions and extending this approach to

the one-loop bispectrum or the two-loop power spectrum proves to be challenging [11].

In this paper we build on ideas of [9, 10] but choose a slightly different strategy which allows

us to go beyond the one-loop power spectrum. Let us briefly sketch the main idea behind our

proposal. Prior to doing any integrals, the linear power spectrum is expanded as a superposition

of ideal self-similar power-law cosmologies. This is naturally accomplished using FFT in log k.

Given some range of wavenumbers of interest, from kmin to kmax, the approximation for the linear

power spectrum with N sampling points is [9, 12]

P̄lin(kn) =

m=N/2∑
m=−N/2

cm k
ν+iηm
n , (1.1)

where the coefficients cm and the frequencies ηm are given by

cm =
1

N

N−1∑
l=0

Plin(kl) k
−ν
l k−iηmmin e−2πiml/N , ηm =

2πm

log(kmax/kmin)
. (1.2)

Notice that the we denote the approximation for the linear power spectrum with P̄lin(k), while

eq. (1.2) uses the exact linear power spectrum Plin(k) to calculate the coefficients cm. We will keep

using the same notation throughout the paper. The parameter ν is an arbitrary real number. As

we will see, the simplest choice ν = 0 is insufficient in some applications, so we will use the more

general form of the Fourier transform. In the terminology of [9] we call this ν parameter bias.

Note that the powers in the power-law expansion are complex numbers. In practice, even a small

number of power-laws, O(100), is enough to capture all features of the linear power spectrum

including the BAO wiggles. One important thing to keep in mind is that the Fourier transform

produces the power spectrum that is periodic in log k. Therefore, we will take care to choose kmin

and kmax such that we cover the range of scales where we actually care about the value of the

power spectrum. In other words we are choosing the momentum range where the loop integrals

have the most of the support. However, one always has to be careful about possible contributions

particularly from high k modes or short scales.

Is this a limitation? Absolutely not. At the heart of the EFT understanding is the simple

recognition that the PT idealized description of satisfying fluid-like equations of motion can only

be valid at certain scales. This is much the same as the hydrodynamic description of liquid water

is only valid at certain scales. Attempting to integrate this approximation over scales outside

of its validity introduces non-parametrically controlled errors. Instead the information in the
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linear approximation must be supplemented by small-scale UV physics. This data is encoded in

physical parameters like speed of sound or viscosity – potentially any dimensionally consistent

operators. Such EFT parameters serve two roles. They must eat up any cutoff-dependence, by

definition non-physical, and they must accurately represent the integrating out of any small-scale

degrees of freedom. So baked into the framework that places PT on a rigorous footing is the

realization that any integrals of the linear approximation should only be performed over a range

of scales consistent with its validity.

Notice that the decomposition (1.1) reduces the evaluation of a loop diagram for an arbitrary

cosmology to evaluation of the same diagram for a set of different power-law universes with

numerical coefficients. Power-law momentum integrals can be done analytically. The final answer

is a sum of familiar special functions which are straightforward to evaluate. In the simplest case of

the one-loop power spectrum, the momentum integral for a power-law universe can be expressed

entirely in terms of gamma functions [13, 14]. Looking at higher order correlators an interesting

pattern emerges. The perturbation theory kernels can always be written such that the general

form of loop integrals in a power-law cosmology is formally identical to the one of a massless

Quantum Field Theory (QFT) with cubic interactions.1 This is just a formal relationship, but it

should prove rather useful. Many results recently developed in the theory of scattering amplitudes

can be applied to LSS correlation functions as well. Some steps in this direction have already

been made for the one-loop bispectrum in [13].

In this work we derive formulas for the one-loop bispectrum and the two-loop power spectrum

in power-law cosmologies which are suitable for effecient numerical evaluation. Generically, the

higher multiplicity/loop correlation functions are expressed in terms of the generalized hyperge-

ometric functions. One thing to keep in mind is that the powers ν + iηm are complex and one

has to be careful about the analytic continuation of all results to the entire complex plane.

Before diving into the details, let us comment on one important virtue of our method. The

decomposition (1.1) is useful because it separates the cosmology dependent portion, encoded

entirely in the coefficients cm, from the loop calculations which have been reduced to that of much

more tractable, ideal, cosmologies. This means that for the fixed value of bias ν, the momentum

range (kmin, kmax) and the number of sampling points N the difficult part of the calculation which

involves momentum integrals can be done only once, saved as a table of numbers and then used

for any cosmology. As we will see, the evaluation of the contribution of loop diagrams reduces to

a simple (small) matrix multiplication and it is very fast. This opens up the possibility of using

our method in Markov chain Monte Carlo parameter estimation.

In the rest of the paper we focus on three examples: the one-loop power spectrum, the

one-loop bispectrum and the two-loop power spectrum. We will present our calculations in

detail and for one-loop diagrams compare them with the standard numerical results. We leave a

detailed comparison with the numerical two-loop power spectrum for future work. A Mathematica

notebook used to produce plots is available as an auxiliary file associated with the preprint of

the paper on arXiv.

1More precisely, it is a QFT in three dimensions with the Euclidean signature.
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2 One-loop Power Spectrum

Let us first consider the simplest case—the one-loop power spectrum. In perturbation theory

there are two different one-loop contributions. Using the usual approximation in which the time

dependence is separated from k dependence (for a review see [8]), the one-loop power spectrum

reads

P1−loop(k, τ) = D4(τ)[P22(k) + P13(k)] , (2.1)

where τ is conformal time, D(τ) is the growth factor for matter fluctuations and the two terms

in the square brackets are given by

P22(k) = 2

∫
q
F 2

2 (q,k − q)Plin(q)Plin(|k − q|) , (2.2)

P13(k) = 6Plin(k)

∫
q
F3(q,−q,k)Plin(q) , (2.3)

where
∫
q ≡

∫ d3q
(2π)3

. Diagrammatic representation of these two contributions is shown in Fig. 1.

The explicit form of kernels Fn can be calculated using well-known recursion relations [8]. One

important point is that it is always possible to expand kernels in (2.2) and (2.3) in integer powers

of k2, q2 and |k − q|2. For example,

F2(q,k − q) =
5

14
+

3k2

28q2
+

3k2

28|k − q|2
− 5q2

28|k − q|2
− 5|k − q|2

28q2
+

k4

14|k − q|2q2
. (2.4)

A similar expression can be found for F3(q,−q,k).2 If we further decompose Plin(k) in power

laws using (1.1), the one-loop power spectrum becomes a sum of simple momentum integrals of

the following form ∫
q

1

q2ν1 |k − q|2ν2
≡ k3−2ν12 I(ν1, ν2) , (2.5)

where ν1 and ν2 are in general complex numbers.

Plin

Plin

P22

F2 F2

Plin

Plin

P13

F3 Plin

Plin

2

Plin

Plin

P22

F2 F2

Plin

Plin

P13

F3 Plin

Plin

2

Figure 1. Diagrammatic representation of two contributions to the one-loop power spectrum.

As we already mentioned, the form of the integral is identical to the one-loop massless two

point function in QFT. The only difference is that in this case the powers of the “propagators”

2In the expansion of F3(q,−q,k) some terms contain |k + q|2. Given that the kernels are always integrated

over q, one is allowed to do the following change of coordinates q → −q and bring these terms to the same form

as in (2.4)
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are complex numbers rather than integers. Still, the unknown dimensionless function I(ν1, ν2)

can be easily calculated using the standard technique with Feynman parameters. The result is a

well known expression [13, 14]

I(ν1, ν2) =
1

8π3/2

Γ(3
2 − ν1)Γ(3

2 − ν2)Γ(ν12 − 3
2)

Γ(ν1)Γ(ν2)Γ(3− ν12)
, (2.6)

were ν12 = ν1 + ν2 (throughout the paper we adopt the following notation ν1...n ≡ ν1 + · · ·+ νn).

Notice that, thanks to the analytic continuation, I(ν1, ν2) gives a finite answer even for the

values of parameters for which the integral is formally divergent. In practice, breaking the loop

calculation into many pieces can lead to some divergent terms. However, as long as the total

sum is well defined and finite, for at least some power-law cosmology Plin(k) ∼ kν , by analytic

continuation it is guaranteed that eq. (2.6) gives the correct answer.

Sometimes the condition that the integral at hand is convergent for at least some power-law

power spectrum cannot be met, and one has to use eq. (2.6) with some care. For example,

the function I(ν1, ν2) vanishes if one of the arguments is zero (or a negative integer). Apply-

ing (2.6) blindly would lead in these cases to paradoxical results. For instance, after power-law

decomposition of the linear power spectrum, eq. (2.6) would imply∫ ∞
0

dq Plin(q) = 0 , (2.7)

which is obviously the wrong answer. This is a consequence of the well known statement that in

dimensional regularization all power-law divergences vanish:
∫
q q

ν = 0.3

Similar issues can appear in calculating loop diagrams. Luckily, for a ΛCDM-like cosmology,

they can be always easily fixed. Let us imagine that the integral we are interested in is divergent

for a given bias ν. Then, if the integral diverges in the UV(IR), one has to find the UV(IR)

limit of the integrand. This can be easily done fixing all external momenta and sending the loop

momentum to infinity(zero). This limit always has the form of eq. (2.7) and it would be set to

zero by dimensional regularization. Therefore, to get the correct answer, one simply has to add

the UV(IR) contribution by hand. In the following sections we will give more details for each

specific case we consider.

Let us also point out that all UV divergences have a well defined momentum dependence. This

momentum dependence is the same as for the counterterms in the EFTofLSS. Therefore, one can

proceed without explicitly adding the UV-dependent terms to the loop calculation. The only

effect of this choice is to change the usual values of the counterterms. In this sense we can say

that eq. (2.6) calculates only the “finite” part of the loop integral. As expected, the counterterms

absorb all UV-dependent pieces.

3More precisely, this integral is related to a delta function [15]. A change of coordinates relates∫
q

1

q3+2ν1
=

i

2π2
δ(ν1) . (2.8)

To get the consistent results one can use this equation. In practice, there is a much simpler way, as described in

the main text.
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2.1 Symmetries of I(ν1, ν2) and Recursion Relations

Before moving on to applications, it is instructive to take a closer look at symmetries of the

integral in (2.5). For the one-loop power spectrum this is a straightforward exercise. We use

it to introduce some notation and derive a couple of results that will be very useful in more

complicated cases, such as the one-loop bispectrum or the two-loop power spectrum.

The most obvious symmetry of the integral (2.5) is invariance under the shift q → k − q.

Consequently, the function I(ν1, ν2) is symmetric in ν1 and ν2

I(ν1, ν2) = I(ν2, ν1) . (2.9)

As we will see later, there are similar transformations for higher multiplicity/order diagrams

and they always lead to some permutation of parameters νi. We are going to call these kind of

identities translation formulas, because they are derived using translations in momentum space.

The integral (2.5) preserves its form under rescaling of momenta, but this does not lead to

any non-trivial condition on I(ν1, ν2). However, a more complicated rescaling, such as inversion

of momenta, does lead to interesting results. For simplicity, let us choose k to be a unit vector:

k = k̂, k̂
2

= 1. Under an inversion q → q/q2 different factors in the integrand transform in the

following way

d3q → d3q

q6
, q2 → q−2 , |k̂ − q|2 → |k̂ − q|2

q2
. (2.10)

Using these transformations we can write

I(ν1, ν2) =

∫
q

1

q2ν1 |k̂ − q|2ν2
=

∫
q

1

q2(3−ν12)|k̂ − q|2ν2
, (2.11)

which immediately implies the inversion formula

I(ν1, ν2) = I(3− ν12, ν2) . (2.12)

There is one more method to find nontrivial identities for massless loop integrals which is

based on the following relation between real and momentum space

1

q2ν
=

Γ(3
2 − ν)

Γ(ν)
π−3/22−2ν

∫
x

1

x3−2ν
e−iq·x , (2.13)

where
∫
x ≡

∫
d3x. Let us illustrate the main idea behind this method. The starting point is to

close all external lines in order to form additional loops. This is equivalent to integrating over all

external momenta. For example, for the one-loop power spectrum we can start from∫
k

1

k3
I(ν1, ν2) =

∫
k,q

1

q2ν1 |k − q|2ν2k2(3−ν12)
. (2.14)

Notice that this expression has a form of a two-loop vacuum diagram. We have chosen to multiply

I(ν1, ν2) with the 1/k3 factor such that the whole integral is dimensionless. On the l.h.s. the

function I(ν1, ν2) does not depend on k and the integral trivially reduces to∫
k

1

k3
I(ν1, ν2) = I(ν1, ν2)

1

(2π)3

∫
d3k

k3
. (2.15)
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On the r.h.s. we can use (2.13) and integrate over q and k. The momentum integrals lead to two

delta functions which can be used to do two integrals in real space. At the end of the day, we

are left with the following expression

I(ν1, ν2)
1

(2π)3

∫
d3k

k3
=

1

64π9/2

Γ(3
2 − ν1)Γ(3

2 − ν2)Γ(ν12 − 3
2)

Γ(ν1)Γ(ν2)Γ(3− ν12)

∫
d3x

x3
, (2.16)

from which result (2.6) immediately follows. As we can see, the one-loop two-point function

is simple enough that relation (2.13) is sufficient to fix its form. For higher multiplicity/loop

correlation functions this is not the case. The reason is that in those cases the real space integrals

are not trivial anymore. However, it turns out that they alway have the same structure as the

original momentum integrals. The only difference is that the parameters are shifted: νi → ν̃i ≡
3
2 − νi. It follows that there is always an identity which relates two functions with parameters νi
and ν̃i. We will refer to these identities as reflection formulas.

Finally, let us present recursion relations which connect functions whose parameters differ

by an integer. These relations can be always derived using the fact that the integral of a total

derivative vanishes. For instance,∫
q

∂

∂qi

(
qi

q2ν1 |k − q|2ν2

)
= 0 . (2.17)

Expanding the derivative we find

(3− 2ν1 − ν2)I(ν1, ν2) + ν2[I(ν1, ν2 + 1)− I(ν1 − 1, ν2 + 1)] = 0 , (2.18)

and a similar relation in which ν1 and ν2 are exchanged. The importance of these identities is

that they relate different terms in the expansion of kernels, such as (2.4). As we will see in the

explicit calculations of P22 and P13 diagrams, thanks to the recursion relations all terms in the

expansion of the kernels (for fixed ν1 and ν2) can be evaluated using a single function I(ν1, ν2).

2.2 Numerical Evaluation of the One-loop Power Spectrum

In this section we will apply eq. (2.6) to the calculation of the one-loop power spectrum. We will

first separately discuss P22 and P13 diagrams (see Fig. 1).

P22 diagram.—Let us begin by reviewing some properties of the P22 diagram in a cosmology with

Plin(k) ∼ kν . In particular, we are interested in finding the powers ν for which the integral is

convergent. In order to do that we have to find the asymptotic form of the integrand in the UV

and the IR regime. The behavior of the F2 kernel in these two limits is

F2(q,k − q)→ k

q
, q → 0 , (2.19)

F2(q,k − q)→ k2

q2
, q →∞ . (2.20)

It follows that P22 diagram is convergent if −1 < ν < 1/2. If we choose bias in FFT to be in

this range, then the integral in P22 is finite for each term in the sum (1.1) and using (2.6) we are

guaranteed to get the same answer as with the usual numerical evaluation.
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Figure 2. Two contributions to the one-loop power spectrum calculated using direct numerical integration

and eq. (2.23) and eq. (2.31) as described in the main text. Both plots are produced using ν = −0.3,

N = 150, kmin = 10−5 hMpc−1 and kmax = 5hMpc−1. For these values of parameters the sum of two

terms differs from the numerical one-loop power spectrum by less than 0.1% at all scales.

Before turning to results, let us write the explicit formula for P22 diagram. Using (1.1)

and (2.4) we can write the approximation to the P22 diagram in the following way

P̄22(k) = 2
∑
m1,m2

cm1 cm2

∑
n1,n2

f22(n1, n2) k−2(n1+n2)

∫
q

1

q2ν1−2n1 |k − q|2ν2−2n2
. (2.21)

In this expression cm1 and cm2 are the coefficients in (1.2) and n1 and n2 are integer powers

of q2 and |k − q|2 in the expansion of F 2
2 (q,k − q). Corresponding rational coefficients in this

expansion are labeled by f22(n1, n2) and they can be read off from (2.4). The complex numbers

ν1 and ν2 are given by

ν1 = −1
2(ν + iηm1) and ν2 = −1

2(ν + iηm2) . (2.22)

Using the solution for the momentum integral, expression (2.21) can be further simplified and

written in the following way

P̄22(k) = k3
∑
m1,m2

cm1k
−2ν1 ·M22(ν1, ν2) · cm2k

−2ν2 , (2.23)

where the matrix M22(ν1, ν2) is given by

M22(ν1, ν2) =
(3

2 − ν12)(1
2 − ν12)[ν1ν2(98ν2

12 − 14ν12 + 36)− 91ν2
12 + 3ν12 + 58]

196 ν1(1 + ν1)(1
2 − ν1) ν2(1 + ν2)(1

2 − ν2)
I(ν1, ν2). (2.24)

As we already pointed out, only a single function I(ν1, ν2) is sufficient to calculate the full diagram.

Thanks to the recursion relations (2.18), all terms from the expansion of F2 kernels are encoded

in the ν-dependent prefactor in matrix M22(ν1, ν2).

One can use eq. (2.23) to calculate the P22 diagram. The result is shown in Fig. 2. As expected,

the agreement with the usual numerical integration is excellent. An important thing to notice
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is that the only cosmology dependence in (2.23) is in the coefficients cm. For a given number

of sampling points N , bias ν and kmin and kmax, the matrix M22(ν1, ν2) is fixed. This means

that it can be calculated only once and saved as a table of numbers. The evaluation of the P22

diagram for an arbitrary cosmology then boils down to doing one FFT to determine coefficients

cm, calculating a vector cmk
−2ν for each k and a simple matrix multiplication (2.23).

So far we restricted ourselves to biases in the range −1 < ν < 1
2 . Outside this range one has to

be more careful because the integrals are not convergent anymore and eq. (2.6) is not guaranteed

to give the correct answer. For example, for biases ν < −1 the integrals are divergent in the

IR. The leading piece of the P22 diagram in this limit can be calculated by fixing k and sending

q → 0 in the integrand. The result is

P IR
22 (k) = Plin(k)k2σ2

v , (2.25)

where σ2
v ≡ 1

6π2

∫∞
0 dq Plin(q). The integral in σ2

v would be set to zero by eq. (2.6) and missed in

the final answer. Therefore, to get a correct result, one simply has to add P IR
22 (k) to eq. (2.23)

at the end of the calculation. Notice that we have kept only the leading IR divergence, which

is enough for biases in the range −3 < ν < −1. If the bias was even smaller, one would have

to keep track of sufficient number of subleading IR divergences. Similarly, when 1
2 < ν < 3

2 , the

leading UV divergence that has to be added on the r.h.s. of eq. (2.23) to get the correct result is

PUV
22 (k) =

9

196π2
k4

∫ ∞
0

dq
Plin(q)

q2
. (2.26)

However, for very high or low values of biases, the momentum range (kmin, kmax) has to be very

wide for the integrals to converge to correct values. This implies a large number of frequencies

and it is not practical.

P13 diagram.—The asymptotic behavior of the F3 kernel in the UV and the IR limit is the same

F3(q,−q,k)→ k2

q2
, q → 0 or q →∞ . (2.27)

Consequently, P13 diagram is divergent in the UV for ν > −1 and divergent in the IR for ν < −1.

In other words, P13 diagram is never finite in a power-law cosmology. For ν > −1, the only

possible mismatch between the true answer and eq. (2.6) comes from the UV part of the integral.

For fixed k and taking the limit q →∞

PUV
13 (k) = − 61

105
Plin(q)k2σ2

v . (2.28)

On the other hand, for ν < −1, the possible error comes from the IR limit4

P IR
13 (k) = −Plin(k)k2σ2

v . (2.29)

As we already mentioned, in dimensional regularization this type of the integrals would be set

to zero by (2.6). This implies that to get the correct values for P13, depending on the choice of

bias, we have to add either the UV or IR term by hand. Notice that here we are writing down

10
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Figure 3. Two contributions to the one-loop power spectrum calculated using direct numerical integration

and eq. (2.23) and eq. (2.31). Both plots are produced using ν = −1.6, N = 150, kmin = 3 · 10−4 hMpc−1

and kmax = 180hMpc−1. For this value of bias both P22 and P13 are very different from their standard

values.

only the leading IR and UV parts of the P13 diagram. For biases ν < −3 or ν > 1, one would

have to include the corresponding subleading terms as well.

Let us see how the formulas above work in practice. With the same notation as for the P22

diagram, we can write

P̄13(k) = 6Plin(k)
∑
m1

cm1

∑
n1,n2

f13(n1, n2) k−2(n1+n2)

∫
q

1

q2ν1−2n1 |k − q|−2n2
. (2.30)

Solving the momentum integral, this expression can be further simplified

P̄13(k) = k3Plin(k)
∑
m1

cm1k
−2ν1 ·M13(ν1) , (2.31)

where the vector M13(ν1) is given by

M13(ν1) =
1 + 9ν1

4

tan(ν1π)

28π(ν1 + 1)ν1(ν1 − 1)(ν1 − 2)(ν1 − 3)
. (2.32)

Notice that to eq. (2.31) one has to add the UV or the IR part of the integral. For example,

for ν > −1, we plot the result in Fig. 2. As expected, once PUV
13 (k) is added to eq. (2.31), the

agreement with the usual numerical result is excellent.

The full one-loop power spectrum.—So far we were trying to reproduce the usual numerical results

for separate pieces of the one-loop power spectrum. However, only their sum is a well defined

observable. Thanks to the Equivalence Principle the IR divergences cancel and the total one-loop

power spectrum is convergent for the range of power laws −3 < ν < −1 [14]. This means that

with the choice of bias in this range, the formulas above should lead to the correct answer for

4Notice that P13 diagram has two IR divergences q → 0 and q → k, which are combined in a single expression.
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P1−loop(k), without having to deal with the IR divergences explicitly. In Fig. 4 we plot the one-

loop power spectrum calculated in this way and show that our method indeed agrees with the

usual numerical result. As expected, the separate terms P13 and P22 are rather different from

their usual values (see Fig. 3). However, the “mistake” that eq. (2.6) makes in assigning some

finite values to divergent integrals has to cancel between the two contributions in the same way

the IR divergences cancel. Indeed, the IR limit of the P22 diagram is exactly the same as the IR

limit of P13 diagram, but with the opposite sign (see eq. (2.25) and eq. (2.29)).

Plin

P1-loop power laws, ν=-1.6

P1-loop numerical
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104
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Figure 4. The full one-loop power spectrum calculated summing up contributions from Fig. 3.

In conclusion, the one-loop power spectrum can be easily calculated using decomposition (1.1).

For practical applications, the most optimal choice of bias is in the range close to zero −0.5 <

ν < 0 because it requires the least number of frequencies to reproduce the linear power spectrum

on relevant scales. For this range the P22 diagram can be evaluated directly applying our method.

To get the correct P13 diagram, one has to add PUV
13 term to the r.h.s of eq. (2.31).

2.3 One-loop Power Spectrum of Biased Tracers

The method described above can be also applied to the one-loop power spectrum of biased tracers

[16–19] (for a review see [20]). In this section we give explicit formulas for all relevant one-loop

contributions. We will follow the notation of [18].

The density contrast of biased tracers, such as the dark matter halos δh, is a local function

of the underlying dark matter field. The functional dependence is expressed through all possible

operators built from the tidal tensor ∂i∂jΦ (and its derivatives), where Φ can be either gravita-

tional potential Φg or velocity potential Φv. These two potentials are the same at leading order in

perturbation theory but starting from second order they differ. To calculate the one-loop power

spectrum of biased tracers one has to keep in bias expansion all operators up to third order in

12



perturbation theory5

δh = b1δ +
b2
2
δ2 + bG2G2 +

b3
6
δ3 + bG3G3 + b(G2δ)G2δ + bΓ3Γ3 . (2.33)

The operators G2, G3 and Γ3 are defined as

G2(Φ) ≡ (∂i∂jΦ)2 − (∂2Φ)2 , (2.34)

G3(Φ) ≡ −∂i∂jΦ ∂j∂kΦ ∂k∂iΦ−
1

2
(∂2Φ)2 +

3

2
(∂i∂jΦ)2∂2Φ , (2.35)

Γ3(Φg,Φv) ≡ G2(Φg)− G2(Φv) . (2.36)

However, only four renormalized operators contribute to the one-loop power spectrum. These

are δ, [δ2], [G2] and [Γ3]. The final answer is given in terms of four corresponding renormalized

bias parameters and six different momentum integrals [18]
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Figure 5. Four different contributions to the one-loop power spectrum of biased tracers. All plots are

produced using ν = −1.6, N = 150, kmin = 10−5 hMpc−1 and kmax = 5hMpc−1. For these values of

parameters the difference with respect to the usual numerical calculation is less than 0.1% at all scales.

5Notice that [18] is using bδ2 = b2
2

and bδ3 = b3
6
.
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Ph(k, τ) =b21(Plin(k, τ) + P1−loop(k, τ))

+ b1b2 Iδ2(k, τ) + 2b1bG2 IG2(k, τ) +

(
2b1bG2 +

4

5
b1bΓ3

)
FG2(k, τ)

+
1

4
b22 Iδ2δ2(k, τ) + b2G2 IG2G2(k, τ) +

1

2
b2bG2 Iδ2G2(k, τ) . (2.37)

In principle, at this order in perturbation theory one has to add higher derivative operators such

as ∂2δ. However the contribution from this operator is trivial and it does not lead to a loop

integral.

The time dependence of all momentum integrals in Ph(k, τ) isD(τ)4. The explicit k-dependences

are

Iδ2(k) = 2

∫
q
F2(q,k − q)Plin(q)Plin(|k − q|) ,

(
−3 < ν < −1

2

)
(2.38)

IG2(k) = 2

∫
q
σ2(q,k − q)F2(q,k − q)Plin(q)Plin(|k − q|) ,

(
−3 < ν < 1

2

)
(2.39)

FG2(k) = 4Plin(k)

∫
q
σ2(q,k − q)F2(k,−q)Plin(q) , (−3 < ν < −1) (2.40)

Iδ2δ2(k) = 2

∫
q
Plin(q)Plin(|k − q|) ,

(
−3 < ν < −3

2

)
(2.41)

IG2G2(k) = 2

∫
q
(σ2(q,k − q))2Plin(q)Plin(|k − q|) ,

(
−3 < ν < 1

2

)
(2.42)

Iδ2G2(k) = 2

∫
q
σ2(q,k − q)Plin(q)Plin(|k − q|) ,

(
−3 < ν < −1

2

)
(2.43)

where σ2(k1,k2) = (k1 ·k2/k1k2)2−1. For each term we give a range of power laws for which the

integral is convergent. Following the same steps as in the case of the one-loop power spectrum

of matter fluctuations, we find that matrices analogous to M22 and M13 are given by

MIδ2 (ν1, ν2) =
(3− 2ν12)(4− 7ν12)

17ν1ν2
I(ν1, ν2) , (2.44)

MIG2 (ν1, ν2) = −(3− 2ν12)(1− 2ν12)(6 + 7ν12)

28ν1(1 + ν1)ν2(1 + ν2)
I(ν1, ν2) , (2.45)

MFG2
(ν1) = − 15 tan(ν1π)

28π(ν1 + 1)ν1(ν1 − 1)(ν1 − 2)(ν1 − 3)
, (2.46)

MIδ2δ2 (ν1, ν2) = 2I(ν1, ν2) , (2.47)

MIG2G2 (ν1, ν2) =
(3− 2ν12)(1− 2ν12)

ν1(1 + ν1)ν2(1 + ν2)
I(ν1, ν2) , (2.48)

MIδ2G2
(ν1, ν2) =

3− 2ν12

ν1ν2
I(ν1, ν2) . (2.49)

In Fig. 5 we plot some of the shapes and compare our method with the standard numerical

evaluation. Notice that for Iδ2δ2(k) shape we subtract the constant shot-noise part and plot just

the difference Iδ2δ2(k)− Iδ2δ2(0). This difference is convergent even for ν > −3
2 .

One important point to make is that the full one-loop power spectrum of biased tracers requires

only a single function I(ν1, ν2) with a single bias in the range −3 < ν < −3
2 . This range can be
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extended to higher biases by adding the corresponding UV parts of the integrals in the same way

as for the matter power spectrum.

3 One-loop Bispectrum

In perturbation theory there are four different diagrams that contribute to the one-loop bispec-

trum and their sum can be schematically written like [8, 13, 21, 22]

B1−loop(k1,k2,k3, τ) = D4(τ)[B222 +BI
321 +BII

321 +B411] . (3.1)

From translational invariance it follows that k1 + k2 + k3 = 0. The individual terms in square

brackets are given by the following integrals

B222 = 8

∫
q
F2(q,k1 − q)F2(k1 − q,k2 + q)F2(k2 + q,−q)

× Plin(q)Plin(|k1 − q|)Plin(|k2 + q|) , (3.2)

BI
321 = 6Plin(k1)

∫
q
F3(q,k2 − q,−k1)F2(q,k2 − q)Plin(q)Plin(|k2 − q|) + 5 perms , (3.3)

BII
321 = F2(k1,k2)Plin(k1)P13(k2) + 5 perms , (3.4)

B411 = 12Plin(k1)Plin(k2)

∫
q
F4(q,−q,−k1,−k2)Plin(q) + 2 cyclic perms . (3.5)

The diagrammatic representation of all these contributions is shown in Fig. 6.
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Figure 6. Diagrammatic representation of four contributions to the one-loop bispectrum.

To evaluate the one-loop bispectrum we can follow the same steps as for the one-loop power

spectrum. After expanding the kernels and decomposing the linear power spectrum in power

laws, all terms in the sums are proportional to the integral of the following form [13]∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
≡ k3−2ν123

1 J(ν1, ν2, ν3;x, y) , (3.6)
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where x ≡ k2
3/k

2
1 and y ≡ k2

2/k
2
1. Parameters ν1, ν2 and ν3 have the same form as before

(see (2.22)). The overall scaling of the integral with momentum is fixed and here we choose to

express that scaling in terms of k1. The rest defines a function J(ν1, ν2, ν3;x, y) which depends

only on the ratios x and y. Triangle inequality |k2−k3| ≤ k1 ≤ k2 +k3 implies that the physically

allowed region in (x, y) plane is given by inequalities |
√
x − √y| ≤ 1 and

√
x +
√
y ≥ 1 and

we will focus on evaluating the function in this region (see Fig. 7). Before giving the explicit

expression suitable for numerical evaluation we present some important symmetry properties of

J(ν1, ν2, ν3;x, y) which can be derived from its integral representation.

0 1 2 3 4
0

1
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4

x

y

0.0 0.5 1.0 1.5 2.0
0.0

0.5
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1.5
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k3/k1

k 2
/k
1

Figure 7. Left panel: Domain of J(ν1, ν2, ν3;x, y) allowed by the triangle inequality. Six different regions

correspond to six permutations of external momenta. All bispectrum configurations can be evaluated

focusing on one of these regions. For example, in this paper we choose x ≤ y ≤ 1 which corresponds to

k3 ≤ k2 ≤ k1. Solid lines split the domain in three different parts that will be relevant for the evaluation of

the two-loop power spectrum (see Section 4.2). Right panel: The same as left panel in more conventional

variables k3/k1 and k2/k1.

3.1 Symmetries of J(ν1, ν2, ν3;x, y) and Recursion Relations

As in the case of the one-loop power spectrum, the simplest identities follow from shifts of the

momentum q. There are two basic translation formulas for function J(ν1, ν2, ν3;x, y). The first

one follows from q → k1 − q and reads

J (ν1, ν2, ν3;x, y) = J (ν2, ν1, ν3; y, x) . (3.7)

If we do a different shift, q → q − k2, we get

J (ν1, ν2, ν3;x, y) = x3/2−ν123J
(
ν3, ν2, ν1; 1

x ,
y
x

)
. (3.8)

16



These two formulas are sufficient to generate identities involving all six permutations of param-

eters ν1, ν2 and ν3. These are

J (ν1, ν2, ν3;x, y) =J (ν2, ν1, ν3; y, x)

=x3/2−ν123J
(
ν3, ν2, ν1; 1

x ,
y
x

)
= x3/2−ν123J

(
ν2, ν3, ν1; yx ,

1
x

)
=y3/2−ν123J

(
ν3, ν1, ν2; 1

y ,
x
y

)
= y3/2−ν123J

(
ν1, ν3, ν2; xy ,

1
y

)
.

(3.9)

An intuitive way to understand these symmetries is to realize that they map k1, k2 and k3 into

each other, preserving the shape of the triangle. The six equations then correspond to nothing

other but six possible permutations of three external momenta. From another point of view,

for evaluation of the bispectrum we can always choose a small “corner” in the (x, y) plane (see

Fig. 7). The choice that we make in this paper is x ≤ y ≤ 1 which corresponds to the following

ordering of momenta: k3 ≤ k2 ≤ k1.

Let us now derive the inversion formula for J(ν1, ν2, ν3;x, y). We can start from

J(ν1, ν2, ν3;x, y) =

∫
q

1

q2ν1 |k̂1 − q|2ν2 |√yk̂2 + q|2ν3
, (3.10)

where k̂1 and k̂2 are unit vectors. Under inversion q → q/q2, apart from transformations de-

scribed in (2.10), we also get

|√yk̂2 + q|2 → y

q2
|k̂2/
√
y + q|2 . (3.11)

The whole integral then changes to

J(ν1, ν2, ν3;x, y) =

∫
q

y−ν3

q2(3−ν123)|k̂1 − q|2ν2 |k̂2/
√
y + q|2ν3

. (3.12)

It is easy to read off the inversion formula from this expression. One only has to keep in mind

that, due to
√
y appearing in the denominator in the last term, the arguments of the function

change to x
y and 1

y . We finally get

J(ν1, ν2, ν3;x, y) = y−ν3J
(

3− ν123, ν2, ν3; xy ,
1
y

)
. (3.13)

Combining this inversion formula with translation formulas (3.9), we get a set of three identities

for functions evaluated at the same point (x, y)

J(ν1, ν2, ν3;x, y) =x3/2−ν23 J(ν3, 3− ν123, ν1;x, y)

=x3/2−ν23 y3/2−ν13 J(ν2, ν1, 3− ν123;x, y)

= y3/2−ν13 J(3− ν123, ν3, ν2;x, y) .

(3.14)

When ν123 = 3 the previous equation implies

J(ν1, ν2, 3− ν12) = x3/2−ν23 y3/2−ν13 I(ν1, ν2) . (3.15)
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This expression is sometimes referred to as the star-triangle duality. The condition ν123 = 3 does

not correspond to a generic situation but it can be used to derive another generic formula for

J(ν1, ν2, ν3;x, y). The idea is to “split” one of the parameters using the one-loop integral, such

that ν123 = 3 is satisfied. For example, we can choose to write

1

|k2 + q|2ν3
=

1

I(ν123 − 3
2 , 3− ν12)

∫
s

1

s2ν123−3|k2 + q − s|6−2ν12
. (3.16)

Now one can start with the integral representation of J(ν1, ν2, ν3;x, y) and use the previous

formula. Notice that we have chosen parameters such that the integration in q can be then easily

done using (3.15). The remaining integral in s has again the form of the one-loop bispectrum.

Following these steps one derives the star-triangle formula

J(ν1, ν2, ν3;x, y) = Γ(ν̃1)
Γ(ν1)

Γ(ν̃2)
Γ(ν2)

Γ(ν̃3)
Γ(ν3)

Γ(3−ν̃123)
Γ(3−ν123) J(ν̃2, ν̃1, 3− ν̃123;x, y) , (3.17)

where ν̃i = 3
2 − νi. Finally, using the method described after eq. (2.13), it is possible to derive

the following reflection formula

J(ν1, ν2, ν3;x, y) = Γ(ν̃1)
Γ(ν1)

Γ(ν̃2)
Γ(ν2)

Γ(ν̃3)
Γ(ν3)

Γ(3−ν̃123)
Γ(3−ν123)x

3/2−ν23y3/2−ν13J(ν̃1, ν̃2, ν̃3;x, y) . (3.18)

This is not an independent relation because it follows from eq. (3.14) and eq. (3.17).

For arbitrary choice of ν eq. (3.14) and eq. (3.18) are not very useful, because they relate two

functions with two different biases. However, there are some special choices of ν for which this is

not the case. Let us remember that, up to an integer, the structure of parameters is

νi = −ν
2
− iηmi

2
, (3.19)

which implies

ν̃i =
3

2
+
ν

2
+ i

ηmi
2

. (3.20)

Up to an integer, the transformation ν → ν̃ does not change the bias if ν is a odd integer multiple

of −1
2 . For example, let us imagine that ν = −3

2 . In this case

νi =
3

4
− iηmi

2
⇒ ν̃i =

3

4
+ i

ηmi
2

. (3.21)

In other words, for ν = −3
2 , ν̃i is just a complex conjugate of νi. For example, assuming ν = −3

2 ,

the reflection formula becomes

J(ν1 + n1,ν2 + n2, ν3 + n3;x, y) = Γ(ν̃1−n1)
Γ(ν1+n1)

Γ(ν̃2−n2)
Γ(ν2+n2)

Γ(ν̃3−n3)
Γ(ν3+n3)

Γ(3−ν̃123+n123)
Γ(3−ν123−n123)

× x3/2−ν23−n23y3/2−ν13−n13J∗(ν1 − n1, ν2 − n2, ν3 − n3;x, y) , (3.22)

where ni are integers coming from the expansion of the kernels. This equation provides a simple

relation between two functions in the same point and with the same parameters, but with the

opposite sign of integer part of νi. For example, such pairs of functions do exist in the expansion

of kernels in B222 and each of them can be calculated for the price of a single evaluation. Similar

identity can be derived for ν = −1
2 and the same conclusions apply to a set of formulas (3.14).
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Let us conclude showing that the function J(ν1, ν2, ν3;x, y) satisfies a set of recursion rela-

tions [23]. As in the case of the one-loop power spectrum we can start from the following identity∫
q

∂

∂qi

(
qi

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3

)
= 0 . (3.23)

After expanding the derivative in the integrand, the previous equation can be rewritten as

ν2 J(ν1, ν2 + 1, ν3) + ν3y J(ν1, ν2, ν3 + 1) =

(ν1 + ν123 − 3)J(ν1, ν2, ν3) + ν2 J(ν1 − 1, ν2 + 1, ν3) + ν3 J(ν1 − 1, ν2, ν3 + 1) , (3.24)

where we suppressed the (x, y) argument in all functions to avoid clutter. There are two other

similar expressions that can be derived replacing qi in the numerator of the integral in (3.23)

with (k1 − q)i or (k2 + q)i. These are

ν1 J(ν1 + 1, ν2, ν3) + ν3x J(ν1, ν2, ν3 + 1) =

(ν2 + ν123 − 3)J(ν1, ν2, ν3) + ν1 J(ν1 + 1, ν2 − 1, ν3) + ν3 J(ν1, ν2 − 1, ν3 + 1) , (3.25)

ν1y J(ν1 + 1, ν2, ν3) + ν2x J(ν1, ν2 + 1, ν3) =

(ν3 + ν123 − 3)J(ν1, ν2, ν3) + ν1 J(ν1 + 1, ν2, ν3 − 1) + ν2 J(ν1, ν2 + 1, ν3 − 1) . (3.26)

Notice that we wrote these equations such that the sum of the arguments in each function on

the l.h.s. is ν123 + 1 and the sum of the arguments in each function on the r.h.s. is ν123. This

splitting suggests the following interpretation of the recursion relations. They can be thought of

as a system of three linear equations where three unknown functions are those in which one of

the parameters is increased by 1. If we denote the r.h.s. of previous equations with A1, A2 and

A3

A1 ≡ (ν1 + ν123 − 3)J(ν1, ν2, ν3) + ν2 J(ν1 − 1, ν2 + 1, ν3) + ν3 J(ν1 − 1, ν2, ν3 + 1) , (3.27)

A2 ≡ (ν2 + ν123 − 3)J(ν1, ν2, ν3) + ν1 J(ν1 + 1, ν2 − 1, ν3) + ν3 J(ν1, ν2 − 1, ν3 + 1) , (3.28)

A3 ≡ (ν3 + ν123 − 3)J(ν1, ν2, ν3) + ν1 J(ν1 + 1, ν2, ν3 − 1) + ν2 J(ν1, ν2 + 1, ν3 − 1) , (3.29)

then the solution of the system is given by [23]

J(ν1 + 1, ν2, ν3) =
1

2ν1y

(
−A1x+A2y +A3

)
,

J(ν1, ν2 + 1, ν3) =
1

2ν2x

(
A1x−A2y +A3

)
,

J(ν1, ν2, ν3 + 1) =
1

2ν3xy

(
A1x+A2y −A3

)
.

(3.30)

In other words, seven different functions whose parameters live on the plane ν123 = const. deter-

mine three extra integrals on the plane ν123 + 1 = const. These identities are very useful. For

example, in the expansion of kernels in B222 they reduce the number of independent terms by

roughly a factor of 2 (from 72 to 38). They are also very important for simplifying the two-loop

calculation as we are going to see in the following sections.
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3.2 Evaluation of J(ν1, ν2, ν3;x, y)

After making these general remarks based on the integral representation, let us turn to the explicit

expression for J(ν1, ν2, ν3;x, y). Unlike I(ν1, ν2), this function cannot be simply expressed in a

closed form in terms of gamma functions. Starting from (3.6) and using Feynman parameters we

get (see Appendix C)

J(ν1, ν2, ν3;x, y) =
1

8π3/2

Γ
(
ν123 − 3

2

)
Γ(ν1)Γ(ν2)Γ(ν3)

×
∫ 1

0
du

∫ 1

0
dv

uν1−1(1− u)ν2−1v1/2−ν3(1− v)ν3−1

(uv(1− u) + u(1− v)y + (1− u)(1− v)x)ν123−3/2
. (3.31)

The expression on the r.h.s. belongs to the class of hypergeometric functions of two variables. In

particular, J(ν1, ν2, ν3;x, y) can be written as a linear combination of Appell F4 functions [23].

These special functions can be evaluated using their series representations. The region of con-

vergence is given by
√
x +
√
y < 1, which unfortunately covers only the unphysical part of the

(x, y) plane. As usual, this kind of problems can be circumvented by performing the analytic

continuation. This can be done in several ways, depending on the region of parameter space that

one wants to cover [24]. Although all results are formally equivalent and can be related to each

other, distinct expressions can be very different from the point of view of practical calculation.

A series representation of J(ν1, ν2, ν3;x, y), optimized for numerical evaluation of the bispectrum,

is given by the following formula

J(ν1, ν2,ν3;x, y) =
sec(πν23)

8
√
πΓ(ν1)Γ(ν2)Γ(ν3)Γ(3− ν123)[

x3/2−ν23
∞∑
n=0

an(ν1, ν2, ν3) · xn 2F1

(
ν1 + n, 3

2 − ν2 + n, 3− ν23 + 2n, 1− y
)

−y3/2−ν13
∞∑
n=0

an(ν̃1, ν̃2, ν̃3) · xn 2F1

(
ν̃1 + n, 3

2 − ν̃2 + n, 3− ν̃23 + 2n, 1− y
)]

, (3.32)

where

an(ν1, ν2, ν3) =
Γ (ν1 + n) Γ (3− ν123 + n)

Γ
(

5
2 − ν23 + n

)
n!

Γ(3
2 − ν3 + n)Γ(3

2 − ν2 + n)

Γ(3− ν23 + 2n)
. (3.33)

The functions 2F1(. . . , 1− y) that appear in the result are standard Gauss hypergeometric func-

tions. We review their definition and some important properties in Appendix A. The derivation

of eq. (3.32) is given in Appendix C.

Let us make some comments about expression (3.32). The first thing to notice is that the series

is always convergent if we restrict ourselves to the region x ≤ y ≤ 1. The minimal allowed value

of 1− y in the given region is 3
4 , which corresponds to folded triangles. The smaller 1− y is, the

easier it gets to calculate the hypergeometric functions using their power series representation.

For higher values of y and smaller values of x the convergence is very fast. In the limits of x→ 0

and y → 1, corresponding to squeezed triangles, only a few terms need be kept in the sum.

The slowest convergence is for high values of x. The limiting case is x = 1 and y = 1, which
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corresponds to equilateral triangles. Even in this case only a relatively modest number of terms,

∼ O(50), need be kept in the sum to reach satisfactory precision.

Another important point to keep in mind is that dependences on x and y are explicitly sepa-

rated in our formula. Furthermore, the x-dependence is trivial. This means that in practice, for

a given y, calculation for any k1 and x can be done evaluating the hypergeometric functions only

once. This can speed up any full bispectrum calculation significantly.

There are additional optimizations which can exploit many well-known properties of hyperge-

ometric functions. One such property is that 2F1(a+ n1, b+ n2, c+ n3, z) for any set of integers

(n1, n2, n3) can be always written as a linear combination of just two hypergeometric functions

such as, for example, 2F1(a, b, c, z) and 2F1(a+ 1, b, c, z). Using this property one can prove the

following recursion relation6 [25]

fn−1 = fn + c(1−a−b−2n)+2ab−2n(n−1)
(c+2n−2)(c+2n) z fn − (a+n)(b+n)(c−a+n)(c−b+n)

(c+2n)2((c+2n)2−1)
z2fn+1 , (3.34)

where fn = 2F1(a + n, b + n, c + 2n, z). This equations gives a way to recursively calculate all

hypergeometric functions in the power series of (3.32). In practice one should exercise some

caution, as certain values of arguments in this recursion relation can be numerically unstable.

In some special cases eq. (3.32) further simplifies. For example, for the case of isosceles trian-

gles, y = 1 and all hypergeometric functions are equal to one. As expected from the symmetry

properties in (3.9), the result in this case becomes symmetric in ν2 and ν3.

Finally, let us point out that if one of the parameters is a negative integer or zero, the sum

in (3.32) truncates. To see this explicitly, consider ν1 = −N , with N ≥ 0 a non-negative integer.

In the limit ν1 → −N , 1/Γ(ν1) in the normalization goes to zero. If there were no terms in the

sum which diverge in the same limit, the result would be zero. The hypergeometric functions

are always regular. Therefore, we have to look at the coefficients. By inspection we see that all

an(ν̃1, ν̃2, ν̃3) coefficients are regular as well. The only divergence comes from Γ(ν1 + n) in the

coefficient an(ν1, ν2, ν3), for n ≤ N . Given that

Γ(−N + n)

Γ(−N)
= (−1)n

Γ(N + 1)

Γ(N − n+ 1)
, (3.35)

we can rewrite the final answer in the following way

J(−N, ν2,ν3;x, y) = (−1)N+1

√
π sec(πν23) sec(πν3)

8Γ(ν2)Γ(ν3)Γ(3 +N − ν23)
N∑
n=0

N−n∑
m=0

N ! (−1)m+n

(N −m− n)!

Γ(3
2 − ν2 + n+m)

Γ
(

5
2 − ν23 + n

)
Γ(ν3 −N − 1

2 +m)

x3/2−ν23+n

n!

ym

m!
. (3.36)

In conclusion, when one of the arguments of J(ν1, ν2, ν3;x, y) is a negative integer or zero, the

function becomes a simple polynomial in x and y of degree N . If two of the arguments are

negative integers or zero, then the function vanishes.

6Notice that in equation (10) of reference [25] there is a typo. The sign between the two terms in square brackets

should be + instead of −.
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3.3 Numerical Evaluation of the One-loop Bispectrum

Let us now turn to the numerical evaluation of the bispectrum. We will consider each term

in (3.1) separately.
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Figure 8. Equilateral B222 diagram as a function of k. The calculation is done with bias ν = −0.25 and

N = 50 sampling points for the power spectrum. This is enough to reach the sub-percent precision.

B222 term.—We begin with the B222 contribution. We will fist find the range of biases for which

the integral is convergent. Two of three F2 kernels, have the same structure and asymptotic

behavior as in the P22 diagram. The third kernel tends to O(1) constant in the q → 0 limit. In

the UV limit

F2(k1 − q,k2 + q)→ k2

q2
, q →∞ . (3.37)

Combining all these limits it follows that the integral in B222 diagram is convergent for power

laws in the range −1 < ν < 1. Therefore, choosing a bias close to zero, we expect our method to

reproduce the results of the usual numerical integration. After expanding the kernels and linear

power spectra in power laws, we can write the result as a matrix multiplication

B̄222(k1, k2, k3) = k3
1

∑
mi

M222(ν1, ν2, ν3;x, y) · cm1k
−2ν1
1 · cm2k

−2ν2
1 · cm3k

−2ν3
1 , (3.38)

where the matrix M222(ν1, ν2, ν3;x, y) is given by

M222(ν1, ν2, ν3;x, y) = 8
∑
ni

f222(n1, n2, n3;x, y) J(ν1 − n1, ν2 − n2, ν3 − n3;x, y) . (3.39)

As before, cmi are the coefficients of the expansion (1.2) and n1, n2 and n3 are integer powers of

q2, |k1 − q|2 and |k2 + q|2 in the expansion of the three kernels in the integrand. The rational

coefficients in this expansion are labeled by f222(n1, n2, n3;x, y). We give the explicit expression

for M222 in Appendix B.
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Let us make a couple of comments about the formulas above. As in the case of the one-loop

power spectrum, the evaluation of the bispectrum boils down to a simple matrix multiplication.

The matrix M222 is cosmology independent, so it has to be calculated only once. Notice that

M222 depends only on the shape of the triangle formed by the three external momenta, and not

on its absolute size. It is clear from eq. (3.38) that for fixed x and y one can calculate all triangles

with different k1 using the same M222. The size of this matrix is N3, where N is the number

of sampling points of the linear power spectrum. In practice, in order to reach the sub-percent

precision, it is enough to use O(50) points. We plot the B222 diagram in Fig. 8 and as expected

it is in a very good agreement with the usual numerical evaluation.
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Figure 9. Equilateral BI
321 diagram as a function of k. The calculation is done with bias ν = −0.25 and

N = 50 sampling points for the power spectrum. This is enough to reach the sub-percent precision.

BI
321 term.—Let us now turn to BI

321 diagram. The asymptotic behavior of the F3 kernel in the

integrand is the same in the UV and the IR

F3(q,k2 − q,−k1)→ k

q
q →∞ and q → 0 . (3.40)

Therefore, the integral is convergent for power laws in the range −1 < ν < 0. For small negative

bias we can use our method without dealing with the possible UV divergences. As in the previous

case we can write

B̄I
321(k1, k2, k3) = k3

1Plin(k1)
∑
mi

M321(ν1, ν2;x, y) · cm1k
−2ν1
1 · cm2k

−2ν2
1 + 5 perms , (3.41)

where the matrix M321(ν1, ν2;x, y) is given by

M321(ν1, ν2;x, y) = 6
∑
ni

f321(n1, n2, n3;x, y) J(· · · ;x, y) . (3.42)
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We do not explicitly specify the argument because ν1 and ν2 can be at different positions in

different terms. The explicit form of the matrix can be found in the Mathematica notebook file

associated with the preprint of the paper on arXiv.

The same conclusions as in the previous case apply here as well. The matrix M321 is cosmology

independent and has N2 elements. This makes it numerically much less challenging than M222.

In Fig. 9 we compare our method for N = 50 sampling points in the power spectrum with the

usual numerical evaluation and find an excellent agreement between the two.

Btree

B411, ν=-0.25

B411 numerical

0.01 0.05 0.10 0.50
0.1

0.5

1

5

10

k [h Mpc-1]

|1
0-
6
B
41
1
(k
,k
,k
)|

Figure 10. Equilateral B411 diagram as a function of k. The calculation is done with bias ν = −0.25 and

N = 50 sampling points for the power spectrum. This is enough to each the sub-percent precision.

B411 term.—Unlike for previous diagrams, the B411 integral does not converge for any bias. The

situation is similar to P13 diagram and the problem can be solved in a similar way. For small

negative biases the integral is UV divergent. Therefore, to get the usual numerical result, one

has to add the UV part of the loop integral which is given by [21]

BUV
411 =− Plin(k2)Plin(k3)σ2

v

226380 k2
2k

2
3

(
12409 k6

1 + 20085 k4
1(k2

2 + k2
3)

− k2
1 (44518 k4

2 − 76684 k2
2k

2
3 + 44518 k4

3) + 12024(k2
2 − k2

3)2(k2
2 + k2

3)
)

+ 2 perm. (3.43)

As in the case of the power spectrum, dimensional regularization would set these terms to zero.

As expected, the structure of the UV part of the B411 diagram is such that it can be reabsorbed

by the bispectrum counterterms in the EFT approach to LSS [21, 22].

The regular terms can be organized in a vector M411 which has N elements and is cosmology

independent. The approximation to the B411 diagram can be then written as

B̄411(k1, k2, k3) = k3
1Plin(k1)Plin(k2)

∑
m

M411(ν;x, y) · cmk−2ν
1 + 2 perms , (3.44)
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where

M411(ν;x, y) = 12
∑
ni

f411(n1, n2, n3;x, y) J(· · · ;x, y) . (3.45)

The explicit form of this vector can be found in the Mathematica notebook file associated with

the preprint of the paper on arXiv. In Fig. 10 we find an excellent agreement of our method

(including BUV
411 terms) with the usual numerical evaluation.
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Figure 11. Equilateral one-loop bispectrum as a function of k. The calculation is done with bias ν = −0.25

and N = 50 sampling points for the power spectrum. With these parameters it is possible to reach sub-

percent precision on all scales.

The full one-loop bispectrum.—In Fig. 11 we plot the equilateral bispectrum as a function of k

and compare our method with the usual numerical result. Given that typically there are no large

cancellations between different diagrams, we achieve a similar precision for the full result as for

each individual term in the sum.

In summary, for each bispectrum shape given by ratios x and y, one has to calculate three

matrices M222, M321 and M411. These matrices have N3, N2 and N elements respectively where

N ∼ O(50) is sufficient to achieve sub-percent precision on relevant scales. Computation of

these matrices is relatively fast and it can be further optimized using properties of hypergeo-

metric functions. The most practical approach for data analysis is to precompute all matrices

and evaluate the one-loop bispectrum with different cosmological parameters as a simple matrix

multiplication.

4 Two-loop Power Spectrum

Now we can turn to the most complicated case of the two-loop power spectrum. There are four

different contributions at this order in perturbation theory [4, 8] (for the EFTofLSS treatment of
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the two-loop power spectrum see [26–29])

P2−loop(k, τ) = D4(τ)[P I33(k) + P II33 (k) + P24(k) + P15(k)] . (4.1)

The explicit form of the four terms in the square brackets is

P I33(k) = 9Plin(k)

∫
q
F3(k, q,−q)Plin(q)

∫
p
F3(−k,p,−p)Plin(p) , (4.2)

P II33 (k) = 6

∫
q

∫
p
F3(q,p,k − q − p)F3(−q,−p, q + p− k)Plin(q)Plin(p)Plin(|k − q − p|) , (4.3)

P24(k) = 24

∫
q

∫
p
F2(q,k − q)F4(p,−p,−q, q − k)Plin(q)Plin(p)Plin(|k − q|) , (4.4)

P15(k) = 30Plin(k)

∫
q

∫
p
F5(k, q,−q,p,−p)Plin(q)Plin(p) . (4.5)

The corresponding diagrams are shown in Fig. 12. In the first contribution, P I33(k), two integrals

have the same structure as the P13(k) part of the one-loop calculation. In other cases the integrals

are not separable.

After expanding kernels and linear power spectra in power laws, all terms in the sum can be

written in the following form∫
q

1

q2ν4 |k − q|2ν5

∫
p

1

p2ν1 |k − p|2ν2 |q − p|2ν3
≡ k6−2ν12345 K(ν1, . . . , ν5) . (4.6)

One important point to make is that at most three of five parameters ν1, . . . , ν5 are generic

complex numbers. The reason for this is that there are at most three linear power spectra in

the two-loop integrals. The other two parameters must be integers coming from the expansion

of kernels. As we are going to see, this simplifies evaluation of some diagrams significantly.
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Figure 12. Diagrammatic representation of four contributions to the two-loop power spectrum.

Before we move on, let us notice that the second integral in (4.6) has identical structure as

the one-loop bispectrum. Therefore, choosing the following change of coordinates x = |k−q|2/k2

and y = q2/k2, the function K(ν1, . . . , ν5) that we are ultimately interested in can be written as

follows

K(ν1, . . . , ν5) =
1

16π2

∫
x,y
x−ν5y−ν4J(ν1, ν2, ν3;x, y) . (4.7)
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We are going to use this equation and the series representation of J(ν1, ν2, ν3;x, y) to find the

explicit formula for K(ν1, . . . , ν5). One difficulty is that the region of integration is rather compli-

cated:
√
x+
√
y ≥ 1 and |

√
x−√y| ≤ 1. This reflects the constraints that physical momenta in

the two-loop diagram have to satisfy. Before we discuss the explicit expression, we derive some

symmetry properties of the function K(ν1, . . . , ν5). These properties will prove useful in practical

applications to the full two-loop integral.

4.1 Symmetries of K(ν1, . . . , ν5) and Recursion Relations

The two-loop diagram of massless theory is known to have a lot of symmetries which translates to

many symmetries of the function K(ν1, . . . , ν5). All symmetry transformations were first derived

in [15]. The full symmetry group is Z2 × S6 and it has 2 × 6! = 1440 elements [30, 31]. We

review here some of the relevant symmetry transformations. To derive them it is enough to use

the integral representation

K(ν1, . . . , ν5) =

∫
q

1

q2ν4 |k̂ − q|2ν5

∫
p

1

p2ν1 |k̂ − p|2ν2 |q − p|2ν3
, (4.8)

where k̂ is the unit vector. Two obvious symmetries are the following. First, exchanging integra-

tion variables q and p leads to (ν1, ν2)↔ (ν4, ν5), leaving ν3 in the same position

K(ν1, ν2, ν3, ν4, ν5) = K(ν4, ν5, ν3, ν1, ν2) . (4.9)

Second, we can simultaneously shift both momenta q → k − q and p → k − p. Effectively, this

produces the simultaneous exchange (ν1 ↔ ν2) and (ν4 ↔ ν5)

K(ν1, ν2, ν3, ν4, ν5) = K(ν2, ν1, ν3, ν5, ν4) . (4.10)

Additional translation formulas can be derived using translation formulas of J(ν1, ν2, ν3;x, y).

Plugging the transformations (3.9) into the integral representation (4.8), it is straightforward to

get the following extra identities

K(ν1, ν2, ν3, ν4, ν5) = K(ν3, ν1, ν2, ν5, ν6) , (4.11)

K(ν1, ν2, ν3, ν4, ν5) = K(ν3, ν2, ν1, ν4, ν6) , (4.12)

where ν6 ≡ 9
2 − ν12345. Transformations (4.9) to (4.12) form the symmetric group of degree

four S4. This group has 4! = 24 different elements. We recover these elements by starting

from K(ν1, ν2, ν3, ν4, ν5) and successively applying identities (4.9) to (4.12). Invoking notation

(1, 2, 3, 4, 5) ≡ K(ν1, . . . , ν5), then the 24 equivalent functions are

(1, 2, 3, 4, 5) (2, 1, 3, 5, 4) (4, 5, 3, 1, 2) (5, 4, 3, 2, 1)

(3, 1, 2, 5, 6) (1, 3, 2, 6, 5) (5, 6, 2, 3, 1) (6, 5, 2, 1, 3)

(3, 2, 1, 4, 6) (2, 3, 1, 6, 4) (4, 6, 1, 3, 2) (6, 4, 1, 2, 3)

(3, 5, 4, 1, 6) (5, 3, 4, 6, 1) (1, 6, 4, 3, 5) (6, 1, 4, 5, 3)

(3, 4, 5, 2, 6) (4, 3, 5, 6, 2) (2, 6, 5, 3, 4) (6, 2, 5, 4, 3)

(5, 2, 6, 4, 1) (2, 5, 6, 1, 4) (4, 1, 6, 5, 2) (1, 4, 6, 2, 5) .

(4.13)
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Applying inversion (3.13) and star-triangle (3.15) formulae for J(ν1, ν2, ν3;x, y) in the integral

representation (4.7), provides analogous results for K(ν1, . . . , ν5):

K(ν1, ν2, ν3, ν4, ν5) = K(ν2, ν1, 3− ν123, ν134 − 3
2 , ν235 − 3

2) , (4.14)

K(ν1, ν2, ν3, ν4, ν5) = Γ(ν̃1)
Γ(ν1)

Γ(ν̃2)
Γ(ν2)

Γ(ν̃3)
Γ(ν3)

Γ(3−ν̃123)
Γ(3−ν123) K(ν̃2, ν̃1, 3− ν̃123, ν4, ν5) . (4.15)

Finally, combining these with translation leads to the following reflection formula

K(ν1,ν2, ν3, ν4, ν5) = gK(ν̃1, ν̃2, ν̃3, ν̃4, ν̃5) , (4.16)

where the prefactor g is given by

g = Γ(ν̃1)
Γ(ν1)

Γ(ν̃2)
Γ(ν2)

Γ(ν̃3)
Γ(ν3)

Γ(ν̃4)
Γ(ν4)

Γ(ν̃5)
Γ(ν5)

Γ(ν̃6)
Γ(ν6)

Γ(3−ν̃123)
Γ(3−ν123)

Γ(3−ν̃345)
Γ(3−ν345)

Γ(ν̃235−3/2)
Γ(ν235−3/2)

Γ(ν̃134−3/2)
Γ(ν134−3/2) . (4.17)

Applying successively all these transformations one can generate the entire Z2×S6 group. How-

ever, almost all of these transformations fail to preserve the bias. As in the case of the one-loop

bipsectrum, only special choices of ν trivially offer compact relations between functions with

different integer parts of the parameters.

Finally, let us write down an example of a recursion relation that K(ν1, . . . , ν5) satisfies. Again,

the simplest way to derive these identities is to use the analogous results for J(ν1, ν2, ν3;x, y).

For instance, using recursion relation (3.24) one can immediately write

(3− ν1 − ν123)K(ν1, ν2, ν3, ν4, ν5)

+ ν2 K(ν1, ν2 + 1, ν3, ν4, ν5)− ν2 K(ν1 − 1, ν2 + 1, ν3, ν4, ν5)

+ ν3 K(ν1, ν2, ν3 + 1, ν4 − 1, ν5)− ν3 K(ν1 − 1, ν2, ν3 + 1, ν4, ν5) = 0 . (4.18)

Other similar expressions can be found using the symmetry transformations discussed above. We

will give some more details about the practical application of these equations in the following

section.

4.2 Evaluation of K(ν1, . . . , ν5)

As we already mentioned, finding an explicit formula for K(ν1, . . . , ν5) is not straightforward. In

the integral

K(ν1, . . . , ν5) =
1

16π2

∫
x,y
x−ν5y−ν4J(ν1, ν2, ν3, x, y) , (4.19)

the region of integration is complicated and we lack a simple representation of J(ν1, ν2, ν3;x, y)

convergent in the entire domain. Our strategy to find the full solution is to first concentrate on a

part of the region of integration and then use symmetries (3.9) to find solutions elsewhere. One

possibility is to start with the integral

K(ν1, . . . , ν5) ≡
∫
D1

x−ν5y−ν4J(ν1, ν2, ν3, x, y) , (4.20)

over the following domain D1 = {(x, y) |
√
x+
√
y ≥ 1, x ≤ 1, y ≤ 1}. Given that both x and y

are smaller than 1, we can use result (3.32) to evaluate the integral. The details of this derivation
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are given in Appendix D. Here we report only the final formula. We write the result in a form

which resembles the series representation of J(ν1, ν2, ν3;x, y)

K(ν1,ν2, ν3, ν4, ν5) =
sec(πν23)

8
√
πΓ(ν1)Γ(ν2)Γ(ν3)Γ(3− ν123)

×
∞∑
n=0

[
an(ν1, ν2, ν3) κ

(
3
2 − ν235 + n,−ν4, ν1 + n, 3

2 − ν2 + n, 3− ν23 + 2n
)

−an(ν̃1, ν̃2, ν̃3) κ
(
−ν5 + n, 3

2 − ν134, ν̃1 + n, 3
2 − ν̃2 + n, 3− ν̃23 + 2n

)]
. (4.21)

The complicated part of the answer is the function κ(· · · ) which is given in terms of generalized

hypergeometric functions

κ(α, β, a, b, c) = 1
1+α

[
1

1+β 3F2

(
1, a, b;

2 + β, c;
1

)
− 2 · 4F3

(
a, b, 1 + β, 3

2 + β;

1− d, 5
2 + γ, 3 + γ;

1

)

−2 · 4F3

(
c− a, c− b, 1 + β + d, 3

2 + β + d;

1 + d, d+ γ + 5
2 , 3 + γ + d;

1

)]
, (4.22)

where d ≡ c − a − b and γ ≡ α + β. However, this is not the end of the story. We have found

only one piece of the final answer, which corresponds to the integral over the region D1. If one

splits the remaining part of domain of integration in (4.19) in the following way (see Fig. 7)

D2 = {(x, y) |
√
x−√y ≤ 1, x ≥ 1, y ≤ x} , (4.23)

D3 = {(x, y) | √y −
√
x ≥ 1, y ≥ 1, x ≤ y} , (4.24)

then we find that the integrals over D2 and D3 can be mapped to an integral of the form (4.20).

The proof is based on symmetries of J(ν1, ν2, ν3;x, y) given in eq. (3.9). The full solution is then

just a sum of three terms given by (4.21), with slightly different parameters

K(ν1, . . . , ν5) =
1

16π2

(
K(ν1, ν2, ν3, ν4, ν5) +K(ν1, ν3, ν2, ν6, ν5) +K(ν2, ν3, ν1, ν6, ν4)

)
. (4.25)

Obviously, the final result for K(ν1, . . . , ν5) is very complicated and not very illuminating. Sym-

metries of the two-loop diagram that we discussed in the previous section are not manifest at

all. It is actually quite remarkable that this messy formula satisfies all functional identities of

K(ν1, . . . , ν5). This is also an indication that there may exist a much simpler and elegant repre-

sentation. However, for the time being, it remains elusive.

The difficulties with the result (4.21) are not only aesthetic but also practical. The biggest

problem is that the sum on the r.h.s. of (4.21) is not convergent for all values of parameters.

Even when it is, sometimes there are big cancellations between different terms in the sum. Sum-

ming up many large numbers which eventually leads to a small answer can be numerically quite

challenging. On the other hand, there is a large region of parameter space where the sum con-

verges very rapidly. Using many of the symmetries of K(ν1, . . . , ν5) such as (4.13), it is always

possible to evaluate the sum efficiently for any choice of parameters. Understanding the radius

of convergence more quantitatively is very important for knowing ahead of time which symmetry
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transformation to use. Due to complexity of the final answer making some analytic progress is

hard and we leave it for the future work.

Another problem with eq. (4.21) is the appearance of generalized hypergeometric functions

whose argument is equal to 1. At this point the hypergeometric series which is usually used to

calculate the function is either divergent or converges very slowly for a generic set of complex

parameters. In order to calculate the hypergeometric functions efficiently one can use some of the

functional identities such as recursion relations. In all examples when the integral in definition

of K(ν1, . . . , ν5) is convergent, the eq. (4.25) agrees with the result of numerical integration. Our

power series representation is typically several orders of magnitude faster.

So far we considered the general case where the function K(ν1, . . . , ν5) depends on five arbitrary

complex numbers. However, as we already pointed out, at least two of (ν1, . . . , ν5) are integers

which come from the expansion of perturbation theory kernels. In this more specialized case

some of the formulas above simplify. There are two different situations that we meet in practice.

One of integer parameters is zero or negative.—The simplest case is when one of integer parame-

ters is zero. The integral (4.6) becomes a product of two one-loop expressions and the result can

be written in terms of gamma functions. For example, let us imagine that ν1 = 0. It follows

K(0, ν2, . . . , ν5) = k−6+2ν2345

∫
q

1

q2ν4 |k − q|2ν5

∫
p

1

|k − p|2ν2 |q − p|2ν3

= k−6+2ν2345 I(ν2, ν3)

∫
q

|k − q|3−2ν23

q2ν4 |k − q|2ν5
= I(ν2, ν3)I(ν4, ν235 − 3

2) . (4.26)

The next simplest case is when none of integer parameters is zero, but rather one of them

is negative. Let us imagine that ν1 = −N , where N > 0. In this case the infinite sum in

J(ν1, ν2, ν3;x, y) truncates (see eq. (3.36)). The integral (4.6) can again be expressed in terms of

gamma functions only. It is straightforward to get

K(−N, ν2, ν3, ν4, ν5) = (−1)N+1

√
π sec(πν23) sec(πν3)

8Γ(ν2)Γ(ν3)Γ(3 +N − ν23)

N∑
n=0

N−n∑
m=0

N ! (−1)m+n

(N −m− n)!n!m!

Γ(3
2 − ν2 + n+m)

Γ
(

5
2 − ν23 + n

)
Γ(ν3 −N − 1

2 +m)
I(ν4 −m, ν235 − 3

2 − n) . (4.27)

Notice that for N = 0 this expression reduces to (4.26). This is in agreement with results of [11]

(see Appendix F of [11]). In practice, the sums always have at most a few terms. For all diagrams

in the two-loop power spectrum N ≤ 5. The cases in which other parameters are non-positive

integers can be easily evaluated using translation formulas (4.13).

Let us point out that in the expansion of the perturbation theory kernels in the P33, P24 and

P15 diagrams, most of the terms do have a negative(zero) integer parameter. For example, the

expansion of F5 kernel in the P15 contribution has several thousand terms. Only ten of them

have two positive integer parameters. In other words, the largest part of the two-loop result can

be written in terms of gamma functions. Given that in dimensional regularization we do not

expect different terms to have very different magnitudes, even neglecting contributions with two

positive integer parameters may not affect the result considerably.
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Both integer parameters are positive.—Finally, let us discuss the option in which both integer

parameters are positive. For the two-loop integral the only possibility is that both of these pa-

rameters are equal to one. This comes from the fact that we can have multiple inverse Laplacians

in the perturbation theory kernels, but we never have a square of the inverse Laplacian. Under

translation formulas (4.13), all the apparently different cases reduce to the following two cases

K(1, ν2, ν3, ν4, 1) and K(1, ν2, ν3, 1, ν5) . (4.28)

Both of these terms can be calculated using eq. (4.25). It is worth noting that improved nu-

merical stability may be found by considering the related functions provided by the reflection

formula (4.16)

K(1
2 , ν̃2, ν̃3, ν̃4,

1
2) and K(1

2 , ν̃2, ν̃3,
1
2 , ν̃5) . (4.29)

As in the case of the one-loop power spectrum and the one-loop bispectrum, from the expansion

of Fn kernels we get a lot of terms where νi parameters differ just by an integer. Many of those

are related by recursion relations. Let us see how the recursion relations look like in the special

case when two parameters are equal to one. For example, if ν1 = ν4 = 1, then eq. (4.18) becomes

(1− ν23)K(1, ν2, ν3, 1, ν5) + ν2 K(1, ν2 + 1, ν3, 1, ν5)− ν2 K(0, ν2 + 1, ν3, 1, ν5)

+ ν3 K(1, ν2, ν3 + 1, 0, ν5)− ν3 K(0, ν2, ν3 + 1, 1, ν5) = 0 . (4.30)

Notice that in three of the five terms one of the arguments is equal to zero. Therefore, they can

be written in terms of gamma functions. In this way we get a simple functional identity which

relates K(1, ν2, ν3, 1, ν5) and K(1, ν2 + 1, ν3, 1, ν5). When ν1 = ν5 = 1 we get

(1− ν23)K(1, ν2, ν3, ν4, 1) + ν2 K(1, ν2 + 1, ν3, ν4, 1)− ν2 K(0, ν2 + 1, ν3, ν4, 1)

+ ν3 K(1, ν2, ν3 + 1, ν4 − 1, 1)− ν3 K(0, ν2, ν3 + 1, ν4, 1) = 0 . (4.31)

This equation is slightly more complicated because only two terms have one zero parameter, but

it is still very useful. Similar recursion relations can be found exploiting symmetry properties

of K(ν1, . . . , ν5). In practice, these relations can reduce the number of terms that one has to

evaluate by a factor of a few.

The bottom line is that by using explicit expressions for K(ν1, . . . , ν5), and its symmetry

properties, it is possible to calculate all contributions to the two-loop power spectrum. As

before, all information can be compressed in three cosmology independent matrices M33, M24

and M15 which correspond to P II33 , P24 and P15 diagrams. Evaluation of these matrices is not

trivial because of the convergence properties of the series (4.21). However, these matrices have to

be calculated only once and once they are known, the evaluation of the two-loop power spectrum

for any cosmology is just a simple matrix multiplication. These matrices have at most N3

elements where N ∼ O(100). Therefore, evaluation of the two-loop power spectrum in one k

bin is significantly faster than the usual numerical techniques. We leave the implementation and

testing of our algorithm for the two-loop power spectrum for future work.
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5 Conclusions

In this paper we demonstrate the path forward for the efficient computation of higher multiplic-

ity/loop correlation functions in cosmological perturbation theory. Our starting point is similar

to recent proposals for fast evaluation of the one-loop power spectrum [9, 10] and it is based on

representing the linear power spectrum as a sum of complex power laws. However, our implemen-

tation and generalization to higher order correlators is different. When comparison is possible,

all methods agree.

We mainly focus on deriving relevant analytic expressions for the one-loop and the two-loop

power spectrum and the one-loop bispectrum. All one-loop diagrams evaluated using our method

are in excellent agreement with the usual numerical results. We leave writing a dedicated code for

the two-loop power spectrum (and possibly higher order correlation functions) for future work.

Our method splits the computation of loop diagrams in two parts. The first, more “difficult”

part is related to solving momentum integrals for power-law power spectra and it is cosmology

independent. The second part is a simple matrix multiplication which evaluates the loops for

a ΛCDM-like cosmology. The matrices can be precomputed, they are cosmology independent

and they are relatively small. For example, for the two-loop power spectrum, the largest matrix

has N3 elements, where N ∼ O(100). The number of operations needed for evaluation of the

power spectrum or the bispectrum is significantly smaller than using direct numerical integration.

Furthermore, the same building blocks used to calculate dark matter correlation functions can

be also used for correlators of biased tracers. There are no fundamental obstacles in applying our

method in redshift space as well.

One interesting aspect of the method described in this paper is that it relies on evaluation of

loop integrals that are formally identical to those of a massless QFT. This is a new bridge between

cosmology and particle physics and the full potential of this connection is still to be explored. This

remains the major direction for future work. One hope is that many developments in the theory

of scattering amplitudes will prove useful for going beyond the lowest order statistics discussed

in this paper. The first step in this direction is a practical analytic formula for the one-loop

trispectrum. In principle, that would allow the calculation of the three-loop power spectrum or

the two-loop bispectrum. In practice, following procedure described in this paper may turn out

to be too difficult or impractical. After all, the trispectrum is a function of six variables, which

makes it much more complicated than examples we considered so far.

However, there are many alternative representations of loop integrals that may be more useful

for higher loop diagrams. In this paper we have insisted on finding well-behaved power series

representations for functions such as I(ν1, ν2) or J(ν1, ν2, ν3;x, y). Alternative ways to evaluate

these integrals include numerical integration using Mellin-Barnes representation of loop integrals

(see for instance [32]), projecting onto a basis of other known higher-loop integrals as in [33], or

solving numerically partial differential equations that the loop integrals satisfy [34].

In some important situations things simplify. One such example is the one-loop covariance of

the power spectrum. Given that there are only two independent vectors k1 and k2, this special
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case of the one-loop four-point function depends only on three variables (before integrating over

the angle between k1 and k2). Furthermore, a set of diagrams in the one-loop covariance matrix

which give the largest contribution to the final answer (see [35, 36]) have the same structure as the

one-loop bispectrum. These diagrams can be easily calculated using our function J(ν1, ν2, ν3;x, y).

We leave application of our method to the covariance matrix and more generally one-loop four

point function for future work.

At the end, let us stress that the idea of representing the ΛCDM-like cosmology as a set of

power-law universes can be also very useful outside the context of PT. One can benefit form this

decomposition whenever some numerically heavy integral has a simple solution for a power-law

universe. One example of this kind is projection of the power spectrum or the bispectrum on the

sky, which is difficult due to many integrals over highly oscillatory spherical Bessel functions. It

was shown in [37] that decomposition (1.1) can be used to find the solutions of these integrals

very accurately and efficiently. It would be interesting to think of other similar applications in

the future.
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A Hypergeometric Functions

The hypergeometric function 2F1(a, b, c, z) is usually defined as a solution of Euler’s hypergeo-

metric equation:

z(1− z) f ′′(z) +
(
c− (a+ b+ 1)z

)
f ′(z)− ab f(z) = 0 , (A.1)

where a, b and c are arbitrary complex numbers. The hypergeometric function has the power

series representation:

2F1(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)n!
zn , (A.2)

which is convergent inside the unit circle in the complex plane |z| < 1. This power series can

be used for numerical evaluation. The series is convergent at the point z = 1 only when the
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parameters satisfy Re(c− a− b) > 0. It should be stressed that the convergence sometimes may

be slow or the series has large cancellations, particularly for parameters with large imaginary

parts. In order to avoid such issues or evaluate the hypergeometric function outside the unit disc,

one can use many functional identities. For example, one such identity is

2F1(a, b, c, 1− z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b, a+ b− c+ 1, z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
zc−a−b 2F1(c− a, c− b, 1− a− b+ c, z) , (A.3)

which maps points close to |z| = 1 to a region around z = 0 where the series converges rapidly.

Outside the unit disc the hypergeometric function can be calculated using

2F1(a, b, c, 1/z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)a 2F1(a, a− c+ 1, a− b+ 1, z) + (a↔ b) . (A.4)

These two identities are sufficient to evaluate the hypergeometric function in the entire complex

plane.

It is possible to generalize the basic hypergeometric series (A.2) and use it to define generalized

hypergeometric functions

pFq

(
a1 , a2 , . . . , ap
b1 , b2 , . . . , bq

; z

)
≡ Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
n=0

Γ(a1 + n) · · ·Γ(ap + n)

Γ(b1 + n) · · ·Γ(bq + n)

zn

n!
, (A.5)

where p and q are positive integers. In this paper we use two generalized hypergeometric functions

4F3 and 3F2. In these cases when p = q+1 the generalized hypergeometric series (A.5) converges

for |z| < 1. A the point is z = 1 which is of special interest in evaluation of the two-loop power

spectrum the series converges only when Re(b1 + · · ·+ bq − a1 − · · · aq+1) > 0. This condition is

not always satisfied in practice. One simple way out is to use recursion relations which increase

the real part of one of bi until the series becomes convergent.

B Explicit form of the M222 matrix

In this appendix we give the explicit form of the M222 matrix. The starting point are three F2

kernels in the B222 diagram

8F2(q,k1 − q)F2(k1 − q,k2 + q)F2(k2 + q,−q) . (B.1)

Expanding this expression in powers of q2, |k1 − q|2 and |k2 + q|2 for a single set of parameters

(ν1, ν2, ν3) and factoring out k1 dependence we get a sum which can be rearranged in the following
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way

M222 = 25x2

1372J−2,2,2 − 15(y+1)x2

1372 J−1,2,2 −
(10y2−9y+10)x2

1372 J0,2,2 + 3x2y(y+1)
686 J1,2,2 + x2y2

343 J2,2,2 + 75x
2744J−2,1,2

+ 75x
2744J−2,2,1 − 5x(20x+9y+9)

2744 J−1,1,2 − 5x(20x+9y+9)
2744 J−1,2,1 +

3x(−10y2+9y+10x(2y−1)−10)
2744 J0,1,2

− 3x(10y2−9y+10x(y−2)+10)
2744 J0,2,1 + xy(20yx+9x+9y+9)

1372 J1,1,2 + x(9y(y+1)+x(9y+20))
1372 J1,2,1 + 3x(x+1)y2

686 J2,1,2

+ 3xy(x+y)
686 J2,2,1 − 125

2744J−2,0,2 + 125
1372J−2,1,1 − 125

2744J−2,2,0 + 125
1372J−1,−1,2 − 125

1372J−1,0,1 − 75(2x−y−1)
2744 J−1,0,2

− 125
1372J−1,1,0 − 75(2x+y+1)

1372 J−1,1,1 + 125
1372J−1,2,−1 − 75(2x−y−1)

2744 J−1,2,0 − 125
2744J0,−2,2 − 125

1372J0,−1,1

+ 75(x−2y+1)
2744 J0,−1,2 + 375

1372J0,−1,2 + 75(5x+5y−4)
2744 J0,0,1 +

5(10x2+9(2y−1)x+10y2−9y+10)
2744 J0,0,2 − 125

1372J0,1,−1

+ 75(5x−4y+5)
2744 J0,1,0 +

5(40x2+9(y+1)x−20y2+18y−20)
2744 J0,1,1 − 125

2744J0,2,−2 + 75(x+y−2)
2744 J0,2,−1

+
5(10x2−9(y−2)x+10y2−9y+10)

2744 J0,2,0 + 125
1372J1,−2,1 + 75y

2744J1,−2,2 − 125
1372J1,−1,0 − 75(x+2y+1)

1372 J1,−1,1

− 5y(9x+20y+9)
2744 J1,−1,2 − 125

1372J1,0,−1 − 75(4x−5(y+1))
2744 J1,0,0 −

5(20x2−9(y+2)x−40y2−9y+20)
2744 J1,0,1

+
3y(−10x2+(20y+9)x−10(y+1))

2744 J1,0,2 + 125
1372J1,1,−2 − 75(x+y+2)

1372 J1,1,−1 −
5(20x2−9(2y+1)x+20y2−9y−40)

2744 J1,1,0

+
3(10(y+1)x2+(10y2+9y+10)x+10y(y+1))

1372 J1,1,1 + 75
2744J1,2,−2 − 5(9x+9y+20)

2744 J1,2,−1

− 3(10x2−(9y+20)x+10y(y+1))
2744 J1,2,0 − 125

2744J2,−2,0 + 75y
2744J2,−2,1 + 25y2

1372J2,−2,2 + 125
1372J2,−1,−1

+ 75(x−2y+1)
2744 J2,−1,0 − 5y(9x+20y+9)

2744 J2,−1,1 − 15(x+1)y2

1372 J2,−1,2 − 125
2744J2,0,−2 + 75(x+y−2)

2744 J2,0,−1

+
5(10x2−9(y+1)x+2(5y2+9y+5))

2744 J2,0,0 −
3y(10x2+(10y−9)x−20y+10)

2744 J2,0,1 −
(10x2−9x+10)y2

1372 J2,0,2

+ 75
2744J2,1,−2 − 5(9x+9y+20)

2744 J2,1,−1 −
3(10x2+(10−9y)x+10(y−2)y)

2744 J2,1,0 +
y(9x2+9(y+1)x+20y)

1372 J2,1,1

+ 25
1372J2,2,−2 − 15(x+y)

1372 J2,2,−1 −
(10x2−9yx+10y2)

1372 J2,2,0 . (B.2)

We are using shorten notation in which Jn1,n2,n3 ≡ J(ν1 + n1, ν2 + n2, ν3 + n3;x, y). Coefficients

f222 can be easily read off form this expression. Notice that there are 72 terms in the sum,

but not all of them are independent. Using recursion relations (3.30) one can further reduce this

expression to a sum of 38 different Jn1,n2,n3 functions. We do not write this sum explicitly because

the coefficients multiplying Jn1,n2,n3 functions become too cumbersome. Nevertheless, these new

coefficients are still only rational functions that depend on x, y, ν1, ν2 and ν3 and application of

recursion relations effectively reduces the cost of evaluating the B222 diagram by roughly a factor

of 2.

C Derivation of J(ν1, ν2, ν3;x, y)

Let us begin with the usual Feynman parametrization∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
=

Γ(ν123)

Γ(ν1)Γ(ν2)Γ(ν3)

×
∫ 1

0
du1

∫ 1

0
du2

∫ 1

0
du3

∫
q

uν1−1
1 uν2−1

2 uν3−1
3 δ(D)(1− u1 − u2 − u3)

(u1q2 + u2|k1 − q|2 + u3|k2 + q|2)ν123
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=
Γ(ν123)

Γ(ν1)Γ(ν2)Γ(ν3)

∫ 1

0
du1

∫ 1−u1

0
du2

∫
q

uν1−1
1 uν2−1

2 (1− u1 − u2)ν3−1

(u1q2 + u2|k1 − q|2 + (1− u1 − u2)|k2 + q|2)ν123
.

(C.1)

Next, we do the following change of variables: u1 = uv and u2 = (1 − u)v. This transforms

(1− u1 − u2) into v and now both integrals in u and v have the same boundaries [0, 1]∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
=

Γ(ν123)

Γ(ν1)Γ(ν2)Γ(ν3)

×
∫ 1

0
du

∫ 1

0
dv

∫
q

uν1−1(1− u)ν2−1vν12−1(1− v)ν3−1

(uvq2 + (1− u)v|k1 − q|2 + (1− v)|k2 + q|2)ν123
. (C.2)

At this point the momentum integral can be done easily. In the denominator we first complete

the square

uvq2 + (1− u)v|k1 − q|2 + (1− v)|k2 + q|2

= (q − (1− u)vk1 + (1− v)k2)2 + v
(
uv(1− u)k2

1 + u(1− v)k2
2 + (1− u)(1− v)k2

3

)
, (C.3)

and use the following identity to do the integral in q∫
q

1

(q2 +m2)ν123
=

1

8π3/2

Γ
(
ν123 − 3

2

)
Γ(ν123)

1

(m2)ν123−3/2
. (C.4)

The expression for one-loop bispectrum simplifies and we are left with two integrals in u and v∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
=
k3−2ν123

1

8π3/2

Γ
(
ν123 − 3

2

)
Γ(ν1)Γ(ν2)Γ(ν3)

×
∫ 1

0
du

∫ 1

0
dv

uν1−1(1− u)ν2−1v1/2−ν3(1− v)ν3−1

(uv(1− u) + u(1− v)y + (1− u)(1− v)x)ν123−3/2
, (C.5)

from which we can read off J(ν1, ν2, ν3;x, y)

J(ν1, ν2, ν3;x, y) =
1

8π3/2

Γ
(
ν123 − 3

2

)
Γ(ν1)Γ(ν2)Γ(ν3)

×
∫ 1

0
du

∫ 1

0
dv

uν1−1(1− u)ν2−1v1/2−ν3(1− v)ν3−1

(uv(1− u) + u(1− v)y + (1− u)(1− v)x)ν123−3/2
. (C.6)

Notice that the denominator is linear in v and that the integral in v is nothing but the hyperge-

ometric function

J(ν1, ν2, ν3;x, y) =
Γ
(

3
2 − ν3

)
Γ
(
ν123 − 3

2

)
4π2Γ(ν1)Γ(ν2)

∫ 1

0
du uν1−1(1− u)ν2−1

× (x(1− u) + yu)3/2−ν123
2F1

(
3

2
− ν3, ν123 −

3

2
,
3

2
, 1− u(1− u)

x(1− u) + yu

)
. (C.7)
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At this point it is useful to transform this expression using (A.3)

J(ν1, ν2, ν3;x, y) =
Γ
(

3
2 − ν3

)
Γ
(
ν123 − 3

2

)
4π2Γ(ν1)Γ(ν2)

∫ 1

0
du uν1−1(1− u)ν2−1(x(1− u) + yu)3/2−ν123[

Γ
(

3
2

)
Γ
(
ν12 − 3

2

)
Γ
(

3
2 − ν3

)
Γ
(
ν123 − 3

2

) u3/2−ν12(1− u)3/2−ν12

(x(1− u) + yu)3/2−ν12 2F1

(
ν3, 3− ν123,

5

2
− ν12,

u(1− u)

x(1− u) + yu

)

+
Γ
(

3
2

)
Γ
(

3
2 − ν12

)
Γ(ν3)Γ(3− ν123)

2F1

(
3

2
− ν3, ν123 −

3

2
, ν12 −

1

2
,

u(1− u)

x(1− u) + yu

)]
. (C.8)

The reason is that 0 ≤ u(1− u)/(x(1− u) + yu) ≤ 1 for any x and y, and one can use the power

series representation of hypergeometric functions in order to solve the integral in u. Notice that

this power series keeps the integral as simple as possible, because only powers or u, (1− u) and

(x(1− u) + yu) appear in the expression. Simplifying the gamma functions we get

J(ν1, ν2,ν3;x, y) =
sec(πν12)

8
√
πΓ(ν1)Γ(ν2)Γ(ν3)Γ(3− ν123)[ ∞∑

n=0

Γ(ν3 + n)Γ(3− ν123 + n)

Γ
(

5
2 − ν12 + n

)
n!

∫ 1

0
du

u1/2−ν2+n(1− u)1/2−ν1+n

(x(1− u) + yu)ν3+n

−
∞∑
n=0

Γ
(

3
2 − ν3 + n

)
Γ
(
ν123 − 3

2 + n
)

Γ
(
ν12 − 1

2 + n
)
n!

∫ 1

0
du

uν1−1+n(1− u)ν2−1+n

(x(1− u) + yu)ν123−3/2+n

]
. (C.9)

The integration in u leads to another hypergeometric function. The result can be written in the

following way

J(ν1,ν2, ν3;x, y) =
sec(πν12)

8
√
πΓ(ν1)Γ(ν2)Γ(ν3)Γ(3− ν123)[ ∞∑

n=0

bn(ν1, ν2, ν3) · x−ν3−n 2F1

(
3

2
− ν2 + n, ν3 + n, 3− ν12 + 2n, 1− y

x

)

−
∞∑
n=0

bn(ν̃1, ν̃2, ν̃3) · x−ν2−ny3/2−ν13
2F1

(
3

2
− ν3 + n, ν2 + n, ν12 + 2n, 1− y

x

)]
, (C.10)

where the coefficients bn are given by

bn(ν1, ν2, ν3) =
Γ(ν3 + n)Γ(3− ν123 + n)

Γ
(

5
2 − ν12 + n

)
n!

Γ
(

3
2 − ν1 + n

)
Γ
(

3
2 − ν2 + n

)
Γ (3− ν12 + 2n)

. (C.11)

One last step is to use the identity

J (ν1, ν2, ν3;x, y) = x3/2−ν123J
(
ν3, ν2, ν1;

1

x
,
y

x

)
, (C.12)
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in order to bring the result to its final form

J(ν1, ν2,ν3;x, y) =
sec(πν23)

8
√
πΓ(ν1)Γ(ν2)Γ(ν3)Γ(3− ν123)

∞∑
n=0

[
x3/2−ν23 · bn(ν3, ν2, ν1) xn 2F1

(
ν1 + n,

3

2
− ν2 + n, 3− ν23 + 2n, 1− y

)
−y3/2−ν13 · bn(ν̃3, ν̃2, ν̃1) xn 2F1

(
ν2 + n,

3

2
− ν1 + n, ν23 + 2n, 1− y

)]
. (C.13)

This precisely matches eq. (3.32) where an(ν1, ν2, ν3) = bn(ν3, ν2, ν1).

D Derivation of K(ν1, . . . , ν5)

We are interested in calculating

K(ν1, . . . , ν5) ≡
∫
D1

x−ν5y−ν4J(ν1, ν2, ν3, x, y) , (D.1)

where the region of integration is given by

D1 = {(x, y) |
√
x+
√
y ≥ 1, x ≤ 1, y ≤ 1} . (D.2)

In this domain the power series representation of J(ν1, ν2, ν3;x, y) is uniformly convergent, and

we can use it to rewrite the integral in the following way

K(ν1, . . . , ν5) =
sec(πν23)

8
√
πΓ(ν1)Γ(ν2)Γ(ν3)Γ(3− ν123)

∫ 1

0
dy

∫ 1

(1−√y)2
dx[

x3/2−ν23
∞∑
n=0

an(ν1, ν2, ν3) · xn 2F1

(
ν1 + n, 3

2 − ν2 + n, 3− ν23 + 2n, 1− y
)

−y3/2−ν13
∞∑
n=0

an(ν̃1, ν̃2, ν̃3) · xn 2F1

(
ν̃1 + n, 3

2 − ν̃2 + n, 3− ν̃23 + 2n, 1− y
)]

. (D.3)

Therefore, the basic integral that we want to solve is the integral over the hypergeometric function.

For simplicity, let us define

κ(α, β, a, b, c) ≡
∫ 1

0
dy

∫ 1

(1−√y)2
dx xαyβ 2F1(a, b, c, 1− y) . (D.4)

The integral in x is straightforward, leading to

κ(α, β, a, b, c) =
1

1 + α

[∫ 1

0
dy yβ 2F1(a, b, c, 1− y)

−2

∫ 1

0
dt t2β+1(1− t)2+2α

2F1(a, b, c, 1− t2)

]
, (D.5)
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where in the second integral we did a change of variables y = t2. Both integrals can be expressed

in terms of higher order hypergeometric functions. It is not difficult to find

κ(α, β, a, b, c) =
1

1 + α

[
1

1 + β
3F2

(
1, a, b;

2 + β, c;
1

)
− 2 · 4F3

(
a, b, 1 + β, 3

2 + β;

1− d, 5
2 + γ, 3 + γ;

1

)

−2 · 4F3

(
c− a, c− b, 1 + β + d, 3

2 + β + d;

1 + d, d+ γ + 5
2 , 3 + γ + d;

1

)]
, (D.6)

where d = c−a− b and γ = α+β. The integration of 2F1(· · · , 1−y) function is straightforward.

To integrate 2F1(· · · , 1− t2) we first have to use (A.3), expand the hypergeometric functions in

power series, integrate in series, then resum the result.
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