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Abstract Weestablish a link between themaximization ofKolmogorov Sinai entropy (KSE)
and theminimization of themixing time for generalMarkov chains. Since themaximisation of
KSE is analytical and easier to compute in general than mixing time, this link provides a new
faster method to approximate the minimum mixing time dynamics. It could be interesting in
computer sciences and statistical physics, for computations that use random walks on graphs
that can be represented as Markov chains.
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Many modern techniques of physics, such as computation of path integrals, now rely on
random walks on graphs that can be represented as Markov chains. Techniques to estimate
the number of steps in the chain to reach the stationary distribution (the so-called “mixing
time”), are of great importance in obtaining estimates of running times of such sampling
algorithms [1] (for a review of existing techniques, see e.g. [2]). On the other hand, studies of
the link between the topology of the graph and the diffusion properties of the random walk
on this graph are often based on the entropy rate, computed using the Kolmogorov-Sinai
entropy (KSE) [3,4]. For example, one can investigate dynamics on a network maximizing
the KSE to study optimal diffusion [3], or obtain an algorithm to produce equiprobable paths
on non-regular graphs [5].
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In this letter, we establish a link between these two notions by showing that for a system that
can be represented by Markov chains, a non trivial relation exists between the maximization
of KSE and the minimization of the mixing time. Since KSE are easier to compute in general
thanmixing time, this link provides a new faster method to approximate theminimummixing
time that could be interesting in computer sciences and statistical physics and gives a physical
meaning to theKSE.Wefirst show that on average, the greater theKSE, the smaller themixing
time, and we correlated this result to its link with the transition matrix eigenvalues. Then, we
show that the dynamics that maximises KSE is close to the one minimizing the mixing time,
both in the sense of the optimal diffusion coefficient and the transition matrix.

Consider a network with m nodes, on which a particle jumps randomly. This process can
be described by a finite Markov chain defined by its adjacency matrix A and its transition
matrix P . A(i, j) = 1 if and only if there is a link between the nodes i and j and 0 otherwise.
P = (pi j )where pi j is the probability for a particle in i to hop on the j node. Let us introduce
the probability density at time n μn = (μi

n)i=1...m where μi
n is the probability that a particle

is at node i at time n. Starting with a probability density μ0, the evolution of the probability
density writes: μn+1 = Ptμn where Pt is the transpose matrix of P .

Within this paper, we assume that the Markov chain is irreducible and thus has a unique
stationary state.

Let us define:
d(n) = max ||(Pt )nμ − μstat || ∀ μ, (1)

where ||.|| is a norm on Rn . For ε > 0, the mixing time, which corresponds to the time such
that the system is within a distance ε from its stationary state is defined as follows:

t (ε) = min n, d(n) ≤ ε. (2)

For a Markov chain the KSE takes the analytical form [6]:

hK S = −
∑

i j

μstati pi j log(pi j ). (3)

Random m size Markov matrices are generated by assigning to each pi j a random number
between 0 and 1 and by normalized each row. The mean KSE is plotted versus the mixing
time (Fig. 1) by working out hK S and t (ε) for each random matrix. (Fig. 1) shows that KSE
is on average a decreasing function of the mixing time.

We stress the fact that this relation is only true on average. We can indeed find two special
Markov chains P1 and P2 such that hK S(P1) ≤ hK S(P2) and t1(ε) ≤ t2(ε). We illustrate
this point further.

The link between the mixing time and the KSE can be understood via their dependence
as a function of the transition matrix eigenvalues. More precisely, we have found a heuristic
connection between the second largest eigenvalue of the transition matrix and the KSE. A
general irreducible transition matrix P is not necessarily diagonalizable on R. However,
since P is chosen randomly, it is almost everywhere diagonalizable on C. According to
Perron Frobenius theorem, the largest eigenvalue is 1 and the associated eigen-space is one-
dimensional and equal to the vectorial space generated by μstat. Without loss of generality,
we can label the eigenvalues in decreasing order of their module:

1 = λ1 > |λ2| ≥ · · · ≥ |λm | ≥ 0
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Fig. 1 Averaged KSE versus mixing time for 106 random m = 10 size matrices and averaged λ(P) versus
mixing time for 106 random m = 10 size matrices in curve blue and f (t) = ε1/t in red (top). Heat map
representing KSE and λ(P) (bottom) with in z axis the probability density of finding a given KSE and a given
λ(P) .Here ε = 10−3 and the norm is chosen to be the euclidian one

The convergence speed toward μstat is given by the second maximum module of the eigen-
values of P [7,8]:

λ(P) = max
i=2...m

|λi | = |λ2|

Moreover, it is well known that λ(P) ∝ ε1/t (ε). Hence, the smaller λ(P) the shorter the
mixing time (Fig. 1). hK S being a decreasing function of t (ε) and λ(P) being an increasing
function of t (ε), we deduce that hK S is a decreasing function of λ(P).

This result can be demonstrated anatically for 2 ∗ 2 matrices which have the form P =(
1 − a a
b 1 − b

)
and where a and b are taken uniformly in [0, 1]2 such as a + b ≤ 1. In fact,

the average KS entropy function of λ(P) takes the form:

EK S(λ(P)) = 1

3
(1 − λ(P)) log(1 − λ(P)) − 5

18
∗ (1 − λ(P))

+1

3
∗ λ(P)3 log(λ(P))

(1 − λ(P))2
+ 5

36

(λ(P)2 + λ(P) − 4/5)

1 − λ(P)
(4)

With little algebra one can show that the derivative is strictly negative on ]0, 1[ thus the
function is strictly decreasing. This result can be numerically verified by drawing random
matrices et by calculing λ(P) and EK S .

This link between maximum KSE and minimum mixing time actually also extends natu-
rally to optimal diffusion coefficients. Such a notion has been introduced byGomez-Gardenes
and Latora [3] in networks represented by a Markov chain depending on a diffusion coef-
ficient. Based on the observation that in such networks, KSE has a maximum as a function
of the diffusion coefficient, they define an optimal diffusion coefficient as the value of the
diffusion corresponding to this maximum. In the same spirit, one could compute an opti-
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Fig. 2 KSE (top) and λ(P) (bottom) function of α for a network of size m = 400 with a proportion of 0 in
A equal to 1/3

mal diffusion coefficient with respect to the mixing time, corresponding to the value of the
diffusion coefficient which minimizes the mixing time -or equivalently the smallest second
largest eigenvalue λ(P). This would roughly correspond to the diffusion model reaching the
stationary time in the fastest time. To define such an optimal diffusion coefficient, we follow
Gomez and Latora and vary the transition probability depending on the degree of the graph
nodes. More accurately, if ki = ∑

j A(i, j) denotes the degree of node i , we set:

pi j = Ai j kα
j∑

j Ai j kα
j
. (5)

If α < 0 we favor transitions towards low degrees nodes, if α = 0 we find the typical random
walk on network and if α > 0 we favor transitions towards high degrees nodes. We assume
here that A is symmetric. It may then be checked that the stationary probability density is
equal to:

πstati = ci kα
i∑

j c j k
α
j
, (6)

where ci = ∑
j Ai j kα

j ,
Using Eqs. (5) and (6), we check that the transition matrix is reversible and then has m

real eigenvalues. From this stationary probability density, we can thus compute both the KSE
and the second largest eigenvalue λ(P) as a function of α. The result is provided in (Fig. 2).

We observe in (Fig. 2) that the KS entropy has a maximum at a value that we denote
αK S , in agreement with the findings of [3]. Likewise, λ(P) (i.e. the mixing time) presents a
minimum for α = αmix . Moreover, αK S and αmix are close. This means that the two optimal
diffusion coefficients are close to each other. Furthermore, looking at the ends of the two
curves, we can find two special Markov chains P1 and P2 such that hK S(P1) ≤ hK S(P2)
and t1(ε) ≤ t2(ε), illustrating that the link between KSE and the minimum mixing time is
only true in a general statistical sense.

We have thus shown that, for a given transition matrix P (or equivalently for given jump
rules) the greater the KSE, the smaller the mixing time.We now investigate whether a similar
property holds for dynamics, i.e. whether transition rules that maximise KSE are close to
the ones minimizing the mixing time. For a given network, i.e. for a fixed A, there is a well
known procedure to compute the transition matrix PK S which maximizes the KSE with the
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constraints A(i, j) = 0 ⇒ PK S(i, j) = 0 [5]. It proceeds as follow: let us note λ the greatest
eigenvalue of A and� the normalized eigenvector associated i.e A� = λ� and

∑
i �

2
i = 1.

We define PK S such that:

PK S(i, j) = A(i, j)

λ

� j

�i
. (7)

We have ∀i ∑
j PK S(i, j) = 1. Moreover, using the fact that A is symmetric we find:

∑

j

PK S( j, i)�
2
j =

∑

j

A( j, i)�i� j

λ
= �2

i . (8)

Hence, Pt
K S�

2 = �2 and the stationary density of PK S is πstat = �2.
Using Eqs. (3) and (7), we have:

hK S = −1

λ

∑

(i, j)

A(i, j)�i� j log

(
A(i, j)

λ

�i

� j

)
. (9)

Eq. (9) can be split in two terms:

hK S = 1

λ

∑

(i, j)

A(i, j)�i� j log(λ)

− 1

λ

∑

(i, j)

A(i, j)�i� j log

(
A(i, j)

� j

�i

)
. (10)

The first term is equal to log(λ) because � is an eigenvector of A and the second term is
equal to 0 due to the symmetry of A. Thus:

hK S = log(λ). (11)

Moreover, for a Markov chain the number of trajectories of length n is equal to Nn =∑
(i, j)(A

n)(i, j). For a Markov chain the KSE can be seen as the time derivative of the path
entropy leading that KSE is maximal when the paths are equiprobable. For an asymptotic
long time the maximal KSE is:

hK Smax = log(Nn)

n
→ log(λ), (12)

by diagonalizing A. Using Eqs. (11) and (12)we find that PK S defined as in Eq. (7)maximises
the KSE. Finally PK S verifies πstati PK S(i, j) = πstat j PK S( j, i) ∀ (i, j) and thus PK S is
reversible.

In a similar way, we can search for a transition matrix Pmix which minimizes the mixing
time -or, equivalently the transition matrix minimizing its second eigenvalue λ(P). This
problem is much more difficult to solve than the first one, given that the eigenvalues of Pmix

can be complex. Nevertheless, two cases where the matrix Pmix is diagonalizable on R can
be solved [7]: the case where Pmix is symmetric and the case where Pmix is reversible for a
given fixed stationary distribution. Let us first consider the case where P is symmetric. The
minimisation problem takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

min
P∈Sn

λ(P)

P(i, j) ≥ 0, P ∗ 1 = 1

A(i, j) = 0 ⇒ P(i, j) = 0

(13)

123



Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing... 67

given the strict convexity of λ and the compactness of the stochastic matrices, this problem
admits an unique solution.

P is symmetric thus 1 is an eigenvector associated with the largest eigenvalue of P . Then
the eigenvectors associated to λ(P) are in the orthogonal of 1.The orthogonal projection on
1⊥ writes: Id − 1

n 11
t

Moreover, if we take the matrix norm associated with the euclidiean norm i.e. for M any
matrix |||M ||| = max ||MX ||2||X ||2 X ∈ R

n X �= 0 it is equal to the square root of the largest
eigenvalue of MMt and then if M is symmetric it is equal to λ(M).

Then the minimization problem can be rewritten:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
P∈Sn

|||(Id − 1
n 11

t )P(Id − 1
n 11

t )||| = |||P − 1
n 11

t |||
P(i, j) ≥ 0, P ∗ 1 = 1

A(i, j) = 0 ⇒ P(i, j) = 0

(14)

We solve this constrained optimization problem (Karush-Kuhn-Tucker) with Matlab and we
denote Pmix the matrix which minimizes this system.

We remark that the mixing time of PK S is smaller than the mixing time of Pmix . This
is coherent because in order to calculate PK S we take the minimum on all the matrix space
whereas to calculate Pmix we restrict us to the symmetric matrix space. Nevertheless, we can
go a step further and calculate, the stationary distribution being fixed, the reversible matrix
which minimizes the mixing time. If we note π the stationary measure and � = diag(π).

Then P is reversible if and only if�P = �t P . Then in particular�
1
2 P�− 1

2 is symmetric and

has the same eigenvalues as �. Finally, p = (
√

π1, ...,
√

πn) is an eigenvector of �
1
2 P�− 1

2

associated to the eigenvalue 1. Then theminimization problem can bewritten as the following
system: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
P

|||(Id − 1
nqq

t )�
1
2 P�− 1

2 (Id − 1
nqq

t )|||
= |||� 1

2 P�− 1
2 − 1

nqq
t |||

P(i, j) ≥ 0, P ∗ 1 = 1,�P = �t P

A(i, j) = 0 ⇒ P(i, j) = 0

(15)

When we implement this problem in Matlab with π = πK S we find a matrix Pmix such
that naturally λ(Pmix ) ≤ λ(PK S). Moreover we can compare both dynamics by evaluating
|||PK S − Pmix ||| compared to |||PK S ||| which is approximatively equal to |||Pmix |||. We
remark that |||PK S − Pmix ||| depends on the density ρ of 0 in the matrix A. For a density
equal to 0 thematrices PK S and Pmix are equal and the quantity |||PK S−Pmix |||will increase
continuously when ρ increases. This is shown in (Fig. 3).

From this, we conclude that the rules which maximize the KSE are close to those which
minimize the mixing time. This becomes increasingly accurate as the fraction of removed
links in A is weaker. Since the calculation of Pmix quickly becomes tedious for quite large
values of m, we offer here a much cheaper alternative by computing PK S instead of Pmix .

In the previous study we fixed the dynamics i.e the adjacency matrix A. We can ask
ourself what happens when we impose a prescribed stationary distribution on the graph and
maximize its KS entropy. If we impose a stationnary measure μstat = (μi ) and we leave the
dynamics totaly free, we can prove analytically fromDixit work [9,10] that thematrice which
maximizes KS entropy is exactly the same which minimizes the mixing time and where the
coefficients of the matrix are pi j = μ j .
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Fig. 3 |||PK S − Pmix |||/|||PK S ||| as a function of the density ρ of 0 present in A

Moreover, maximizing the KSE appears today as a method to describe out of equilibrium
complex systems [11], to find natural behaviors [5] or to define optimal diffusion coefficients
in diffusion networks. This general observation however provides a possible rationale for
selection of stationary states in out-of-equilibrium physics: it seems reasonable that in a
physical system with two simultaneous equiprobable possible dynamics, the final stationary
state will be closer to the stationary state corresponding to the fastest dynamics (smallest
mixing time). Through the link found in this letter, this state will correspond to a state of
maximal KSE. If this is true, this would provide amore satisfying rule for selecting stationary
states in complex systems such as climate than the maximization of the entropy production,
as already suggested in [12].

Acknowledgements Martin Mihelich thanks IDEEX Paris-Saclay for financial support. Quentin Kral was
supported by the French National Research Agency (ANR) through contract ANR-2010 BLAN-0505-01
(EXOZODI).

References

1. Bhakta, P., Miracle, S., Randall, D., Streib, A.P.: Mixing times of markov chains for self-organizing
lists and biased permutations. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1–15. SIAM (2013)

2. Guruswami, V.: Rapidly mixing markov chains: a comparison of techniques. http://cs.washington.edu/
homes/venkat/pubs/papers.html (2000)

3. Gómez-Gardeñes, J., Latora, V.: Entropy rate of diffusion processes on complex networks. Phys. Rev. E
78(6), 065102 (2008)

4. Ochab, J.K.: Static and dynamic properties of selected stochastic processes on complex networks. PhD
thesis, Institute of Physics (2013)

5. Burda, Z., Duda, J., Luck, J.M., Waclaw, B.: Localization of the maximal entropy random walk. Phys.
Rev. Lett. 102(16), 160602 (2009)

6. Billingsley, P.: Ergodic Theory and Information. Wiley, New York (1965)
7. Boyd, Stephen, Diaconis, Persi, Xiao, Lin: Fastest mixing markov chain on a graph. SIAM Rev. 46(4),

667–689 (2004)
8. Bremaud, P.: Markov Chains: Gibbs fields, Monte Carlo Simulation, and Queues, vol. 31. Springer, New

York (1999)
9. Dixit, P.D., Dill, K.A.: Inferring microscopic kinetic rates from stationary state distributions. J. Chem.

Theory Comput. 10(8), 3002–3005 (2014)
10. Dixit, P.D., Jain, A., Stock, G., Dill, K.A.: Inferring transition rates of networks from populations in

continuous-time markov processes. J. Chem. TheoryComput. 11(11), 5464–5472 (2015)
11. Monthus, C.: Non-equilibrium steady states: maximization of the Shannon entropy associated with the

distribution of dynamical trajectories in the presence of constraints. J. Stat. Mech. 2011, P03008 (2011)
12. Mihelich,Martin, Dubrulle, Bérengère, Paillard, Didier, Herbert, Corentin:Maximum entropy production

versus kolmogorov-sinai entropy in a constrained asep model. Entropy 16(2), 1037–1046 (2014)

123

http://cs.washington.edu/homes/venkat/pubs/papers.html
http://cs.washington.edu/homes/venkat/pubs/papers.html

	Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains
	Abstract
	Acknowledgements
	References




