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Abstract

We use the recently developed generalized double-copy procedure to construct an integrand
for the five-loop four-point amplitude of N = 8 supergravity. This construction starts from a
naive double copy of the previously computed corresponding amplitude of N' = 4 super-Yang-Mills
theory. This is then systematically modified by adding contact terms generated in the context
of the method of maximal unitarity cuts. For the simpler generalized cuts, whose corresponding
contact terms tend to be the most complicated, we derive a set of formulas relating the contact
contributions to the violations of the dual Jacobi identities in the relevant gauge-theory amplitudes.
For more complex generalized unitarity cuts, which tend to have simpler contact terms associated
with them, we use the method of maximal cuts more directly. The five-loop four-point integrand
is a crucial ingredient towards future studies of ultraviolet properties of N’ = 8 supergravity at five
loops and beyond. We also present a nontrivial check of the consistency of the integrand, based on

modern approaches for integrating over the loop momenta in the ultraviolet region.

PACS numbers: 04.65.4-¢, 11.15.Bt, 11.25.Db, 12.60.Jv



I. INTRODUCTION

In recent years there has been enormous progress in our ability to construct supergrav-
ity scattering amplitudes at high loop orders. This progress flows primarily from three
classes of conceptual and technical advances. The first is the development of the unitar-
ity method H, |j], which offer a straightforward algorithmic approach to constructing and
verifying multiloop integrands using only on-shell tree amplitudes. The second is the discov-
ery of the Bern-Carrasco-Johansson (BCJ) color-kinematics duality and associated double-
copy procedure [3, 4]. The third is the progress in loop integration methods, specifically
integration-by-parts (IBPEareduction JJ]J

.

In this paper we will describe in more detail the generalized double-copy procedure re-

, which has been critical to extracting ultraviolet

information, as in Refs.

cently introduced in Ref. [16], which combines elements of generalized unitarity and color-
kinematics duality to convert generic gauge-theory loop integrands into gravity ones. We use
the method to construct the five-loop four-point integrand of N' = 8 supergravity ], which
is an important stepping stone towards unraveling the ultraviolet properties of this theory.
The organization of the resulting amplitude is provided by the method of maximal cuts H],
A number of other related on-shell methods have also been developed for constructing mul-
tiloop integrands, especially for supersymmetric theories in four dimensions [18]. There
are also promising methods for directly constructing integrated expressions for amplitudes,
especially for N' = 4 super-Yang-Mills theory in four dimensions (e.g. see Ref. [19]).

The duality between color and kinematics plays a central role in our construction. When-
ever representations of gauge-theory integrands are constructed which manifest the dual-
ity between color and kinematics, corresponding gravity integrands follow directly via the
double-copy procedure [4], which replaces color factors with kinematic factors. The duality
applies to wide classes of gauge and gravity theories B, u, ], where, in many cases,
the duality has been proven at tree level E—@] At loop level the duality has conjec-
tural status, supported by case-by-case explicit calculations. The duality has been crucial
in the construction of numerous gravity multiloop amplitudes [4, |£|, , ], where it has
been used to identify new nontrivial ultraviolet cancellations in N’ =4 and N = 5 super-

gravity , ], known as ‘enhanced cancellations’. Apart from offering a simple means

for obtaining loop-level scattering amplitudes in a multitude of (super)gravity theories, the



duality also addresses the construction of black-hole and other classical solutions B] includ-

ing those potentially relevant to gravitational-wave observations [34], corrections to grav-
itational potentials [35], the relation between supergravity symmetries and gauge-theory
ones |20, @, |, and the construction of multiloop form factors [37]. The duality has also
been identified in a wider class of quantum field and string theories [30, |. For recent

reviews, see Ref. ]

However, experience shows that it can sometimes be difficult to find multiloop integrands
where the duality is manifest ] The best known example is the five-loop four-point
integrand of N/ = 4 super-Yang-Mills theory M], which has so far resisted all attempts to
construct a BCJ representation where the duality between color and kinematics manifestly
holds. This amplitude is crucial for unraveling ultraviolet cancellations that are known to
exist in supergravity theories but for which no symmetry explanation has been given ]
Because of the complexity of gravity amplitudes at high loop orders, alternative methods
have offered no path forward; the only currently-known practical means for constructing the
five-loop amplitude is to use a double-copy procedure that recycles the corresponding gauge-
theory amplitude [44]. More generally, we would like to have a technique that converts any
form of a gauge-theory integrand into the corresponding gravity ones.

A solution to this technical obstruction has been recently proposed in Ref. @], which
introduced a generalized double-copy procedure which makes use of general representations
of the gauge-theory integrand. This new approach builds on the central premise of double-
copy construction, but relies only on the proven existence of BCJ duality at tree level.
Generic representations of gauge-theory integrands that use f®° color factors are double
copied, giving a ‘naive double copy’. If algebraic relations obeyed by the color factors are
not mirrored by the kinematic factors, however, this alone does not result in a correct
gravity integrand. Violations of the kinematic algebra (dual to the color Lie algebra) must
be compensated. These violations, or ‘BCJ discrepancy functions’, are the building blocks
for new formulas that give corrections to the naive double copy. The correction formulas
merge seamlessly with the method of maximal cuts to constructively build gravity predictions
from generic gauge-theory integrands. These correction formulas also have a double-copy
structure, being bilinear in the discrepancy functions of each gauge theory.

The starting point of our construction of the five-loop four-point amplitude of N' = 8 su-

pergravity is the representation of the N' = 4 super-Yang-Mills amplitude given in Ref. M],



with a slight rearrangement of a few terms. The supergravity amplitude is constructed via
the generalized double-copy procedure. In principle, there could have been up to 70,690 di-
agrammatic contributions with up to millions of terms each. Fortunately the vast majority
of these diagrams either vanish or are much simpler than naive power counting suggests.
Still the expressions are lengthy, and the final result is collected in a Mathematica-readable
attachment ]

To confirm our integrand, we carried out a number of nontrivial checks. Besides the
generalized cuts used in the construction, we also check consistency of large numbers of
additional generalized unitary cuts. We numerically confirmed in all cases where the new
formulas are used that a less efficient evaluation of the gravity unitarity cuts, based on
Kawai-Lewellen-Tye tree-level relations, gives identical results. We also present nontrivial
checks based on integrating the expressions in spacetime dimension D = 22/5, where we
expect it to be finite, yet individual terms in our expression diverge. To carry out these
checks we develop techniques based on modern developments in integration H, , , ]
We carry out the check using both unitarity-compatible IBP methods as well as a new
method of direct integration described in Appendix [Bl

We leave for the future the much more interesting—and much more difficult—case of
integrating in dimension D = 24/5, where symmetry arguments suggest that a divergence
could be present , ] The discovery of enhanced ultraviolet cancellations in closely-
related supergravity theories , ] suggests, however, that the five-loop amplitude might
nonetheless be finite in D = 24/5. A direct integration of our integrand would settle the
issue.

This paper is organized as follows. First, in Section [, we present a brief review of the
method of maximal cuts and the double-copy construction. Then, in Section [T, we give an
overview of the derivation of the new formulas for obtaining correction to the naive double
copy in terms of BCJ discrepancy functions. In Section [V], we derive the explicit formulas
giving the contact term corrections, involving two four-point contact interactions or one five-
point interaction. This is generalized to infinite classes of contact interactions in Section [Vl
The results for the five-loop four-point integrand of A = 8 supergravity are described in
Section VIl In Section [VII, we series expand the integrand in large loop momenta and
perform nontrivial integration checks demonstrating its consistency. Our conclusions and

outlook are given in Section [VIIIl Two appendices are included; the first gives correction



formulas useful for contact diagrams with four canceled propagators and the second describes
a unitarity-compatible direct integration of vacuum diagrams generated by series expanding

the integrand.

II. REVIEW

In the mid 1980s string-theory investigations by Kawai, Lewellen and Tye (KLT) @]
exposed remarkable relations between closed- and open-string tree-level scattering ampli-
tudes. Since string-theory tree-level amplitudes have smooth low-energy limits to gauge
and gravity field theory amplitudes, this had a number of implications for field-theory pre-
dictions E, |. With the advent of unitarity methods B], these tree-level insights have
direct impact on our ability to calculate at loops as well as on our basic understanding of
the structure of gravity loop amplitudes [52, @] With the understanding of the duality
between color and kinematics, much simpler and powerful means for generating gravity loop
amplitudes from gauge theory became available E, |. We begin with a lightning review of
double-copy structure of gravity amplitudes, before discussing application of the method of

maximal cuts relevant for our construction E]

A. Tree-level gravity amplitudes from gauge theory
1. BCJ duality and double-copy amplitudes

All tree-level amplitudes in any D-dimensional gauge theory coupled to fields in the

adjoint representation, may be written as

tree m—2 Cjnj
= E -4 2.1

J€l3,m
where sum is over the set of (2m — 5)!! distinct, m-point graphs with only cubic (trivalent)
vertices, which we denote by I's ,,,. These graphs are sufficient because the contribution of any
diagram with quartic or higher vertices can be assigned to a graph with only cubic vertices by
multiplying and dividing by appropriate propagators. The nontrivial kinematic information
is contained in the numerators n; and generically depends on momenta, polarizations, and

spinors. The color factor ¢; is obtained by dressing every vertex in graph j with the relevant



FIG. 1: The three diagrams with only cubic vertices contributing to a four-point tree amplitude.

gauge-group structure constant, f%¢ = i\/2f% = Tr([T% T°|T¢), where the Hermitian
generators of the gauge group are normalized via Tr(7T°7T") = §%. The denominator 1/D;

contains the Feynman propagators of the graph j

11
D, I d

. W
15 J

(2.2)

where i; runs over the propagators for diagram j, each of which we denote by 1/d;,. The
gauge-theory coupling constant is g. If an on-shell superspace is used the numerators will
also depend on anticommuting parameters.

In a BCJ representation, kinematic numerators obey the same generic algebraic relations
as the color factors u . l For theories with only fields in the adjoint representation

there are two properties. The first property is antisymmetry under graph vertex flips:

GG =—C¢ = n;=-—n;, (2.3)

2

where the graph 7 has same graph connectivity as graph i, except an odd number of ver-
tices have been cyclically reversed. The second property is the requirement that all Jacob:

1dentities are satisfied,
citejtep=0= nP% 4 n?c‘] +np¢r =0, (2.4)

where 7, j, and k refer to three graphs which are identical except for one internal edge. For
example at four points the color factors of the three diagrams listed in Fig. Il obey the Jacobi
identity.

Once corresponding gauge-theory loop integrands have been arranged into a form where
the duality is manifest E |j it is then easy to obtain gravity loop integrands: one simply
replaces the color factors of a gauge-theory integrand with the kinematic numerators of

another gauge-theory integrand,

¢ = n;. (2.5)



FIG. 2: A half-ladder tree graph, used to define the color factor in Eq. (Z9]).

This immediately gives the double-copy form of a gravity tree amplitude,

“)m_z 51 (2.6)

tree _ (7
Mo _Z(Q D, ’

jEFB,m

where « is the gravitational coupling and 7; and n; are the kinematic numerator factors of
the two gauge theories. Only one of the two sets of numerators needs to manifestly satisfy

the duality (24]) [4, 24] in order for the double-copy form (2] to be valid.

2. Ordered partial amplitudes

The color factors, ¢; in Eq. (21]), can be expressed in a color-trace basis. Collecting

associated kinematic factors yields,

Al = g2 N T (TP TP A (0, pas - i) - (2.7)

PESm—1

where the sum runs over the set S,,—; of non-cyclic permutations. The A(p) are called
color-ordered partial amplitudes., The terminology ordered refers to the fact that all graphs
contributing to any given A™(p) have the same ordering or external legs as the cyclic
ordering of the color trace Tr(p). We can write the color-ordered amplitudes in terms of
graphs via

ree n;
Al (1,p2,...,pm):25, (2.8)

ier, !
where I', refers to the graphs with cubic vertices where the legs are ordered following the
color ordering.
The partial-ordered amplitudes in Eq. (2.7) are not independent and can be reduced to

a sum over (m — 2)! partial amplitudes using color-Jacobi identities [54]

A:;bee:gm—2 Z c(1|p2,...,pm_1|m)Af;ee(1,p2,...,pm_l,m), (29)

pesm72



where ¢(1|pa, ..., pm—1|m) is the color factor of the half-ladder diagram in Fig. 2l Replacing

c(1]p/m) by a color-dual kinematic numerator of the same half-ladder graph nB%J(

Llp[m),
and taking into account the appropriate ratio of coupling constants indeed yields another

representation of gravity tree amplitudes [24]:

- /{: m_2 ~ ree
ijfezz<—> S AR (U pn, s prnct M) ASE (L, oy oty ) (2.10)

2
PESm—2
3. KLT relations

The KLT relations @] give direct relations between gravity and gauge-theory tree am-
plitude. The KLT formulas can be obtained from BCJ duality, by using Jacobi identities
to express all kinematic numerators in Eq. (Z8) in terms of a basis of (m — 2)! numerators,
called master numerators. One can then (pseudo-)invert the relationship between a mini-
mal basis of (m — 3)! independent ordered amplitudes to solve for the master numerators
in terms of partial amplitudes. Indeed, the availability of a color-dual form for kinematic
numerators is responsible for the reduction to a basis of (m — 3)! [3]. As the propagator
matrix is singular, such pseudo-inversions are not unique, so there are many possibilities.

The first such formula valid for an arbitrary number of legs was given in Appendix A
of Ref. [52]. It remains as a particularly sparse and efficient form, so we use it for directly

constructing gravity unitarity cuts. The tree-level relation is

K\ m—2 _
Mpe(1,2,...,m) = i(—l)m+1<§> [A;gbee(1,2,...,m) > i, i) fln, . 1y
perms
XA:;Ce(ilv...,ij,l,m—1,ll,...,lj/,m)
+ Perm(2,...,m —2), (2.11)

where A,, and A,, are two m-point gauge-theory amplitudes from each of the two copies.
The sum is over all permutations {iy,...,4;} € Perm{2,...,|m/2|} and {l;,...,l;} €
Perm{|m/2| + 1,...,m — 2} with j = |[m/2] — 1 and j/ = |m/2] — 2, which gives
a total of (|m/2] — 1)! x (|m/2] — 2)! terms inside the square brackets. The notation

“+Perm(2,...,m — 2)” signifies a sum over the expression for all permutations of legs



2,...,m — 2. The functions f and f are given by,

J—1
f(Zl7azj) :Sl,in<Slzm+ Z Zmuzk)v

m=1 k=m-+1

S

-1
7([1, .. .,lj/) = Sll,m 1 H (Slm,m 1 + g(lk,lm)> s (212)

1

B
Il

and

o Si7' le >j,
gli.j)=<"" (2.13)

0 otherwise.

By applying BCJ amplitude relations [3], many different versions of KLT relations can
be constructed [26], including a tidy recursive definition [40]. The general form of the KLT
relations in terms of a basis of gauge-theory amplitudes may be written as,

K\ m—2 ~
My =i (3) DKV A" (L oo pucaem, (m = 1)
P m—3

X A:;,ee (177-2a"'77-m—2a(m_1)am) 5 (214)

where the sum runs over (m — 3)! permutations of external legs. The KLT matrix K(7|p),
indexed by the elements of the two permutation orderings of the relevant partial amplitudes,
also called a momentum kernel, depends only on momentum invariants arising from inverse
propagators.

Not only do the various versions of KLT kernels follow from color-kinematics duality,
but a comparison of Eq. (ZI0) and Eq. (214 gives a useful non-local representation of
color-dual BCJ numerators from color-ordered partial amplitude [25, 26]. This gives a set

of explicit nonlocal BCJ numerators,

nBY (A ry, .. Ty Tt |m)
> K(rlp) AL (L pay . przm, (m = 1)), if T =m — 1,
= pES'rnfS
0, ifr,1#m-—1.
(2.15)

In this formula the permutations of (m — 2) legs of the half ladder is effectively reduced to
a permutation sum over (m — 3) legs, because some of the numerators vanish. Numerators
of diagrams which are not of the half-ladder form in Fig. Bl follow from the dual Jacobi
relations (2.4). Equation ([Z.I7]) is useful below to derive KLT forms of unitarity cuts from
BCJ forms.

10
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MC 280 NMC 1954 MC 370 NMC 1328 NMC 1325

FIG. 3: Sample maximal and next-to-maximal cuts that are determined by the naive double
copy. The exposed lines connecting the blobs are on shell. The labels refer to those used in the

Mathematica attachment [45].

B. Method of maximal cuts

We now review the method of maximal cuts B] applied to building a double-copy grav-
ity integrand. The method of maximal cuts is a refinement of the generalized unitarity
method [1]. We organize the maximal cut method in a constructive way, assigning new con-
tributions to new contact diagrams as one proceeds. (For recent examples, see Refs. [16,155].)
In subsequent sections we will describe how to make this procedure efficient for gravity the-
ories at high loop orders, by recycling gauge-theory results.

The method of maximal cuts [2] constructs multiloop integrands from generalized uni-
tarity cuts. These cuts cluster in levels according to the number of internal propagators k

allowed to remain off shell,

p

k ree ree = )
CNMO _ § g L e k= m(i)—3p, (2.16)

states =1

where the .A;ff(‘l?) are tree-level m(i)-multiplicity amplitudes corresponding to the blobs, il-
lustrated in Figs. Bl and @ This is valid for either gauge or gravity amplitudes. In the
gauge-theory case, the state sum also includes sums over internal color. As illustrated in
the first diagram in Fig. B, at the maximal cut (MC) level the maximum number of prop-
agators are replaced by on shell conditions and all tree amplitudes appearing in Eq. (2.16])
are three-point amplitudes. At the next-to-maximal-cut (NMC) level a single propagator is
placed off shell and so forth. We will categorize different cuts at level k by the contained tree
amplitudes with four or more legs: an my; x my X - -+ X m, cut contains one tree amplitude
with my legs, one with my legs and so forth.

In the method of maximal cuts, the integrands for L-loop amplitudes are obtained by

first establishing an integrand whose maximal cuts are correct, then adding to it terms so

11
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]

N2MC 448 N3MC 196 NAMC 42 N°MC 154 NOMC 841

N2MC 141 N3MC 186 N4MC 46 N°MC 122 NOMC 810
5% &3 83 & >

N2MC 1191 N3MC 3029 N4MC 2975 NSMC 2580 NOMC 591
oy iy 4y ¥y %)

N2MC 102 N*MC 91 N*MC 9 N°MC 57 NOMC 983
) 1y I8

N2MC 617 N3MC 68 N4MC 1086 NSMC 2444 NSMC 2669

FIG. 4: Sample N*MCs for a five-loop four-point amplitude. The exposed lines connecting the

blobs are on shell. The labels refer to those used in the Mathematica attachment ]

that NMCs are all correct and systematically proceeding through the next® maximal cuts
(N*MCs), until no further contributions can be found. Where this happens is dictated by the
power counting of the theory and by choices made at each level. For example, if a minimal
power counting is assigned to each contribution, for N' = 4 super-Yang-Mills four-point
amplitudes, cuts through NMCs, N2MCs and N3MCs are sufficient at three [4], four H‘]Jand
five loops ], respectively.

Most previous calculations (see e.g., Refs. ﬂﬂ, @, ]) found it convenient to orga-

nize the results in terms of purely cubic diagrams, assigning all higher-order missing N*MC

12
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(0:1) (0: (0:10
2 5 3 5 3 2 3 2 3
10 20 10 20
2
1 \
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1 1 401 4
(0:12) (0: 15) (0: 184) (0: 280) (0: 283)

————

2 ’\<3 )
> ER\e!
Nrd )

~—— ~——

(0: 285) (0: 335) (0: 370) (0: 404 (0: 410)

FIG. 5: Examples of parent diagrams used in the naive double copy. These are diagrams with only
cubic vertices and 16 propagators carrying loop momentum. In our construction of the five-loop
four-point amplitude of N' = 8 supergravity there are a total of 410 such nonvanishing diagrams.
The labeling (0: j) indicates that it is a level 0 diagram with no collapsed propagators and j is the

diagram number, following the labels in the Mathematica attachment.

data to the parent graphs with only cubic vertices, such as the five-loop ones illustrated in
Fig. Bl Representations with only cubic diagrams have useful advantages: they are useful
for establishing minimal power counting in each diagram, and the number of graphs used to
describe the result proliferate minimally with loop order and multiplicity!. A disadvantage
is that Anséatze are required to impose the higher-order data on each graph while respecting
power counting, symmetry, and the multiple unitarity cuts to which a given diagram con-
tributes. As the loop order increases, it becomes cumbersome to solve the requisite system

of equations that imposes these constraints.

I Though still factorially.

13



C. Naive double copy and contact diagram corrections

For our purposes of constructing the five-loop four-point integrand it is better to directly
assign new cut data to contact graphs in one-to-one correspondence to the N*MC, as in
the original method of maximal cuts construction B], avoiding Anséatze for the amplitudes.
We now describe this organizational principle in the context of obtaining high-loop-order
gravity integrands.

The starting point in our gravity construction is a gauge-theory integrand, whose terms
are assigned to only graphs with cubic vertices. The actual gauge-theory amplitude would

be given:

.AL loop _ L 2L+m 22 Z /H d” ZD51* Cgll (217)

Sm 1€3 m
where the first sum runs over the set S, of external leg permutations. The second sum
runs over the set of diagrams I's ,, 1, with only three vertices, m external points and L loops.
The symmetry factors .S; for each diagram ¢ remove overcounts, including those arising from
internal automorphism symmetries with external legs fixed. As in Section [T Al the color
factors ¢; of all graphs are obtained by dressing every three-vertex in the graph with a
factor of fob¢ = Tr([T% T*]T*¢), where the gauge group generators 7 are normalized via
Tr(T*T) = §%°. As before, the gauge coupling is g. The kinematic numerators, n;, are
functions of momenta, spinors, and polarization vectors. As usual, the 1/D; signify the

product of Feynman propagators of diagram 1.
Our construction starts with a naive double copy, which we call the ‘level 0’ or "top-level’

contribution,

- NO
M#IOOP L—I—l( )2L+ 22 Z /H d l S(O , (218)

Sm ZGFS m,L

where the level 0 numerators are just double copies of gauge-theory numerators,
NO = n.7; . (2.19)

If the gauge-theory n; satisfy the BCJ relations (24)), then we have the complete gravity
integrand and we would be done [4]. However, when the gauge-theory integrand (217 does
not manifest BCJ duality, our naive double copy requires corrections to become a gravity

integrand, as we can systematically determine by evaluating generalized cuts.

14



N4MC 2975 (4:2975)

FIG. 6: After subtracting contributions from lower cut levels, as in Eq. ([222]), only a local contact

term remains.

First we should note that all maximal cuts (MCs) and all next to maximal cuts (NMCs)
will be automatically satisfied by our naive double copy. The reason is that on-shell (D-
dimensional) supergravity three-point amplitude is just the square of the N' = 4 super-Yang-
Mills ones,

2
MR (1, 2,8) = i | AT (1, 2,3)) (2.20)

for all states of the theory. All NMCs are also automatically satisfied because color-
kinematics duality automatically holds for the four-point tree amplitudes [3]. Examples
of MCs and NMCs are given in Fig. Bl

Starting with the N2MCs, the cuts of the naive-double copy no longer generically match
the actual cuts of the double-copy gravity theory. Because the naive double copy automat-
ically gives the correct MCs and NMCs, the correction terms are necessarily contact terms
involving two or more collapsed propagators. The cut conditions are then solved starting
from the N2MCs and proceeding towards the higher & N*MCs. At each new cut level the
only new information is captured by contact terms as illustrated in Fig. [0l Fig. [7 displays
the contact diagrams representing the new information contained in the generalized cuts of
Fig. @

The contact terms are defined as differences between a cut of the complete gravity am-
plitude and the cut of our partially-constructed gravity amplitude. The gravity generalized
cuts can in principle all be obtained by plugging gravity tree amplitudes obtained from the
KLT tree relations into Eq. (2.I1]) into the generalize cut (2Z10), although this is rather in-
efficient. We also define an incomplete integrand Z* given by starting from the naive double

copy and including all contact terms through level (k — 1). At any level k£ we define the

15
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(4: 42)
(2: 141) (3: 186) (4: 46) (5: 122) (6: 810)
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(2:1191) (3:3029) 4:2975) (5: 2580) (6:591)
(2:102) (3:91) : 9 (5:57) (6:983)
(2:617) (3:68) (4:1086) (5: 2444) (6:2669)

FIG. 7: Contact diagrams corresponding to each N¥-maximal cut in Fig. @ cuts for k = 2,...,6.

The exposed lines are off shell in this figure.

incomplete integrand to be the sum over all diagrams from level zero to level (k — 1),

:E::EE::E: 5‘5 (2.21)

=0 Sm i (7

where the sum over £ is over the contact term levels up to level £k — 1 and the sum over i, is
over diagrams at level £. The Ni(g), Si(g) and DZ@ are respectively the numerators, symmetry
factors and kinematic denominators for diagram ¢ at level k. As usual the sum over S,
represents the sum over the m! permutations of external legs. The kinematic denominators

are composed of products of Feynman propagators for each diagram.

16
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Starting from the gravity cut, , and subtracting from it the cut of the incomplete

integrand (Z21), gives us the missing piece in the cut,

JONTMC — oNFMC 7k , (2.22)
NFEMC

where a N*MC is taken. This difference can be assigned to a contact diagram because all
the nonlocal contributions are accounted for at earlier levels. In this way for each cut for
k > 2 there is a contact term diagram, as illustrated in Fig. [0l See also Fig. [7] for examples
of contact diagrams that are in one-to-one correspondence to the generalized unitarity cuts
in Fig. @

We promote these contact terms to off-shell expressions simply by removing all on-shell

constraints,

JONFMC _y jeNme . (2.23)
off-shell

This then defines a level-k contact term assigned to a given graph, as illustrated in Fig.
We take the final contact diagram to be one where no cut conditions are imposed. Each
non-vanishing contact graph generated this way is then incorporated into the partially con-
structed integrand. The generated contact diagram is not unique because one can add or
subtract terms that vanish prior to releasing the cut conditions. An important constraint
is that the constructed contact terms should always respect diagram symmetry, even after
on-shell constraints are removed. A simple way to impose the symmetry on an arbitrary
off-shell continuation is to explicitly average over all diagram symmetries. Different choices
of off-shell continuations can alter higher-level contact terms. An important feature of this
construction is that each contact term depends only on choices made at previous lower-k
levels.

The construction proceeds level by level in the cuts until no further contact terms are
found. Where this happens is dictated by the power counting of the gravity theory.?

In general, Eq. ([2.22]) can be quite complicated to simplify, especially when the gravity
cut is obtained from the KLT version of generalized cuts. It however is an efficient means
to generate expressions for numerical evaluation. Far more efficient ways to analytically

generate these contributions will be described in Sections [TIHV]

2 For the five-loop four-point amplitude of A = 8 supergravity no new contact terms are found beyond level
k = 6.
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The final amplitude is obtained at the end of this process, when we reach a level k., in the
incomplete integrand (Z21]) beyond which there are no further nonvanishing contributions.
After assembling the naive double copy and contact diagrams the resulting gravity amplitude

is obtained by summing over all nonvanishing levels and integrating,

kmax é
1

Mﬁb-loop L1 ( )2L+m 2 ; ZZ/H D S(ﬁ (e) (2.24)

)

where K.y is the highest level containing nonvanishing diagrams.

D. Double copy and gravity unitarity cuts

In order to use Eq. (Z22) to obtain the missing contact diagram, we need efficient means
to obtain the gravity cuts. In this subsection we explain how gauge-theory generalized
cuts can be converted directly to gravity cuts, without having to go back to gravity tree
amplitudes via the KLT relations (2I1]). Once these steps have been carried out in the
corresponding gauge-theory amplitudes we simply recycle them into gravity. This bypasses
the nontrivial steps of having to perform state sums E] ensuring that results are valid in
D-dimensions [57].

Consider a generalized unitarity cut in Eq. (210) and Fig. @l for gauge theory. We can

express each tree amplitude in terms of diagrams with only cubic vertices as in Eq. (21,

=Y T4 = Y11 > g, (225)

states j=1 states j=1 g(j)el's m ()

where j specifies the tree amplitude, g(j) represents a graph of the jth tree amplitude from
the set of graphs I's ,,,(;), including the trivial three-vertex for the three-point amplitude. For
simplicity we have suppressed the coupling constants here and in all subsequent formulas
for generalized cuts. The denominators 1/D,;y are composed of the Feynman propagators
of the graph ¢(j).

By applying the color decomposition in Eq. ([Z9) to each tree amplitude we obtain a

color-decomposed form of the unitarity cut,

=31 X clo™ass (09), (2:26)

states j=1 P(j)esm(j)—2
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where pl) refers to the arguments in Eq. ([Z.9), but for the jth tree. The permutation S
act on (m(7)—2) of the legs of the jth tree amplitude. For three-point trees the permutation
sum is trivial. As before, the internal color indices are included in the state sum.

Now consider generalized gravity cuts. A crucial property is that the states of double-copy
theories factorize into the outer product of states of their constituent single-copy theories.
In particular, for N/ = 8 supergravity in four dimensions, every gravity state is indexed by

‘left” and ‘right’ ' = 4 super-Yang-Mills states:
(N =8 SG state) = (N =4 sYM state);, ® (N =4 sYM state)g . (2.27)

In fact, the state sum over the entire supergravity multiplet is a double-sum over the entire
super-Yang-Mills multiplet,

Yo=Y x> . (2.28)

N=8 SG N=4 sYM N=4 sYM
states L-states R-states

This holds in D < 10 dimensions where N = 4 super-Yang-Mills theory is defined as a
dimensional reduction of the D = 10, N' =1 theory.

Each gravity tree amplitude in the cut, such as those in Fig. @ can be arranged into a
BCJ double-copy form

BCJ BCJ

Con = Z HMtroe — P Z Z H Z 9(] 9(5) ’ (2‘29)

states j=1 statesy, statesg j=1 g(j)el's 'm(])

CJ are kinematic

where we have suppressed the gravitational coupling and nP® and 7P
numerators of the left and right gauge theories. For each tree amplitude one can always find
BCJ forms for the numerators. For example, the explicit BCJ numerators in Eq. (215 for
each tree amplitude immediately give the gravity amplitude starting from a gauge-theory
amplitude.

We can then rearrange the cut into a KLT form, using the tree-level results from the
previous subsection. Given the that BCJ form of the numerators have exactly the same

algebraic properties as color factors, we write the cut in precisely the same form as the color

decomposed gauge-theory cut (2.15])

Cor="> JI D #PY(p9)Als (p9), (2.30)

states j=1 p() ESm(j)—2
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where the numerator is that of the half-ladder diagram specified in Fig. Pl In this formula
the numerators n®¢ (pl)) correspond to the half-ladder diagrams with an ordering of legs
specified by the permutation pU). Here the tree subscripts m(j) encode the multiplicity of
the j-th tree, and m and L are the overall multiplicity and loop order of the amplitude.
Plugging in the specific BCJ numerators in Eq. ([2I5]) reduces each permutation sum from
acting on (m(j) — 2) legs to (m(j) — 3) legs, given the numerator vanishings in Eq. (Z.13]).

Substituting in the explicit expression for BCJ numerators in Eq. (Z.13) immediately
gives the KLT form of the gravity generalized cut,

Cap = i* Z H Z K (pW]r9) Atroe \(p (j))A;r;E;)(T(j))

states j=1 ,(j) r(1)eS

m(j)—3
—o i 30 ) A (3 A A o).
T statesy, statesr
(2.31)
where we have suppressed overall factors of the (k/2) gravitational coupling and
K(p7) = K(pOlr) - K(p1r). (2.32)

and we used the factorization of the state sums as in Eq. ([227)). For each gauge-theory tree
amplitude, the permutation sum follows that in Eq. (2I4]). For the three- and four-point
cases the permutation sum is a single term.

Equation (2.31]) allows us construct gravity generalized unitarity cuts from correspond-
ing gauge-theory tree amplitudes. However, it is much more efficient to apply Eq. (231
directly to cuts of previously constructed gauge-theory loop amplitudes, rather than using
tree amplitudes. That is, we take Eq. (Z31]) as a recipe for assembling color-ordered gauge-
theory cuts into gravity cuts. In this way the states sums, and other simplifications are
automatically inherited from the gauge-theory loop integrands. Another enormous techni-
cal advantage is that we need the cuts and the constructed loop integrand to be valid in D
dimensions, not just in four dimensions. In particular, explicit checks confirm the validity
of the five-loop four-point amplitude of NV = 4 super-Yang-Mills [44] for D < 6 [57]. This
is then automatically imported into the corresponding N = 8 supergravity amplitude. It
is course crucial to guarantee the validity of the expressions outside of D = 4 dimensions,

given we are interested primarily in its ultraviolet behavior in higher dimensions.
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Unfortunately, even after applying Eq. (2.31]) to convert cuts of gauge-theory loop ampli-
tudes, the analytic expressions inherited from the KLT construction are rather complicated.
This makes it difficult to analytically simplify the contact terms in Eq. (2.22) at high loop
orders. However, it does provide a rather efficient means for numerically evaluating any cut,
by first numerically evaluating the gauge-theory unitarity cuts and then carrying out the
matrix multiplication in Eq. (Z31]) numerically. This will prove very useful in Section [VI]
where the five-loop four-point amplitude on N = 8 supergravity is constructed. While the
numerical analysis is quite helpful, especially for confirming the correctness of expressions,
the required Ansétse are impractical. Much more efficient means for analytically construct-

ing gravity contact terms are given in the next sections.

III. CONTACT TERMS FROM BCJ DUALITY

In the previous section we reviewed a constructive method for building up a supergravity
amplitude starting from a naive double copy of a corresponding gauge-theory amplitude.
However, it is still nontrivial to extract the contact terms at high loop orders, given the
analytic complexity of generalized cuts obtained as obtained from Eq. (231]). To deal with
this, Ref. ‘Q]J outlined a method for obtaining correction terms to the naive double copy
directly from corresponding gauge-theory expressions, without having to construct gravity

unitarity cuts. This enormously simplifies the task. Here we elaborate on the details of this

method.

A. Overview of gravity cuts from BCJ discrepancy functions

As noted in the previous section, at high loop orders it can be difficult to find representa-
tions of the amplitudes that manifest BCJ duality. Instead, we start from the “naive double
copy” in Eq. (ZI8)), obtained by replacing the color factors with numerators that do not
satisfy the duality, and correct it until it reproduces all the generalized cuts of the gravity
amplitude. The properties of three and four-point gauge-theory amplitudes guarantee that
the naive double copy has the correct maximal and next-to-maximal cuts. The method of

maximal cuts provides a means to systematically construct the contact terms corresponding

to the N*MC with k > 2.
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The building blocks for the corrections terms are BCJ discrepancy functions, which are
defined in terms of the violation of BCJ duality by a given representation of the gauge-theory
amplitude,

J:ni+nj—|—nk, (31)

Where@raphs i, j, and k are a Jacobi triplet of graphs, as in Eq. (24]). As already noted in

Ref. [16], we find that the corrections are quadratic in the discrepancy functions

Ear ~ Y Gavas (3.2)
a,b

where J, and J, are discrepancy functions from the two gauge-theory copies and gy, are
appropriate rational functions of kinematic invariants.

The bilinear structure of the correction terms in Eq. ([B.2) is suggested by the fact that
the corrections should all vanish if BCJ duality were manifest in either the first or second
copy. A further heuristic argument for the bilinearity of Eqr in discrepancy functions relies
on an understanding of the structure of the terms that need to be added to the naive
double copy in order to restore linearized diffeomorphism invariance. Since diffeomorphism
invariance of the double-copy theory is related to the gauge invariance of the two single
copies B, , , @, ], we first explore the latter. At loop level gauge invariance may
require nontrivial changes of variables; we avoid this difficulty by restricting the integrand
to its generalized cuts, which are given in terms of tree-level amplitudes. To mimic the
properties of the naive double copy we suspend enforcing the color-Jacobi identities. Then,

under a gauge transformation of the first gluon,
et el + K (3.3)
the color-dressed cut of a gauge-theory amplitude shifts by,

(S.A}Cut = Z gijk(gla €2 vy PLy- - )(Cz + Cj —+ Ck)}cut s (34)

{i.5,k}
where ‘Cut denotes that cut conditions are imposed and the hat means that e, is absent
(having been replaced by pq, per Eq. (83])). The sum runs over the triplets of graphs i, j, k

such that, under Jacobi relations,
¢i+cj+cp=0. (3.5)
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The g, are rational functions of all momenta and polarization vectors except that of the
first gluon.

In gravity the scattering amplitudes also enjoy an on-shell gauge invariance. They must
be invariant under

e’ = el + k'ey, where ek =0, (3.6)

and

e’ = el + kY, where £,k =0, (3.7)

which capture both linearized diffeomorphism and the gauge symmetry of the antisymmetric
tensor field. If we start from the BCJ double-copy construction, and as for the gauge-theory
case suspend enforcing the Jacobi relations, the variation of the double-copy cut under the

gauge transformation is then,

5'/\/lnaiv(3‘cut = Z gijk(é\lag% ey P1y e )(fll + fl] + ﬁk)‘cut
{i.g,k}
+ Z gijk(€~1>€~2a ey P1y e )(nz + n; + nk)‘cut ) (38)
{i.5,k}

where cut conditions are imposed as in the gauge-theory case. Thus, to restore the lin-
earized diffeomorphism invariance we must add terms whose gauge transformation cancels
5M“aive‘cut to the naive double copy. The variation of a contribution quadratic in the dis-

crepancies J, as in Eq. (8.2)), would be of the right form to cancel the unwanted contributions

E3).

B. Defining BCJ discrepancy functions

Following Ref. @], we introduce some notation for tracking different contributions and
for tracking kinematic Jacobi relations. Consider a cut (2.25) of a gauge-theory amplitude.
We can expand each tree amplitude that composes the cut in terms of diagrams with only

cubic vertices and then use the labels of each tree diagram to label our numerators,

Citig,...ig Thiyio,... i
CYM — 3b25.005tq 36250050 q , (3.9>
2 D,,...D,

ily"'viq

where as usual we drop factors of the coupling and where the ¢;, 4, ;. and n;, 4, ;. and are

q q

the color factors and kinematic numerators associated with each cut diagram. Each index
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FIG. 8: The 15 diagrams with cubic vertices for the five-point tree amplitude.

corresponds to a diagram of a tree amplitude contained in the cut with four or more legs.
Labels for the three-point tree amplitude are not included since there is only a single fixed
vertex for each in a given cut. (The three-point amplitudes in the cut also do not play a
direct role in the describing BCJ discrepancy functions.) The indices follow an ordering,
1,...,q, of these amplitude factors, and an ordering of the graphs contributing to each such
factor. For an my x mgy--- x m, cut, the index i, runs over the (2m, — 5)!! diagrams in
the vth tree amplitude. That is, for four-point tree amplitudes the index i,, runs from 1 to
3, for five-point tree amplitudes from 1 to 15, for six-point tree amplitudes from 1 to 105
and so forth. The 1/D;, are products of Feynman propagators for graph i, of the vth tree
amplitude in the cut.

Generic representations of cut amplitudes do not satisfy the Jacobi relations. To track
the violations of a kinematic Jacobi relation on the A\4-th propagator of graph A of v-th

amplitude factor, we employ a notation similar to that in Eq. (39):

Jis s sio 1 TANA iy 1emiiq =SA iy iy 1 Avivs1riq T SB Ty iy 1,Brivs1,ia
_I_ Sc nil7...,7;1,71,C,iv+1,...7’iq ) (310)
where graphs B and C' are connected to graph A by the color Jacobi relation on the A4-th
propagator of graph A. The relative signs s, sp and s¢ between terms are taken to be

those of the corresponding color-Jacobi relation. As for the numerators, the indices refer to

the diagram number in each amplitude contributing to the cut.
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To simplify the notation whenever the v-th amplitude factor is a four-point tree ampli-
tude, so that graph A has only a single propagator, we simplify the notation by suppressing
the index completely, because for a four-point tree amplitude each graph has a single propa-
gator, we can always choose the signs to be all positive, and the Jacobi identity is the same

one independent of whether we choose diagram A, B, or C":
Jil,---,7:11717.77:11+17---77:q = Jil7--'77;11717{A7>\A}7iu+17--'7i61 ) tree v is four point. (3'11>

To make the notation systematic, including also relative signs in the Jacobi relations, we
define functions that organize the graphs in Jacobi triplets A, B, C', connected by Jacobi

transformations around propagator A4 of diagram A:
t(A,Aa) ={A,B,C} and s(A,Aa) = {sa,sB,Sc}, (3.12)
such that
saca+Spcp+scce=0, (3.13)

where cg4, cp, and c¢ are the color factors of diagrams A, B and C. The triple {sa, sg, sc}
simply gives the signs in the Jacobi relation. Of course, the overall sign of the function s is
arbitrary, and we will always choose s4 = 1.

The BCJ discrepancy functions associated to a (connected) tree-level graph or to a con-

nected component of a cut are then defined as
J{A,)\A} = S(A, )\A)l na+ S(A, )\A)Q ng + S(A, )\A)g ne, (3.14)

where the s(A, Aa)1, s(A, Aa)2 and s(A, A4)3 are the three components of the triplet of signs
in the Jacobi relation (BI2]). As usual, the momenta in the numerators are expressed in
terms of the momenta common to the three graphs. More formally, the discrepancy functions
are defined as

-

J=o0-1, (3.15)
where 77 is the vector of kinematic numerators and the matrix o is defined as

. ; s; it i =1(j,\j)1 ori=1=t(], ;)2 or i =1t(j,\;)3, (3.16)
{'7)‘]’} = :
’ 0 otherwise.
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This matrix has (m, —3)(2m, —5)!! rows since every m,,-point tree amplitude has (2m,, —5)!!
diagrams with only cubic vertices and each diagram has (m; — 3) propagators. The number
of columns in the matrix is just the number of diagrams in

For a cut composed of several tree amplitudes, the analogous matrix is defined as

J1yeessdp—150psJp+15-0Jq _ sh Jp—1 _ Jp §Ip+1 5Jq
il7---7ip717{7;p71ip}7ip+17---77;q o 6i1 o 62'P*1 O-{Zp’lip} 6ip+1 5iq ’ (317>

where the index p runs from 1 to ¢, i.e. over all tree amplitudes in the cut.

C. Contact terms and properties of generalized gauge transformations

For any field theory, like the maximally supersymmetric gauge theory, for which BCJ rep-
resentations are known to exist for all tree amplitudes, any generalized cut that decomposes

a loop integrand into a sum of products of tree amplitudes can be written as

BCJ ~BCJ
C o Z nilyi%---iqnilyi%---iq (3 18)
GR — :
D;...D ’

. . AR T
115--92q 1

BCJ are the BCJ numerators associated with each of the two copies.

where the nP% and 7
The notation for the indices is the same as in Eq. (89). These numerators are related
to those of an arbitrary representation, such as that in Eq. ([33), by a generalized gauge

transformation,

fnd nBCJ + Ah,iz,...iq . (319)

ni17i2,...iq 11,12,...1q

The only constraint on the shifts A is that the corresponding cut of the gauge-theory am-
plitude is unchanged, that is

Ail i2,...iqCi1 ia,...0
e .2
2. D; ...D 0 (3:20)

11y--452q 1

Using this constraint and the properties of the BCJ numerators, it is not difficult to see tha