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We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate
metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the
Universe couple to metrics which are constructed as functions of these two gravitational metrics. More
precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with
scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of
which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of
the Universe can be easily obtained at the background level in these models by appropriately choosing the
coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter
metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic
energy. This requires the scalar coupling functions to show variations of order unity during the accelerated
expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth
force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter
self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and
even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on
cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a
perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data.
On the other hand, we can deduce strong requirements on putative UV completions by analyzing the
stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time
evolution of Newton’s constant requires an efficient screening mechanism that both damps the fifth force on
small scales and decouples the local value of Newton constant from its cosmological value. This cannot be
achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and
probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.

DOI: 10.1103/PhysRevD.97.103516

I. INTRODUCTION

A very common way of reproducing the late-time
acceleration of the expansion of the Universe [1,2] is to
add a scalar-field energy density, which would mimic a
cosmological constant at small redshifts [3]. Recently, it
has been proposed that the acceleration could be an illusion
due to the different metrics coupled to either the baryons or
dark matter [4]. This was achieved by considering that
baryons couple to a metric that can be constructed from
both the metric felt by dark matter and the velocity field of
the dark matter particles. In the same vein, it has been
known for some time that conformally coupled models with
a single metric and screening properties, thus evading the
local tests of gravity, cannot generate the late-time accel-
eration of the Universe [5]. In this paper, we generalize the
latter approach by introducing two gravitational metrics,
with an Einstein-Hilbert term each, and we consider that the
baryons and dark matter couple to different dynamical
metrics. These metrics are obtained by taking linear
combinations of the two gravitational vierbeins, with each

of the coefficients dependent on a scalar field. Contrary to
dark-energy models (even coupled), we do not require that
the scalar field should play any explicit role in generating
an effective cosmological constant at late time. Quite the
contrary, the scalar is only a free and massless scalar, with
positive pressure. The role of the scalar is to provide a
time-dependent mapping and transform the deceleration of
the two gravitational metrics into an acceleration for the
baryonic metric.
Our approach is inspired by the construction of doubly

coupled bigravity models [6,7] where the late-time accel-
eration is due to an explicit cosmological constant, albeit
related to the mass of the massive graviton [8,9], and matter
couples to a combination (with constant coefficients) of the
two dynamical metrics [10]. Here, we remove the potential
term of massive gravity and introduce scalar-dependent
coupling functions, as our goal is to build self-accelerated
solutions. As expected, we find that this leads to major
difficulties, as a self-acceleration implies effects of order
unity on cosmological scales. This generically gives rise to

PHYSICAL REVIEW D 97, 103516 (2018)

2470-0010=2018=97(10)=103516(37) 103516-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.103516&domain=pdf&date_stamp=2018-05-18
https://doi.org/10.1103/PhysRevD.97.103516
https://doi.org/10.1103/PhysRevD.97.103516
https://doi.org/10.1103/PhysRevD.97.103516
https://doi.org/10.1103/PhysRevD.97.103516


effective Newton constants that evolve on Hubble time-
scales and a fifth force of the same order as Newtonian
gravity.
The models that we construct have no ghost in

Minkowski space, where they correspond simply to two
copies of General Relativity. When matter is introduced,
only the diagonal diffeomorphism invariance is preserved.
The order parameter of the symmetry breaking, from two
copies of diffeomorphism invariance to the diagonal one, is
the Hubble parameter induced by the matter sectors. When
performing a Stückelberg analysis of the breaking pattern
and introducing the corresponding scalar Goldstone mode,
we find that the absence of ghosts associated with an
Ostrogradsky instability is guaranteed below the cutoff
scale Λcut ¼ ðH3MPlÞ1=4. This energy scale is smaller
than the strong coupling scale Λ3 ¼ ðH2MPlÞ1=3. Thus,
Λ−1
cut ∼ 1 AU, whereas Λ−1

3 ∼ 1000 km in the late-time
Universe, but Λ−1

cut remains much below cosmological
scales. Down to the scale Λ−1

cut and around compact objects
in the weak gravitational regime, the scalar Goldstone
mode is decoupled from matter, and no Vainshtein mecha-
nism is at play. For scales below Λ−1

cut, it is very likely that
the models should be altered. Notice, too, the analogy with
doubly coupled bigravity, where the order parameter of
diffeomorphism breaking is given by the graviton mass m
as appearing in the potential term of massive gravity and the
strong coupling is given by Λ3 ¼ ðm2MPlÞ1=3. In this case,
too, a ghost is known to be present at higher energy, and the
models should also be completed.
Our analysis of the presence of ghosts and the existence

of a cutoff scale has been performed perturbatively around
Friedmann-Lemaitre-Robertson-Walker backgrounds. We
have found that at energies higher than the perturbative
cutoff scale a ghost is likely to exist due to the mixing
between the tensor modes and higher derivatives in the
Stückelberg field. It is quite likely that a nonperturbative
analysis along the lines of Refs. [7,11,12] would unravel
the existence of nonperturbative effects which would lower
the cutoff scale and reduce the domain of validity of the
scalar-bimetric models. This is left for future work. Here,
we only focus on the perturbative cutoff scale and treat the
corresponding range as the one where the scalar-bimetric
models are well defined.
We mostly focus on the late-time Universe, in the matter

and dark-energy eras. However, doubly coupled bigravity
theories suffer from instabilities in the radiation era [13–15]
for tensor and vector modes. We briefly rederive these
behaviors for our models. Tensor modes have a tachyonic
regime that implies an anomalous growth in the early
Universe. This has some effect on the cosmic microwave
background B-modes which may be amplified [16] in
models where there is a nonlinear coupling between the
metrics, such as in bigravity theories. Similarly, the vector
modes that are decoupled from matter suffer from a
gradient instability which could pose serious problems

for the viability of the models. However, in our case, these
instabilities only affect “hidden”modes that are not seen by
the matter metrics (at the linear level).
In this paper, we do not perform detailed comparisons

with cosmological and astrophysical data, as our goal is
only to distinguish which families of solutions offer a
realistic framework, which may deserve further investiga-
tions. Indeed, imposing a Λ-CDM expansion history for the
cosmological background (which ensures consistency with
cosmological data at the background level), we find that the
tight constraint on the velocity of gravitational waves [17]
already provides significant constraints on the model.
Moreover, we find that a nonlinear screening mechanism
[18] must come into play on small scales, to ensure
convergence to General Relativity in the Solar System.
This follows from the upper bound on the local time
dependence of Newton’s constant [19], which would have
to be obeyed by any UV completion on scales below the
cutoff of order 1 AU. This must go beyond the quasistatic
approximation and probably rely on derivatives of the
scalar field (as in Kmouflage [20–22] or Vainshtein
mechanisms [23]), while quasistatic chameleon screening
[24,25] cannot occur. We leave the analysis of this regime
for future work.
This article is organized as follows. We first define the

bimetric model in Sec. II and next provide the equations of
motion in Sec. II C. We describe the cosmological back-
ground in Sec. III. We show how to construct solutions that
mimic a Λ-CDM expansion and discuss both the simplified
cases where all metrics have the same conformal time and
the cases where they have different conformal times. We
turn to linear perturbations in Sec. IV, for both baryonic and
matter density fluctuations. We then describe in Sec. V how
linear perturbations behave beyond the quasistatic approxi-
mation. We consider the possible presence of ghosts in
Sec. VI. We then compare our results to doubly coupled
bigravity in Sec. VII. We discuss consistency with small-
scale tests of General Relativity in Sec. VIII and conclude
in Sec. IX. Several Appendixes are dedicated to more
technical details.

II. SCALAR-BIMETRIC MODELS

A. Defining the models

In the following, we focus on models where the
dynamics are driven by two independent metrics coupled
to a scalar field. We do not add any nontrivial dynamics for
the scalar field, which we choose to be massless with a
canonical kinetic term. We consider models with the scalar-
bimetric action

S ¼ Sgrav þ Smat; ð1Þ

with
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Sgrav ¼
Z

d4x
M2

pl

2
½ ffiffiffiffiffiffiffiffi

−g1
p

R1 þ
ffiffiffiffiffiffiffiffi
−g2

p
R2�; ð2Þ

and

Smat ¼
Z

d4x½ ffiffiffiffiffiffiffiffi
−gd

p
Ldðφ;ψ i

dm; gdÞ þ
ffiffiffiffiffiffiffiffi
−gb

p
Lbðψ i

b; gbÞ�:

ð3Þ
The gravitational action Sgrav contains two Einstein-Hilbert
terms for the two gravitational metrics g1μν and g2μν. The
matter action Smat contains the dark sector Lagrangian Ld,
which includes dark matter fields ψ i

dm and an additional
scalar field φ, and the baryonic Lagrangian Lb, which
includes the ordinary particles of the standard model, both
matter and radiation (photons) components. These two
matter Lagrangians involve two associated dynamical
metrics, gdμν and gbμν. In the following, we will usually
omit the subscript b, as this is the main sector that is probed
by observations and experiments.
We split the dark sector Lagrangian in its scalar-field and

dark matter components,

Ld ¼ Lφðφ; gdÞ þ Ldmðψ i
dm; gdÞ; ð4Þ

and for simplicity, we only keep the kinetic term in the
scalar-field Lagrangian,

LφðφÞ ¼ −
1

2
gμνd ∂μφ∂νφ; ð5Þ

as we wish to recover the late-time acceleration of the
expansion of the Universe through a dynamical mecha-
nism, rather than through an effective cosmological con-
stant associated with a nonzero minimum of the scalar-field
potential.
The dark and baryonic metrics are functions of the two

gravitational metrics g1μν and g2μν. We write this relation-
ship in terms of the vierbeins of these four metrics. Thus,
introducing the vierbeins ea1μ and ea2μ of the metrics g1μν
and g2μν,

g1μν ¼ ea1μe
b
1νηab; g2μν ¼ ea2μe

b
2νηab; ð6Þ

we define the dark and baryonic metrics as

gdμν ¼ eadμe
b
dνηab; gμν ¼ eaμebνηab; ð7Þ

with

eadμ ¼ sd1ðφÞea1μ þ sd2ðφÞea2μ;
eaμ ¼ s1ðφÞea1μ þ s2ðφÞea2μ: ð8Þ

Thus, both dynamical matter metrics are a combination of
the two gravitational metrics that depend on the scalar field

φ. This leads to nonminimal couplings between the matter
sectors and the scalar field.

B. Number of components and degrees of freedom

Although we have defined the model in terms of the
vierbeins of the two dynamical metrics, we treat the theory
as a metric theory, which is a function of the two metrics
glμν; i ¼ 1, 2. The two Einstein-Hilbert terms are invariant
under two copies of the diffeomorphism group. The
coupling to matter, which involves the diagonal subgroup,
reduces the diffeomorphism invariance to one diagonal
copy. The two metrics involve 20 components, which can
be reduced to 16 when the diagonal gauge invariance under
reparametrization of coordinates has been used. The
vierbeins are four-by-four matrices, which involve 2 ×
16 ¼ 32 components. This is redundant even when the
diagonal diffeomorphism invariance has been used, reduc-
ing to 28 the number of components. The two vierbeins
have two copies of the local Lorentz symmetry group as an
invariance group. Again, this is broken to the diagonal
Lorentz group by the coupling to matter. This removes six
components, bringing it down to 22. This is still more than
the 16 components of the metric description. This can be
made to coincide by imposing the symmetric condition [26]

Yμν ¼ Yνμ; ð9Þ

where we have introduced the tensor

Yμν ¼ ηabea1μe
b
2ν ¼ ea1μe2aν: ð10Þ

The 4 × 4 tensor Yμν can be decomposed into ten sym-
metric components and six antisymmetric ones which are
imposed to be vanishing. This brings the number of
vierbein components down to 16, matching the ones for
a bimetric theory.
The consequences of the symmetric conditions are well

known; let us recall some salient features here. First of all,
let us define

Xμ
2ν ¼ gμλ2 Yλν ¼ eμ2ae

a
1ν; Xμ

1ν ¼ gμλ1 Yλν ¼ eμ1ae
a
2ν; ð11Þ

then, we have that

Xθ
2νX

ν
2λ ¼ gθν2 g1νλ; Xθ

1νX
ν
1λ ¼ gθν1 g2νλ; ð12Þ

which implies that in matrix notation

Y ¼ g2ðg−12 g1Þ1=2 ¼ g1ðg−11 g2Þ1=2; ð13Þ

with an appropriate definition for the square root of a
matrix [26]. As a result, Yμν becomes a function of the two
metrics glμν, which implies that the dark and baryonic
metrics,
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gμν ¼ s21ðφÞg1μν þ 2s1ðφÞs2ðφÞYμν þ s22ðφÞg2μν;
gdμν ¼ s2d1ðφÞg1μν þ 2sd1ðφÞsd2ðφÞYμν þ s2d2ðφÞg2μν; ð14Þ

are simply functions of the two metrics, too.
Not all the components become physical degrees of

freedom. For instance, when no matter is present, our
models reduce to two copies of General Relativity and as
such only carry two copies of massless gravitons, i.e., 2 × 2
physical degrees of freedom. When matter is present, in
particular cosmologically, the Hubble expansion rate of one
of the two types of matter becomes the order parameter of
the symmetry breaking pattern ðdiff1 × diff2Þ=diffdiag,
where the two copies of diffeomorphism invariance are
broken down to the diagonal subgroup. As such, we could
expect that four Goldstone bosons ξμ could become
physical. In fact, we find that out of the divergenceless
vector and the two scalars associated with ξμ only the two
independent components of the vector are dynamical. The
validity of the model can be probed by a Stückelberg
analysis, where we focus on the scalar ξμ ¼ ∂μπ, and we
show in Sec. VI below that no ghost appears below the
cutoff scale of order Λcut ¼ ðH3MPlÞ1=4. This is the
physical regime we analyze in this paper. In particular, it
applies to cosmology as the horizon scale H−1 is always
much larger than Λ−1

cut since the very early Universe. Only in
the Solar System, as the cutoff scale is of order 1 AU, shall
we be prevented from strong conclusions for want of
explicit UV completions.

C. Equations of motion

1. Einstein’s equations

We cannot obtain the Einstein equations by requiring
the functional derivatives of the action with respect to the
vierbeins ea1μ and ea2μ to vanish. Indeed, because of the
symmetry condition (9), which reduces the number of
components to those of g1μν and g2μν, the vierbeins are
correlated and constrained by Eq. (9). This means that we
must take the variations along the directions that span the
subspace defined by the constraint (9). If we vary the metric
g1 while keeping g2 fixed, hence we vary ea1μ at fixed ea2μ,
the symmetric constraint (9) reads as

δea1μe2aν ¼ δea1νe2aμ for all fμ; νg: ð15Þ

We can check that these constraints are satisfied if the
variations δea1μ are of the form

δea1μ ¼ δZ1μνeaν2 ; ð16Þ

where δZ1μν is an arbitrary infinitesimal symmetric matrix,
δZ1μν ¼ δZ1νμ. As expected, the matrix δZ1μν provides the
same number of components as the metric g1μν. This also
gives δg1μν ¼ δZ1μλXλ

2ν þ δZ1νλXλ
2μ. Then, the Einstein

equations follow from the variation of the action with
respect to δZ1μν. We can write

δea1λ
δZ1μν

¼ Θμνðδμλeaν2 þ δνλe
aμ
2 Þ; ð17Þ

where Θμν ¼ 1 if μ < ν and Θμν ¼ 1=2 if μ ¼ ν. Here, we
restrict to μ ≤ ν as δZ1μν ¼ δZ1νμ so that δZ1μν and δZ1νμ

are not independent. This gives

for all fμ; νg∶ δS
δea1μ

eaν2 þ δS
δea1ν

eaμ2 ¼ 0: ð18Þ

This provides the expected 16 symmetric Einstein equa-
tions (hence, ten equations, before we use diffeomorphism
invariance), which read as

M2
Pl

ffiffiffiffiffiffiffiffi
−g1

p ½Gμσ
1 Xν

2σ þGνσ
1 Xμ

2σ�
¼ s1

ffiffiffiffiffiffi
−g

p ½Tμσðs1Xν
2σ þ s2δνσÞþTνσðs1Xμ

2σ þ s2δ
μ
σÞ�

þ sd1
ffiffiffiffiffiffiffiffi
−gd

p ½Tμσ
d ðsd1Xν

2σ þ sd2δνσÞþTνσ
d ðsd1Xμ

2σ þ sd2δ
μ
σÞ�:
ð19Þ

The Einstein equations with respect to the second metric g2
are obtained by exchanging the indices 1 ↔ 2 [27]. Here,
Tμν and Tμν

d are the baryonic and dark-energy energy-
momentum tensors, defined with respect to their associated
metrics,

Tμν ¼
−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LbÞ
δgμν

; Tdμν ¼
−2ffiffiffiffiffiffiffiffi−gd

p δð ffiffiffiffiffiffiffiffi−gd
p

LdÞ
δgμνd

:

ð20Þ

We recover the standard Einstein equations when the two
metrics are identical (case of a single-metric model) with
s1 þ s2 ¼ 1 and sd1 þ sd2 ¼ 1, as it yields Xμ

2ν ¼ Xμ
1ν ¼ δμν .

When the metrics are diagonal, that is, we have

g�μν ⊂ δμν; ea�μ ⊂ δaμ; Yμν ⊂ δμν; Xμ
lν ⊂ δμν ;

where � ¼ f1; 2; d; bg and g�μν ⊂ δμν means that g�μν ¼ 0
for μ ≠ ν, the Einstein equations (19) simplify along the
diagonal as (no summation over μ)

M2
Pl

ffiffiffiffiffiffiffiffi
−g1

p
Gμμ

1 ea1μ ¼ s1
ffiffiffiffiffiffi
−g

p
Tμμeaμ þ sd1

ffiffiffiffiffiffiffiffi
−gd

p
Tμμ
d eadμ

with a ¼ μ. This coincides with the Einstein equations that
would have been obtained by taking derivatives with
respect to the vierbeins without taking care of the sym-
metric constraint (9). However, the off-diagonal Einstein
equations remain modified.
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2. Scalar-field equation of motion

The dependence of the matter metrics gdμν and gμν on the
scalar field φ, through Eq. (8), gives rise to source terms in
the Klein-Gordon equation that governs the scalar-field
dynamics,

∂μ½
ffiffiffiffiffiffiffiffi
−gd

p
gμνd ∂νφ� þ

ffiffiffiffiffiffiffiffi
−gd

p
Tμν
d

X2
l¼1

dsdl
dφ

ealμe
b
dνηab

þ ffiffiffiffiffiffi
−g

p
Tμν

X2
l¼1

dsl
dφ

ealμe
b
νηab ¼ 0: ð21Þ

3. Matter equations of motion

The equations of motion of the dark and baryonic matter
components take their standard form in their Jordan frames,

∇dμT
μ
dmν ¼ 0; ∇μT

μ
ν ¼ 0; ð22Þ

where∇dμ and∇μ are the covariant derivatives with respect
to the metrics gdμν and gμν.

III. COSMOLOGICAL BACKGROUND

In this section, we investigate the cosmological back-
grounds that can be achieved in these scalar-bimetric
scenarios. We show how we recover a standard cosmology
at high redshift, when the scalar field is almost constant and
plays no role and all metrics follow the same expansion,
whereas a self-accelerated expansion without a cosmologi-
cal constant can be achieved at low redshift thanks to the
running of the scalar field, through the interplay between
the matter and gravitational metrics.

A. Friedmann’s equations

We consider diagonal metrics of the form

g�μνðτÞ ¼ diagð−b2�ðτÞ; a2�ðτÞ; a2�ðτÞ; a2�ðτÞÞ; ð23Þ

where � ¼ f1; 2; d; bg, with the vierbeins

ea�μ ¼ diagðb�; a�; a�; a�Þ; ð24Þ

and we denote by Hb� ¼ d ln b�=dτ, Ha� ¼ d ln a�=dτ, the
conformal expansion rates of the time and spatial compo-
nents. We can choose to define the conformal time τ with
respect to the baryonic metric gμν, so that

b ¼ a; gμνðτÞ ¼ diagð−a2; a2; a2; a2Þ; ð25Þ

and we use either τ or lnðaÞ as the time variable. From the
definitions (8), we obtain the constraints

b ¼ a ¼ s1b1 þ s2b2; a ¼ s1a1 þ s2a2;

bd ¼ sd1b1 þ sd2b2; ad ¼ sd1a1 þ sd2a2: ð26Þ

The (0,0) component of the Einstein equations (19)
reads

3M2
Pla

3
lb

−2
l H2

al ¼ sla3ðρ̄þ ρ̄γÞ þ sdla3dðρ̄dm þ ρ̄φÞ; ð27Þ

while the ði; iÞ components read

M2
Pla

2
lb

−1
l ½2H0

al þ 3H2
al − 2HalHbl � ¼ −sla3

ρ̄γ
3

− sdla2dbdρ̄φ: ð28Þ

Here, we assumed nonrelativistic matter components,
pdm ¼ p ¼ 0, and we used pγ ¼ ργ=3 and p̄φ ¼ ρ̄φ for
the radiation and scalar pressure.

B. Conservation equations

The Jordan-frame equations of motion (22) lead to the
usual conservation equations; hence,

ρ̄dm ¼ ρ̄dm0

a3d
; ρ̄ ¼ ρ̄0

a3
; ρ̄γ ¼

ρ̄γ0
a4

: ð29Þ

We define the cosmological parameters associated with
these characteristic densities by

Ωb0¼
ρ̄b0

3M2
PlH

2
0

; Ωγ0¼
ρ̄γ0

3M2
PlH

2
0

; Ωdm0 ¼
ρ̄dm0

3M2
PlH

2
0

;

ð30Þ

whereH0 is the physical expansion rate associated with the
baryonic metric today, at a ¼ 1. We also define the rescaled
scalar-field energy density ξ as the ratio of the scalar field to
dark matter energy densities

ξðaÞ ¼ a3dρ̄φ
3M2

PlH
2
0

;
ξðaÞ
Ωdm0

¼ ρ̄φðaÞ
ρ̄dmðaÞ

: ð31Þ

It is convenient to introduce the dimensionless combination

l ¼ 1; 2∶ ωl ¼ a3lb
−2
l

H2
al

H2
0

: ð32Þ

Then, the Friedmann equations (27) and (28) simplify as

ωl ¼ sl

�
Ωb 0 þ

Ωγ0

a

�
þ sdlðΩdm 0 þ ξðaÞÞ; ð33Þ

bl
al

H
Hal

dωl

d ln a
¼ −sl

Ωγ0

a
− sdl3

bd
ad

ξ: ð34Þ
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We recover the usual Friedmann equations of General
Relativity with ξ ¼ 0, b� ¼ a�, H ¼ Hal , sl ¼ 1, and
sdl ¼ 1. In this case, we can check that the second
Friedmann equation is a consequence of the first
Friedmann equation and of the conservation equations,
as it is the derivative of Eq. (33) with respect to ln a.
By taking the first derivative of Eq. (33) and combining

with Eq. (34), we obtain the useful combinations

dsl
d ln a

�
Ωb 0 þ

Ωγ0

a

�
þ dsdl
d ln a

ðΩdm 0 þ ξðaÞÞ

¼ sl
Ωγ0

a

�
1 −

al
bl

Hal

H

�
− sdlξ

�
d ln ξ
d ln a

þ 3
bdal
adbl

Hal

H

�
:

ð35Þ
This shows that the evolutions of the baryonic and dark
matter couplings are correlated and related to the running of
the scalar field (ξ > 0) and the deviations between the
different expansion rates H�. In the absence of the scalar
field in the dynamics, the relation (35) reduces to the
branch of solutions

al
bl

Hal ¼ H; ð36Þ

which appears in doubly coupled bigravity [15].

C. Scalar-field equation of motion

The scalar-field energy density reads as

ρ̄φ ¼ 1

2b2d

�
dφ̄
dτ

�
2

: ð37Þ

Then, we can check that the background Klein-Gordon
equation (21) can be written in terms of ρ̄φ. Using the
rescaled scalar-field density ξ of Eq. (31), this gives

bd
a3d

d
d ln a

½a3dξ� þ ðΩdm 0 þ ξÞ
X
l

dsdl
d ln a

bl

− 3
bd
ad

ξ
X
l

dsdl
d ln a

al þ
�
Ωb0 þ

Ωγ0

a

�X
l

dsl
d ln a

bl

−
Ωγ0

a

X
l

dsl
d ln a

al ¼ 0: ð38Þ

From ξðaÞ, we obtain the evolution of the scalar field
φ̄ðaÞ by integrating Eq. (37). With the initial condition
φ̄ð0Þ ¼ 0, this gives

φ̄ðaÞ ¼ MPl

Z
a

0

da
a
bdH0

H

ffiffiffiffiffi
6ξ

a3d

s
: ð39Þ

We can actually check that the Klein-Gordon equa-
tion (38) is also a consequence of the Friedmann

equations (33) and (34), supplemented with the constraints
(26). Therefore, as in General Relativity, the Friedmann
equations and the conservation equations are not indepen-
dent. In General Relativity, it is customary to work with the
first Friedmann equation and the conservation equations of
the various matter components, leaving aside the second
Friedmann equation that is their automatic consequence. In
this paper, because we have two symmetric sets of
Friedmann equations (33) and (34), for l ¼ 1, 2, and
the Klein-Gordon equation (38) takes a complicated form
with its new source terms, we instead work with the four
Friedmann equations, and we discard the Klein-Gordon
equation (38), which is their automatic consequence.

D. Einstein-de Sitter reference

When the scalar field is a constant, it should not play any
role, and we expect to recover a standard cosmology.
Because we did not introduce any cosmological constant,
this must be an Einstein-de Sitter universe without late-time
acceleration (more precisely, a universe with only matter
and radiation components). In this reference universe,
obtained within General Relativity with only one metric,
the Friedmann equations (33) and (34) read as

ωð0Þ ¼ a
Hð0Þ2

H2
0

¼ Ωdm0 þΩb 0 þ
Ωγ0

a
;

dωð0Þ

d ln a
¼ −

Ωγ0

a
: ð40Þ

Here and in the following, we denotewith the superscript (0)
quantities associated with this Einstein-de Sitter reference
universe, which follows General Relativity. As noticed
above, here, the second Friedmann equation is trivial as it
is a mere consequence of the first Friedmann equation and of
the conservation equations, which have already been used in
the first part of Eq. (40).
We can recover the standard cosmology (40) within the

bimetric model (1) by the simple solution

að0Þl ¼ sð0Þl a; að0Þd ¼ a; bð0Þ� ¼ að0Þ� ; Hð0Þ
� ¼Hð0Þ;

ωð0Þ
l ¼ sð0Þl ωð0Þ; ξð0Þ ¼ 0; sð0Þdl ¼ sð0Þl ; ð41Þ

where the coefficients sð0Þl are constants that obey the
condition

ðsð0Þ1 Þ2 þ ðsð0Þ2 Þ2 ¼ 1: ð42Þ

The scalar field φ is also constant, as the derivatives in the
source terms of Eq. (21) vanish. In this solution, all four
metrics are essentially equivalent, as b� ¼ a� and all scale
factors a� are proportional. The common expansion rate
H�ðaÞ follows the standard Einstein-de Sitter reference
Hð0ÞðaÞ of Eq. (40).
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E. Λ-CDM reference

To match observations, the expansion rate HðaÞ must
deviate from the Einstein-de Sitter reference (40) and
remain close to the concordance Λ-CDM cosmology. To
ensure that this is the case, in this paper, we constrain the
baryonic expansion rate HðaÞ to follow exactly a reference
Λ-CDM cosmology. Of course, in practice, small devia-
tions from the Λ-CDM limit are allowed by the data, and
we could also generalize the solutions that we consider in
this paper by adding small deviations. However, by
definition, this would not significantly modify the proper-
ties of these solutions. Besides, being able to recover a
Λ-CDM expansion rate is sufficient to show that the
bimetric model can be made consistent with data at the
level of the cosmological background.
In the Λ-CDM cosmology, we add a cosmological

constant to the components of the Universe. The usual
Friedmann equation reads as

H2

H2
0

¼ Ωdm0 þΩb0

a
þ Ωγ0

a2
þ ΩΛ0a2; ð43Þ

where ΩΛ0 is the cosmological parameter associated with
the cosmological constant. In terms of the variable ω,
this gives

ωðaÞ ¼ ωð0ÞðaÞ þ ΩΛ0a3; ð44Þ

which explicitly shows the deviation from the Einstein-de
Sitter reference (40). (Here, the Einstein-de Sitter reference
is normalized with Ωdm0 þΩb0 þ Ωγ0 ¼ 1 −ΩΛ0 ≠ 1,
because we normalize the cosmological densities by H0

instead of Hð0Þ
0 .)

The bimetric solution with a constant scalar field, which
was able to reproduce the Einstein-de Sitter cosmology
(40), cannot mimic the Λ-CDM cosmology (44) because of
the extra term on the right-hand side of the Friedmann
equation [a constant scalar field implies ξ ¼ 0 in Eq. (33)].
Therefore, to recover a Λ-CDM expansion rate, we must
consider more general solutions with a nonconstant scalar
field. In particular, even if the scale factors ai of the
gravitational metrics keep decelerating at late times, the
baryonic scale factor a ¼ s1a1 þ s2a2 can accelerate at late
times if s1 or s2 grows sufficiently fast. Then, the accel-
eration experienced by the baryonic metric is a dynamical
effect due to the time-dependent relationship between this
metric and the two gravitational metrics.
On the other hand, at early times where data show that

the dark-energy density is negligible, we converge to the
simple Einstein-de Sitter solution (41). This will be the
common early-time behavior of all the solutions that we
consider in this paper. We can check that the integral in
Eq. (39) is indeed finite and goes to zero for a → 0, both in
the radiation and dark matter eras, provided

ξ → 0 for a → 0: ð45Þ

This also ensures that the dark-energy density is negligible
as compared with the dark matter density. As we shall see
below, the families of solutions that we build in this paper
are parametrized by ξðaÞ, which is treated as a free function
of the model. Therefore, the condition (45) is easily
satisfied, by choosing functions ξðaÞ that exhibit a fast
decay at high redshift.

F. Solutions with common conformal time

To illustrate how we can build bimetric solutions that
follow a Λ-CDM expansion rate, we first consider solutions
with

a� ¼ b�; ð46Þ

that is, the conformal time τ is the same for all metrics.
Then, at the background level, each metric is defined by a
single scale factor a�, and the two constraints in the first
line in Eq. (26) reduce to one, a ¼ s1a1 þ s2a2. As all
metrics are proportional, at the background level, this
scenario is similar to a single gravitational metric model,
g̃μν, where the baryonic and the dark matter metrics are
given by different conformal rescalings, gμν ¼ A2ðφÞg̃μν
and gμν ¼ A2

dðφÞg̃μν.

1. Symmetric solution

We first consider a simple symmetric solution where we
split the single constraint a ¼ s1a1 þ s2a2 into two sym-
metric constraints:

s1a1
a

¼ ðsð0Þ1 Þ2; s2a2
a

¼ ðsð0Þ2 Þ2: ð47Þ

This is consistent with the initial conditions defined by the
early-time solution (41)–(42). Then, Eq. (47) gives slðaÞ as
an explicit function of fa; alðaÞg, and we solve for the two
sets falðaÞ;ωlðaÞ; sdlðaÞg. Thanks to the splitting (47),
these two sets of variables can be solved independently.
Then, the three functions falðaÞ;ωlðaÞ; sdlðaÞg are deter-
mined by the two Friedmann equations (33) and (34) and
the definition (32). The definition (32) providesHl at each
time step, hence d ln al=d ln a. The second Friedmann
equation (34) gives dωl=d ln a. The first Friedmann equa-
tion (33) provides sdlðaÞ. The dark sector scale factor ad is
given by Eq. (26), adðaÞ ¼ sd1a1 þ sd2a2. The scalar-field
energy density ξðaÞ is an arbitrary function, which is a free
function of the bimetric model. It must be positive, and we
only request that it vanishes at early times to recover the
high-redshift cosmology (41).
This procedure provides a family of solutions that are

parametrized by the initial coefficients sð0Þl and the scalar
energy density ξðaÞ and which follow the Λ-CDM expan-
sion history for HðaÞ. The latter enters the dynamical
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equations through the factors HðaÞ in Eqs. (34) and (32)
[when we write d ln al=dτ ¼ Hðd ln al=d ln aÞ]. As the

coefficients sð0Þl do not appear in these equations, the two
metrics are actually equivalent, with

a1
a2

¼ s1
s2

¼ sð0Þ1

sð0Þ2

; H1 ¼ H2: ð48Þ

We show in Figs. 1 and 2 the evolution with redshift of
the main background quantities, in such a solution with

sð0Þ1 ¼ ffiffiffi
3

p
=2, sð0Þ2 ¼ 1=2. The scalar-field energy density

ξðzÞ is chosen to vanish at high z and to remain much
smaller than the dark matter energy density at all times,
ξ ≪ 1. More specifically, we use the simple form

ξðaÞ ∝ u3=2

1þ u3=2
; u ¼ ΩΛ0a4

Ωγ0 þ ðΩdm 0 þ Ωb 0Þa
: ð49Þ

From Eq. (43), the quantity uðaÞ is a natural measure of the
deviation of the Λ-CDM cosmological background from
the Einstein-de Sitter background. It is also the ratio of the

effective dark-energy density to the matter and radiation
energy densities, and we have ω ¼ ωð0Þð1þ uÞ. In this
paper, we write the free functions of the models in terms of
powers of uðaÞ, to ensure that we recover the Einstein-de
Sitter reference of Sec. III D at early times. This also means
that the effects of the scalar field only appear at low
redshifts, where the departure from the Einstein-de Sitter
reference is associated with a running of the scalar field.
We can see in Fig. 1 that a1=a and a2=a decrease at low z

while s1 and s2 increase. Indeed, because of the absence of
a cosmological constant, the scale factors aiðτÞ of the
gravitational metric tend to follow an Einstein-de Sitter
expansion rate, which falls below the Λ-CDM expansion
rate of aðτÞ. The latter manages to mimic the Λ-CDM
history thanks to the late-time growth of the factors sl in
Eq. (26). On the other hand, the dark factors sdl decrease at
low z, in a fashion that is opposite to the baryonic factors
sl. This follows from the relationship (35), which gives

ξ≪ 1;Ωγ0 ≪ 1∶
dsdl
d lna

≃−
Ωb0

Ωdm0

dsl
d lna

for a∼ 1: ð50Þ
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FIG. 1. Background quantities for a symmetric solution of the form (47), as a function of redshift.Upper left panel: ratio of the various
scale factors a� to the baryonic scale factor a. Upper right panel: the various expansion ratesH� normalized toH0. Lower left panel: the
various deceleration parameters q�. Lower right panel: coefficients sl and sdl of Eqs. (8) and (26).
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Then, from Eq. (26), the dark sector scale factor adðτÞ
grows even more slowly than the gravitational scale factors
alðτÞ at late times, and we have Had < Hal < H.
These different cosmic evolutions are clearly shown by

the deceleration factors q�, defined for each metric with
respect to its cosmic time dt� ¼ b�dτ by

q� ¼ −
ä�a�
_a2�

¼ −
d2a�
dt2�

a�

�
da�
dt�

�
−2
: ð51Þ

Thus, we can see that the gravitational metrics g1 and g2
show no acceleration. They keep behaving like an Einstein-
de Sitter cosmology, except for a slightly stronger decel-
eration at low z. Only the baryonic metric shows an
accelerated expansion with q < 0. Because of the opposite
behavior of the dark sector coefficients sdl, as compared
with the baryonic coefficients sl, the dark sector metric
shows instead a stronger deceleration at late times than the
Einstein-de Sitter cosmology. This clearly shows that the
apparent acceleration of the baryonic metric is not due to a
dark-energy component, associated for instance with the
scalar field φ, as the “Einstein-frame” metrics g1 and g2 do
not accelerate. It is only due to the time-dependent mapping
(26) between these metrics and the baryonic metric.
Therefore, this provides a “self-accelerated model,” in
the sense that the acceleration is not due to a hidden
cosmological constant (e.g., the nonzero minimum of some
potential or a dark-energy fluid with negligible kinetic
energy).
As we wish to mimic a Λ-CDM cosmology, with

ΩΛ0 ≃ 0.7, the deviations from the Einstein-de Sitter
cosmology are of order unity at low z. This implies that
the deviation of the coefficients sl and sdl from their initial
value is also of order unity at low z, while from Eq. (39), we
have φ̄ ∼MPl

ffiffiffi
ξ

p
,

z ¼ 0∶ sl − sð0Þl ∼ 1; sdl − sð0Þl ∼ 1;
φ̄

MPl
∼

ffiffiffi
ξ

p
: ð52Þ

As explained below, after Eq. (70), we cannot take ξ too
small as this would give rise to a large fifth force. On the
other hand, we wish to keep the scalar-field energy density
subdominant. We choose for all the solutions that we
consider in this paper the same scalar-field energy density,
shown in the upper panel in Fig. 2. It is of order Ωdm0=10 at
z ¼ 0 and decreases at higher z. The u3=2 falloff of ξðaÞ is
fast enough to make the scalar field subdominant and
to converge to the Einstein-de Sitter solution (41). It is
also slow enough to enforce ds�=dφ → 0, as we have
ds�=dφ¼ðds�=dlnaÞ=ðdφ=dlnaÞ∼uH

ffiffiffiffiffiffiffiffi
a=ξ

p
. This yields

vierbein coefficients slðφÞ that look somewhat more
natural than functions with a divergent slope at the origin.
We can see in the lower panel that the functions s�ðφÞ built
by this procedure have simple shapes and do not develop

fine-tuned features. The model chosen for ξðaÞ gives scalar-
field excursions of about MPl=2 at z ¼ 0.

2. Nonsymmetric solution

We can also build nonsymmetric solutions, which do not
obey Eq. (47). Instead of splitting the constraint a ¼
s1a1 þ s2a2 into the two conditions (47), we can add
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FIG. 2. Background quantities for a symmetric solution of the
form (47). Upper panel: ratio of the scalar-field energy density to
the dark matter energy density. Middle panel: value of the scalar
field in Planck mass units. Lower panel: coefficients sl and sdl as
a function of the scalar field.
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another condition, such as requiring the ratio s2=s1 to
follow an arbitrary function of time κðaÞ. Then, the
function κðaÞ parametrizes this extended family of sol-
utions. The symmetric solution of Sec. III F 1 corresponds

to the particular case κðaÞ ¼ sð0Þ2 =sð0Þ1 . Because the effective
Newton constant is given by s21 þ s22, in units of
GN ¼ 1=8πM2

Pl, as we shall see in Eq. (84) below, we
choose instead to parametrize the solutions by the sum
s21 þ s22, as a function of redshift. Thus, we solve the system

s1a1 þ s2a2 ¼ a; s21 þ s22 ¼ λðaÞ; ð53Þ

where λðaÞ is a new arbitrary function that parametrizes this
extended family of solutions. These two equations now
provide fs1; s2g as a function of fa; a1; a2g,

s1 ¼
aa1 þ ϵa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λða21 þ a22Þ − a2

p
a21 þ a22

;

s2 ¼
aa2 − ϵa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λða21 þ a22Þ − a2

p
a21 þ a22

; ð54Þ

where ϵ ¼ �1. Then, we can again solve for the two sets
falðaÞ;ωlðaÞ; sdlðaÞg from Eqs. (32), (33), and (34), the
only difference being that these two sets of variables are
now coupled.
We show in Fig. 3 the evolution of the background

quantities for a solution of the form (53), where s2=s1 is no
longer constant and we impose that dλ=da ¼ 0 at z ¼ 0.
Despite this difference, the scale factors and the Hubble
expansion rates are very close to those of Fig. 1. This is
because, at late times after the radiation-to-matter transi-
tion, a ≫ aeq, and for ξ ≪ 1, the second Friedmann
equation (34) reduces to

dωl

d ln a
∼ −

Ωγ0

a
− ξ; hence

���� dωl

d ln a

���� ≪ 1: ð55Þ

Since the dark-energy era and the running of the scalar field
occur much later than the radiation-to-matter transition, we
can actually see from the first Friedmann equation (33) that
we must have

ωl ≃ slΩb 0 þ sdlΩdm0 ≃ sð0Þl Ωb0 þ sð0Þl Ωdm0: ð56Þ

Thus, we recover the relationship (50), and we also find that
for the general class of solutions with a common conformal
time the quantities ωl are set by the initial conditions and
show a negligible dependence on the late-time evolution of
the coefficients sl and sdl and on the scalar field (as long as
it remains subdominant). This explains why we recover
almost the same evolution for the scale factors a� and
the Hubble expansion rates H�, which are determined by
the definition (32). Then, the deceleration parameters q� are

also close to those obtained in Fig. 1. The change to the
factors sl associated with different solutions is almost fully
compensated by the change to the dark coefficients sdl that
is implied by the constraint of recovering a Λ-CDM
expansion rate for the baryonic metric. By the same
mechanism, we also find that in these solutions, despite
the different behaviors of s1 and s2, the two gravitational
metrics are mostly equivalent, with again the same expan-
sion rates H1 ≃H2 up to negligible deviations.
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FIG. 3. Background quantities for a solution of the form (53),
where s2=s1 is not constant.
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G. Solutions with different conformal times

We now turn to even more general solutions, which still
follow the Λ-CDM expansion rate for the baryonic metric,
but where

al ≠ bl; ad ≠ bd: ð57Þ

Then, the conformal times τ� of the various metrics are
different. As the metrics are not proportional, already at the
background level, this scenario is different from models
where the baryonic and the dark matter metrics are given by
different conformal rescalings of a single Einstein-frame
metric g̃μν.
Defining the scale-factor ratios

rlðaÞ ¼
bl
al

; rdðaÞ ¼
bd
ad

; ð58Þ

the two constraints in the first line of Eq. (26) read as

a ¼ s1a1 þ s2a2; a ¼ s1r1a1 þ s2r2a2: ð59Þ

These two linear equations provide fslg as a function of
fa; alg,

s1 ¼
að1 − r2Þ
a1ðr1 − r2Þ

; s2 ¼
að1 − r1Þ
a2ðr2 − r1Þ

; ð60Þ

when we are given the arbitrary free functions rlðaÞ. As in
the previous cases, fal;ωl; sdlg are obtained from
Eqs. (32) and (33) and (34), while ad and bd are obtained
from the second line of Eq. (26).
We require a� > 0, b� > 0, sl > 0, sdl > 0, to avoid

singularities. This implies s1s2 > 0, and Eq. (60) leads to

ð1 − r1Þð1 − r2Þ < 0; ð61Þ

and we can choose for instance

r1 < 1 < r2: ð62Þ

The recent detections of gravitational waves from a
binary neutron star merger by the LIGO-VIRGO
Collaboration (GW170817) [29], with electromagnetic
counterparts in the gamma-ray burst [17] and in UV,
optical, and near infrared bands [30], place very stringent
limits on the speed of gravitational waves, jcg − 1j ≤ 3 ×
10−15 [17]. For the bimetric action (2), we have two
gravitons associated with the two Einstein-Hilbert terms
Rl. We can obtain their equations of motion from the
nonlinear Einstein equations (19), starting at the level of the
vierbeins. In the case of a constant scalar field φ, we
recover the results obtained from the quadratic action at the
level of the metrics in Refs. [13–15]. This gives for the first
graviton h1ij

M2
Pl
a21
b1

�
h001ij þ ð3Ha1 −Hb1Þh01ij −

b21
a21

∇2h1ij

�
− a2ðp̄s1s2a2 þ p̄φsd1sd2bdadÞðh1ij − h2ijÞ ¼ 0; ð63Þ

and the equation of motion of the second graviton h2ij is
given by the permutation 1 ↔ 2. Here, we note p̄ is the
total pressure of the baryonic sector fluids. In the radiation
and matter eras, this is simply the radiation pressure,
p̄ ¼ p̄γ ¼ ρ̄γ=3, while during the inflationary era, it is
the pressure p̄χ ¼ −ρ̄χ of the inflaton χ. We can see that the
speed of the two gravitons is given by cgl ¼ bl=al, which
differs from the speed of light when rl ≠ 1.
To explain the multimessenger event GW170817, at least

one of these two gravitons must propagate at the speed of
light (up to an accuracy of 10−15) in the local and recent
Universe, d≲ 40 Mpc and z≲ 0.01. In principle, a non-
linear screening mechanism might change the laws of
gravity and ensure convergence to General Relativity in
the local environment. However, it is unlikely that it would
apply over 40 Mpc. Moreover, in most parts of the
trajectory, between the host galaxy and the Milky Way,
the local density is below or of the order of the cosmo-
logical background density. Besides, it would require a
fine-tuned cancellation to make the average speed cg ¼ 1

over the full trajectory, inside the two galaxies and the low-
density intergalactic medium. Then, at least one of the lapse
factors rl must converge to unity at low z. If both
coefficients rl go to unity, we converge to the solutions
studied in Sec. III F. For illustration, we consider in Fig. 4
the case where only one of the coefficients rl goes to unity
at low redshift, for instance r1 [with again the same initial

conditions fsð0Þ1 ; sð0Þ2 g and scalar-field energy density ξðaÞ
as in Fig. 1]. In this limit, the system effectively reduces
again to a single metric for the baryonic sector. Indeed,
Eq. (60) implies that s2 → 0 if r1 → 1 (and s1 → 0 if
r2 → 1). Then, the baryonic metric gμν becomes propor-
tional to the metric g1μν. However, the dark matter metric
remains sensitive to both gravitational metrics g1 and g2, as
sd 2 remains nonzero, so that the baryonþ dark matter
system remains different from the common conformal time
scenarios of Sec. III F. In particular, the baryonic and dark
matter metrics are not proportional, so this scenario remains
different from models where the baryonic and the dark
matter metrics are given by different conformal rescalings
of a single Einstein-frame metric g̃μν.
We can see that in this scenario the scale factors a�

remain similar to those obtained in Fig. 1 for the symmetric
solution (47). However, we can now distinguish the differ-
ence between the two expansion ratesHa1 andHa2 at low z.
The main difference with respect to the previous solutions
is the behavior of the lapse functions bl. Thanks to the
additional degrees of freedom rl, the lapses bl can behave
in a significantly different way than the scale factors al. In
the example shown in Fig. 4, the two lapses even evolve in
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different directions and cross each other at z ≃ 0.1. This
leads to rates that are significantly different withHb2 > H.
As explained in Sec. III F 1, because of the lack of a
cosmological constant, the gravitational expansion rates
Hal are typically smaller than the Λ-CDM expansion rate
H. This remains true for the more general solution shown in
Fig. 4. But the lapse functions are not so strongly con-
strained, and it is possible to have one of them growing

faster than a. For the choice (62), this corresponds to b2,
with Hb2 > H. This requires a ratio r2 that significantly
departs from unity at low z, as seen in the lower left panel.
The coefficients sl and sdl follow similar behaviors to

those obtained in Figs. 1 and 3, with opposite deviations at
low redshift for the baryonic and dark sector coefficients.
Because of the constraint jr1 − 1j < 3 × 10−15 at z ¼ 0, the
coefficient s2 almost goes to zero, with s2 ≲ 10−15 at z ¼ 0.
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FIG. 4. Background quantities for a solution of the form (62), where the different metrics have different conformal times (i.e., are not
proportional), but r1 → 1 at z ¼ 0.
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IV. COSMOLOGICAL PERTURBATIONS

We have seen that it is possible to build several families
of solutions that follow a Λ-CDM expansion history for the
baryonic metric. In the case of metrics that are not
proportional, the multimessenger neutron star merger
GW170817 also implies that at least one of the two
gravitational metrics, g1 and g2, becomes proportional to
the baryonic metric (i.e., rl ¼ 1) at low redshift.
We show below that these models are actually severely

constrained by the behavior of perturbations. Here, we
focus on the scalar perturbations in the quasistatic approxi-
mation, which applies to the formation of large-scale
structures. Then, the relevant metric perturbations are set
by the four gravitational potentials fϕl;ψlg as in the usual
Newtonian gauge.

A. Scalar-field perturbations

On small scales in the quasistatic approximation, the
Klein-Gordon equation (21) becomes

1

a2d
∇2δφ ¼ m2δφþ βdm

MPl
δρdm þ β

MPl
δρ; ð64Þ

with δφ ¼ φ − φ̄, δρdm ¼ ρdm − ρ̄dm, and δρ ¼ ρ − ρ̄.
Here, we assumed nonrelativistic matter components,
pdm ¼ p ¼ 0, and we neglected radiation fluctuations.
As δρφ ¼ δpφ ¼ b−2d

dφ̄
dτ

∂δφ
∂τ , we also neglected the linear

fluctuations of the scalar-field density and pressure in the
quasistatic limit. The scalar-field mass around the cosmo-
logical background is

m2 ¼ ðρ̄dm þ ρ̄φÞ
X
l

d2sdl
dφ2

bl
bd

− 3ρ̄φ
X
l

d2sdl
dφ2

al
ad

þ ðρ̄þ ρ̄γÞ
X
l

d2sl
dφ2

a3bl
a3dbd

− ρ̄γ
X
l

d2sl
dφ2

a3al
a3dbd

: ð65Þ

Using the relation (35), it is possible to express the dark
sector derivatives d2sdl=dφ2 and dsdl=dφ in terms of
d2sl=dφ2 and dsl=dφ. It is then possible to remove the
second derivatives d2sl=dφ2 thanks to the symmetry in
l ¼ 1, 2, using the relations obtained by taking derivatives
with respect to ln a of the constraints a ¼ s1b1 þ s2b2 and
a ¼ s1a1 þ s2a2. The couplings to matter are

β ¼ MPl

X
l

dsl
dφ

a3bl
a3dbd

; βdm ¼ MPl

X
l

dsdl
dφ

bl
bd

: ð66Þ

In Fourier space, this yields

δφ

MPl
¼ −

3H2
0

m2 þ k2=a2d

�
Ωdm0βdmδdm

a3d
þ Ωb0βδ

a3

�
; ð67Þ

where δdm ¼ δρdm=ρ̄dm, δ ¼ δρ=ρ̄.

It is interesting to consider the scaling in ξ of the scalar-
field mass and couplings. From Eq. (52), we have the
scalings

ds�
d ln a

∼ 1;
ds�
dφ

∼
1

MPl
ffiffiffi
ξ

p ;
d2s�
dφ2

∼
1

M2
Plξ

: ð68Þ

Then, from Eq. (65), it seems that m2 ∼H2
0=ξ. However,

using the relationship (35), one finds that the terms of order
1=ξ cancel out, and we obtain

m2 ∼H2
0ðΩγ0 þ ξÞ: ð69Þ

On the other hand, the couplings scale as

β ∼
1ffiffiffi
ξ

p ; βdm ∼
1ffiffiffi
ξ

p : ð70Þ

Therefore, very small values of the scalar-field energy
density ξ yield a very large fifth force. This implies that
we cannot take ξ too small, which is why we choose
ξ ∼Ωdm0=10 at z ¼ 0 in the models that we consider in
this paper. This feature comes from the fact that we
require effects of order 1 from the scalar field onto the
background at low redshift, ds�=d ln a ∼ 1, to generate
the apparent acceleration of the baryonic metric. This
implies ds�=dφ ∝ 1=φ̄0 ∝ 1=

ffiffiffi
ξ

p
.

We show in Fig. 5 the scalar-field mass and couplings for
the symmetric model of Fig. 1. As expected from the
expression (65), the squared mass evolves as ρ̄=M2

Pl ∼H2,
and it is of order H2. This means that it is negligible on
scales much below the horizon, where the quasistatic
approximation (64) applies, and does not lead to small-
scale instabilities, even when it is negative. The couplings β
and βd are of order unity and decrease at high z, because
ds�=dφ → 0. This is because we choose the high-z decay of
the scalar-field energy density, determined by Eq. (49),
to be slow enough so that ds�=dφ → 0 at early times.
The baryonic and dark matter couplings have opposite

-10

-8

-6

-4

-2

 0

 2

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

β *
, m

2 /H
2

z

β
βd

m2/H2

FIG. 5. Scalar-field mass and couplings for the symmetric
model of Fig. 1.
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signs, with β > 0 > βdm, because we typically have
dsl=d ln a > 0 and dsdl=d ln a < 0, as explained in
Sec. III F and in agreement with Eq. (50).
The other solutions considered in Secs. III F and III G

give results similar to those found in Fig. 5.

B. Einstein equations

1. Gravitational potentials ϕl and ψl

We study in details the behavior of linear perturbations in
Sec. V below, and we provide in Appendix A explicit
expressions of the Einstein equations in the case al ¼ bl.
The extra two scalars added to the four Newtonian
potentials that cannot be eliminated by gauge freedom
(because of the loss of the nondiagonal diffeomorphism
invariance) are not dynamical [13], and there is no scalar
instability. In this section, we focus on small subhorizon
scales, k ≫ H, in the quasistatic approximation, where we
only keep the higher-order spatial gradients. Then, as in
General Relativity, only the four gravitational potentials
fϕl;ψlg remain. The perturbed metrics take the usual form

g�00 ¼ −b2�ð1þ 2ϕ�Þ; g�ii ¼ a2�ð1 − 2ψ�Þ; ð71Þ
while the vierbeins are diagonal with

e0�0 ¼ b�ð1þ ϕ�Þ; ei�i ¼ a�ð1 − ψ�Þ: ð72Þ

For nonrelativistic matter components, the (0,0) compo-
nent of the Einstein equations (19) gives for the metric g1μν

2a1
3H2

0

∇2ψ1¼ s1Ωb0δþ sd1Ωdm0δdmþΥψ1

d lna
dφ̄

δφ; ð73Þ

with

ϒψ1
¼

�
Ωb0 þ

Ωγ0

a

���
1þ s1

b1
a

�
ds1
d ln a

þ s1
b2
a

ds2
d ln a

�

þ ðΩdm0 þ ξÞ
��

1þ sd1
b1
bd

�
dsd1
d ln a

þ sd1
b2
bd

dsd2
d ln a

�
:

ð74Þ
The ði; jÞ components of the Einstein equations give

b1
H2

0

½−∂i∂jðϕ1 − ψ1Þ þ δij∇2ðϕ1 − ψ1Þ� ¼ ϒϕ1

d ln a
dφ̄

δφ;

ð75Þ

with

ϒϕ1
¼ Ωγ0

a

��
1þ s1

a1
a

�
ds1
d ln a

þ s1
a2
a

ds2
d ln a

�

þ 3ξrd

��
1þ sd1

a1
ad

�
dsd1
d ln a

þ sd1
a2
ad

dsd2
d ln a

�
: ð76Þ

We can use the Klein-Gordon equation (67) satisfied by the
scalar field to eliminate δφ. In Fourier space, this gives

−
2

3
al

k2

H2
0

ψl ¼ ð1þ γψlÞslΩb0δþ ð1þ γψl
dmÞsdlΩdm0δdm

ð77Þ

and

−al
kikj−δijk2

H2
0

ðϕl−ψlÞ¼ γϕlslΩb0δþ γϕl
dmsdlΩdm0δdm:

ð78Þ

The coefficients γ�� arise from the fluctuations of the scalar
field φ, which generate fluctuations δs� of the vierbein
coefficients s� that relate the matter and gravitational
metrics. They are given by

γψl ¼ −
H

H0rda3sl

ffiffiffiffiffiffiffi
3ad
2ξ

s
βH2

0

m2 þ k2=a2d
ϒψl

;

γψl
dm ¼ −

H
H0rda3dsdl

ffiffiffiffiffiffiffi
3ad
2ξ

s
βdmH2

0

m2 þ k2=a2d
ϒψl

;

γϕl ¼ H
H0rda3rlsl

ffiffiffiffiffiffiffi
3ad
2ξ

s
βH2

0

m2 þ k2=a2d
ϒϕl

;

γϕl
dm ¼ H

H0rda3drlsdl

ffiffiffiffiffiffiffi
3ad
2ξ

s
βdmH2

0

m2 þ k2=a2d
ϒϕl

; ð79Þ

where the factors ϒψl
and ϒϕl

are given in Eqs. (74)
and (76). The contribution from the fifth force to the
gravitational potentials ψl and ϕl is negligible if the
coefficients γ�� are much smaller than unity. Then, we
recover Einstein equations for these gravitational potentials
that are close to their standard form,

jγ��j ≪ 1∶

ϕl ≃ ψl

− 2
3
al

k2

H2
0

ψl ≃ slΩb 0δþ sdlΩdm0δdm:
ð80Þ

We show in Fig. 6 the coefficients γ�� for the symmetric
solution of Fig. 1, at comoving wave number kðzÞ ¼
10HðzÞ. At z ¼ 0, we expect from Eqs. (79) that jγ��j ≃
ðH0=kÞ2 on small scales. Indeed, we can see in the figure
that for k ¼ 10H we have jγ��j ≲ 10−2. Moreover, the
amplitude shows a fast decrease at higher z. Therefore,
on subhorizon scales, the coefficients γ�� are much smaller
than unity at all redshifts, and we can always use the
approximations (80).
The other solutions considered in Secs. III F and III G

give results similar to those found in Fig. 6.
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2. Baryonic gravitational potentials ϕ and ψ

In the following, we assume that the properties (80) are
satisfied. However, this is not sufficient to remove the fifth
force because the dynamics of dark matter and baryons are
set by their own metric potentials ϕd and ϕ. Their relation-
ship with the potentials ϕl involves the scalar field and will
give rise to a fifth force. Indeed, from the vierbeins (72) and
their relations (8), we obtain at linear order

aϕ ¼
X
l

blðslϕl þ δslÞ;

aψ ¼ ¼
X
l

alðslψl − δslÞ: ð81Þ

As for the gravitational potentials ϕl and ψl, the fluctua-
tions of the coefficients sl and sdl, due to the perturbations
of the scalar field δφ, give rise to nonstandard terms. Using
Eq. (80), we obtain

−
2

3
a
k2

H2
0

ϕ ¼ μϕΩb0δþ μϕdmΩdm0δdm;

−
2

3
a
k2

H2
0

ψ ¼ μψΩb0δþ μψdmΩdm0δdm; ð82Þ

with

μϕ¼
X
l

�
s2lrlþ

Ha2d
H0rda3

ffiffiffiffiffiffiffi
2ad
3ξ

s
βk2

k2þa2dm
2

dsl
dlna

bl

�

μϕdm¼
X
l

�
slsdlrlþ

H
H0rdad

ffiffiffiffiffiffiffi
2ad
3ξ

s
βdmk2

k2þa2dm
2

dsl
dlna

bl

�

μψ ¼
X
l

�
s2l−

Ha2d
H0rda3

ffiffiffiffiffiffiffi
2ad
3ξ

s
βk2

k2þa2dm
2

dsl
dlna

al

�

μψdm¼
X
l

�
slsdl−

H
H0rdad

ffiffiffiffiffiffiffi
2ad
3ξ

s
βdmk2

k2þa2dm
2

dsl
dlna

al

�
: ð83Þ

We recover the standard Poisson equations if μ�� ¼ 1.
We can split the coefficients μ�� into two parts. The first

term, of the form s2lrl, is similar to a scale-independent
renormalized Newton’s constant and arises from the
coefficients sl that relate the various metric potentials.
The second part, of the form dsl=d ln a, arises from the
fluctuations of the scalar field through δsl and corresponds
to a fifth force. It is scale dependent. Thus, we may define
the renormalized Newton’s constants (in units of the natural
Newton’s constant, GN ¼ 1=8πM2

Pl),

Gϕ ¼
X
l

s2lrl; Gϕ
dm ¼

X
l

slsdlrl;

Gψ ¼
X
l

s2l; Gψ
dm ¼

X
l

slsdl; ð84Þ

which are all positive.
The two baryonic metric potentials ϕ and ψ are generi-

cally different. First, if rl ≠ 1, the associated effective
Newton’s constants Gϕ and Gψ are different. Second, the
fifth-force contributions that enter ϕ and ψ have the same
amplitude but opposite signs.
We show in Fig. 7 the coefficients μϕ� and μψ� for the

symmetric solution of Fig. 1, at comoving wave number
kðzÞ ¼ 10HðzÞ, as well as the effective Newton constants.
At early times, when the scalar field has no effect and we
converge to the Einstein-de Sitter cosmology, we recover
General Relativity with μ�� → 1 and G�� → 1. At late times,
these coefficients show deviations of order unity. In
this regime, the comparison of the two panels shows that
the coefficients μ�� are dominated by the fifth-force
contributions. This means that the fifth force is greater
than Newtonian gravity. Moreover, the coefficients μϕdm
and μψ become negative, which would give rise to very
nonstandard behaviors. Thus, the dark matter overdensities
repel the baryonic matter at late times.

3. Dark matter gravitational potentials ϕd and ψd

In a similar fashion, the dark sector gravitational
potentials ϕd and ψd obey Poisson equations of the
form (82),

−
2

3
ad

k2

H2
0

ϕd ¼ μϕdΩb0δþ μϕd
dmΩdm0δdm;

−
2

3
ad

k2

H2
0

ψd ¼ μψdΩb0δþ μψd
dmΩdm0δdm; ð85Þ

with
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FIG. 6. Absolute value of the coefficients γ�� for the symmetric
model of Fig. 1, at comoving wave number kðzÞ ¼ 10HðzÞ.
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μϕd ¼
X
l

�
sdlsl

rl
rd
þ Ha2d
H0r2da

3

ffiffiffiffiffiffiffi
2ad
3ξ

s
βk2

k2þa2dm
2

dsdl
d lna

bl

�

μϕd
dm¼

X
l

�
s2dl

rl
rd
þ H
H0r2dad

ffiffiffiffiffiffiffi
2ad
3ξ

s
βdmk2

k2þa2dm
2

dsdl
d lna

bl

�

μψd ¼
X
l

�
sdlsl−

Ha2d
H0rda3

ffiffiffiffiffiffiffi
2ad
3ξ

s
βk2

k2þa2dm
2

dsdl
d lna

al

�

μψd
dm¼

X
l

�
s2dl−

H
H0rdad

ffiffiffiffiffiffiffi
2ad
3ξ

s
βdmk2

k2þa2dm
2

dsdl
d lna

al

�
: ð86Þ

The renormalized Newton’s constants are now

Gϕd ¼
X
l

sdlsl
rl
rd

; Gϕd
dm ¼

X
l

s2dl
rl
rd

;

Gψd ¼
X
l

sdlsl; Gψd
dm ¼

X
l

s2dl; ð87Þ

which are again positive. The comparison with Eq. (84)
shows that the cross-terms are related by

Gϕ
dm ¼ rdGϕd ; Gψ

dm ¼ Gψd : ð88Þ

We show in Fig. 8 the coefficients μϕd� and μψd� for the
symmetric solution of Fig. 1, at comoving wave number
kðzÞ ¼ 10HðzÞ, as well as the effective Newton constants.
We obtain behaviors that are similar to those found in Fig. 7
for the baryonic metric potentials. At late times, the fifth
force is again greater than Newtonian gravity and can lead
to repulsive effects between baryons and dark matter.

C. Density and velocity fields

In their Jordan frame, associated with the metric gμν, the
baryons follow the usual equation of motion ∇μT

μ
ν ¼ 0.

This gives the standard continuity and Euler equations

∂ρ
∂τ þ∇ · ðρvÞ þ 3Hρ ¼ 0;

∂v
∂τ þ ðv ·∇Þv þHv ¼ −∇ϕ: ð89Þ

Using the Poisson equation (82), we obtain the evolution
equation of the linear baryonic matter density contrast,
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FIG. 7. Upper panel: coefficients μϕ� and μψ� for the symmetric
model of Fig. 1, at comoving wave number kðzÞ ¼ 10HðzÞ.
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model of Fig. 1, at comoving wave number kðzÞ ¼ 10HðzÞ.
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∂2δ

ð∂ ln aÞ2 þ
�
1þ d lnH

d ln a

� ∂δ
∂ ln a ¼ 3H2

0

2aH2
½μϕΩb0δ

þμϕdmΩdm0δdm�: ð90Þ

The dark matter also follows its usual equation of
motion, ∇dμT

μ
ν ¼ 0, where ∇dμ is now the covariant

derivative associated with the dark sector metric gdμν.
This gives the continuity and Euler equations

∂ρdm
∂τ þ∇ · ðρdmvdmÞþ3Hadmρdm¼ 0;

∂vdm
∂τ þðvdm ·∇Þvdmþð2Had −HbdÞvdm¼−r2d∇ϕd; ð91Þ

where τ is still the conformal time of the baryonic metric.
Using the Poisson equation, the evolution equation of the
linear dark matter density contrast reads as

∂2δdm
ð∂ ln aÞ2 þ

�
2Had −Hbd

H
þ d lnH

d ln a

� ∂δdm
∂ ln a ¼ 3r2dH

2
0

2adH2

× ½μϕdΩb0δþ μϕd
dmΩdm0δdm�: ð92Þ

The baryonic and dark matter linear growing modes are
coupled and given by the system of Eqs. (90) and (92). We
show in Fig. 9 their behavior as a function of redshift for the
comoving wave number k ¼ 0.1h=Mpc. At high redshift,
they follow the Λ-CDM reference, but at low redshift, the
dark matter perturbations grow faster than in the Λ-CDM
cosmology, whereas the baryonic perturbations grow
more slowly. This is more clearly seen in the lower panel,
as the growth rate f� ¼ d lnDþ� =d ln a amplifies the devi-
ations from the Λ-CDM cosmology because of the time
derivative.
The data points in Fig. 9 are only given to compare the

magnitude of the deviation of the growth factor with
observational error bars but do not provide a meaningful
test. Indeed, the Newton constant obtained in this scenario
is amplified at z ¼ 0, as seen in Fig. 7. This means that to
compare with data we would need to run this model again
by normalizing Newton’s constant to its value at z ¼ 0
instead of z → ∞, as we have done so far. We do not go
further in this direction in this paper, because this model is
already ruled out by the large time derivative d lnG=dt ∼
0.7H0 at z ¼ 0, as we discuss in the next section.
Nevertheless, it is interesting to note that this model leads

to a slower growth for the baryonic density perturbations than
in the Λ-CDM cosmology. This is due to the decrease of the
gravitational attraction of dark matter onto baryonic matter,
shown by the coefficient μϕdm in Fig. 7, which even turns
negative at z≲ 0.1 (i.e., the fifth force between dark matter
and baryons becomes repulsive). This is a distinctive feature
of thismodel, asmostmodified-gravity scenarios amplify the
growth of large-scale structures.

We show in Fig. 10 the growth factors obtained for the
case (62) of Fig. 4, where the different metrics have
different conformal times. This actually gives similar
results for the linear growth of large-scale structures.
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D. Gravitational slip

Because the fifth force enters with opposite signs in the ϕ
and ψ gravitational potentials, see Eq. (83), the lensing
potential ϕlens ¼ ðϕþ ψÞ=2, which deflects light rays, and
the dynamical potential ϕ, which determines the trajectory
of massive bodies, are different. This means that the lensing
mass of clusters of galaxies (deduced from lensing obser-
vations) and the dynamical mass (deduced from the galaxy
velocity dispersion or the pressure profile of the hot gas in
hydrostatic equilibrium) are also different. This is measured
by the ratio η, which we define as

η ¼ ϕþ ψ

2ϕ
¼ 1

2
þ μψΩb0δþ μψdmΩdm0δdm

2½μϕΩb0δþ μϕdmΩdm0δdm�
: ð93Þ

We show in Fig. 11 the gravitational slip η on subhorizon
scales, for δ ¼ δdm, δdm ¼ 0 (which corresponds to cases
where ρ ≫ ρdm), and δ ¼ 0 (for ρdm ≫ ρ). In agreement
with Fig. 7, the three curves converge to the General
Relativity value η ¼ 1 at high redshift and show deviations
of order unity at low z. Because the couplings to baryons
and dark matter are different, the gravitational slip η
depends on the relative amount of baryons and dark matter
in the lens. On cosmological scales down to clusters of
galaxies, which are the largest collapsed structures, we
expect δ ≃ δdm. This gives η > 1 at low z; hence, the
lensing mass would be greater than the dynamical mass.
This ratio can reach a factor 3 at z < 0.1, but in practice,
most cosmological lenses are at redshifts z≳ 0.5, as the
lensing efficiency goes to zero as the source redshift
vanishes. This gives 1 < η≲ 1.7. On the other hand, on
subgalactic scales where baryons dominate, the gravita-
tional slip is smaller than unity so that the lensing mass is
smaller than the dynamical mass by a factor 3 at z ¼ 0.
In the case where dark matter dominates, η goes to infinity
at z ∼ 0.3 and becomes negative at lower redshift. This is
because ϕ goes through zero and changes sign. This follows

from μϕdm < 0, as seen in Fig. 7. This implies a repulsive fifth
force from dark matter onto baryons, which dominates when
the lens is mostly made of dark matter. This regime should
not be reached in practice, aswe have δdm ∼ δ on large scales,
where the separation of baryons from dark matter due to the
fifth force has not yet had time to be efficient, as seen by the
small impact on the linear growing modes in Fig. 9, whereas
we typically have ρ ≫ ρdm on subgalactic scales because
radiative cooling processes make baryons collapse further
and eventually form stars.

V. DYNAMICAL DEGREES OF FREEDOM
AND LINEAR PERTURBATIONS

In this section, we study the behavior of linear pertur-
bations around the cosmological background for the tensor,
vector, and scalar sectors, without using the quasistatic
approximation. This allows us to count the number of
dynamical degrees of freedom, beyond the simple counting
of components described in Sec. II B above. The number of
perturbative degrees of freedom in bigravity theories has
been discussed in Refs. [13–15]. They obtained the
behavior of scalar, vector, and tensor modes by expanding
the action up to quadratic order over the fluctuations. We
present an alternative derivation, starting directly from the
vierbeins as for our derivation of the nonlinear Einstein
equations (19). This also allows us to implement explicitly
the discussion of Sec. II B and to show how the 32
components of the vierbeins can be reduced to the expected
16 components by successive gauge choices, associated
with the diagonal Lorentz and diffeomorphism invariances
and with the symmetry constraint (9). Then, constraint
equations further reduce the number of dynamical
degrees of freedom. We find that there are no ghosts at
the level of the quadratic action around the cosmological
background.
In Minkowski space-time, i.e., in vacuum, the bimetric

action (2) reduces to two independent copies of General
Relativity. Therefore, it shows 2 × 2 ¼ 4 dynamical
degrees of freedom (associated with the two massless
gravitons of the tensor sector), without ghosts nor dangerous
instabilities. In the following, we focus on perturbations
around the cosmological background, with nonzero mean
density and pressure and with cosmological expansion.

A. Vierbein and metric perturbations, quadratic action

Starting from the vierbeins δealμ, the metric perturbations
δglμν are given from the definition (6) by

δglμν ¼ ðδealμeblν þ ealμδe
b
lνÞηab: ð94Þ

For the diagonal background (24), this simplifies to
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FIG. 11. Gravitational slip η of Eq. (93) for several values of the
baryon to dark matter ratio δ=δdm.
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δgl00 ¼ −2blδe0l0; δgl0i ¼ δgli0 ¼ alδeil0 − blδe0li;

δglij ¼ alðδeilj þ δejliÞ: ð95Þ

The perturbations of the matrices Xμ
lν defined in Eq. (11)

also simplify as

δX0
20 ¼ −

δe020b1
b22

þ δe010
b2

; δXi
20 ¼ −

δei20b1
a2b2

þ δei10
a2

;

δX0
2i ¼ −

δe02ia1
b2a2

þ δe01i
b2

; δXi
2j ¼ −

δei2ja1
a22

þ δei1j
a2

:

ð96Þ

The permutation 1 ↔ 2 provides δXμ
1ν.

As in General Relativity, we can split the gravitational
perturbations in scalar, vector, and tensor modes. As in
Ref. [15], we can do so at the level of the vierbeins, and we
can write

δe0l0¼ blϕl; δe0li ¼ al½−∂iVlþCli�;
δeil0¼ bl½−∂iWlþDi

l�;
δeilj¼ al½−ψlδ

i
jþ∂i∂jUlþ∂jVi

lþ∂iWljþhilj�; ð97Þ

where the spatial indices are raised and lowered with δij and
δij, so that ∂i ¼ ∂i and Vi

l ¼ Vli. The transversality
conditions are

∂iCli ¼ ∂iDi
l ¼ ∂iVi

l ¼ ∂iWli ¼ 0; ∂ihilj ¼ 0;

and tracelessness corresponds to

hili ¼ 0:

This provides the perturbations of the gravitational
metrics as

δgl00 ¼ −2b2lϕl;

δgl0i ¼ albl½∂iðVl −WlÞ þDli − Cli�;
δglij ¼ a2l½−2ψlδij þ 2∂i∂jUl þ ∂iðVlj þWljÞ

þ ∂jðVli þWliÞ þ hlij þ hlji�: ð98Þ

The baryonic and dark vierbeins and metrics obey the same
decompositions, obtained from the combinations (8).
This gives 32 components for the two gravitational

metrics: ten scalars fϕl; Vl;Wl;ψl; Ulg, eight vectors
fCli; Di

l; V
i
l;Wlig, and two nonsymmetric tensors hilj. As

explained in Sec. II B, this can be reduced to 16 compo-
nents when we use the invariance under the diagonal
Lorentz transformations and diffeomorphisms and the
symmetry constraints (9). It is convenient to handle the
Lorentz invariance and the symmetry constraints (9)

through the variables δZlμν introduced in Eq. (16).This
suppresses the Lorentz degeneracies associated with the
vierbeins by the condition δZlμν ¼ δZlνμ, which implies

hlij ¼ hlji; Dli ¼−Cli; Vli ¼Wli; Wl ¼−Vl

ð99Þ

and removes 2 × 6 components. The diagonal diffeomor-
phism invariance still remains.
We study first the dynamics of tensor, vector, and scalar

perturbations, in the early-time regime where the scalar
field is constant and the background follows the simple
solution (41), i.e., all metrics show the same Hubble
expansion rate. Then, dark and baryonic matter can be
unified in the same matter sector as sdl ¼ sl. In all three
cases, the explicit computation of the Einstein equa-
tions (19) at linear order shows that the perturbations
separate in two decoupled sectors, Sþ and S−. The sector
Sþ involves the matter perturbations, which act as source
terms in the Einstein equations, and the matter metric
defined from Eq. (8), which gives

hμν ¼ s21h1μν þ s22h2μν; ð100Þ

where hlμν are the linear metric perturbations of the two
gravitational metrics, defined by glμν ¼ a2ðημν þ 2hlμνÞ.
We find that the Einstein equations of this sector are
identical to General Relativity. Therefore, in this regime,
there is no deviation from General Relativity in the sector
probed by matter and by observations. The hidden sector
S− has no matter source terms and only involves the hidden
metric components h−μν, defined by

h−μν ¼ h1μν − h2μν: ð101Þ

Its equations of motion differ from those of General
Relativity by mass terms. [The components h−μν do not
directly define a metric, because if we define the vierbeins
ea−μ ¼ s−11 ea1μ − s−12 ea2μ, which would imply (101), we find
that the background vierbeins ēa−μ vanish.]
We can check that the equations of motion of the hidden

sector S− can be derived from the quadratic action defined
by the standard expression

δ2S ¼
Z

d4x
1

2
δ

�
δS
δZμν

�
δZμν; ð102Þ

but where again we work at the level of the vierbeins and
use the variables δZμν of Eq. (16). For instance, using
Eq. (17), we obtain for the quadratic part that arises from
the first gravitational action S1 ¼

R
d4xðM2

Pl=2Þ
ffiffiffiffiffiffiffiffi−g1

p
R1

the expression
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δ2S1 ¼ −
M2

Pl

2

Z
d4xδ½ ffiffiffiffiffiffiffiffi

−g1
p ðGμσ

1 Xν
2σ þGνσ

1 Xμ
2σÞ�

× ΘμνδZ1μν; ð103Þ

where Θμν ¼ 1 or 1=2 was introduced in (17). We recog-
nize the structure of the left-hand side of the Einstein
equations (19). The contribution δ2S2 from the second
gravitational action S2 can be obtained from Eq. (103) by
the permutation 1 ↔ 2. There are also similar contributions
from the matter action. For the matter sector Sþ, this
procedure is more complex because of the coupling to
matter. This involves term linear and quadratic in matter
perturbations, which enforce the coupling between fluid
and metric perturbations and the equations of motion of the
fluid. These terms do not contribute to the hidden sector S−,
as can be seen from a direct computation of the Einstein
equations from Eq. (19).

B. Tensor modes

In the tensor sector, we consider the evolution of metric
perturbations over the background. Because we do not
consider matter sources and there are no tensor gauge
transformations, the computation from the Einstein equa-
tions coincide with the one from the quadratic action (102)
where we do not include matter perturbations. Then, the
quadratic action separates as

δ2S ¼ δ2Sþ þ s21s
2
2δ

2S− ð104Þ

with

δ2Sþ ¼
Z

d4xa2M2
Pl½h02ij − ð∇hijÞ2� ð105Þ

and

δ2S−¼
Z

d4xfa2M2
Pl½h02−ij− ð∇h−ijÞ2�þa4p̄h2−ijg; ð106Þ

where the sum is only over the independent components.
Thus, at the quadratic order, the action δ2Sþ of the matter
sector is identical to that of General Relativity, while there
exists a second decoupled sector that differs from General
Relativity by a new mass term. This leads to 2 × 2 ¼ 4
dynamical degrees of freedom in the tensor sector.
We recover the results obtained in Refs. [13–15].

Omitting the indices ij, the two uncoupled gravitons obey
the equations of motion

h00 þ 2Hh0 −∇2h ¼ 0; ð107Þ

h00− þ 2Hh0− −∇2h− −
a2p̄
M2

Pl

h− ¼ 0: ð108Þ

The massless graviton h of the baryonic and dark matter
metric evolves as in General Relativity. On subhorizon
scales, it propagates with the speed of light. On scales
greater than the horizon, it contains a constant mode and a
decaying mode that evolves as h0 ∝ a−2. This physical
mode (in the sense that it is the one seen by the matter
metric) is governed by Eq. (107) throughout all cosmo-
logical eras and does not mix with the hidden graviton h−.
The second hidden graviton h− has a negative

squared mass in the radiation era, as p̄ ¼ p̄γ > 0, which
becomes negligible in the matter era. In the radiation era,
we have H ¼ 1=τ and a ¼ ffiffiffiffiffiffiffi

Ωγ0

p
H0τ. The hidden

massive graviton h− obeys the equation of motion
h00− þ 2

τ h
0
− −∇2h− − 1

τ2
h− ¼ 0. It oscillates on subhorizon

scales. On superhorizon scales, it contains both a decaying
mode and a growing mode,

k ≪ H∶ h−− ∝ a−ð1þ
ffiffi
5

p Þ=2; hþ− ∝ að
ffiffi
5

p
−1Þ=2; ð109Þ

associated with the tachyonic instability. In the matter era,
we have H ¼ 2=τ and a ∝ τ2. The mass of the second
graviton h− becomes negligible, and it behaves like the
massless graviton, with a constant mode and a decaying
mode ∝ a−3=2.
Although h− is not seen by the matter, it should remain

small at all epochs so that the perturbative approach
applies. This implies that the initial tensor fluctuations at
the onset of the radiation era must be sufficiently small.
This is easily satisfied as the squared mass turns positive
during the inflation era and the graviton decays [13].
During the inflationary stage, the tensor evolution equation
is still given by Eq. (108), where p̄ is now the pressure
p̄χ ¼ −ρ̄χ of the inflaton χ. Because we now have p̄χ < 0,
the squared mass becomes positive, and there is no
tachyonic instability, and on superhorizon scales, there
are only two decaying modes:

k ≪ H∶ hc− ∝ a−3=2 cos

� ffiffiffi
3

p

2
ln a

�
;

hs− ∝ a−3=2 sin

� ffiffiffi
3

p

2
ln a

�
: ð110Þ

Let us consider a mode k that remains above the horizon
until the end of the radiation era, k ≤ aeqHeq. It crosses the
horizon during the inflationary stage at the time ak ¼ k=HI ,
where HI is the constant Hubble expansion rate of the
inflationary de Sitter era. Then, the amplitude of the tensor
mode h− at the end of the radiation era reads as

h−ðaeqÞ ¼ h−ðakÞ
�
af
ak

�
−3=2

�
aeq
af

�ð ffiffi
5

p
−1Þ=2

; ð111Þ

where af is the scale factor at the end of the inflationary era.
ForHI ∼ 10−5MPl ∼ 1013 GeV, af ∼ 10−28, aeq ∼ 10−3, we
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find that all modes with k ≤ aeqHeq remain in the pertur-
bative regime, h−ðaeqÞ ≪ 1, provided h−ðakÞ ≪ 1024. As
we expect h−ðakÞ ∼HI=MPl ∼ 10−5, if the tensor fluctua-
tions are generated by the quantum fluctuations, all modes
remain far in the perturbative regime until the end of the
radiation era. This is due to their decay during the infla-
tionary stage on superhorizon scales and to their small
initial values associated with quantum fluctuations.
Therefore, the main constraint from the tensor sector is

the measurement of the speed of gravitational waves from
the binary neutron star merger GW170817 [29], which
implies that at least one of the lapse factors rl is unity at
z ¼ 0, as discussed in Sec. III G.

C. Vector modes

In the vector sector, the perturbations of the energy-
momentum tensor are

δT00 ¼ 0; δT0i ¼ a−2½ρ̄vi − 2p̄Ci�;
δTij ¼ −2a−2p̄½∂iVj þ ∂jVi�: ð112Þ

As in General Relativity, the equations of motion of matter,
∇μTμν ¼ 0, decouple from the Einstein equations and
read as

∂
∂τ ½ðρ̄þ p̄ÞUi� þ 4H½ðρ̄þ p̄ÞUi� ¼ 0; ð113Þ

where we introduced the usual gauge invariant velocity,

Ui ¼ vi − 2Ci ¼ vi − 2ðs21Ci
1 þ s22C

i
2Þ: ð114Þ

The equations of motion follow from the Einstein equa-
tions (19). One can check that they also follow from a
quadratic action that separates as in (104), with

δ2Sþ ¼
Z

d4xa2M2
Pl½∇ðV 0

j þ CjÞ ·∇ðV 0
j þ CjÞ�; ð115Þ

and

δ2S− ¼
Z

d4x

�
a2M2

Pl½∇ðV 0
−j þ C−jÞ ·∇ðV 0

−j þ C−jÞ�

þ a4
�
3ρ̄þ p̄

2
C2
−j þ p̄ð∇V−jÞ2

�	
: ð116Þ

Here, for the matter sector Sþ, we focused on the solution
Ui ¼ 0 of the matter conservation equation (114). As for
the tensors, the action δ2Sþ of the matter metric is identical
to General Relativity, while the second decoupled sector
δ2S− is modified by a new mass term that vanishes in the
Minkowski space-time.
Therefore, as in General Relativity, there are no vector

dynamical degrees of freedom left in δ2Sþ, if we set

Ui ¼ 0. One can see that Ci is not dynamical. Its “equation
of motion” reads as Ci ¼ −V 0

i. Substituting into the action
gives δ2Sþ ¼ 0, so that Vi is arbitrary. This is due to the
diffeomorphism invariance of General Relativity.
In the action δ2S−, C−i is again nondynamical. Its

equation of motion reads in Fourier space

C−iðkÞ ¼ −
2M2

Plk
2

2M2
Plk

2 þ a2ð3ρ̄þ p̄ÞV
0
−iðkÞ; ð117Þ

and substituting into the action gives

δ2S− ¼ ð2πÞ3
Z

dkdτa4k2
�

M2
Plð3ρ̄þ p̄Þ

2M2
Plk

2 þ a2ð3ρ̄þ p̄Þ

× V 0
−jðkÞV 0

−jð−kÞ þ p̄V−jðkÞV−jð−kÞ
	
: ð118Þ

The vector V−i is now dynamical when 3ρ̄þ p̄ ≠ 0.
Therefore, we have two dynamical degrees of freedom
in the vector sector, associated with the hidden vector V−i.
Its equation of motion reads

−
∂
∂τ

�
a4M2

Plð3ρ̄þ p̄Þ
2M2

Plk
2 þ a2ð3ρ̄þ p̄ÞV

0
−jðkÞ

�
þ a4p̄V−jðkÞ ¼ 0:

ð119Þ

Thus, the mode V−i shows a gradient instability on
subhorizon scales in the radiation and matter eras, where
p̄ ¼ p̄γ > 0, and we recover the results obtained in
Refs. [13–15].
Let us consider in turns the inflationary, radiation, and

matter eras. In the inflationary era, Eq. (119) gives on
subhorizon scales V 00

− þ 4HV 0
− þ k2V− ¼ 0 (where we

omit the index i), so that the vector mode V− oscillates
with frequency ω ¼ �k. On superhorizon scales, we obtain
V 00
− − 2

τ V
0
− þ 3

τ2
V− ¼ 0. This is the same evolution equation

as for the tensor modes, and we obtain the same two
decaying solutions as in Eq. (110).
In the radiation era, on subhorizon scales, we obtain

V 00
− − k2

5
V− ¼ 0. This gradient instability leads to the two

exponential modes

k ≫ H∶ V�
− ∝ e�kτ=

ffiffi
5

p
: ð120Þ

On superhorizon scales, we again recover the same
behavior as for tensors, V 00

− þ 2
τ V

0
− − 1

τ2
V− ¼ 0, with the

power-law growing and decaying modes (109).
In the matter era, we obtain on subhorizon scales

V 00
− þ 2

τ V
0
− − 8k2

9H2
eqτ

2 V− ¼ 0, which gives the power-law

growing and decaying modes
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k≫H∶ V�
− ∝ τλ� with λ� ¼−

1

2
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32k2

9H2
eq

s
: ð121Þ

On superhorizon scales, we have V 00
− þ 4

τ V
0
− − 4τ2eq

τ4
V− ¼ 0.

Long after the radiation-matter equality, τ ≫ τeq, this gives
a constant mode and a decaying mode V− ∝ τ−3.
Let us estimate the magnitude of the unstable vector

mode V− at z ¼ 0, for a wave number k that goes beyond
the horizon at ak during the inflationary stage and goes
below the horizon at a0k during the radiation era. Collecting
the results above, we obtain

kV− ∼ kV−ðakÞ
�
HI

Heq

�
−3=2

�
aeq
af

�ð ffiffi
5

p þ2Þ=2

×

�
k

aeqHeq

�ð4− ffiffi
5

p Þ=2
e

k
aeqHeq

ð 1ffiffi
5

p −
ffiffi
2

p
3
ln aeqÞ: ð122Þ

After the horizon exit during the inflationary era, this mode
first decays as a−3=2 until the end of the inflationary era at
af. Next, it grows as að

ffiffi
5

p
−1Þ=2 during the radiation era, until

it enters the horizon. Then, its subhorizon behavior deviates
from the one of the tensor mode h− as it shows the
exponential growth (120) until the matter era starts where it
shows the power-law growth (121). These last two stages
give the exponential factor in Eq. (122), which is actually
dominated by the matter era growth factor. If we assume
that at horizon exit during the inflationary stage, we have
C− ∼ V−

0 ∼ kV− ∼HI=MPl, and we obtain for HI ∼
10−5MPl that kV− ≪ 1 at z ¼ 0 for k ≪ 0.3hMpc−1.
Therefore, on weakly nonlinear scales and below, the
growth of the hidden vector jeopardizes the perturbativity
of the model, and the gravitational metrics g1 and g2
become nonlinear in this regime. This implies that the
initial vector seeds at the horizon exit during the infla-
tionary era should be suppressed or that the scenario must
be supplemented by additional mechanisms that damp the
growth of this vector mode on small scales at high redshift.

D. Scalar modes

The same decoupling as for tensors and vectors occurs
for scalars. The matter sector Sþ is again identical to
General Relativity. The hidden sector S− does not couple to
matter and differs from General Relativity by mass terms.
Its quadratic action reads as

δ2S−¼
Z

d4xa2M2
Plfϕ−½−3H2ϕ−−9H2ψ−þ3H2∇2U−

−6Hψ 0
−−4H∇2V−þ2H∇2U0

−þ2∇2ψ−�
þψ−½3ðH0−H2Þψ−−2ð2H0þH2Þ∇2U−þ8H∇2V−

−4H∇2U0
−þ3ψ 00

−−∇2ψ−þ4∇2V 0
−−2∇2U00

−�
þð4H2−H0Þð∇V−Þ2g: ð123Þ

The equations of motion in this scalar sector can be easily
carried out and result in no dynamical degree of freedom.
Indeed, as the scalar U only enters linearly, it is non-
dynamical, and it provides a constraint equation that allows
us to substitute for ψ 00. The scalar V is also nondynamical,
and its equation of motion allows us to substitute for ψ 0.
Then, ϕ only enters linearly; hence, it is also nondynamical
and provides another constraint equation, when ψ is also
nondynamical. Thus, there are no new dynamical degrees
of freedom in the scalar sector.

E. Dynamical degrees of freedom in
Einstein-de Sitter space-time

To summarize the results from the previous sections, in
Minkowski space-time, we have two copies of General
Relativity and 4 dynamical degrees of freedom, associated
with the two massless gravitons.
Around the cosmological background, chosen to be the

early Universe Einstein-de Sitter solution (41) of the
equations of motion, the quadratic action separates as a
part δ2Sþ that describes the metric seen by matter and a part
δ2S− that describes a second hidden metric. The first part
δ2Sþ remains identical to General Relativity, with 2
dynamical degrees of freedom associated with the massless
graviton. The second part δ2S− contains new mass terms. It
generates 4 degrees of freedom, associated with a massive
graviton and a transverse vector that shows a gradient
instability. At this level, there are no new scalar dynamical
degrees of freedom and no ghosts.
We study the linear perturbations in the general case in

Appendix A, when we no longer assume sdll and sl to be
equal and the various metrics can have different Hubble
expansion rates. As the baryonic and dark matter metrics are
different, the quadratic action no longer separates in a sector
Sþ, which contains allmatter and remains identical toGeneral
Relativity, and a hidden sector S− that differs from General
Relativity by mass terms and is decoupled from matter.
However, from the Einstein equations, we find that linear
perturbationsbehave in the same fashion as in the simpler case
presented above. In the tensor sector, we have two massive
gravitons, which at high frequency and wave number have a
negligible mass and behave as in General Relativity. In the
vector sector, we can still separate fCi; Vig and fC−i; V−ig.
Again, there are only 2 propagating degrees of freedom,
associated with V−i, and they still show the gradient insta-
bility (120) in the radiation era. In the scalar sector, no new
dynamical degrees of freedom or ghosts appear.
In the next section, we will analyze the existence of

ghosts and the cutoff of the theory by performing a
Stückelberg analysis.

VI. ANALYSIS OF GHOSTS BY
THE STÜCKELBERG METHOD

As shown by the explicit computation of linear pertur-
bations around the Einstein-de Sitter cosmological
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background, in that case, the system decouples in the two
sectors Sþ and S−. The sector Sþ contains the matter metric
perturbations δgμν and the matter fluid perturbations, such
as δρ, and it coincides with General Relativity. It is the
sector relevant for observations (at this linear order). The
hidden sector S− contains the other metric components,
δg−μν, and is not sourced by matter. This shows that around
the cosmological background it is more convenient to
decompose the metric degrees of freedom in these two
metrics, rather than the two gravitational metrics δglμν. In
particular, it means that the two sets δglμν are strongly
coupled and that one cannot study the fluctuations of g1μν
while neglecting its coupling to g2μν.
In contrast, in vacuum, we only have two independent

Einstein-Hilbert terms, giving rise to two independent
copies of General Relativity. Therefore, around the
Minkowski background, the relevant decomposition is over
the two gravitational metrics δglμν. This shows that the
physics is quite different over these two backgrounds, and
different treatments are appropriate.

A. Explicit quadratic action around
Einstein-de Sitter background

We now check with the Stückelberg method that there is
no Boulware-Deser ghost at the linear order of perturba-
tions around the cosmological background. In massive
gravity or bigravity theories, a Boulware-Deser ghost [31]
can appear in the scalar sector because of the new degrees
of freedom, associated with the additional metric or the loss
of gauge invariance. In General Relativity, there are no
scalar dynamical degrees of freedom around Minkowski or
Einstein-de Sitter backgrounds because the gauge invari-
ance removes 2 scalar degrees of freedom (among the four
scalar components, two are nondynamical fields or
Lagrange multipliers, and the other two are pure gauges).
In a bimetric theory like the one we consider in this paper,
we have two metrics, but only the diagonal gauge invari-
ance is left. Therefore, as compared to two independent
copies of General Relativity, we have additional degrees of
freedom, as one gauge invariance is missing in order to
remove a few of them. Then, some of these new degrees of
freedom may turn out to be ghosts.
The sector Sþ being identical to General Relativity, it is

healthy and it makes full use of the diagonal gauge
invariance. We will try to restore full diffeomorphism
invariance by performing a Stückelberg analysis on the
decoupled sector. Because S− is decoupled (at linear order),
we can study the quadratic action (123) alone. Around the
cosmological background, a change of coordinates xμ →
xμ þ ξμ corresponds at linear order to a change of the metric

δgμν → δgμν −
∂ḡμν
∂xσ ξσ − ḡσν

∂ξσ
∂xμ − ḡμσ

∂ξσ
∂xν : ð124Þ

Because we have lost gauge invariance, the action δ2S− is
not invariant when δg−μν transforms as in (124). Following

the Stückelberg formalism, we can introduce an additional
field ζμ to restore the gauge invariance, by writing [32]

δg−μν ¼ δ̂g−μν þ
∂ḡ−μν
∂xσ ζσ þ ḡ−σν

∂ζσ
∂xμ þ ḡ−μσ

∂ζσ
∂xν : ð125Þ

Then, the action δ2S−ðδ̂g−μν; ζμÞ is invariant under the
combined gauge transformation where δ̂g−μν transforms as
in (124), while ζ transforms as ζμ → ζμ þ ξμ. By choosing
another gauge condition than ζμ ¼ 0, one can often read
on the Lagrangian terms involving ζμ the behavior of
dangerous modes. Focusing on the scalar sector, with
ζμ ¼ ημν∂νπ, this gives for the scalar perturbations of the
hidden metric δg−μν

ϕ− ¼ ϕ̂− −Hπ0 − π00; ψ− ¼ ψ̂− þHπ0

V− ¼ V̂− þ π0; U− ¼ Û− þ π: ð126Þ

Substituting into the quadratic action (123), one finds that
the Stückelberg field π does not cancel out because the
action δ2S− is not gauge invariant. We could expect
quadratic terms with up to four derivatives from (126),
which would be the usual signature of the Boulware-Deser
ghost. However, the explicit computation from Eq. (123)
shows that all third and fourth-order time derivatives cancel
out and the action can be written in terms of first-order time
derivatives. This means that there is no Ostrogradsky ghost,
associated with higher derivative terms in the Lagrangian,
at linear order around the cosmological background.
For completeness, the explicit expression of the action is

given by δ2S− ¼ δ2Sð0Þ− þ δ2Sð1Þ− þ δ2Sð2Þ− , where δ2Sð0Þ− is
given by Eq. (123) where we add a hat to the metric
variables, δ2Sð1Þ− is the linear part over π, and reads as

δ2Sð1Þ− ¼
Z

d4xa2M2
Plfϕ̂−3H½H∇2π− ðH2þ 2H0Þπ0�

þ ψ̂−½ðH2þ 2H0Þð3π00 − 2∇2πÞ
þ 3ðH3þ 4HH0 þ 2H00Þπ0�
− 2ð2H2þH0Þð∇2V̂−Þπ0 − ð∇2Û−Þ½ðH2þ 2H0Þπ00
þ ðH3þ 4HH0 þ 2H00Þπ0�g; ð127Þ

which only involves first-order time derivatives if we
integrate π00 by parts, and δ2Sð2Þ− is the quadratic part over
π and reads as

δ2Sð2Þ− ¼
Z

d4x
a2M2

Pl

2
f−3ðH2 þ 2H0ÞH0π02

þ ð7H2H0 þ 2H02 þ 2HðH3 þH00ÞÞð∇πÞ2g;
ð128Þ

which only contains first-order time derivatives.
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As was the case for the original action (123), we can
check from the action δ2S− ¼ δ2Sð0Þ− þ δ2Sð1Þ− þ δ2Sð2Þ− that
there are no propagating modes and π is not dynamical.
This is not apparent from the quadratic part (128), but π is
coupled to the other metric components through (127).
Then, for instance, U− again enters linearly into the action
and provides a constraint that removes another degree of
freedom. After successive simplifications, one finds that
there are no physical dynamical modes left.
We obtain the same result in Appendix A for the more

general case where the different metrics follow different
Hubble expansion rates.

B. Goldstone bosons

We now study how ghosts may appear beyond the linear
perturbation theory investigated in the previous section and
beyond the Einstein-de Sitter case, when the baryonic and
dark matter metrics are different. We again follow the
Stückelberg formalism, and we first show that we do not
need to explicitly compute the action to recover the
previous results at linear order, in the regime of short time
and length scales as compared to the horizon and the age of
the Universe. Next, we discuss the nonlinear terms. Notice
that our analysis remains perturbative around Friedmann-
Lemaître-Robertson-Walker (FLRW) backgrounds
throughout and that a full investigation of the presence
of ghosts should be carried out non-perturbatively.
As noticed above, in the absence of matter, our bimetric

theory reduces to two copies of General Relativity, and it is
therefore ghost free. This corresponds to the Minkowski
background, and one would like to extend this result to the
case of FLRW spaces, where the coupling of the two
metrics is present through the matter actions and might
reintroduce a Boulware-Deser ghost. As in (125), this can
be investigated by introducing four Goldstone fields ζμ of
which the role is to restore the full diffeomorphism
invariance of the theory, which is broken by the presence
of the matter actions. The order parameter of the breaking
of the two copies of diffeomorphism invariance to the
diagonal subgroup is the Hubble parameter of the Universe.
We will see that it plays the same role as the mass term for
gravitons in massive bigravity [10].
In the following, we consider the case where al ¼ bl

(i.e., all metrics have a common conformal time), so that
the background vierbeins are diagonal with

ēalμ ¼ alδaμ; ð129Þ

and we focus on short times compared to the age of the
Universe and short distances compared to the horizon,

∂ ln hμν ≫ H: ð130Þ

Here, hμν stands for the metric perturbations, and H stands
for the conformal Hubble expansion rates, which we take to

be of the same order for the different metrics. In contrast
with Sec. VI A, we do not restrict to the early-time regime
(41). Hence, the baryonic and dark matters follow different
metrics gμν and gdμν with different expansion rates, and sdl
are different from sl.
The matter actions break the two copies of diffeomor-

phism invariance associated with the two Einstein-Hilbert
actions. However, in the approximation (130), we can
reintroduce the broken symmetry invariance by introducing
Stückelberg fields ϕμ

l and defining the composite object

glμν ¼ ĝαβ
∂ϕα

l

∂xμ
∂ϕβ

l

∂xν : ð131Þ

The metric glμν is now invariant under the combined
transformations

ĝlμν →
∂xλ
∂x0μ

∂xρ
∂x0ν ĝlλρ;

∂ϕα
l

∂xμ →
∂x0α
∂xλ

∂ϕλ
l

∂x0μ : ð132Þ

We recover the initial action by the gauge choice ϕμ
l ¼ xμ.

This is the nonlinear extension of (125), with ϕμ ¼ xμ þ ζμ,
where we neglect derivatives of the cosmological back-
ground ∂ḡμν thanks to the approximation (130). The
definition (131) can also be written at the level of the
vierbeins as

ealμ ¼ êalν
∂ϕν

l

∂xμ : ð133Þ

It is convenient to separate the diffeomorphisms into the
diagonal ones, which are not broken by the presence of
matter, and the broken ones in the complementary directions
which belong to the group quotient ðdiff1 × diff2Þ=diffdiag

ϕμ
l ¼ xμ þ ξμ þ γlπ

μ; γ1 ≠ γ2: ð134Þ

Here, ξμ is the diagonal diffeomorphism, while πμ is an
arbitrary complementary direction, set by the constant
coefficients γl. Then, the vierbeins (133) read

ealμ ¼ êalμ þ êalν

�∂ξν
∂xμ þ γl

∂πν
∂xμ

�
: ð135Þ

The total action becomes SðealμÞ → Sðêalμ; ξμ; πμÞ, which is
independent of ξμ as the diagonal diffeomorphism invariance
is not broken. The field πμ cannot be gauged away, as if
annulled in g2μν by a diagonal change of coordinates it would
reappear in theg1μνmetric andviceversa.Hence, theπμ fields
parametrize orthogonal directions to diagonal gauge
transformations.
To investigate the Boulware-Deser ghosts, we can focus

on the fields πμ, which are the Goldstone bosons of the
broken symmetry, and consider the scalar mode
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πμ ¼ ∂μπ; ð136Þ

for a scalar π. Because of the approximation (130), it does
not matter whether ∂μ is defined with respect to ημν or any
of the metrics ḡμνl .
From the definition (8), the baryonic matter and dark

matter vierbeins read as

ea⋆μ ¼ s⋆1êa1μ þ s⋆2êa2μ þ ðs⋆1γ1êa1ν þ s⋆2γ2êa2νÞ∂ν∂μπ;

ð137Þ

where the subscript ⋆ stands for b or d (i.e., baryonic or
dark matter). The field π could only be removed from the
matter action by a change of coordinate if γ1 ¼ γ2,
associated with a diagonal diffeomorphism. On the other
hand, if we choose γ1 ¼ 1=s2⋆1 and γ2 ¼ −1=s2⋆2, the field π
disappears from Eq. (137) at the linear level. This corre-
sponds to the choice used in Sec. VI A, where the scalar π
in (126) lived in the sector S− and was not coupled to
matter. Indeed, we can check that with this choice of
coefficients γl, π contributes to the sector S− as defined by
Eq. (101) and does not contribute to the sector Sþ defined
by Eq. (100). This is only possible in the early-Universe
regime, where the baryonic and dark matter metrics are
identical, with sl ¼ sdl. In this section, we go beyond this
regime, and we do not assume sl ¼ sdl. Then, it is not
possible to find coefficients γl that remove the field π from
both the baryonic and dark matter actions.
Let us now focus on the scalar π alone, setting the

other metric modes to zero, that is, êalμ ¼ ēalμ. The matter
vierbeins (137) contain second derivatives ∂2π. Therefore,
the equations of motion for π coming from the matter
actions may contain up to four derivatives and may lead to
the propagation of extra ghostlike modes [32]. Specifically,
the Euler-Lagrange terms in the equations of motion for π
coming from the matter action take the form

E⋆1 ∝ ∂ν∂μ

�
δS⋆
δea1μ

ēa1ν

�
∝ ∂ν∂μð

ffiffiffiffiffiffiffiffi
−g⋆

p
Tμσ⋆ e⋆νσÞ; ð138Þ

where we used the approximation (130) to neglect back-
ground derivatives. Using the equation of motion of the
matter, ∇⋆μTμν⋆ ¼ 0, which gives

∂μð
ffiffiffiffiffiffiffiffi
−g⋆

p
Tμν⋆ Þ ¼ −

ffiffiffiffiffiffiffiffi
−g⋆

p
Γν⋆μλT

μλ⋆ ; ð139Þ

and the property

∂μe⋆aλ ¼ e⋆aνΓν⋆λμ − e⋆bλωb⋆aμ; ð140Þ

where ω⋆ab
μ is the spin connection defined by

ωab⋆μ ¼
1

2
eaν⋆ ð∂μeb⋆ν − ∂νeb⋆μÞ −

1

2
ebν⋆ ð∂μea⋆ν − ∂νea⋆μÞ

−
1

2
eaρ⋆ ebσ⋆ ð∂ρe⋆cσ − ∂σe⋆cρÞec⋆μ; ð141Þ

we can write Eq. (138) as

E⋆1 ∝ ∂νð ffiffiffiffiffiffiffiffi
−g⋆

p
Tμσ⋆ e⋆bσωb⋆aμÞ: ð142Þ

The matter vierbeins (137) take the form ea⋆μ ¼
ēa⋆μ þ Āaν⋆ ∂ν∂μπ, for a given matrix Āaν⋆ , and substituting
into the definition (141), we find ωab⋆μ ¼ 0, within the
approximation (130). As a result, well inside the horizon
and on timescales much shorter than the age of the
Universe, we find that the contributions to the equations
of motion for π coming from the matter terms do not
involve higher-order derivatives and therefore do not give
rise to ghosts. This is similar to what happens in massive
bigravity [10].
This result can be understood in a simpler way that also

applies to the two Einstein-Hilbert terms. Within the
approximation (130), the matter vierbeins (137) take the
form

ea⋆μ ¼ ēa⋆μ þ ēa⋆ν∂ν∂μ

�
s⋆1γ1a1 þ s⋆2γ2a2

a⋆
π

�
; ð143Þ

where we used Eq. (129) for the background vierbeins.
This corresponds to a diffeomorphism xμ → xμþ
∂μ½ðs⋆1γ1a1 þ s⋆2γ2a2Þπ=a⋆�, so that the matter action
reads as

ffiffiffiffiffiffiffiffi−g⋆
p

L⋆ðg⋆μνÞ ¼ ffiffiffiffiffiffiffiffi−g⋆
p

L⋆ðḡ⋆μνÞ. The gravita-
tional vierbeins ealμ also take the form (143), where the
fraction is replaced by a simple factor γl. Again, the
invariance of the Ricci scalar under changes of coordinates
implies that the Einstein-Hilbert terms read asffiffiffiffiffiffiffiffi−gl
p

RðglμνÞ ¼ ffiffiffiffiffiffiffiffi−gl
p

RðḡlμνÞ. Therefore, the scalar π
only appears in the two Einstein-Hilbert actions and the
two matter actions through the determinants

ffiffiffiffiffiffi−gp
. This

gives factors of the form

ffiffiffiffiffiffi
−g

p ¼ a4 det

�∂ϕμ

∂xν
�
; ð144Þ

with ϕμ ¼ xμ þ Ā∂μπ. Thus, the action is a sum of four
terms of the form

S ∝
Z

d4x
S̄
4!
ϵμ1μ2μ3μ4ϵ

ν1ν2ν3ν4
∂ϕμ1

∂xν1
∂ϕμ2

∂xν2
∂ϕμ3

∂xν3
∂ϕμ4

∂xν4 ð145Þ

for coefficients S̄ related to the Ricci scalars of the two
metrics and the matter contents in baryons and CDM,
which vanish thanks to the antisymmetry of the Levi-Cività
tensor [33].
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Thus, we have found that, at leading order in the
approximation (130), and setting the other metric modes
hlμν to zero, the action does not contain higher-order
derivatives such as ð∂2πÞ2. This agrees with the explicit
expression (128) for the quadratic action, obtained without
the approximation (130). There, we can see that the leading
termsM2

PlH
2ð∂2πÞ2 cancel out and the action only includes

the subleading contributions M2
PlH

4ð∂πÞ2, with an extra
factorH2 and two fewer derivatives on π. Thus, there is no
Boulware-Deser ghost around the cosmological back-
ground, at all orders over π but in the small-scale and
short-time approximation (130) when we neglect the other
metric modes hlμν.
We analyze the terms h∂2π in Appendix B. We find that,

even when the baryonic and dark matter metrics are
different, the Stückelberg field π only couples to the metric
combination h− as defined in Eq. (101), as in the case sdl ¼
sl that was explicitly considered in Sec. VI A. Besides,
such terms h∂2π can be written in terms of first-order time
derivatives, after integrating by parts over π00; hence, they
do not give rise to ghosts.

C. Cutoff scale

We now investigate at which scale the terms we have
neglected above may introduce a ghost. As can be seen
from the explicit action (128) and the terms inM2

PlH
4ð∂πÞ2,

the canonically normalized Stückelberg field π̃ is given by

π̃ ¼ Λ3
3π with Λ3 ¼ ðMPlH2Þ1=3; ð146Þ

up to a numerical factor of order unity. Introducing the
canonically normalized gravitons h̃μν ¼ MPlhμν, the terms
that we have neglected above correspond to couplings
between π̃ and h̃ and derivatives of the background. They
take the form

M2
PlH

2
h̃nH2m−p∂pπ̃m

Mn
PlΛ3m

3

¼ h̃n∂pπ̃m

Λnþpþm−4 ; ð147Þ

and they are suppressed by a scale Λ with

Λ ¼ Λ3

�
Λ3

H

�ð2nþ2m−p−2Þ=ðnþmþp−4Þ
: ð148Þ

We have n ≥ 0, 2m − p ≥ 0, and Λ3 ≫ H. Therefore,
Λ ≥ Λ3, except in the case n ¼ 0 and 2m − p ¼ 1. This
corresponds to the combination H∂2m−1π̃m, where one
partial derivative on π̃ is replaced by a background
derivative H. We have already found that there is no ghost
in the quadratic action; therefore, such a term can only give
rise to ghosts if m ≥ 3. This yields for the lowest cutoff
scale

Λcut ¼ Λ3

�
H
Λ3

�
1=4

¼ ðMPlH3Þ1=4; ð149Þ

which corresponds to Λcut ∼ 1 AU ∼ 10−6 pc. Therefore, at
energies below Λcut, there is no ghost in the model, but the
theory cannot be trusted on scales smaller than 1 AU, and
new contributions must be added to the action to ensure that
there are no ghosts. On the other hand, it can be used as an
effective theory on all larger scales, which are relevant for
cosmology. The cutoff scale that we have deduced may be
modified by nonperturbative effects which are not inves-
tigated here.
The fact that the cutoff scale is of order 1 AU prevents

our analysis from being applicable in most parts of the
Solar System. However, close to compact objects, or in the
Solar System, on scales greater than 1 AU and in the weak
gravitational field regime, we can use the quadratic theory
described in Se. VI A if we can neglect the dark matter. We
can then separate the action in the sectors Sþ and S−, with
the dangerous mode π living in the sector S− at this order.
Therefore, the field π does not couple to matter and never
enters the nonlinear regime due to matter overdensities. At
the classical level, π ¼ 0 is a solution of the equations of
motion (with all h−μν ¼ 0), even when there are baryonic
matter fluctuations. Then, there is no need for a Vainshtein
mechanism, down to the scale Λ−1

cut.

VII. LINKS WITH DOUBLY COUPLED
BIGRAVITY

The models that we have constructed have similarities
with doubly coupled bigravity [13–15]. In doubly coupled
bigravity, there is no scalar field, and hence the Jordan-
frame vierbein couplings s� are constant, such as

sl ¼ sdl ¼ sð0Þl ; ð150Þ
with a universal coupling to all types of matter, i.e.,
baryons, cold dark matter, and radiation. In both the matter
and radiation eras, the scale factors are in the symmetric
case

al ¼ bl; Hl ¼ H; ð151Þ
implying that the two metrics are proportional. The late-
time acceleration of the expansion of the Universe is
obtained by adding a potential term,

SV ¼ Λ4

Z
d4x

X
ijkl

mijklϵμνρσϵabcdeaiμe
b
jνe

c
kρe

d
lσ; ð152Þ

comprising one scale and a completely symmetric tensor
mijkl which, up to rescaling, is associated to four coupling
constants. This term is responsible for the late-time accel-
eration where Λ4 plays the role of the vacuum energy.
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Moreover, the potential term gives rise to a mass matrix for
the gravitons of which the order of magnitude corresponds
to Λ4=M2

Pl ∼H2
0, i.e., very light gravitons.

At the background level, and as long as the scalar field is
negligible, the bimetric models considered here coincide
with the bigravity theories. They differ when it comes to the
phase of acceleration. In bigravity, this is simply realized as
Λ4 plays the role of dark energy. In scalar-bimetric models,
there is no vacuum energy, and the acceleration is simply
due to the rapid variation of the scalar factors s�ðφÞ, which
imply that the baryonic and dark matter metrics do not
mimic the ones of the Einstein-de Sitter space-time. In the
acceleration phase in doubly coupled bigravity,

r2 ≠ r1; ð153Þ

that is, the two gravitational metrics do not have the same
conformal time. For scalar-bimetric models, we have seen
that natural models obey r1 ¼ r2 ¼ 1 even at late times. In
a similar fashion, in bigravity, the consistency of the
Friedmann equations gives a constraint equation that
admits two branches of solutions [13–15], the interesting
one for cosmology being Ha1=r1 ¼ Ha2=r2 as noticed in
Eq. (36). In our case, the scalar field provides an additional
degree of freedom, and there is no such constraint. As in
General Relativity, the Friedmann equations and the
equations of motion of the various fluids are automatically
consistent. This follows from the fact that Eq. (35) is no
longer a constraint equation, because of the scalar-field
dynamics. As we checked in Sec. III C, the equation of
motion of the scalar field is not independent of the
Friedmann equations and of the equations of motion of
the other fluids, as it can be derived from the latter.
When it comes to the scalar perturbations, bigravity in

the doubly coupled case and scalar-bimetric models differ
more drastically as the cosmological perturbations of the
scalar field imply the existence of a scale, related to its
effective mass, such that for large enough wave numbers
gravity is modified. This leads to a fifth force that is of
order of the Newtonian force on cosmological scales at
z ¼ 0. Moreover, as the scalar field evolves in the late-time
Universe, the effective Newton constants (they are not
unique anymore but depend on the species) drift with time.
This has also an effect on cosmological perturbations.
Vector and tensor perturbations in the radiation era have

similar behaviors in doubly coupled bigravity and scalar-
bimetric models, with both tensor and vector instabilities.
In the matter era, the nontrivial mass matrix for the two
gravitons in doubly coupled bigravity implies that the two
gravitons oscillate, leading to birefringence [34]. Moreover,
in doubly coupled bigravity, the speed of the gravitational
waves differs from unity in the late-time Universe as the
ratio between the two lapse functions of the two metrics is
not equal to 1 anymore. This is severely constrained by the
LIGO/VIRGO observations. In contrast, in scalar-bimetric

models, we have shown that symmetric solutions where
al ¼ bl can be obtained even during the acceleration
phase. In this case, the speed of the gravitational waves
is always unity. Moreover, at the linear level, there is no
mixing between the tensor and vector instabilities that
affects the hidden modes and the matter metrics.
Finally, let us note another analogy between the bimetric

models presented here and doubly coupled bigravity.
The breaking of the full diffeomorphism invariance to
the diagonal subgroup is parametrized by the mass of the
gravity m in the latter and the Hubble expansion rate H in
the former. In both cases, the strong coupling scale is given
by Λ3 ¼ ðv2MPlÞ1=3, where v ¼ H, m is the order param-
eter of each case. At energies larger than this scale, ghosts
are present, and a completion of the models is required.
Notice that in the scalar-bimetric models ghosts may
actually appear at the lower scale ðH3MPlÞ1=4. In both
theories, around compact objects in the weak gravitational
regime for distances larger than their respective cutoff
scales, the scalar Goldstone mode decouples without the
need for the Vainshtein mechanism.
On the other hand, as we are now going to analyze, the

time variation of the scalar field in scalar-bimetric models
poses new problems which are late-time issues, i.e., not
only restricted to the radiation era, contrary to what
happens in bigravity [15].

VIII. RECOVERING GENERAL RELATIVITY
ON SMALL SCALES?

As shown in Fig. 7, the scenarios obtained so far are not
consistent with small-scale tests of General Relativity.
First, the fifth force is too large, being about twice
stronger than Newtonian gravity at z ¼ 0, as measured
by the ratio μϕ=Gϕ − 1. Second, the time derivative of the
effective Newton constant is too high at z ¼ 0, with
d lnG=dt ∼ 0.7H0 whereas the Lunar Laser Ranging
(LLR) experiment gives the upper bound 0.02H0

(d lnG=dt < 1.3 × 10−12 yr−1) [19]. Strictly speaking, this
constraint lies beyond the realm of validity of the models as
coming from scales below 1 AU. On the other hand, less
stringent constraints on the planetary orbits exist [35] at the
10−11 level and should be fulfilled. Hence, we will use the
LLR bound as a template for any UV completion of scalar-
bimetric models. Third, the change of the Newton constant
from its large-redshift value to its current value is too large.
Indeed, we obtain an increase of G of about 50% from its
high-z asymptote to its value at z ¼ 0. Here, we normalize
the Planck mass at z ¼ ∞ to its measured value in the Solar
System today and define the cosmological parameters in
terms of the same Planck mass in Eq. (30). Instead, we
should normalize both the Newton constant at z ¼ 0 and
the cosmological parameters (i.e., the matter densities) to
the measured value of GN0. However, we would face the
same problem. Because we have no dark energy, to recover
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the Λ-CDM expansion at high z with the same background
densities, we need the effective Newton constant at high z
to be the same as in the Λ-CDM scenario, which is also the
measured value today. Thus, we need GN at z ¼ 0 to be
equal to GN at z ≫ 1, unless we modify the dark matter and
radiation densities by a similar amount (with respect to the
Λ-CDM reference). However, it is not possible to change
the background densities by 50% while keeping a good
agreement with the cosmic microwave background and big
bang nucleosynthesis constraints.
These three problems are not necessarily connected. In

modified-gravity models, the fifth force is assumed to be
damped in the local environment by nonlinear screening
mechanisms (which use the fact that the Solar System
length scale is much smaller than cosmological distances
and/or the local density is much higher than the cosmo-
logical background densities). However, it is usually
assumed that the time dependence of the Newton constant,
and often its value, remain set by the cosmological back-
ground, which acts as a boundary condition. In particular,
derivative screening such as the Vainshtein screening,
where the nonlinear terms are invariant under φ → φþ
αt with arbitrary α, does not seem to prevent a slow drift of
Newton constant. Then, unless the local Newton constant
can be significantly decoupled from the cosmological
background solution (e.g., through amore efficient screening
that remains to be devised), we need to modify the back-
ground solution itself to decrease both d lnG=dtðz ¼ 0Þ
and ΔG ¼ Gðz ¼ 0Þ − Gðz ¼ ∞Þ.

A. Reducing d lnG=dt

1. Constant G?

The most elegant way to reduce d lnG=dt below the
Hubble timescale would be to keep it (almost) constant, so
that one would not need any tuning to decrease the time
derivative precisely at z ¼ 0. Moreover, this would ensure
that G would be about the same at z ¼ 0 and z ≫ 1.

Scenarios with common conformal time.—Let us first
consider the case of the scenarios with rl ¼ 1, described
in Sec. III F. Then, from Eq. (84), a constant G corresponds
to a constant λ in Eq. (53). Unfortunately, the solution (54)
does not exist for any λðaÞ, as the argument of the square
root needs to remain positive. Numerically, we found that it
is not possible to keep a constant λðaÞ ¼ 1, at all times.
This can be understood from the behavior of the scales
factors al. As noticed in Fig. 3 and explained below
Eq. (56), the behavior of the scale factors a� and Hubble
expansion rates H� is almost independent of the evolution
of the coefficients sl, because we impose a Λ-CDM-like
expansion for the baryonic metric. This implies that the
ratios al=a decrease with time, as the gravitational metrics
glμν follow an expansion close to the Einstein-de Sitter
prediction (because we do not put any cosmological

constant or dark-energy component that would play the
same role). Then, to keep the square root real in Eq. (54),
λðaÞmust typically increase with time. In any case, its value
at z ¼ 0 must be greater than unity. From the values of
al=a read in Fig. 3, we find λðz ¼ 0Þ ≳ 1.5. This means
that Newton’s constant G at z ¼ 0 must be about 50%
greater than its value at high redshift.
We show in Fig. 12 the Newton constants for the

baryonic and dark sectors obtained in this manner, with
the function λ used for Fig. 3 such that dλ=da ¼ 0 at z ¼ 0.
This allows us to reduce d lnGϕ=Hdt at all redshifts below
0.3 and make it smaller than the Lunar Laser Ranging upper
bound at z ¼ 0. On the other hand, for the dark sector, we
still have the generic feature d lnGϕd

dm=Hdt of order unity at
z ¼ 0. Making λðaÞ almost constant at low z is not so
artificial, in the sense that it is a simple constraint on the
coefficients sl, which are likely to be correlated in any case.
Moreover, the plateau for Gϕ can be reached at z≳ 1 and
does not need to be tuned at z ¼ 0 precisely. However, a
few numerical tests suggest that it is difficult, or impossible,
to make the transition for Gϕ occur at much higher redshifts,
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FIG. 12. Upper panel: baryonic sector and dark sector Newton
constants, normalized to GN. Middel panel: time derivatives
d lnG=dt normalized to H. Lower panel: growth factors fσ8
and fdmσdm8.

PHILIPPE BRAX and PATRICK VALAGEAS PHYS. REV. D 97, 103516 (2018)

103516-28



such as z ¼ 10. This tends to make s2 negative at
intermediate redshifts, amplifying the dip already seen in
Fig. 3, and we prefer to keep the coefficients sl positive
(but this requirement may be unnecessary).
From the arguments discussed above, if the sum s21 þ s22

reaches a constant value at late times, or satisfies a finite
upper bound, the decrease of the ratios al=a must even-
tually stop in the future (a simple case is where each
coefficient sl eventually becomes constant). Then, as the
gravitational metrics, the baryonic metric must recover an
Einstein-de Sitter expansion, unless the energy density and
pressure of the scalar field become dominant. Therefore, in
this framework where the acceleration of the expansion
is not due to an additional dark-energy fluid, the self-
acceleration is only a transient phenomenon. An alternative
would be that the Newton constant resumes its growth
in the future, but this would introduce an additional
tuning as the slow down of d lnGϕ=Hdt would be a
transient phenomenon that must be set to occur precisely
around z ≃ 0.
It is interesting to note that the nonsymmetric solutions,

such as (53), give rise to behaviors beyond those obtained
in models where the baryonic and dark matter metrics
are simply given by different conformal rescalings
of a single Einstein-frame metric. There, we only have
two free functions, AðφÞ and AdðφÞ, with gμν ¼ A2g̃μν and
gdμν ¼A2

dg̃μν. This would correspond for instance to s1 ¼ A
and s2 ¼ 0; that is, there is no second gravitational metric.
As there is only one coupling A, both the baryonic scale
factor a and the baryonic Newton constant Gϕ depend on
AðφÞ and run at the same rate. This means that it is not
possible to have a self-accelerated expansion, driven by
AðφÞ, while keeping Gϕ constant. In the bimetric scenario,
even in the common conformal time case, we can take
advantage of the two free functions s1ðφÞ and s2ðφÞ to keep
a constant Newton strength Gϕ while having self-accel-
eration. However, as explained above, this can only happen
for a finite time (if we require sl > 0), and we cannot
reduce the gap ΔG ¼ Gðz ¼ 0Þ − Gðz ¼ ∞Þ. Therefore,
this scenario is not sufficient to make the model agree
with observational constraints. Presumably, increasing the
number of metrics, hence of degrees of freedom and free
functions of the model, would make it increasingly easy to
reconcile a constant Newton strength with self-acceleration.

Scenarios with different conformal times.—In the case of
the scenario (62), with rl ≠ 1, we explicitly checked that
we can build solutions such that Gϕ remains constant at all
times, by tuning the factors rl. More precisely, from
Eq. (84), a constant Gϕ corresponds to

dGϕ

d ln a
¼ 0∶

X
l

2slrl
dsl
d ln a

þ s2l
drl
d ln a

¼ 0: ð154Þ

Using the expressions (60), we can write fdsl=d ln ag in
terms of fdrl=d ln ag. This determines for instance the
derivative dr2=d ln a while keeping r1 free, so that this
family of solution is still parametrized by a free function
r1ðaÞ. However, this usually gives Gψ ≠ Gϕ, see Eq. (84),
with a relative deviation of order unity. To be consistent
with Solar System data, in particular with the Shapiro time
delay that measures the travel time of light rays in
gravitational potentials, we must have jψ=ϕ − 1j ≤
5 × 10−5 [36]. On the other hand, as explained in
Sec. III G, we need r1 ¼ 1 (or r2 ¼ 1) at z ¼ 0 to comply
with the multimessenger gravitational waves event
GW170817. This would give both s2 ¼ 0 and Gψ ¼ Gϕ

at z ¼ 0. However, when we try to combine Eq. (154) with
r1 → 1 at z ¼ 0 in a few numerical tests, we find singular
behaviors with b2 becoming negative before z ¼ 0 and
a2 → 0 at z ¼ 0. This is somewhat reminiscent of the
impossibility to achieve a constant Gϕ in the simpler case
r1 ¼ r2 ¼ 1 shown in Fig. 12. Because the scenarios rl ≠
1 already require some tuning, with jr1 − 1j < 3 × 10−15 at
z ¼ 0, we do not investigate further this family of solutions.

2. Constant sl at late times

A natural solution to obtain a small d lnG=dt at low z is
to consider models where the coefficients sl reach a
constant at late times. This also removes any fifth force
on baryons, as β ¼ 0 from Eq. (66). However, this also
makes the baryonic metric expansion rate converge again to
an Einstein-de Sitter behavior, in agreement with the simple
solution of Sec. III D. The deviation of s21 þ s22 from unity
in this late-time asymptote again corresponds to a different
value for the associated Newton’s constant, as compared
with the one obtained at high redshift.
We show in Fig. 13 our results for the symmetric solution

of Fig. 1, which is modified at late times so that the
baryonic coefficients are constant for a > 0.9. In terms of
these coefficients, this model is rather simple as the
accelerated expansion of the Universe is a transient
phenomenon, due to the transition of the coefficients si
between two constant asymptotes. By requiring the Hubble
expansion rate to follow the Λ-CDM history until z≳ 0.1,
we make the transition to the final Einstein-de Sitter
behavior occur in a very small redshift interval. This leads
to a sharp decrease for the baryonic expansion rate HðzÞ,
which suddenly drops to the expansion rate Ha1 ¼ Ha2 of
the gravitational metrics. This also leads to a sudden
increase in the growth rate of large-scale structures, which
resumes the faster growth associated with Einstein-de Sitter
cosmologies.
Even though the change of the coefficients sl is very

small, as compared with the solution of Fig. 1, this leads to
a change for the Hubble expansion rate of order unity.
Indeed, by making the coefficients si constant at late times,
we change their time derivative dsi=dτ from a quantity of
order 1=H0 to zero over a small time Δτ. This yields a
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divergent second derivative d2sl=dτ2 ∝ 1=ðΔτÞ. However,
from Eq. (26), we can see that d lnH=d ln a, being a
second derivative of the scale factor, contains a term
such as d2sl=dτ2 and also grows as 1=ðΔτÞ. Then, even
if we let the transition time Δτ go to zero, the change of H
remains finite and of order unity, in agreement with
Fig. 13. The drop of HðzÞ at low z to about 60%
of the Λ-CDM extrapolation H0 implies a deviation of
the distance modulus, μ ¼ 5 log10ðdL=10 pcÞ, of Δμ ¼
−5 log10ð0.6Þ ≃ 1.1. However, the dispersion of the dis-
tance modulus of observed type Ia supernovae in the range
0.01 < z < 1 is of order 0.3, before binning [37], and does
not show such a steep step. Therefore, the Hubble diagram
shown in Fig. 13 is ruled out by low-redshift supernovae.
In addition, we still have a total increase of G of about

50% between the high-z and low-z values of the effective
Newton constant. Therefore, this scenario would not solve
this third problem in any case.

B. Need for screening beyond quasistatic
chameleon mechanisms

We have seen in the previous section that the coefficients
sl are unlikely to have reached constant values by z ¼ 0, to

be consistent with the low-z Hubble diagram. This yields a
fifth force that is of the same order as the Newtonian force
on cosmological scales. All scenarios also imply a decrease
of order 50% of the effective Newton constant at higher
redshifts, which makes it impossible to recover the refer-
enceΛ-CDM expansion rate unless the matter and radiation
densities are also modified. This means that such scalar-
bimetric models can only satisfy observational constraints
if gravity in the Solar System is decoupled from its
behavior on cosmological scales.
Within modified-gravity scenarios, the recovery of

General Relativity on small scales is often achieved by
introducing nonlinear screening mechanisms that damp the
effect of the fifth force. For instance, chameleon screening
makes the scalar field short ranged in high-density envi-
ronments, because its effective potential and its mass
depend on the matter density. In a similar fashion, dilaton
and symmetron scenarios damp the fifth force by making
its coupling vanish in high-density environments, following
the Damour-Polyakov screening.
It is interesting to note that these screening mechanisms

cannot appear in the models considered in this paper,
because the scalar field always remains in the linear regime.
A first way to see this is from Eq. (67), which yields
δφ=MPl ∼ v2 for a structure of virial velocity v2 ∼ GM=r,
massM, and radius r. Then, in nonrelativistic environments,
from clusters of galaxies to the Solar System, where v2 ≪ 1,
we have δφ ≪ φ̄ as we found in Fig. 1 that φ̄ ∼MPl. This
also implies that δsl ≪ s̄l. Thus, from clusters of galaxies to
the Solar System, the fluctuations of the scalar field remain
small and are not sufficient to significantly modify the
coefficients sl. This means that the effective Poisson
equation (i.e., the coefficients μ��) keeps the same deviation
from General Relativity on all these scales.
This configuration can be compared with the usual

chameleon or Damour-Polyakov screenings, shown by
fðRÞ or Dilaton and Symmetron models. There, the
Jordan-frame metric is typically related to the Einstein-
frame metric by a conformal coupling, gμν ¼ A2ðφÞg̃μν.
The fifth force c2∇ lnA again arises from the fluctuations
of this metric coefficient A, through the fluctuations of the
scalar field. However, in these models which typically
include a cosmological constant, either explicitly or as the
nonzero minimum of some potential, the conformal cou-
pling always remains very close to unity, jA − 1j≲ 10−5.
This ensures that one follows the Λ-CDM background
while having effects on cosmological structures that can be
of order unity, with δA ∼ ϕ. The very small variation of the
background value of Ā also means that it is easy to
introduce a screening mechanism, because the spatial
perturbations of δφ and δA can be of the same order as
those of the cosmological background over δz ∼ 1, so that
the nonlinear regime is easily reached (this may be more
easily understood from a tomographic point of view). In the
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FIG. 13. Conformal Hubble expansion rates (upper panel) and
coefficients s� (lower panel) as a function of redshift, for a solution
where the baryonic coefficients sl are constant at late times.
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model considered in this paper, the difficulty arises from the
fact that we require background variations of order unity for
the coefficients sl, which play a role similar to A2ðφÞ in the
conformal coupling models, whereas spatial variations
should remain of order 10−5 of the same order as the standard
Newtonian potential. This implies that spatial fluctuations of
the scalar-field value are not sufficient to reach the nonlinear
regime. This analysis agrees with the “no-go” theorem of
Ref. [5], which concludes from the same arguments that
usual chameleon models cannot provide a self-acceleration
of the Universe, and must rely on a form of dark energy
(typically a hidden cosmological constant, written as the
nonzero minimum of some potential).
A way out of this difficulty is to introduce screening

mechanisms that do not rely on the scalar-field value but on
its derivatives. Then, even though δφ remains small, its
spatial derivatives ∂nδφ can be large on small enough
scales. This corresponds to K-mouflage and Vainshtein
mechanisms. This can be achieved by adding terms in
ð∂φÞ4=M4 or □φð∂φÞ2=M3. In this case, these nonlinear
terms dominate over the simple kinetic terms at short
distance depending on the value of M. As a result, the
coupling of the scalar field to the baryons (and incidentally
the one to dark matter) is reduced, and local tests of gravity
are satisfied. However, this only solves the fifth-force
problem, and it does not solve the problems associated
with the value of Newton constant and its time drift. (In
these screening scenarios, they are usually assumed to be
set by the cosmological background, which acts as a
boundary condition.)
The analysis above implicitly assume the quasistatic

approximation, where the scalar field relaxes to its envi-
ronment-dependent equilibrium and screening appears
through the spatial variations of its mass, coupling, or
inertia. If the quasistatic approximation is violated, the
configuration may be more complex. In fact, from the
analysis of Sec. VIII A, we can see that we need a local
value of Newton constant that is decoupled from the one on
cosmological scales. More precisely, we need its local value
to remain equal to its background value at high z, before the
dark-energy era. This calls for a new screening mechanism,
or a more efficient implementation of K-mouflage or
Vainshtein screening, that goes beyond the quasistatic
approximation and decouples the small-scale Newton con-
stant from its current large-scale cosmological value. For
instance, the local Newton constant should remain equal to
the one at the formation of the solar system. All this requires
altering the models and imposing stringent restrictions on
the possible UV completions of the models that must be
introduced in the Solar System below 1 AU.

IX. CONCLUSION

We have seen in this paper that the scalar-bimetric model
allows one to recover an accelerated expansion without

introducing a cosmological constant or an almost constant
dark-energy density. This relies on the time-dependent
mapping between the gravitational metrics g1 and g2 and
the baryonic and darkmattermetrics g and gd. Because at late
times the deviation between the Λ-CDM and Einstein-de
Sitter backgrounds is of order unity, the coefficients sl that
define this mapping must show variations of order unity.
When all metrics have the same conformal time, the

expansion rates of the gravitational and dark matter metrics
are almost independent of the details of the model [e.g., the
shape of the functions slðφÞ], once we require a Λ-CDM
expansion for the baryonic metric. Then, the gravitational
metrics remain close to an Einstein-de Sitter expansion
(because there is no dark energy), while the dark matter
metric behaves in a way opposite to the baryonic metric,
with a stronger deceleration than in the Einstein-de Sitter
case. When the conformal times are different, the scale
factors a� can show slightly different behaviors, and even
more so the lapse factors b�. This scenario is very strongly
constrained by the multimessenger event GW170817,
which requires that at least one of the two gravitons
propagates at the speed of light at z < 0.01. This implies
that at least one of the ratios bl=al must be unity at low z.
This also implies that the baryonic metric becomes inde-
pendent at low z of the gravitational metric where cg ≠ 1,
but the dark matter metric still remains sensitive to both
gravitational metrics.
As the coefficients sl must show variations of order

unity to provide a self-acceleration, we generically have
deviations of order unity for the effective Newton constants
and for the contribution from the fifth force to the
dynamical potential seen by particles. The dynamics of
baryonic and dark matter perturbation show distinctive
features, due to the fact that they couple to different metrics
and that their mappings evolve in opposite fashions. While
the total force (Newtonian gravity and fifth force) from
baryons onto baryons, and from dark matter onto dark
matter, is typically amplified at low redshift, the cross-force
between baryons and dark matter is damped and even turns
negative. This means that dark matter and baryons would
tend to segregate (although this does not have the time to
happen by z ¼ 0 on large scales). Then, the growth of dark
matter density fluctuations is amplified (because of the
stronger self-gravity) while the growth of baryonic density
fluctuations is decreased on cosmological scales (because
of the lower cross-gravity, as dark matter is dominant on
large scales). This could provide interesting features; for
instance, most modified-gravity models predict instead an
amplification of baryonic density perturbations.
However, before a detailed comparison with cosmologi-

cal observations, these models present major difficulties
with small-scale tests of gravity. First, the fifth force is of
the same order as Newtonian gravity. Second, the baryonic
effective Newton constant generically evolves on Hubble
time scales. Third, it is greater than its high-z value by
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about 50%. These features are related to the self-accel-
eration, which implies modifications of order unity on
Hubble timescales.
Thanks to the two couplings associated with the two

gravitational metrics, it is possible to keep the baryonic
effective Newton strength almost constant at low z (by
keeping the sum s21 þ s22 constant while the two coefficients
vary). This is beyond the reach of simpler models where the
baryonic metric would be given by a conformal rescaling of
a single Einstein-frame metric [which provides a single
coupling AðφÞ]. However, this can only work for a finite
time. Either the baryonic and dark matter metrics even-
tually recover an Einstein-de Sitter expansion in the future
or the Newton coupling resumes its growth in the future. In
this framework, it is more natural to make the self-
acceleration only a transient phenomenon, associated with
the running of the couplings slðφÞ between two constant
asymptotes (where the fifth force and the running of
Newton constants disappear). [The alternative scenario,
where the coefficients slðφÞ have already reached their
constant asymptote at low z, is rejected by measurements of
the Hubble expansion rate, from low-z supernoave or local
standard candles such as cepheids.] However, this cannot
reduce the gap between the high-z and low-z values of
Newton’s constant.
On small scales, Solar System tests of gravity imply that

we must recover General Relativity. In modified-gravity
scenarios, this is often achieved by introducing nonlinear
screening mechanisms that damp the effect of the fifth
force. As in the case of single-metric and single-field
models, we explain that a chameleon mechanism cannot
work. It cannot efficiently screen the fifth force in a self-
accelerated model. This leaves derivative screening mech-
anisms, such as K-mouflage and Vainshtein screenings.
Therefore, the scalar-field Lagrangian must be supple-
mented by higher-order derivative terms, that become
dominant on small scales and provide the convergence
to General Relativity. on small scales by damping the fifth
force. However, we need to go beyond usual implementa-
tions, as we also require the local Newton constant to be
decoupled from its cosmological value and to remain equal
to its high-redshift value. Then, the sum s21 þ s22 is no
longer required to be almost constant at low z, and this
extends the family of realistic models to all solutions with
common conformal time. As the cutoff scale of the model is
of order 1 AU, the compliance with Solar System tests for
the bimetric models would have to be analyzed thoroughly
once UV completions have been constructed. In particular,
they would have to avoid all the local issues that we have
detailed here. This is beyond the present work.
This paper only provides a first study of such bimetric

models with self-acceleration. We have shown that basic
requirements already strongly constrain these scenarios. We
leave for future works a detailed study to determine whether
such scenarios can be consistent with cosmological data at

the perturbative level. However, the main challenge is to
devise adequate screening mechanisms within appropriate
UV completions, if they exist. This would also have a great
impact on other modified-gravity models, by providing an
explicit scenariowhere gravity on cosmological scales could
be decoupled from Solar System tests. Finally, another issue
concerns the stability of the hidden vector modes, as one
would like to go beyond the linear regime and guarantee that
they do not mix with the matter metrics. This is beyond the
scope of the present work.

APPENDIX A: LINEAR PERTURBATIONS
IN THE GENERAL CASE sdl ≠ sl

We provide in this Appendix the Einstein equations for
linear perturbations in the general case, where we no longer
assume sdl and sl to be identical. This allows us to go
beyond the early-time Einstein-de Sitter phase (41). In
particular, we no longer have s21 þ s22 ¼ 1 nor al ¼ sla and
Hl ¼ H. However, we restrict to the case al ¼ bl, to
ensure that the graviton speeds remain equal to the speed
of light.
Because the two types of matter (baryons and dark

matter) now follow different metrics, the quadratic action
can no longer be neatly split in a sector Sþ, which contains
all matter variables and remains identical to General
Relativity, and a sector S−, which is completely decoupled
from matter and deviates from General Relativity (and can
include new degrees of freedom due to the loss of one
diffeomorphism invariance). Then, in this Appendix, we
directly work at the level of the Einstein equations. The
vierbein and metric perturbations are again defined as in
Eqs. (97) and (98).

1. Tensor modes

For tensors, the Einstein equations (19) give

h001ij þ 2H1h01ij −∇2h1ij ¼
a2
P

�s�1s�2a2�p̄�
a1M2

Pl

ðh1ij − h2ijÞ

ðA1Þ

and a symmetric equation with respect to 1 ↔ 2. Here,
� ¼ b, d stands for the baryonic and dark matters, and we
sum over both matter sectors. In the early-time regime (41),
these two equations can be diagonalized as in (107) and
(108). At high frequencies, ω ≫ H, and high wave
numbers, k ≫ H, we recover the Minkowski limit of
General Relativity, with two massless gravitons that propa-
gate as in Minkowski vacuum, h001ij −∇2h1ij ¼ 0. This is
not surprising, as the bimetric theory (1) reduces to two
copies of General Relativity in vacuum. In particular, we
recover 2 × 2 dynamical degrees of freedom.
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2. Vector modes

For vectors, the Einstein equations (19) and the con-
tinuity equations give

∇2ðV 0
1i þ C1iÞ ¼

a2
P

�s�1s�2a2�ð3ρ̄� þ p̄�Þ
2a1M2

Pl

× ðC1i − C2iÞ; ðA2Þ
and

V 00
1i þ C0

1i þ 2H1ðV 0
1i þ C1iÞ ¼

a2
P

�s�1s�2a2�p̄�
a1M2

Pl

× ðV1i − V2iÞ ðA3Þ
and the symmetric equations with respect to 1 ↔ 2. Again,
the left-hand side corresponds to General Relativity, and
the right-hand side is a new mass coupling term between
the two gravitational metrics that is proportional to the
background matter content (ρ̄�; p̄�, hence to H2) and to the
products s�1s�2. It vanishes in vacuum or when one
coupling s�l is zero. In the early-time regime (41), this
system can be diagonalized as in (115) and (116). By
combining Eq. (A2), multiplied by a21, with its symmetric,
we obtain

a21ðV 0
1i þ C1iÞ þ a22ðV 0

1i þ C1iÞ ¼ 0: ðA4Þ

This automatically implies that the same combination
obtained from Eq. (A3) is also satisfied. This “loss” of
one equation is related to the diagonal vector gauge
freedom. Here, Cþi ¼ a21C1i þ a22C2i, which generalizes
Eq. (100) beyond the early-time regime. Defining again
C−i ¼ C1i − C2i and V−i ¼ V1i − V2i, we find that
Eq. (117) generalizes to

C−i ¼
−2a1a2M2

Plk
2V 0

−i
2a1a2M2

Plk
2 þ ða21 þ a22Þ

P
�s�1s�2a2�ð3ρ̄� þ p̄�Þ

;

ðA5Þ

and at high frequencies and wave numbers, we obtain the
equation of motion

V 00
−i ¼

P
�s�1s�2a2�p̄�P

�s�1s�2a2�ð3ρ̄� þ p̄�Þ
2k2V−i; ðA6Þ

which generalizes Eq. (119). In particular, we recover the
same gradient instability (120) as in the Einstein-de Sitter
phase, whatever the values of the coefficients s�l.
In contrast with the case of tensors, the high frequency

and high wave number limit is not so straightforward and
does not coincide with a naive Minkowski limit where we
put ρ̄� ¼ p̄� ¼ 0 andHl ¼ 0 in Eqs. (A2) and (A3). This is
because the loss of the nondiagonal gauge invariance leads

to a new vector degree of freedom (here, V−i) that cannot be
“forgotten” and implies a different limit than the naive
expectation of two Minkowski copies.

3. Scalar modes

For scalars, the Einstein equations (19) give

− 6H2
1ϕ1 − 6H1ψ

0
1 þ 2∇2ψ1 − 4H1∇2V1 þ 2H1∇2U0

1

¼
P

�s�1a3�δρ�
a1M2

Pl

þ a2
P

�s�1s�2a2�ρ̄�
a1M2

Pl

½3ðψ1 − ψ2Þ

−∇2ðU1 −U2Þ�; ðA7Þ

−4H1ϕ1−4ψ 0
1þ8ðH0

1−H2
1ÞV1¼

2
P

�s�1a3�ðρ̄� þ p̄�Þv�
a1M2

Pl

−
a2
P

�s�1s�2a2�ðρ̄� þ3p̄�Þ
a1M2

Pl

ðV1−V2Þ; ðA8Þ

U00
1 − 2V 0

1 þ 2H1ðU0
1 − 2V1Þ þ ψ1 − ϕ1

¼ a2
P

�s�1s�2a2�p̄�
a1M2

Pl

ðU1 −U2Þ; ðA9Þ

2ð2H0
1þH2

1Þϕ1þ2ψ 00
1þ4H1ψ

0
1þ2H1ϕ

0
1 ¼

P
�s�1a3�δp�
a1M2

Pl

þa2
P

�s�1s�2a2�p̄�
a1M2

Pl

½−ðϕ1−ϕ2Þþ2ðψ1−ψ2Þ� ðA10Þ

and the symmetric equations with respect to 1 ↔ 2. Again,
the left-hand side and the matter source terms on the right-
hand side are identical to General Relativity. There are new
mass coupling terms on the right-hand side that are propor-
tional to (ρ̄�; p̄�, i.e.,H2) and s�1s�2. Here,wedid not include
the perturbations of the scalar field φ, which corresponds to
γ�� ¼ 0 in the quasistatic equations (77) and (78).

4. Nonpropagation of the Goldstone mode

In the Einstein-de Sitter phase, where the quadratic
action can be split over the two sectors Sþ and S−, we
could see from the explicit action (123) or from the
Stückelberg analysis in Sec. VI A that the scalar mode
associated with the breaking of the nondiagonal diffeo-
morphism does not propagate. Here, we provide an alter-
native check that such a mode cannot sustain decoupled
propagation at high frequencies and wave numbers, even
beyond the Einstein-de Sitter phase.
As in Eq. (126), we introduce the Stückelberg scalar π

associated with the nondiagonal diffeomorphism by writing

ϕl ¼ ϕ̂l−Hlγlπ
0− γlπ

00; ψl ¼ ψ̂lþHlγlπ
0; ðA11Þ

Vl ¼ V̂l þ γlπ
0; Ul ¼ Ûl þ γlπ; ðA12Þ

SELF-ACCELERATION IN SCALAR-BIMETRIC THEORIES PHYS. REV. D 97, 103516 (2018)

103516-33



where γ1 ≠ γ2 are constant. The case γ1 ¼ γ2 would be
associated with the diagonal diffeomorphism. Substituting
into Eqs. (A7)–(A10) and only keeping the π terms, we
obtain

6H1ðH0
1 −H2

1Þγ1π0 ¼
a2
P

�s�1s�2a2�ρ̄�
a1M2

Pl

½ðγ1 − γ2Þ∇2π

− 3ðH1γ1 −H2γ2Þπ0�; ðA13Þ

4ðH2
1 −H1

0Þγ1π0 ¼
a2
P

�s�1s�2a2�ðρ̄� þ 3p̄�Þ
a1M2

Pl

ðγ1 − γ2Þπ0;

ðA14Þ

0 ¼ a2
P

�s�1s�2a2�p̄�
a1M2

Pl

ðγ1 − γ2Þπ; ðA15Þ

2ðH00
1 −H3

1 −H1H0
1Þγ1π0 ¼

a2
P

�s�1s�2a2�p̄�
a1M2

Pl

× ½ðγ1 − γ2Þπ00 þ 3ðH1γ1 −H2γ2Þπ0�: ðA16Þ

They take the expected form involving H2∂2π ¼
s�1s�2a2�ρ̄�

M2
Pl

∂2π (where some derivatives ∂ can be replaced

by factors H), as these terms must disappear in the naive
Minkowski limit H → 0 and ρ̄� → 0.
In the limit of high frequencies and wave numbers, ω ≫

H and k ≫ H, the last relation (A16) gives π0 ¼ 0 if
p̄� ¼ 0 or π00 ∼Hπ0 if a2�p̄� ∼M2

PlH
2. Therefore, the scalar

π cannot develop decoupled high frequency modes and
does not propagate.

APPENDIX B: COUPLING OF THE GOLDSTONE
MODE TO THE METRICS

1. General case

In this Appendix, we explore the role played by the
Goldstone boson π in the modification of gravity. More
precisely, we derive the coupling h∂2π that was neglected
in Sec. VI B, and we check that it agrees with the explicit
expression (127) in the early-time regime where sdl ¼ sl.
As in Sec. VI B, we go beyond this early-time regime, and
we allow the baryonic and dark matter metrics to be
different, but we focus on short lengths and timescales
as compared with the Hubble parameter, using the approxi-
mation (130).
The Stückelberg fields ϕμ

l are introduced as in Eq. (133),

ealμ ¼ êalν
∂ϕν

l

∂xμ ; êalμ ¼ alðδaμ þ ĥalμÞ; ðB1Þ

where ĥalμ parametrize the deviations from the FLRW
background. We again separate the diffeomorphisms into
the diagonal ones, which are not broken by the presence of

matter, and the broken ones in the complementary directions
which belong to the group quotient ðdiff1 × diff2Þ=diffdiag.
We choose in the following the particular combination

ϕμ
l ¼ xμ þ ξμ þ ξμl ðB2Þ

with

ξμ1 ¼
1

s1sd1
πμ; ξμ2 ¼ −

1

s2sd2
πμ: ðB3Þ

This corresponds to the choice γ1 ¼ 1=s1sd1 and γ2 ¼
−1=s2sd2 in the main text (134). As in Secs. VI A and
VI B, we focus on the scalar mode that would be associated
with a Boulware-Deser ghost, and we write

πμ ¼ ∂μπ ¼ ημν∂νπ: ðB4Þ

To simplify expressions, we always define ∂μπ by the metric
ημν in the following.
The total action does not depend on the diagonal

diffeomorphism ξμ, which we set to zero in the following.
We now derive the terms ĥ∂2π that arise from the Einstein-
Hilbert Lagrangians, which we write as

LEHðealμÞ ¼
ffiffiffiffiffiffiffiffi
−gl

p
RðglμνÞ: ðB5Þ

Because of the invariance of the Ricci scalar under change
of coordinates, we have from Eq. (B1)

LEHðealμÞ ¼ detð∂μϕ
ν
lÞLEHðêalνÞ: ðB6Þ

To obtain the terms ĥ∂2π, we only need to work at linear
order over ĥ and π separately. At linear order over π, we
have from Eq. (B2)

detð∂μϕ
ν
lÞ ¼ 1þ ∂σξ

σ
l: ðB7Þ

On the other hand, at linear order over ĥ, we have

LEHðêalμÞ ¼ LEHðēalμÞ −
ffiffiffiffiffiffiffiffi
−ḡl

p
Ḡμν

l δĝlμν

¼ L̄EH −
ffiffiffiffiffiffiffiffi
−ḡl

p
Ḡμμ

l ημμ2a2lĥ
μ
lμ: ðB8Þ

In the second line, we used the fact that the background
Einstein tensors are diagonal, and we sum over μ.
Substituting into Eq. (B6), we find that the term ĥ∂2π
that arises from the Einstein-Hilbert Lagrangians is

LEHðealμÞ ⊃ −
ffiffiffiffiffiffiffiffi
−ḡl

p
Ḡμμ

l ημμ2a2lĥ
μ
lμ∂σξ

σ
l: ðB9Þ

Along the diagonal, the background Einstein equations (19)
read (no summation over μ)

M2
Pl

ffiffiffiffiffiffiffiffi
−ḡl

p
Ḡμμ

l al ¼ sl
ffiffiffiffiffiffi
−ḡ

p
T̄μμaþ sdl

ffiffiffiffiffiffiffiffi
−ḡd

p
T̄μμ
d ad: ðB10Þ
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Then, using Eq. (B3), the term ĥ∂2π arising from the two
Einstein-Hilbert actions is

M2
Pl

2
½LEHðea1μÞ þ LEHðea2μÞ� ⊃ −

ffiffiffiffiffiffi
−ḡ

p
T̄μμημμa

×
�
a1
sd1

ĥμ1μ −
a2
sd2

ĥμ2μ

�
ð∂σ∂σπÞ − ffiffiffiffiffiffiffiffi

−ḡd
p

T̄μμ
d ημμad

×

�
a1
s1

ĥμ1μ −
a2
s2

ĥμ2μ

�
ð∂σ∂σπÞ: ðB11Þ

We now turn to the matter actions. The matter vierbeins
are given by

ea⋆μ ¼ s⋆1ea1μ þ s⋆2ea2μ; ðB12Þ

where ⋆ stands for b (baryons) or d (dark matter). They can
be written as

ea⋆μ ¼ êa⋆ν
∂ϕν⋆
∂xμ þ δẽa⋆μ; ðB13Þ

where we introduced

êa⋆μ ¼ a⋆ðδaμ þ ĥa⋆μÞ; ðB14Þ

a⋆ĥa⋆μ ¼ s⋆1a1ĥa1μ þ s⋆2a2ĥa2μ; ðB15Þ

ϕμ⋆ ¼ xμ þ ξμ⋆; a⋆ξμ⋆ ¼ s⋆1a1ξμ1 þ s⋆2a2ξμ2; ðB16Þ

and

δẽa⋆μ ¼ −a⋆ĥa⋆ν∂μξ
ν⋆ þ s⋆1a1ĥa1ν∂μξ

ν
1 þ s⋆2a2ĥa2ν∂μξ

ν
2:

ðB17Þ

As compared with Eq. (B1), there is an additional term δẽa⋆μ
of the form ĥ∂ξ because the matter vierbeins are defined by
the composite expression (B12). Defining the matter
Lagrangians as

L⋆ðea⋆μÞ ¼
ffiffiffiffiffiffiffiffi
−g⋆

p
L⋆ðg⋆μνÞ; ðB18Þ

we now have

L⋆ðea⋆μÞ ¼ L⋆ðêa⋆ν∂μϕ
ν⋆Þ þ

ffiffiffiffiffiffiffiffi
−ḡ⋆

p
2

T̄μν⋆ δg̃⋆μν; ðB19Þ

where δg̃⋆μν is the metric perturbation associated with δẽa⋆μ
in Eq. (B13). On the other hand, as for the Einstein-Hilbert
terms (B9), the term L⋆ðêa⋆ν∂μϕ

ν⋆Þ gives rise to the factor

L⋆ðêa⋆ν∂μϕ
ν⋆Þ ⊃

ffiffiffiffiffiffiffiffi
−ḡ⋆

p
T̄μμ⋆ ημμa2⋆ĥμ⋆μ∂σξ

σ⋆: ðB20Þ

Collecting all terms, this gives

L⋆ðea⋆μÞ ⊃
ffiffiffiffiffiffiffiffi
−ḡ⋆

p
T̄μμ⋆ ημμa⋆½a⋆ĥμ⋆μ∂σξ

σ⋆ − a⋆ĥμ⋆σ∂μξ
σ⋆

þ s⋆1a1ĥμ1σ∂μξ
σ
1 þ s⋆2a2ĥμ2σ∂μξ

σ
2�: ðB21Þ

Using Eq. (B3), this yields for the baryonic matter
Lagrangian

LðeaμÞ⊃
ffiffiffiffiffiffi
−ḡ

p
T̄μμημμ

��
a1
sd1

−
a2
sd2

�
ðs1a1ĥμ1μþs2a2ĥ

μ
2μÞ

×ð∂σ∂σπÞþa1a2ðs1sd1þs2sd2Þ
sd1sd2

ðĥμ1σ− ĥμ2σÞð∂μ∂σπÞ
�

ðB22Þ

and for the dark matter Lagrangian

LdðeadμÞ ⊃
ffiffiffiffiffiffiffiffi
−ḡd

p
T̄μμ
d ημμ

��
a1
s1

−
a2
s2

�
ðsd1a1ĥμ1μ þ sd2a2ĥ

μ
2μÞ

× ð∂σ∂σπÞ þ a1a2ðs1sd1 þ s2sd2Þ
s1s2

× ðĥμ1σ − ĥμ2σÞð∂μ∂σπÞ
�
: ðB23Þ

Collecting (B11), (B22), and (B23), we find that the terms
ĥ∂2π that arise in the total action are

LEHþmatter ⊃ ½α ffiffiffiffiffiffi
−ḡ

p
T̄μμa2 þ αd

ffiffiffiffiffiffiffiffi
−ḡd

p
T̄μμ
d a2d�ημμ

× ðĥμ−σ∂μ∂σπ − ĥμ−μ∂σ∂σπÞ; ðB24Þ
where we have

α ¼ a1a2
a2

s1sd1 þ s2sd2
sd1sd2

;

αd ¼
a1a2
a2d

s1sd1 þ s2sd2
s1s2

; ðB25Þ

and we introduced the metric combination

ĥa−μ ¼ ĥa1μ − ĥa2μ; ðB26Þ

which agrees with Eq. (101).
Thus, we find that in all cases, even when the baryonic

and dark matter couplings s⋆l are different, the Stückelberg
field π only couples to the same metric combination ĥ−.
The ĥ−∂2π terms in the last set of parentheses in Eq. (B24)
are the same as in Eqs. (B27) and (B29) below, and they
coincide with the result (127) in the main text, where we
only keep the dominant terms with ∂ ≫ H. In particular, by
integrating by parts the terms in π00, we can again check that
this contribution to the action can be written in terms of
first-order time derivatives only. Therefore, it does not give
rise to Boulware-Deser ghosts.
In the case where the couplings sdl and sl are identical,

we can separate the quadratic action in two sectors Sþ and
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S−, as explicitly shown in Sec. V. When the baryonic and
dark matter metrics are different, we cannot simultaneously
decouple both matter metrics from h−, as we only have
two fundamental metrics h1 and h2, so that hd must be a
combination of h and h−. This may give rise to a
modification of gravity on Hubble scales, although this
is the regime where the derivation presented in this
Appendix is no longer valid. On small scales, we have
seen in Appendix A 4 that π does not propagate and does
not generate a modification of gravity. In the main text, we
have described the modification of gravity that is seen by
the large-scale structures, which is entirely due to the
fluctuations of the scalar field φ of which the effect is to
generate a fifth force as described in Sec. IV.

2. Identical couplings

In the early-time regime, where sdl ¼ sl and al ¼ sla,
we have α ¼ αd ¼ 1, and Eq. (B24) simplifies as

LEHþmatter ⊃
ffiffiffiffiffiffi
−ḡ

p ðT̄μμ þ T̄μμ
d Þa2ημμ

× ðĥμ−σ∂μ∂σπ − ĥμ−μ∂σ∂σπÞ: ðB27Þ

Thus, we recover the result of Secs. VA and VI A, obtained
from the explicit derivation of the quadratic action, that the
Goldstone boson does not couple to matter at the quadratic
order in the Lagrangian and at the linear level in the

equations of motion. It belongs to the sector S− of the
action, and it is only coupled to the graviton ĥ−, which is
also decoupled from matter. Explicitly, this metric coupling
reads

Lĥ∂2π ¼−a4ρ̄Tðĥ0−i∂iπ
0− ĥ0−0∇2πÞþa4p̄T

× ð−ĥi−0∂iπ
0 þ ĥi−j∂i∂jπþ ĥi−iðπ00−∇2πÞÞ; ðB28Þ

where p̄T and ρ̄T are the total pressure and energy
densities. Now, using ĥ0−0¼ϕ̂−, ĥ0−i¼−∂iV̂−,
ĥi−0¼∂iV̂−, ĥi−j¼−ψ̂−δ

i
jþ∂i∂jÛ−, and a2ρ̄T¼3M2

PlH
2,

a2p̄T ¼ −M2
PlðH2 þ 2H0Þ, this gives

Lĥ∂2π
a2M2

Pl

¼ 3H2ϕ̂−∇2π þ 2ð2H2 þH0Þð∇V̂−Þ · ð∇π0Þ

þ ðH2 þ 2H0Þ½3ψ̂−π
00 − 2ψ̂−∇2π − ð∇2Û−Þπ00�:

ðB29Þ

This coincides with the result (127) in the main text, when
the subdominant terms have been dropped. In particular,
integrating by parts the terms in π00, we recover the fact that
the quadratic action can be written in terms of first-order
time derivatives only, without third- and fourth-order time
derivatives left.
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