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Abstract

Dark sectors lying beyond the Standard Model and containing sub-GeV particles which are
bilinearly coupled to nucleons would induce quantum forces of the Casimir-Polder type in ordinary
matter. Such new forces can be tested by a variety of experiments over many orders of magnitude.
We provide a generic interpretation of these experimental searches and apply it to a sample of forces
from dark scalars behaving as 1/r3, 1/r5, 1/r7 at short range. The landscape of constraints on such
quantum forces differs from the one of modified gravity with Yukawa interactions, and features in
particular strong short-distance bounds from molecular spectroscopy and neutron scattering.

E-mail:
philippe.brax@ipht.fr
sylvain@ift.unesp.br
guillaume.pignol@lpsc.in2p3.fr

1

ar
X

iv
:1

71
0.

00
85

0v
1 

 [
he

p-
ph

] 
 2

 O
ct

 2
01

7



1 Introduction

When going beyond the Standard Model (SM) of particle physics, it is natural to imagine the
existence of other light particles, which would have been so far elusive because of their weak or
vanishing interactions with the SM particles. Such speculations on dark sectors could be simply
driven by theoretical curiosity although there are more concrete motivations coming from two
striking observational facts: Dark Matter and Dark Energy. In both cases, theoretical constructions
elaborated to explain one or both of these fundamental aspects of the Universe tend to assume the
existence of dark sectors of various complexity.

Among the many possibilities for the content of the dark sector, our interest in this work lies in
dark particles with masses below the GeV scale, where Quantum ChromoDynamics (QCD) reduces
to an effective theory of nucleons. Would a light scalar couple to nucleons, it would induce a fifth
force of the form V = αe−r/λ/r, with λ = ~/mc being the Compton wavelength of the scalar
and m its mass. The presence of such Yukawa-like force is sometimes dubbed “modified gravity”.
Experimental searches for such fifth forces between nucleons extend from nuclear to astronomic
scales and lead to a landscape of exclusion regions, see summary plots in [1–5].

As noted in [6], even in the absence of a light boson linearly coupled to nucleons, other fifth
forces can still arise from the dark sector whenever a sub-GeV particle of any spin is bilinearly
coupled to nucleons. Such forces would arise from the double exchange of a particle and are thus
fundamentally quantum. Moreover, in order to take into account retardation effects, such forces
have to be computed within relativistic quantum field theory. This kind of computation has been
first done by Casimir and Polder for polarizable particles [7], and by Feinberg and Sucher for
neutrinos [8]. We will refer to such quantum forces as Casimir-Polder forces.

There is a variety of motivations for having a particle of the dark sector coupling bilinearly to
nucleons. The dark particle can be for instance charged under a symmetry of the dark sector, can
be a symmetron from a dark energy model, or simply a dark fermion sharing a contact interaction
with nucleons. Such Z2 symmetry can be also needed in order to explain the stability of Dark
Matter.

In the presence of forces which do not have a Yukawa-like behaviour, as is the case of the
Casimir-Polder forces we focus on, the landscape of fifth force searches is expected to change dras-
tically. A thorough investigation of the experimental fifth force searches becomes then mandatory
in order to put bounds on such extra forces in a consistent manner, and thus on the underlying
dark particles.

This requires revisiting each of the experimental results, a task that will be performed in this
paper. In Sec. 2, we consider Casimir-Polder forces focussing on the case of a scalar with various
effective interactions with nucleons. General features of Casimir-Polder forces are then derived
in Sec.3. A generic interpretation of the most recent and stringent fifth force searches, valid for
arbitrary potentials, is given in Sec.4. The exclusion regions will be displayed and discussed in
Sec. 5.

We emphasize that our approach to constrain dark sectors relies only on virtual dark particles,
and is thus independent on whether or not the dark particle is stable. The case where the dark
particle is stable and identified as Dark Matter has been treated in a dedicated companion paper,
Ref. [6]. Searches for dark sectors via loops of virtual dark particles include Refs. [6, 9, 10], and are
yet under-represented in the literature.

2 Casimir-Polder forces from a dark scalar

There are many reasons for which the dark sector could feature a scalar with a Z2 symmetry with
respect to the Standard Model sector. If such a scalar is charged under a new symmetry such as
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Figure 1: The exchange of two scalars inducing a force between the nucleons.

a U(1)X charge while the SM fields are not, the scalar should interact with the SM via bilinear
operators. The scalar can also be the pseudo-Nambu-Goldstone boson (pNGB) of an approximate
global symmetry, in which case it couples mostly with derivative couplings to the nucleons. Theories
of modified gravity can also feature light scalars with a bilinear coupling to the stress-energy tensor
[11]. While the properties of these scalars are often considered to be modified by some screening
mechanism, it is certainly relevant to consider scenarios where screening is negligible or absent.
This is the most minimal possibility, and can also serve as a reference for comparison with the
screened models. Moreover for models like the symmetrons, screening does not happen in vacuum.

It is convenient to use an effective field theory (EFT) approach to describe the interactions of
the dark particle. All the measurements we consider occur well below the quantum chromodynamics
(QCD) confinement scale, hence we can readily write down effective interactions with nucleons. The
operators we consider have the form OnucODS, where Onuc is bilinear in the nucleon fields and ODS

is bilinear in the dark sector field. Onuc has in principle a N̄ΓAN structure, where ΓA can have any
kind of Lorentz structure. In the limit of unpolarized non-relativistic nucleons, only the interactions
involving Onuc = N̄N, N̄γ0N are relevant, the other being either canceled by averaging over nucleon
spins or suppressed by powers of m−1

N .
In this paper we focus on the exchange of a dark scalar. The exchange of dark fermions and dark

vectors, either self-conjugate or complex, have been treated in [6], and details of the calculations
for all these cases are given in App. A. Here we focus on three types of effective interactions,
L = LSM +Oi, with

O0
a =

1

Λ
N̄N

φ2

2
, O0

b =
1

Λ2
N̄γµNφ∗i

←→
∂ µφ , O0

c =
1

Λ3
N̄N

(∂µφ)2

2
. (2.1)

We assume that only one of these operators is turned on at a time. In the O0
a,c cases, we assume a

real scalar, while for O0
b we assume a complex scalar. The O0

a interaction corresponds to the case
of a symmetron, the O0

b interaction is typically the one generated from a heavy Z ′ exchange, and
the O0

c would occur if the scalar is the pNGB of a hidden global symmetry. In the last case, as
the pNGB mass explicitly breaks the shift symmetry, an interaction of the form m2

Λ2 O0
a could also

be present, however its effect would be negligible at short distance hence we do not take it into
account. Similar calculations have been performed for disformal couplings in [12, 13].

Higher dimensional operators are in principle present in the effective Lagrangian, and are sup-
pressed by higher powers of either Λ or ΛQCD. The EFT is valid for momenta below min (Λ,ΛQCD)

when coupling constants are O(1) in the UV theory. We will assume a universal coupling to protons
and neutrons—all our results are easily generalized for non-universal couplings. Also, for simplicity,
we do not consider the dark particle coupling to electrons. Including the coupling to electrons would
lead typically to stronger forces and thus to enhanced limits.

As a result of theOa,b,c interactions, nucleons can exchange two scalars as shown in the Feynman
diagram of Fig. 1. This Feynman diagram induces a Casimir-Polder force (i.e. a relativistic van der
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Waals force) between the nucleons. The forces induced by the Oa,b,c operators have been computed
in [6] and are given by the potentials

Va = − 1

32π3 Λ2

m

r2
K1(2mr) , Vb =

1

8π3Λ4

m2

r3
K2(2mr) ,

Vc = − 1

32π3 Λ6 r

((
30m2

r4
+

6m4

r2

)
K2(2mr) +

(
15m3

r3
+
m5

r

)
K1(2mr)

)
, (2.2)

where Ki is the i-th modified Bessel function of the second kind. The Va force is consistent with a
previous calculation of [14] after matching to our conventions.

The main steps of the general calculation are as follows. One first calculates the amplitude cor-
responding to the diagram in Fig. 1. In order to calculate loop amplitudes in the EFT, dimensional
regularization has to be used in order not to spoil the EFT expansion. The one-loop amplitudes
can be decomposed over the basis

fn =

∫ 1

0

dx(x(1− x))n log

(
∆

Λ2

)
(2.3)

where ∆ = m2 − x(1− x)q2. Λ is the scale at which the effective theory is matched on to the UV
theory, and is also the scale at which the EFT breaks down.

Then one takes the non-relativistic limit of the amplitude and identify the scattering potential
Ṽ as

iM = −iṼ (|q|)4m2
Nδ

s1s
′
1δs2s

′
2 , (2.4)

where s1,2 (s′1,2) corresponds to the spin polarization of each ingoing (outgoing) nucleons. The
spatial potential is given by the 3d Fourier transform of Ṽ (|q|),

V (r) =

∫
d3q

(2π)3
Ṽ (|q|)eiq·r =

−i
(2π)2 r

∫ ∞
−∞

dρρṼ (ρ)eiρr , (2.5)

where r = |r| and the momentum has been extended to the complex plane in the last equality,
ρ ≡ |q|. Using standard complex integration one obtains

V (r) =
−i

(2π)2 r

∫ i∞

i2m

dρρ[Ṽ ]eiρr =
i

(2π)2 r

∫ ∞
2m

dλλ[Ṽ ]e−λr (2.6)

where [V ] is the discontinuity from right to left across the positive imaginary axis, [V ] = Vright−Vleft,
and one has defined ρ = iλ. Notice that λ can also be understood as

√
t, the square root of the t

Mandelstam variable extended to the complex plane. The discontinuities [fn] needed to compute
the Casimir-Polder force via Eq. (2.6) are given in Appendix A.

In the case of the scalar dark particle exchanged via the Oa, Ob or Oc operators, the amplitudes
are given in App. B. The discontinuities needed to calculate the Va,b,c potentials are

[f0] = iπ
2

λ

√
λ2 − 4m2 , (2.7)

[f1] = iπ
2m2 + λ2

3λ3

√
λ2 − 4m2 ,

[f2] = iπ
6m4 + 2m2λ2 + λ4

15λ5

√
λ2 − 4m2 .
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The discontinuity of the nonrelativistic scattering potentials for the three diagrams considered above
are [

Ṽa

]
=

[f0]

32π2 Λ2
, (2.8)[

Ṽb

]
=
m2 [f0]− λ2 [f1]

8π2 Λ4
,[

Ṽc

]
=

(6m4 +m2λ2) [f0] + (24m2λ2 + λ4) [f1] + 20λ4 [f2]

64π2 Λ6
.

At short distance mr � 1 the forces behave as

Va = − 1

64π3 Λ2 r3
, Vb =

1

16π3Λ4 r5
, Vc = − 15

32π3Λ6 r7
, (2.9)

while at long distance mr � 1 the forces go as

Va = −
√
me−2mr

64π5/2Λ2 r5/2
, Vb =

m3/2e−2mr

16π5/2Λ4 r7/2
, Vc = − m9/2e−2mr

64π5/2Λ6 r5/2
. (2.10)

As sketched in [6], the broad features of these forces can be understood from general principles.
The arguments are given in detail in the next section.

3 General features of Casimir-Polder forces

Let us first comment on the effective theory giving rise to the Casimir-Polder forces. The four-
nucleon loop diagrams we consider come from higher-dimensional operators and are thus more
divergent than the four-nucleon diagrams from the UV theory lying above Λ. This implies that
four-nucleon local operators (i.e. counter-terms) of the form (N̄N)2, (∂µ(N̄N))2, . . . are also present
in the effective Lagrangian to cancel the divergences which are not present in the UV theory. The
finite contribution from these local operators is fixed by the UV theory at the matching scale,
and is expected to be of same order as the coefficient of the log Λ term in the amplitude by naive
dimensional analysis (this situation is analog to renormalisation of the non-linear sigma model, see
Ref. [15]). The loop amplitudes have the form

M = F (q2) +G(q2) log
(m

Λ

)
, (3.1)

where F (q2) is complex, with F (q2 = 0) = 0, and G(q2) is a real polynomial in q2 (both depend also
on m, Λ). The log term is a consequence of the divergence. The log term is real and contributes
to the running of local four-nucleon operators. The Casimir-Polder force arises from the branch
cut of F (q2), and is thus independent of the log term. An experiment measuring only the Casimir-
Polder force will have the advantage of being unsensitive to these four-nucleon operators - which
are set by the UV completion and thus introduce theoretical uncertainty. This happens either when
the experiment is nonlocal by design (e.g. measuring the force between nucleons at a non-zero
distance), or by construction of the observables as we will see in the case of neutron scattering. All
the measurements considered in this paper are either fully or approximately unsensitive to local
four-nucleon interactions.

The main features of Casimir-Polder forces between two non-relativistic sources can be under-
stood using dimensional analysis and the optical theorem. We focus on the double exchange of a
particle having local interactions with the sources, the operators used in Sec. 2 being examples of
such scenario. We further assume that the sources are identical—a similar approach applies similary
to different sources. We denote by X the dark particle exchanged, X̄ its conjugate, m its mass. We
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use nucleons as source for concreteness. X can take any spin. The generic operator we consider has
the form

L ⊃ 1

Λn
O(X)N̄ΓAN , (3.2)

where ΓA can be any Lorentz structure. When averaging over the nucleon spins, the first non-
vanishing Lorentz structures are N̄N (“scalar channel”), N̄γµN (“vector channel”), and we will
focus on those ones.

Within the above assumptions we obtain the following properties:

1. Sign. Operators of the form O(X)N̄N give rise to attractive forces. Operators of the form
Oµ(X)N̄γµN give rise to repulsive forces.

2. Short distance. An operator of dimension n + 4 gives rise to a potential behaving at short
distance as

V (r) ∝ 1

r1+2n
. (3.3)

3. Long distance. When the square amplitude |M(NN̄ ↔ XX̄)|2 taken at
√
s ∼ 2m is sup-

pressed by a power (s− 4m2)p (i.e. velocity-suppressed by v2p), the long range behaviour of
the force is given by

V (r) ∝ e−2mr

r
5
2 +p

. (3.4)

Let us prove the above properties. Property 2 is simply a consequence of dimensional analysis.
When r � 1/m, the potential can be expanded with respect to rm and at first order, V (r) =

V (r)|m=0(1 + O(mr)). In this limit the potential depends only on r and on the effective coupling
1/Λn squared. The potential having dimension 1, it must have a dependence in 1/r2n+1 so that
dimensions match. Notice that this argument applies similarly for the exchange of a single particle
(giving then a 1/r potential) or for the exchange of an arbitrary number of particles.

For Properties 1 and 3, let us denote the amplitude of interest (Fig. 1) by iMt, and introduce
the amplitude iMs = iM(NN̄ → X∗X̄∗ → NN̄), which is the s↔ t crossing of iMt. In order to
get some insight on iMt, we can study iMs use crossing symmetry. The optical theorem applies
to iMs, with

Im(Ms) = Im
(
M(NN̄ → X∗X̄∗ → N(q1)N̄(q2))

)
=

1

2

∑
polar.

∫
d4q1

(2π)3
δ(q2

1)
d4q2

(2π)3
δ(q2

2)(2π)4δ4(q1 + q2 − q)|M(NN̄ → X(q1)X̄(q2))|2

=
1

16π

√
1− 4m2

s

∑
polar.

|M(NN̄ → X(q1)X̄(q2))|2 (3.5)

where in the last line we use the fact that the amplitude arising from local interactions (Eq. (2.6))
depend only on the center-of-mass energy

√
s. The optical theorem is of interest because Im(Mt)

is directly related to the discontinuity of Mt over its branch cut, which is precisely the quantity
needed to calculate non-relativistic potential. In the formalism of Sec. 2, we have

Im(Mt) =
−1

2
[Ṽ ]4m2

Nδ
s1s2δs

′
1s
′
2 . (3.6)

It turns out that Im(Mt) > 0 (< 0) corresponds to an attractive (repulsive) force.
Let us prove Property 1. For the scalar channel, the crossing of Im(Ms) stays positive, hence

Im(Mt) > 0 and the force is attractive. For the vector channel, we haveM(NN̄ → XX̄) ∝ Jµ,NJµX
where the Jµ are vector currents. The square matrix elements takes the form (Jµ,NJν,N )(Jµ,XJν,X).
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All the Jµ are conserved currents, Jµqµ = 0. The Jµ,N can be pulled outside of the integral
in Eq. (3.5). Conservation of the Jµ,N currents implies that they project out the components
proportional to qµ of the quantity they are contracted with. It follows that

Jµ,NJν,N
∑

polar.

(Jµ,XJν,X) = Jµ,NJν,NA(s)(qµqν − sgµν) , (3.7)

where we have introduced s = (q1 + q2)2 and A(s) is a positive function. In the non-relativistic
limit, one keeps only the µ = ν = 0 components of the nucleon currents, and the projector reduces
to qµqν − sgµν ∼ q2 —hence A(s) has to be positive to ensure Im(Ms) > 0. The crossing of
Im(Ms) gives

Im(Mt) = (J̃µ,N J̃ν,N )A(t)(qµqν − tgµν) , (3.8)

where J̃µ,N denotes the crossed nucleon currents. In the non-relativistic limit we have J̃µ,N J̃ν,N ∼
4m2

Nδ
µ0δν0δs1s2δs

′
1s
′
2 , q0 ∼ 0, t ∼ −q2. However, when taking the Fourier transform of Ṽ (q) (see

Eq. (2.6)), |q| is extended to the complex plane. The non-relativistic potential is then given by an
integral of Im(Mt) over positive values of the real variable λ, which is related to t by λ ≡

√
t. Hence

the t variable in Eq. (3.8) is positive when computing the non-relativistic potential. This implies
that Im(Mt) is always negative, and thus the Casimir-Polder force between nucleons induced by a
vector channel is always repulsive.

Let us finally prove Property 3. We first remark that the long distance behaviour of the V (r)

potential amounts to having a steep exponential in
∫∞

2m
dλλ[Ṽ ]e−λr, see Eq. (2.6). When this is

true we are allowed to expand [Ṽ ] as a power series at small values of λ, hence at the point λ = 2m.
In order to understand what form this power series takes, let us consider the square amplitude
|M(NN̄ ↔ XX̄)|2, which corresponds to pair production or annihilation of X. This amplitude
arises from the local operators of Eq. (2.6) hence it depends only on the center-of-mass energy

√
s.

We extend s to the complex plane. We can always perform a power series expansion near s = 4m2,1

|M(NN̄ ↔ XX̄)|2 = 4m2
N

(
a+ b(s− 4m2) + c(s− 4m2)2 + . . .

)
(3.9)

where the 4m2
N factor is introduced for further convenience and the a, b, c are dimensionful constants.

Using the optical theorem, we obtain that

Im(Ms) =
m2
N

4π2

√
1− 4m2

s

(
a+ b(s− 4m2) + c(s− 4m2)2 + . . .

)
, (3.10)

and crossing then gives

Im(Mt) =
m2
N

4π2

√
1− 4m2

t

(
a+ b(t− 4m2) + c(t− 4m2)2 + . . .

)
. (3.11)

Im(Mt) is related to [Ṽ ] by Eq. (3.6) and [Ṽ ] is related to V (r) by Eq. (2.6). The potential in the
long range limit turns out to be2

V (r) = − 1

32π5/2
e−2mr

(
a
m1/2

r5/2
+ b

6m3/2

r7/2
+ c

60m5/2

r9/2
+ . . .

)
. (3.13)

1 Note that the quantity
√

s−4m2

4m
= q

m
≡ v taken in the center-of-mass frame is the usual velocity of the X

particle. It is common to say that the squared matrix-element is “velocity-suppressed” when e.g. a = 0. The
nucleons being by assumption heavier than X, neither production nor annihilation of X can physically happen at
this threshold. However, formally, nothing forbids us to perform the expansion.

2The general case is obtained similarly using the identity∫ ∞
2m

dλλ(λ2 − 4m2)
1
2
+p =

(
4m

r

)p+1 Γ(3/2 + p)
√
π

Kp+1(2mr) . (3.12)
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We can see that an extra factor of 1/r in V (r) is associated to each factor of s−4m2 in the expansion
of |M(NN̄ ↔ XX̄)|2.

4 Fifth force searches

This section describes how to interpret the results of a number of experiments as bounds on an
arbitrary fifth force.

4.1 Neutron scattering

Progress in measuring the scattering of cold neutrons off nuclei have been recently made and have
been used to put bounds on short-distance modified gravity, [16–23]. The cold neutron scattering
cross-section can be measured at zero angle by “optical” methods, at non-zero angles using Bragg
diffraction, or over all angles by the “transmission” method giving then the total cross-section [24].

In the following we adapt the analyses of [22] to the Casimir-Polder forces of Eq. (2.2). At low
energies the standard neutron-nuclei interaction is a contact interaction in the sense that it can be
described by a four-fermion operator O4N = N̄NN̄ ′N ′.3 New physics can in general induce both
contact and non-contact contributions to the neutron-nuclei interaction. A non-contact contribution
vanishes at zero momentum, while a contact contribution remains non null and can be described
by O4N . It is convenient to introduce the scattering length√

σ(q)

4π
≡ l(q) = lCstd + lCNP + lNC

NP(q) , (4.1)

where the lCstd, l
C
NP local terms are independent of momentum transfer q and lNC

NP(q), which satisfies
lNC
NP(q = 0) = 0, is the non-contact contribution. The lNC

NP(q) term contains the Casimir-Polder
force (see Sec. 3), and log terms of the form |q|2n log(m/Λ). The new physics contribution lNP(q) is
related to the scattering potential Ṽ by lNP(q) = 2mN Ṽ (q), which is just the Born approximation.
For the forces described in Eq. (2.2), the new physics contributions are given by

la(|q|2) =
mN

16π2 Λ2
f0 , (4.2)

lb(|q|2) =
mN

4π2 Λ4

(
m2f0 + |q|2f1

)
, (4.3)

lc(|q|2) =
mN

16π2 Λ6

((
3m4 − m2|q|2

2

)
f0 +

(
|q|4

2
− 12m2|q|2

)
f1 + 10|q|4f2

)
, (4.4)

where the fn are the loop functions defined Eq. (2.3). A convenient way to look for an anomalous
interaction is to search for lNC

NP(q) by comparing the scattering length obtained by different methods,
using for instance lBragg − lopt, ltot − lopt. This approach eliminates the contact contributions lCstd
and lCNP, and is therefore only sensitive to lNC

NP(q).

• Optical + Bragg
One approach is to compare the forward and backward scattering lengths measured respec-
tively by optical and Bragg methods. Using the analysis from [22], one has a 95%CL bound

1

2mN

(
li(0)− li(k2

Bragg)
)
< (0.01 fm)2 , (4.5)

with kBragg = 2 keV.
3 As described in [22], there is also a small electromagnetic dipole interaction, which is taken into account in the

analysis and which we do not discuss here.
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H2 HD+ p̄ 4He ddµ+

δE 0.7meV [5] 3.9neV [5] 0.33 neV [45] 3.3 neV [46]

Table 1: Combined uncertainties for molecular spectroscopy measurements.

• Optical + Total cross-section
The total cross-section measured by the transmission method provides the average scattering
length

l̄i(k) =
1

2

∫ π

0

dθ sin(θ)li(4k
2 sin2(θ/2)) . (4.6)

Using information from optical method measurement, we have the 95%CL bound

li(0)− l̄i(kex) < 6 · 10−4 fm , (4.7)

with kex = 40 keV.

For both methods, a dependence on the |q|2n log(m/Λ) remains, which turns out to be mild in
practice. Hence our results are still approximatively independent of the local four-nucleon operators
- which are fixed by the unspecified UV completion (see Sec. 3).

4.2 Molecular spectroscopy

Impressive progress on both the experimental [25–32] and the theoretical [33–44] sides of preci-
sion molecular spectroscopy have been accomplished in the past decade, opening the possibility
of searching for extra forces below the Å scale using transition frequencies of well-understood sim-
ple molecular systems. Certain of these results have recently been used to bound short distance
modifications of gravity, see Refs. [5, 45–47].

The most relevant systems for which both precise measurements and predictions are available
are the hydrogen molecule H2, the molecular hydrogen-deuterium ion HD+, the antiprotonic helium
p̄ 4He+ and muonic molecular deuterium ion ddµ+, where d is the deuteron. These last two systems
are exotic in the sense that a heavy particle (namely p̄ and µ− respectively) has been substituted
for an electron. As a result the internuclear distances are reduced, providing a sensitivity to forces
of shorter range, and thus to heavier dark particles.

The presence of an extra force shifts the energy levels by

∆Ei =

∫
d3rΨ∗(r)Vi(r)Ψ(r) (4.8)

at first order in perturbation theory. We have computed these energy shifts for the transitions
between the (ν = 1, J = 0) − (ν = 0, J = 0) states for H2, the (ν = 4, J = 3) − (ν = 0, J = 2)

states of HD+, the (m = 33, l = 32)− (m = 31, l = 30) states of p̄ 4He+, and the binding energy of
the (ν = 1, J = 0) state of ddµ+ using the wave functions given in [5, 46]. For the quantum states
considered here, the typical internuclear distances are ∼ 1Å for H2 and HD+, ∼ 0.2Å for p̄ 4He and
∼ 0.005− 0.08Å for ddµ+.

The bounds on the extra forces can then be obtained by asking that ∆E be smaller than the
combined (theoretical + experimental) uncertainties δE. These uncertainties are given in Tab. 1
(see references for details).

4.3 Experiments with effective planar geometry

A variety of experiments searching for new forces at sub-millimeter scales are measuring the at-
traction between two dense objects with typically planar or spherical geometries. Whenever the
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Experiment Plane a Separation Plane b
Stanford [49] − Au, 30 µm 25 µm Au

IUPUI [50] Sap. Cr, 10 nm Au, 250 nm [30− 8000] nm Au, 250 nm Cr, 10 nm
Si, 2.1 µm

SiO2Au, 2.1 µm
Lamoreaux [48, 51] SiO(2.23)

2 Cu, 0.5 µm Au, 0.5 µm [0.6, 6] µm Au, 0.5 µm Cu, 0.5 µm SiO(2.40)
2

AFM [48, 52] Polystyrene Au(18.88), 86.6 nm [62, 350] nm Au(18.88), 86.6 nm Sap.
µ-oscillator [48, 53, 54] Sap.(4.1) Cr, 10 nm Au, 180 nm [180, 450] nm Au, 210 nm Cr, 10 nm Si

Casimirless [48, 54, 55] Sap. Cr, 1 nm Au, 200 nm [150, 500] nm Au, 150 nm Pt, 1 nm
Ge, 200 nm

Ti, 1 nm Si
Au, 200 nm

Table 2: Summary of the fifth forces experiments with effective planar geometry used in this
work. The reported densities which differ from the nominal ones given in Tab. 3 are indicated in
parenthesis.

Pol. SiO2 Si Sap. Ti Ge Cr Cu Au
ρ [ g cm−3] 1.06 2.23 2.33 3.98 4.51 5.32 7.14 8.96 19.32
ρ [106· keV4] 4.75 9.99 1.04 1.78 2.02 2.38 3.20 4.01 8.66

Table 3: Densities of the materials used in the fifth force experiments listed in Tab. 2

distance between the objects is small with respect to their size, these objects can be effectively ap-
proximated as infinite plates, and the force becomes proportional to the potential energy between
the plates. This is the Proximity Force (or Derjaguin’s) Approximation [48]. An important subtlety
is that most of the experiments are using objects coated with various layers of dense materials, that
should be taken into account in the computation of the force. We thus end up with calculating the
potential between two plates with various layers of density for each. The effective plane-on-plane
geometries are summarized in Tab. 2. It is convenient to describe all these configurations at once
using a piecewise mass density function describing n layers over a bulk with density ρ,

γn(z) =


ρn if 0 < z < ∆n

ρn−1 if 0 < z < ∆n + ∆n−1

...

ρ if z >
∑n
i ∆i .

. (4.9)

In this notation, the layer labelled n is the closest to the other plate. The potential between an
infinite plate of density structure γa(z) and a plate with area A and density structure γb(z) at a
distance s is then given by

V plate
i = 2πA

∫ ∞
0

dρ ρ

∫ ∞
0

dzaγ(za)

∫ ∞
0

dzbγ(zb)Vi(
√
ρ2 + (s+ za + zb)2) . (4.10)

In practice, most of these sub-millimeter experiments have released their results as bounds on
a Yukawa-like force. In order to obtain consistent bounds on the strength of the Casimir-Polder
forces Λ as a function of the scalar mass m, we have to compare the plane-on-plane potentials from
the Casimir-Polder forces to the plane-on-plane potential from the Yukawa force. Bounds on the
(α,m) parameters of the Yukawa force can be then translated into bounds on the (Λ,m) parameters
of the Casimir-Polder forces, using the limit-setting procedure provided by each experiment.

The plane-on-plane potential for the Yukawa force is straightforward to compute analytically
and reads

V plate
Yuk = 2πA

1

m3
e−msKa

nK
b
n′ , Kn = ρn +

n∑
l=1

(ρl−1 − ρl) exp

(
−m

l∑
i=1

∆n−i+1

)
(4.11)
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with ρ0 = ρ. In the case of the Casimir-Polder forces shown in Eq. (2.2), the triple integral of
Eq. (4.10) are much less trivial to carry on analytically. A numerical integration is however easily
done.

It is worth noticing that the z-integrals on the Casimir-Polder potentials can be realised using
a different representation for the potentials, which naturally occurs when calculating the diagram
of Fig. 1 in a mixed position-momentum space formalism - which we will extensively use in future
work [56].

4.4 Bouncing Neutrons

New forces can also be probed using bouncing ultracold neutrons (i.e. neutrons with velocities of
a few m/s) [57–61]. The vertical motion of a neutron bouncing above a mirror nicely realizes the
situation of a quantum point particle confined in a potential well, the gravitational potential mNgz

pulling the neutron down, and the mirror pushing the neutron up. The properties of the discrete
stationary quantum states for the bouncing neutron can be calculated exactly. The wavefunction
of the kth state reads:

ψk(z) = CkAi(z/z0 − εk), (4.12)

where Ai is the Airy function, εk is the sequence of the negative zeros of Ai and z0 = (2m2
Ng/~2)−1/3 ≈

6 µm. The theoretical energies of the quantum states are

Ek = mNgz0εk = {1.41, 2.46, 3.21, 4.08, · · · } peV. (4.13)

Recently, a measurement of the energy difference E3 − E1 was performed at the Institut Laue
Langevin in Grenoble using a resonance technique [62]. The result is in agreement with the theo-
retical predictions. From this experiment a bound can be set on any new force which would modify
the energy levels, the experimental precision being

δ(E3 − E1) < 10−14 eV. (4.14)

Let us calculate the energy shift due to the new Casimir-Polder Dark force. The additional
potential of a neutron at a height z above a semi-infinite glass mirror is given by

Vi,z(z) = 2π
ρglass

mN

∫ ∞
z

dz′
∫ ∞

0

ρdρVi(r) (4.15)

where ρglass
mN

= 1010 eV3 is the number density of nucleons in the glass, Vi(r) is the potential between
the neutron and one nucleon at a distance r =

√
ρ2 + z′2. The double integral in the expression of

the potential can be simplified to a single integral:

Vi,z(z) = 2π
ρglass

mN

∫ ∞
z

r(r − z)Vi(r)dr. (4.16)

In the case of the potentials Va and Vb, the integrals cannot be calculated analytically. However
we found suitable analytical approximations having the correct asymptotic behaviour at zero and
infinite height:

Va,z(z) = −ρglass

mN

1

32π2Λ2

∫ ∞
2mz

u− 2mz

u
K1(u)du

≈ −ρglass

mN

1

32π2Λ2

K0(2mz)

1 + 2mz
, (4.17)

and

Vb,z(z) =
ρglass

mN

m2

4π2Λ4

∫ ∞
2mz

u− 2mz

u2
K2(u)du

≈ ρglass

mN

m2

4π2Λ4

K1(2mz)

2mz(3 + 2mz)
. (4.18)
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The approximate expressions have a relative precision of better than 50 % for Va,z and better than
3 % in the case of Vb,z, for all values of z. The case of Vc,z remains to be done.

Using the approximate expressions, we have computed the shift in the energy levels of the
neutron quantum bouncer using first order perturbation theory:

δEk =

∫ ∞
0

|ψk(z)|2Vz(z)dz. (4.19)

The bounds on the extra forces Va and Vb as a function of the mediator mass m are obtained from
the experimental constraint (4.14). They are reported in Figs. 2, 3.

4.5 Moon perihelion precession

The existence of a fifth force at astrophysical scales would imply a slight modification of planetary
motions. Any such fifth force can be treated perturbatively whenever it is small with respect to
gravity at the distance between the two bodies. The modification of the equation of motion implies,
among other effects, an anomalous precession of the perihelion of the orbit. In the case of the Moon,
this precession is experimentally measured to high precision by lunar laser ranging experiments [63].

The fundamental Casimir-Polder forces of Eq.(2.2) are between two nucleons. For macroscopic
bodies, the potentials are given by m1m2

m2
N
Vi. Let us calculate the planetary motion in the presence

of these new forces. We follow the formalism of Ref. [1]. The radial component of the Casimir-
Polder forces between Earth and Moon is given by Fi(r) = −m$m⊕

m2
N

∂rVi(r). Introducing u = 1
r , the

Earth-Moon orbital equation reads

d2u

dθ2
+ u =

m2
$

L2u2

(
m$m⊕Gu2 − Fi(1/u)

)
, (4.20)

where L ≡ m$r
2 dθ
dt is the conserved angular momentum and the first term in the parenthesis is the

gravitational force. The solution of the unperturbed equation reads

u(θ) = u$ (1 + ε cos(θ − θ0)) , u$ =
m3

$m⊕G
L2

(4.21)

where ε is the excentricity (ε = 0.0549 for the Moon), θ0 indicates the perihelion of the ellipse, and
the major semiaxis a$ is given by a−1

$ = u$(1− ε2). At first order in perturbation theory, the extra
force is just as a constant, Fi(1/a$), which only modifies u$, the overall size of the orbit. At second
order in perturbation theory, one has

Fi(1/u) = Fi(1/a$) +

(
u− 1

a$

)
∂Fi(1/u)

∂u

∣∣∣∣
u=1/a$

. (4.22)

The term linear in u modifies the frequency of the orbit on the left-hand side of the equation of
motion. The motion is now given by

u(θ) = u$ (1 + ε cosω(θ − θ0)) (1 + . . .) , ω2 = 1 +
u$a

4
$

Gm2
N

∂2
rVi(r)|r=a$ (4.23)

where the ellipsis denotes irrelevant corrections to the overall magnitude of the orbit. Having ω 6= 1

implies a precession of the perihelion, which can be seen using cosω(θ− θ0) = cosω
(
θ − θ0 + 2πn

ω

)
.

The precession angle between two rotations is finally given by

δθi = −π
a3

$

Gm2
N (1− ε2)

∂2
rVi(r)|r=a$ . (4.24)

We apply this general formula to the Casimir-Polder potentials of Eq. (2.2). Interestingly, the Va
and Vc potentials, which are attractive, induce an advance of the perihelion while Vb, which is
repulsive, induces a delay of the perihelion.
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Figure 2: Bounds on a scalar coupled to nucleons via the Oa interaction. The yellow region is
excluded at 95% CL. See Sec. 4 for details on exclusion regions.

The Moon precession angle is constrained by lunar laser ranging experiments. Other well-
understood perturbations induce Moon’s orbit precession: the quadrupole field of the Earth, other
bodies of the solar system, and general relativity. Once all these effects are taken into account, one
obtains a bound on an extra, anomalous precession angle. Following Ref. [2], an experimental limit
from lunar laser ranging is given as

δθi < 2π × 1.6 · 10−11 . (4.25)

5 Bounds on forces from dark scalars

Let us apply the experimental bounds obtained in Sec. 4 to the Casimir-Polder forces from a dark
scalar given in Eq. (2.2).

It is instructive to understand first qualitatively the landscape of exclusion regions on the
Casimir-Polder forces. Let us consider the exclusion regions for the Yukawa force (see e.g. [3]).
Starting from large scales, the reach of the experiment starts to decrease very steeply below the
scale of the Eöt-Wash experiment, at roughly λ < O(10−4 m) down to atomic scales. In this region
of λ, the bound on the strength of the Yukawa force α scales very roughly as α < 10−22

(
1 m
λ

)5,
demonstrating the increasing difficulties in measuring forces at small distances. The Casimir-Polder
forces behave as 1/rn with n ≥ 3 at short distance. This has the crucial implication that the
constraints from short distance experiments will gain importance and those from long distance will
lose importance compared to the exclusion regions on the Yukawa-like force. In particular, one can
expect the Eöt-Wash bound to dominate over the bounds from all experiments at larger scale, to
the possible exception of lunar laser ranging. Moreover, when n = 7, the decrease of sensitivity in
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Figure 3: Bounds on a scalar coupled to nucleons via the Ob interaction. Same conventions as
Fig. 2.
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Figure 4: Bounds on a scalar coupled to nucleons via the Oc interaction. Same conventions as
Fig. 2.
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λ−5 is expected to be overwhelmed by the increase of the force in r−7, implying that bounds
from the experiments at the smallest scales (from neutron scattering and molecular spectroscopy)
dominate over all the bounds from higher distances.

The exclusion regions for the Va, Vb, Vc Casimir-Polder potentials are respectively presented
in Figs. 2, 3, 4. For the Va potential, we obtain that the Eöt-Wash bound is the dominant one for
λ > 10−3 m. For both Vb and Vc potentials, we obtain indeed an inversion in the hierarchy of
bounds. The two leading bounds turn out to be from the ddµ+ molecular ion and from the neutron
scattering bound combining optical and total cross-sections. This fact can be taken as an incentive
to pursue and develop such small scale experiments.

Interestingly, for Va, the bound from antiprotonic helium p̄He+ is stronger than the bound
from the ddµ+ ion, while it is not the case for the Vb, Vc potentials. This feature comes from
the fact that the wave function of the ddµ+ ground state has a large tail towards short distances.
This tail enhances the contribution of the potentials which grow faster at small distance, hence the
ddµ+ bound gets favored with respect to the p̄He+ bound for Vb and even more Vc. The leading
bound being either ddµ+ or p̄He+ depending on the potential, further studies (both theoretical and
experimental) in both systems should definitely be encouraged.

Using the calculation given in 4.5, we obtain that limits from lunar laser ranging are indeed
subleading. At zero mass, the bounds on Λ for the Va, Vb, Vc potentials are found to be respectively
Λ > 2GeV, 6 ·10−5 eV, 2 ·10−8 eV. All these bounds are overwhelmed by stronger ones from shorter
distance experiments.

6 Conclusions

There are many motivations—including Dark Matter and Dark Energy—for speculating on the
existence of a dark sector containing particles with a bilinear coupling to the Standard Model
particles. Whenever one of the dark particles is light enough and couples to nucleons in a spin-
independent way, it induces forces of the Casimir-Polder type, that are potentially accessible by
fifth force experiments across many scales. The short and long-range behaviours of these forces as
well as their sign can all be understood and predicted using dimensional analysis and the optical
theorem. We provide a comprehensive (re)interpretation of bounds from neutron scattering to the
Moon perihelion precession, applicable to any kind of potential. We then focus on the case of a
scalar with a variety of couplings to nucleons, generating forces with 1/r3, 1/r5, 1/r7 short-distance
behaviours. It turns out that forces in 1/r5, 1/r7 are best constrained by neutron scattering
and molecular spectroscopy, which provides extra motivation to pursue these kind of low-scale
experiments. Implications for Dark Matter searches have been discussed in Ref. [6].
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A Calculation of the potentials

This appendix contains details of the computation for the potentials in Eq. (2.2) and those given
in Ref. [6]. The full set of operators considered is

O0
a =

1

Λ
N̄N |φ|2 , O0

b =
1

Λ2
N̄γµNφ∗i

←→
∂ µφ , O0

c =
1

Λ3
N̄N∂µφ∗∂µφ ,

O1/2
a =

1

Λ2
N̄Nχ̄χ , O1/2

b =
1

Λ2
N̄γµNχ̄γµχ , O1/2

c =
1

Λ2
N̄γµNχ̄γµγ5χ , (A.1)

O1
a =

1

Λ3
N̄N |mXµ + ∂µπ|2 , O1

b =
1

Λ2
2N̄γµN Im(XµνX

ν∗ + ∂ν(XνX
∗
µ) + ∂µc̄c∗) ,

O1
c =

1

Λ3
N̄N |Xµν |2 , O1

d =
1

Λ3
N̄NXµνX̃∗µν .

A dark particle of spin 0, 1/2, 1 is denoted by φ, χ,X. π and c, c̄ are respectively the Goldstone
bosons and ghosts accompanying X. At that point the dark particle can be self-conjugate (real
scalar or vector, Majorana fermion) or not (complex scalar or vector, Dirac fermion). When X is
complex, so are π, c and c̄. We will give the results for all cases. We introduce

η =

{
0 if self-conjugate

1 otherwise .
(A.2)

We calculate the loop diagram of Fig. 1 induced by each of these operators using dimensional
regularisation. The matching of the effective theory with the UV theory being done at the scale Λ,
we can readily identify the divergent integrals as (see [64, 65]) 4∫

d4l

(2π)4

1

(l2 −∆)2
→ −i

(4π)2
log(∆/Λ2) , (A.3)

∫
d4l

(2π)4

l2

(l2 −∆)2
→ −2 i

(4π)2
∆ log(∆/Λ2) , (A.4)∫

d4l

(2π)4

(l2)2

(l2 −∆)2
→ −3 i

(4π)2
∆2 log(∆/Λ2) . (A.5)

4The running of the Wilson coefficients is taken into account at leading-log order with this method.
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From these amplitudes, the discontinuities in the non-relativistic scattering potential Ṽ are given
by Eq. (2.4) and are found to be[

Ṽ 0
a

]
= 2η

[f0]

32π2 Λ2
(A.6)[

Ṽ 0
b

]
= η

m2 [f0]− λ2 [f1]

8π2 Λ4[
Ṽ 0
c

]
= 2η

(6m4 +m2λ2) [f0]− (24m2λ2 + λ4) [f1] + 20λ4 [f2]

64π2 Λ6[
Ṽ 1/2
a

]
= 2η

3(λ2 [f1]−m2 [f0])

8π2 Λ4[
Ṽ

1/2
b

]
= η
−λ2 [f1]

2π2 Λ4[
Ṽ 1/2
c

]
= 2η

m2 [f0]− λ2 [f1]

4π2 Λ4[
Ṽ 1
a

]
= 2η

(6m4 −m2λ2) [f0]− (12m2λ2 + λ4) [f1] + 20λ4 [f2]

64π2 Λ6[
Ṽ 1
b

]
= η

(8m2 + 5λ2) [f0]− 10λ2 [f1]

16π2 Λ4[
Ṽ 1
c

]
= 2η

(9m4 + 3m2λ2) [f0]− (36m2λ2 + 3λ4) [f1] + 30λ4 [f2]

8π2 Λ6[
Ṽ 1
d

]
= 2η

3(λ4 [f1]− λ2m2 [f0])

8π2 Λ6

where the discontinuities of f0,1,2 are given in Eq. (2.3). These loop functions are explicitly given
by

f0(m2, q2,Λ) = 2L

(
4m2

q2

)
+ log

(
m2

Λ2

)
(A.7)

f1(m2, q2,Λ) =
2m2 + q2

3q2
L

(
4m2

q2

)
+

1

18
+

1

6
log

(
m2

Λ2

)
(A.8)

f2(m2, q2,Λ) =
6m4 + 2m2q2 + q4

15q4
L

(
4m2

q2

)
+

13

900
+

m2

30q2
+

1

30
log

(
m2

Λ2

)
(A.9)

with

L(x) =


√
x− 1 arctan

(
1√
x−1

)
− 1 if x > 1

√
1− x

(
iπ + 1

2 log
(

1+
√

1−x
1−
√

1−x

))
− 1 if x < 1 .

(A.10)

The [fn] discontinuities can be obtained by noticing that ln ∆ = ln(x− x+)(x− x−) where

x± =
1

2
±
√
q2 − 4m2

2q
(A.11)

has a branch cut between x− and x+ and a discontinuity of 2πi. This leads to

[fn] = 2πi

∫ x+

x−

(x(1− x))ndx (A.12)

Finally, the spatial potential is given by Eq. (2.6). The integrals over λ needed in the last step
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of the calculation are ∫ ∞
2m

dλ
√
λ2 − 4m2e−λr =

2m

r
K1(2mr) (A.13)∫ ∞

2m

dλλ2
√
λ2 − 4m2e−λr =

8m3

r
K1(2mr) +

12m2

r2
K2(2mr) (A.14)∫ ∞

2m

dλλ4
√
λ2 − 4m2e−λr =

32m4

r2
K2(2mr) +

(
120m3

r3
+

32m5

r

)
K3(2mr) . (A.15)

B Amplitudes

The one-loop amplitudes induced by the operators Oa, Ob, Oc are

iMa =
1

2Λ2
ū(p1)u(p2)ū(p′1)u(p′2)

∫
d4k

(2π)4

1

(k2 −m2)((k + q)2 −m2)
(B.1)

iMb =
1

Λ4
ū(p1)γµu(p2)ū(p′1)γνu(p′2)

∫
d4k

(2π)4

(q + 2k)µ(q + 2k)ν

(k2 −m2)((k + q)2 −m2)
(B.2)

iMc =
1

2Λ6
ū(p1)u(p2)ū(p′1)u(p′2)

∫
d4k

(2π)4

(q.(q + k))2

(k2 −m2)((k + q)2 −m2)
(B.3)

with q = p1 − p2. These integrals can be reduced to the basis shown in Eqs. (A.3), (A.4), (A.5)
using textbook techniques (see [64], including Feynman trick).
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