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We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate
metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the
Universe couple to metrics which are constructed as functions of these two gravitational metrics. More
precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with
scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of
which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of
the Universe can be easily obtained at the background level in these models by appropriately choosing the
coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter
metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic
energy. This requires the scalar coupling functions to show variations of order unity during the accelerated
expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth
force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter
self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and
even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on
cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a
perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data.
On the other hand, we can deduce strong requirements on putative UV completions by analyzing the
stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time
evolution of Newton’s constant requires an efficient screening mechanism that both damps the fifth force on
small scales and decouples the local value of Newton constant from its cosmological value. This cannot be
achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and

probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.

DOI: 10.1103/PhysRevD.97.103516

I. INTRODUCTION

A very common way of reproducing the late-time
acceleration of the expansion of the Universe [1,2] is to
add a scalar-field energy density, which would mimic a
cosmological constant at small redshifts [3]. Recently, it
has been proposed that the acceleration could be an illusion
due to the different metrics coupled to either the baryons or
dark matter [4]. This was achieved by considering that
baryons couple to a metric that can be constructed from
both the metric felt by dark matter and the velocity field of
the dark matter particles. In the same vein, it has been
known for some time that conformally coupled models with
a single metric and screening properties, thus evading the
local tests of gravity, cannot generate the late-time accel-
eration of the Universe [5]. In this paper, we generalize the
latter approach by introducing two gravitational metrics,
with an Einstein-Hilbert term each, and we consider that the
baryons and dark matter couple to different dynamical
metrics. These metrics are obtained by taking linear
combinations of the two gravitational vierbeins, with each
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of the coefficients dependent on a scalar field. Contrary to
dark-energy models (even coupled), we do not require that
the scalar field should play any explicit role in generating
an effective cosmological constant at late time. Quite the
contrary, the scalar is only a free and massless scalar, with
positive pressure. The role of the scalar is to provide a
time-dependent mapping and transform the deceleration of
the two gravitational metrics into an acceleration for the
baryonic metric.

Our approach is inspired by the construction of doubly
coupled bigravity models [6,7] where the late-time accel-
eration is due to an explicit cosmological constant, albeit
related to the mass of the massive graviton [8,9], and matter
couples to a combination (with constant coefficients) of the
two dynamical metrics [10]. Here, we remove the potential
term of massive gravity and introduce scalar-dependent
coupling functions, as our goal is to build self-accelerated
solutions. As expected, we find that this leads to major
difficulties, as a self-acceleration implies effects of order
unity on cosmological scales. This generically gives rise to

© 2018 American Physical Society
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effective Newton constants that evolve on Hubble time-
scales and a fifth force of the same order as Newtonian
gravity.

The models that we construct have no ghost in
Minkowski space, where they correspond simply to two
copies of General Relativity. When matter is introduced,
only the diagonal diffeomorphism invariance is preserved.
The order parameter of the symmetry breaking, from two
copies of diffeomorphism invariance to the diagonal one, is
the Hubble parameter induced by the matter sectors. When
performing a Stiickelberg analysis of the breaking pattern
and introducing the corresponding scalar Goldstone mode,
we find that the absence of ghosts associated with an
Ostrogradsky instability is guaranteed below the cutoff
scale Ay = (H’Mp,)'/*. This energy scale is smaller
than the strong coupling scale Ay = (H>Mp)"/3. Thus,
Azl ~1 AU, whereas A3' ~ 1000 km in the late-time
Universe, but A7} remains much below cosmological
scales. Down to the scale AZ} and around compact objects
in the weak gravitational regime, the scalar Goldstone
mode is decoupled from matter, and no Vainshtein mecha-
nism is at play. For scales below A}, it is very likely that
the models should be altered. Notice, too, the analogy with
doubly coupled bigravity, where the order parameter of
diffeomorphism breaking is given by the graviton mass m
as appearing in the potential term of massive gravity and the
strong coupling is given by A3 = (m>Mp,)'/3. In this case,
too, a ghost is known to be present at higher energy, and the
models should also be completed.

Our analysis of the presence of ghosts and the existence
of a cutoff scale has been performed perturbatively around
Friedmann-Lemaitre-Robertson-Walker backgrounds. We
have found that at energies higher than the perturbative
cutoff scale a ghost is likely to exist due to the mixing
between the tensor modes and higher derivatives in the
Stiickelberg field. It is quite likely that a nonperturbative
analysis along the lines of Refs. [7,11,12] would unravel
the existence of nonperturbative effects which would lower
the cutoff scale and reduce the domain of validity of the
scalar-bimetric models. This is left for future work. Here,
we only focus on the perturbative cutoff scale and treat the
corresponding range as the one where the scalar-bimetric
models are well defined.

We mostly focus on the late-time Universe, in the matter
and dark-energy eras. However, doubly coupled bigravity
theories suffer from instabilities in the radiation era [13—15]
for tensor and vector modes. We briefly rederive these
behaviors for our models. Tensor modes have a tachyonic
regime that implies an anomalous growth in the early
Universe. This has some effect on the cosmic microwave
background B-modes which may be amplified [16] in
models where there is a nonlinear coupling between the
metrics, such as in bigravity theories. Similarly, the vector
modes that are decoupled from matter suffer from a
gradient instability which could pose serious problems

for the viability of the models. However, in our case, these
instabilities only affect “hidden” modes that are not seen by
the matter metrics (at the linear level).

In this paper, we do not perform detailed comparisons
with cosmological and astrophysical data, as our goal is
only to distinguish which families of solutions offer a
realistic framework, which may deserve further investiga-
tions. Indeed, imposing a A-CDM expansion history for the
cosmological background (which ensures consistency with
cosmological data at the background level), we find that the
tight constraint on the velocity of gravitational waves [17]
already provides significant constraints on the model.
Moreover, we find that a nonlinear screening mechanism
[18] must come into play on small scales, to ensure
convergence to General Relativity in the Solar System.
This follows from the upper bound on the local time
dependence of Newton’s constant [19], which would have
to be obeyed by any UV completion on scales below the
cutoff of order 1 AU. This must go beyond the quasistatic
approximation and probably rely on derivatives of the
scalar field (as in Kmouflage [20-22] or Vainshtein
mechanisms [23]), while quasistatic chameleon screening
[24,25] cannot occur. We leave the analysis of this regime
for future work.

This article is organized as follows. We first define the
bimetric model in Sec. II and next provide the equations of
motion in Sec. I[I C. We describe the cosmological back-
ground in Sec. III. We show how to construct solutions that
mimic a A-CDM expansion and discuss both the simplified
cases where all metrics have the same conformal time and
the cases where they have different conformal times. We
turn to linear perturbations in Sec. IV, for both baryonic and
matter density fluctuations. We then describe in Sec. V how
linear perturbations behave beyond the quasistatic approxi-
mation. We consider the possible presence of ghosts in
Sec. VI. We then compare our results to doubly coupled
bigravity in Sec. VII. We discuss consistency with small-
scale tests of General Relativity in Sec. VIII and conclude
in Sec. IX. Several Appendixes are dedicated to more
technical details.

II. SCALAR-BIMETRIC MODELS
A. Defining the models

In the following, we focus on models where the
dynamics are driven by two independent metrics coupled
to a scalar field. We do not add any nontrivial dynamics for
the scalar field, which we choose to be massless with a
canonical kinetic term. We consider models with the scalar-
bimetric action

§= Sgrav + Smats (1)

with
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MZ
S = [ 5L VTR VTR (2

and

S = / e TL a0 W 90) + v/ =ToLo Wl b))
3)

The gravitational action S,,, contains two Einstein-Hilbert
terms for the two gravitational metrics g;,, and g,,,. The
matter action S, contains the dark sector Lagrangian Ly,
which includes dark matter fields y/, - and an additional
scalar field ¢, and the baryonic Lagrangian L, which
includes the ordinary particles of the standard model, both
matter and radiation (photons) components. These two
matter Lagrangians involve two associated dynamical
metrics, gg,, and gy,,. In the following, we will usually
omit the subscript b, as this is the main sector that is probed
by observations and experiments.

We split the dark sector Lagrangian in its scalar-field and
dark matter components,

Ly = L,(@:9q) + Lam W3 a)- (4)

and for simplicity, we only keep the kinetic term in the
scalar-field Lagrangian,

[
L,(p) = —59’5 0,00,9, (5)

as we wish to recover the late-time acceleration of the
expansion of the Universe through a dynamical mecha-
nism, rather than through an effective cosmological con-
stant associated with a nonzero minimum of the scalar-field
potential.

The dark and baryonic metrics are functions of the two
gravitational metrics g;,, and g,,,. We write this relation-
ship in terms of the vierbeins of these four metrics. Thus,
introducing the vierbeins ef, and ej, of the metrics g,

and gy,

_ ,a ,b _ ,a ,b
gl;w - €1ﬂ€1y'lab7 92/41/ - 62,4621,7]01)7 (6)

we define the dark and baryonic metrics as
— 0 L,b — paph (7)
gdm/ edﬂedy’/]ab’ g/w eﬂeyr]ab’
with
ef, = sa(@)ef, + sa(@)es,.

e;’j = Sl ((p)e‘llﬂ + sz(w)egﬂ' (8)

Thus, both dynamical matter metrics are a combination of
the two gravitational metrics that depend on the scalar field

@. This leads to nonminimal couplings between the matter
sectors and the scalar field.

B. Number of components and degrees of freedom

Although we have defined the model in terms of the
vierbeins of the two dynamical metrics, we treat the theory
as a metric theory, which is a function of the two metrics
9euw» 1 =1, 2. The two Einstein-Hilbert terms are invariant
under two copies of the diffeomorphism group. The
coupling to matter, which involves the diagonal subgroup,
reduces the diffeomorphism invariance to one diagonal
copy. The two metrics involve 20 components, which can
be reduced to 16 when the diagonal gauge invariance under
reparametrization of coordinates has been used. The
vierbeins are four-by-four matrices, which involve 2 x
16 = 32 components. This is redundant even when the
diagonal diffeomorphism invariance has been used, reduc-
ing to 28 the number of components. The two vierbeins
have two copies of the local Lorentz symmetry group as an
invariance group. Again, this is broken to the diagonal
Lorentz group by the coupling to matter. This removes six
components, bringing it down to 22. This is still more than
the 16 components of the metric description. This can be
made to coincide by imposing the symmetric condition [26]

Y

w — Yz/;n (9)

where we have introduced the tensor
_ a ,b _ _a
Yﬂl/ - l/labelﬂezy - elﬂeZazw (10)

The 4 x 4 tensor Y,, can be decomposed into ten sym-
metric components and six antisymmetric ones which are
imposed to be vanishing. This brings the number of
vierbein components down to 16, matching the ones for
a bimetric theory.

The consequences of the symmetric conditions are well
known; let us recall some salient features here. First of all,
let us define

o pA _ M La o jid _ M La .
X2y_-d£ Yﬂl/—eZuely’ Xlu_glll Yﬂb—elaehz’ (11)

then, we have that

ngXléz = gg”gw X?,,X'fg = géfygzm (12)

which implies that in matrix notation

2 = g(g7" )% (13)

Y =9:(95"91)
with an appropriate definition for the square root of a
matrix [26]. As a result, ¥, becomes a function of the two
metrics gg,,, which implies that the dark and baryonic
metrics,
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9 = S% ((p)gl/w + 2Sl ((p)SZ ((ﬂ) Y;w + S% ((p)QZyw
Gduw = sc211 ((p)glﬂl/ + 2Sdl (go)st(w)Y;w + S§2((p)92/4w (14)

are simply functions of the two metrics, too.

Not all the components become physical degrees of
freedom. For instance, when no matter is present, our
models reduce to two copies of General Relativity and as
such only carry two copies of massless gravitons, i.e., 2 X 2
physical degrees of freedom. When matter is present, in
particular cosmologically, the Hubble expansion rate of one
of the two types of matter becomes the order parameter of
the symmetry breaking pattern (diff; x diff;)/diff;,,,
where the two copies of diffeomorphism invariance are
broken down to the diagonal subgroup. As such, we could
expect that four Goldstone bosons & could become
physical. In fact, we find that out of the divergenceless
vector and the two scalars associated with & only the two
independent components of the vector are dynamical. The
validity of the model can be probed by a Stiickelberg
analysis, where we focus on the scalar & = 0"z, and we
show in Sec. VI below that no ghost appears below the
cutoff scale of order A = (H>Mp))'/%. This is the
physical regime we analyze in this paper. In particular, it
applies to cosmology as the horizon scale H~! is always
much larger than A7} since the very early Universe. Only in
the Solar System, as the cutoff scale is of order 1 AU, shall
we be prevented from strong conclusions for want of
explicit UV completions.

C. Equations of motion

1. Einstein’s equations

We cannot obtain the Einstein equations by requiring
the functional derivatives of the action with respect to the
vierbeins ef, and ej, to vanish. Indeed, because of the
symmetry condition (9), which reduces the number of
components to those of g;,, and g,,,, the vierbeins are
correlated and constrained by Eq. (9). This means that we
must take the variations along the directions that span the
subspace defined by the constraint (9). If we vary the metric
g; while keeping g, fixed, hence we vary ef, at fixed €3,
the symmetric constraint (9) reads as

Sef, e2q, = e, 24, for all {u,v}. (15)
We can check that these constraints are satisfied if the
variations éef, are of the form

Sef, = 871,58, (16)

where 6Z,,, is an arbitrary infinitesimal symmetric matrix,
0Zy,, = 6Zy,,. As expected, the matrix 6Z,,, provides the
same number of components as the metric g;,,. This also
gives 89y, = 6Z1,,X5, + 6Z1,,X%,. Then, the Einstein

equations follow from the variation of the action with
respect to 6Z;,,. We can write

oef,
6Z1,,

= 0,,(5,e5" + 57¢3"), (17)

where ©®,, = 1 if y <vand ©,, = 1/2 if u = v. Here, we
restrict to 4 < v as 6Zy,, = 6Z,,, so that 6Z,,, and 6Z,,,
are not independent. This gives

oS
oef,

for all {u,v}: esr + ey =0. (18)

a
561”

This provides the expected 16 symmetric Einstein equa-
tions (hence, ten equations, before we use diffeomorphism
invariance), which read as

Mp/=41[Gy° X5, + G X5, ]
=5 \/—g[T”U(SIXSJ + Szél(;-) + T”O.(SIX'ZG + Szég-)]
+sa1vV/=0a[T (sa1 X, + sa28%) + T4 (501 X5, + 50255) ]
(19)

The Einstein equations with respect to the second metric g,
are obtained by exchanging the indices 1 <> 2 [27]. Here,
T# and T are the baryonic and dark-energy energy-
momentum tensors, defined with respect to their associated
metrics,

|2 oYLy _

_ _ —2 8(/=9aLd)
uv \/_—g 59”” ’ duv .

N TI

(20)

We recover the standard Einstein equations when the two

metrics are identical (case of a single-metric model) with

51+ sy = land sq; + s = 1, asityields X5, = X = &,.
When the metrics are diagonal, that is, we have

et C,  Y,Cé

" 41
1 (2 X, Cou,

g*ﬂl/ C 5'1,{1/5
where * = {1,2,d,b} and g¢,,, C §,, means that g, =0
for u # v, the Einstein equations (19) simplify along the
diagonal as (no summation over y)

M%)]\/——glG’fﬂe?ﬂ = 51y/—gT" ey, + Sd1\/_—9dTﬁ”e<aiﬂ

with a = u. This coincides with the Einstein equations that
would have been obtained by taking derivatives with
respect to the vierbeins without taking care of the sym-
metric constraint (9). However, the off-diagonal Einstein
equations remain modified.
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2. Scalar-field equation of motion

The dependence of the matter metrics g, and g, on the
scalar field ¢, through Eq. (8), gives rise to source terms in
the Klein-Gordon equation that governs the scalar-field
dynamics,

v d a
Aulv/=9ad4 0u) + /=9aT Z T¢ €4, €t Mab

=1

2
ds
+ /=gT* Zd—;egﬂefnab =0. (21)
=1

3. Matter equations of motion
The equations of motion of the dark and baryonic matter
components take their standard form in their Jordan frames,
VT, = 0. v, T, =0, (22)

where V4, and V, are the covariant derivatives with respect
to the metrics g4, and g,,.

III. COSMOLOGICAL BACKGROUND

In this section, we investigate the cosmological back-
grounds that can be achieved in these scalar-bimetric
scenarios. We show how we recover a standard cosmology
at high redshift, when the scalar field is almost constant and
plays no role and all metrics follow the same expansion,
whereas a self-accelerated expansion without a cosmologi-
cal constant can be achieved at low redshift thanks to the
running of the scalar field, through the interplay between
the matter and gravitational metrics.

A. Friedmann’s equations

We consider diagonal metrics of the form

9ugu(7) = diag(=b3 (1), ai(v). ai(t), ai(r)).  (23)

where « = {1,2,d,b}, with the vierbeins
et, = diag(b,, a.,a,. a,), (24)
and we denote by H;,, = dInb,/dr, H, = dIna,/dz, the
conformal expansion rates of the time and spatial compo-

nents. We can choose to define the conformal time 7 with
respect to the baryonic metric g,,, so that
b=a, 9 (1) = diag(—a?,a*,a*,a*),  (25)

and we use either 7 or In(a) as the time variable. From the
definitions (8), we obtain the constraints

b = da = Slbl + Szbz,
bq = sq1by + sqabs,

a = sya; + s,a,,

ag = Sq1a; + Spas. (26)

The (0,0) component of the Einstein equations (19)
reads

3Mpayb; H;, = 500 (p + py) + $ar@3(Pam + Py)s (27)
while the (7, i) components read

p
3Fr
= —spa” =
3

- sdfa(zibd[){/,. (28)

P]afb I[ZH/ +3H2 ZHa/th]

Here, we assumed nonrelativistic matter components,
Pdam = p =0, and we used p, =p,/3 and p, = p, for
the radiation and scalar pressure.

B. Conservation equations

The Jordan-frame equations of motion (22) lead to the
usual conservation equations; hence,

~_ Pdmo __ Po Py
pdm—TS’ P = 2 Py—?- (29)

We define the cosmological parameters associated with
these characteristic densities by

pdmO
3M3H3
(30)

Pbo Py

Qo =—120 =0 Qo=
b0 3M123]H% v0 3M]231H(2) dmO

where H is the physical expansion rate associated with the
baryonic metric today, at a = 1. We also define the rescaled
scalar-field energy density £ as the ratio of the scalar field to
dark matter energy densities

Pyla)
ﬁdm(a) .

Ea) = 3P &a) _

_ , 31
V] G

QdmO

It is convenient to introduce the dimensionless combination

Ha
£=1,2: w, = ayb;>—%

e (32)

Then, the Friedmann equations (27) and (28) simplify as

Wy =S¢ <Qbo +Q—> + 547(Qamo +&(a)),  (33)

b,f H da)f QyO bd
— = —5,—— — S4p3— 34
ayH, dna S Sar adét (34)
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We recover the usual Friedmann equations of General
Relativity with £=0, b, =a,, H="H,,, s, =1, and
s¢e = 1. In this case, we can check that the second
Friedmann equation is a consequence of the first
Friedmann equation and of the conservation equations,
as it is the derivative of Eq. (33) with respect to In a.

By taking the first derivative of Eq. (33) and combining
with Eq. (34), we obtain the useful combinations

+———(Qumo + &(a))

de QO
Q, -
dlna< bo+ a) dina
3bdathlf>.

Q as H dné
y0 14 ag
=5, (1= — 275
S ( ) sdfg(dlna agby H

def

(35)

This shows that the evolutions of the baryonic and dark
matter couplings are correlated and related to the running of
the scalar field (£ > 0) and the deviations between the
different expansion rates H,. In the absence of the scalar
field in the dynamics, the relation (35) reduces to the
branch of solutions

ar

b_f HW - H, (36)

which appears in doubly coupled bigravity [15].

C. Scalar-field equation of motion

The scalar-field energy density reads as

1 [dp\?
Po =32 <Z> : (37)

Then, we can check that the background Klein-Gordon
equation (21) can be written in terms of p,. Using the
rescaled scalar-field density & of Eq. (31), this gives

bd d 3 dsdf
— Q
agdlna[adé] +( dm0+‘}=:) v dlna 14
b d Q d
328N By (G + -2 b,
aq dlna a dlna
¢ ¢
Q ds
y0 ‘
- =0. 38
a ;dlnaaf (38)

From &(a), we obtain the evolution of the scalar field

@(a) by integrating Eq. (37). With the initial condition
@(0) = 0, this gives
_ ada deO 65
=M — —. 39
(p(a) PlA a H ag ( )

We can actually check that the Klein-Gordon equa-
tion (38) is also a consequence of the Friedmann

equations (33) and (34), supplemented with the constraints
(26). Therefore, as in General Relativity, the Friedmann
equations and the conservation equations are not indepen-
dent. In General Relativity, it is customary to work with the
first Friedmann equation and the conservation equations of
the various matter components, leaving aside the second
Friedmann equation that is their automatic consequence. In
this paper, because we have two symmetric sets of
Friedmann equations (33) and (34), for £ =1, 2, and
the Klein-Gordon equation (38) takes a complicated form
with its new source terms, we instead work with the four
Friedmann equations, and we discard the Klein-Gordon
equation (38), which is their automatic consequence.

D. Einstein-de Sitter reference

When the scalar field is a constant, it should not play any
role, and we expect to recover a standard cosmology.
Because we did not introduce any cosmological constant,
this must be an Einstein-de Sitter universe without late-time
acceleration (more precisely, a universe with only matter
and radiation components). In this reference universe,
obtained within General Relativity with only one metric,
the Friedmann equations (33) and (34) read as

H(O)Z Q 0
) = =Q Q i
) a i amo T+ $2p0 + pt
do®  Q,
= —— 40
dina a (40)

Here and in the following, we denote with the superscript (0)
quantities associated with this Einstein-de Sitter reference
universe, which follows General Relativity. As noticed
above, here, the second Friedmann equation is trivial as it
is a mere consequence of the first Friedmann equation and of
the conservation equations, which have already been used in
the first part of Eq. (40).

We can recover the standard cosmology (40) within the
bimetric model (1) by the simple solution

ag)) = s;o)a, a&o) =a, bl = ai()), HO = HO),
a)fpo) = S;O)a)(o), &0 =0, s((i(;) = sg)), (41)

where the coefficients s(fo)

condition

are constants that obey the

(s + (s3) = 1. (42)

The scalar field ¢ is also constant, as the derivatives in the
source terms of Eq. (21) vanish. In this solution, all four
metrics are essentially equivalent, as b, = a, and all scale
factors a, are proportional. The common expansion rate
H.(a) follows the standard Einstein-de Sitter reference
H) (a) of Eq. (40).
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E. A-CDM reference

To match observations, the expansion rate H(a) must
deviate from the Einstein-de Sitter reference (40) and
remain close to the concordance A-CDM cosmology. To
ensure that this is the case, in this paper, we constrain the
baryonic expansion rate H(a) to follow exactly a reference
A-CDM cosmology. Of course, in practice, small devia-
tions from the A-CDM limit are allowed by the data, and
we could also generalize the solutions that we consider in
this paper by adding small deviations. However, by
definition, this would not significantly modify the proper-
ties of these solutions. Besides, being able to recover a
A-CDM expansion rate is sufficient to show that the
bimetric model can be made consistent with data at the
level of the cosmological background.

In the A-CDM cosmology, we add a cosmological
constant to the components of the Universe. The usual
Friedmann equation reads as

H? Qumo+ o L0

where Q, is the cosmological parameter associated with
the cosmological constant. In terms of the variable w,
this gives

w(a) = 0% (a) + Qyoa, (44)

which explicitly shows the deviation from the Einstein-de
Sitter reference (40). (Here, the Einstein-de Sitter reference
is normalized with Qgn0 + € + Q2,0 =1-Qp9 # 1,
because we normalize the cosmological densities by H

instead of H(()()).)

The bimetric solution with a constant scalar field, which
was able to reproduce the Einstein-de Sitter cosmology
(40), cannot mimic the A-CDM cosmology (44) because of
the extra term on the right-hand side of the Friedmann
equation [a constant scalar field implies £ = 0 in Eq. (33)].
Therefore, to recover a A-CDM expansion rate, we must
consider more general solutions with a nonconstant scalar
field. In particular, even if the scale factors a; of the
gravitational metrics keep decelerating at late times, the
baryonic scale factor a = s1a; + s,a, can accelerate at late
times if s; or s, grows sufficiently fast. Then, the accel-
eration experienced by the baryonic metric is a dynamical
effect due to the time-dependent relationship between this
metric and the two gravitational metrics.

On the other hand, at early times where data show that
the dark-energy density is negligible, we converge to the
simple Einstein-de Sitter solution (41). This will be the
common early-time behavior of all the solutions that we
consider in this paper. We can check that the integral in
Eq. (39) is indeed finite and goes to zero for a — 0, both in
the radiation and dark matter eras, provided

E—>0 fora—0. (45)

This also ensures that the dark-energy density is negligible
as compared with the dark matter density. As we shall see
below, the families of solutions that we build in this paper
are parametrized by &(a), which is treated as a free function
of the model. Therefore, the condition (45) is easily
satisfied, by choosing functions &(a) that exhibit a fast
decay at high redshift.

F. Solutions with common conformal time

To illustrate how we can build bimetric solutions that
follow a A-CDM expansion rate, we first consider solutions
with

a,=b,; (46)

that is, the conformal time 7 is the same for all metrics.
Then, at the background level, each metric is defined by a
single scale factor a,, and the two constraints in the first
line in Eq. (26) reduce to one, a = sja; + s,a,. As all
metrics are proportional, at the background level, this
scenario is similar to a single gravitational metric model,
Ju» Where the baryonic and the dark matter metrics are

given by different conformal rescalings, g,, = A%(¢),,
and G = Ai((p)gﬂl/

1. Symmetric solution

We first consider a simple symmetric solution where we
split the single constraint a = sa; + s,a, into two sym-
metric constraints:

S1dy  , (0)42 S2dy —, (0)\2

Do PP 2RoGPR @)
This is consistent with the initial conditions defined by the
early-time solution (41)—(42). Then, Eq. (47) gives s,(a) as
an explicit function of {a, a,(a)}, and we solve for the two
sets {ayz(a),ws(a), sqs(a)}. Thanks to the splitting (47),
these two sets of variables can be solved independently.
Then, the three functions {a,(a), w,(a), sq,(a)} are deter-
mined by the two Friedmann equations (33) and (34) and
the definition (32). The definition (32) provides H, at each
time step, hence dIna,/dIna. The second Friedmann
equation (34) gives dw,/dIn a. The first Friedmann equa-
tion (33) provides s4,(a). The dark sector scale factor aq is
given by Eq. (26), aq(a) = sq1a; + sqa,. The scalar-field
energy density &(a) is an arbitrary function, which is a free
function of the bimetric model. It must be positive, and we
only request that it vanishes at early times to recover the
high-redshift cosmology (41).

This procedure provides a family of solutions that are
parametrized by the initial coefficients sg)) and the scalar
energy density &(a) and which follow the A-CDM expan-
sion history for H(a). The latter enters the dynamical
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equations through the factors H(a) in Egs. (34) and (32)
[when we write dIna,/dt = H(dIna,/dIna)]. As the

coefficients s(f0> do not appear in these equations, the two
metrics are actually equivalent, with

@ _si_s

b
ay 8 szo)

We show in Figs. 1 and 2 the evolution with redshift of
the main background quantities, in such a solution with
SEO) =/3/2, sg)) = 1/2. The scalar-field energy density
£(z) is chosen to vanish at high z and to remain much
smaller than the dark matter energy density at all times,
¢ <« 1. More specifically, we use the simple form

u3’? QAOCZ4

x———, U= . 49
1+ u?/? Q0 + (Qamo + Qpo)a (49)

é(a)

From Eq. (43), the quantity u(a) is a natural measure of the
deviation of the A-CDM cosmological background from
the Einstein-de Sitter background. It is also the ratio of the
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FIG. 1.

effective dark-energy density to the matter and radiation
energy densities, and we have @ = @ (1 + ). In this
paper, we write the free functions of the models in terms of
powers of u(a), to ensure that we recover the Einstein-de
Sitter reference of Sec. III D at early times. This also means
that the effects of the scalar field only appear at low
redshifts, where the departure from the Einstein-de Sitter
reference is associated with a running of the scalar field.
We can see in Fig. 1 that a; /a and a,/a decrease at low z
while s; and s, increase. Indeed, because of the absence of
a cosmological constant, the scale factors a;(z) of the
gravitational metric tend to follow an FEinstein-de Sitter
expansion rate, which falls below the A-CDM expansion
rate of a(zr). The latter manages to mimic the A-CDM
history thanks to the late-time growth of the factors s, in
Eq. (26). On the other hand, the dark factors s4, decrease at
low z, in a fashion that is opposite to the baryonic factors
s¢. This follows from the relationship (35), which gives

defN QbO ds,g
dina~  Qynodlna

{x1,Q0x1: fora~1. (50)
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Background quantities for a symmetric solution of the form (47), as a function of redshift. Upper left panel: ratio of the various

scale factors a, to the baryonic scale factor a. Upper right panel: the various expansion rates H, normalized to Hy. Lower left panel: the
various deceleration parameters ¢,. Lower right panel: coefficients s, and s4, of Eqgs. (8) and (26).
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Then, from Eq. (26), the dark sector scale factor ay(7)
grows even more slowly than the gravitational scale factors
a,(t) at late times, and we have H,, <H,, < H.

These different cosmic evolutions are clearly shown by
the deceleration factors ¢,, defined for each metric with
respect to its cosmic time dt, = b.dz by

i & da,\ -2
q. = SA p < a*> . (51)

a? drr "\ dt,

Thus, we can see that the gravitational metrics g; and g,
show no acceleration. They keep behaving like an Einstein-
de Sitter cosmology, except for a slightly stronger decel-
eration at low z. Only the baryonic metric shows an
accelerated expansion with ¢ < 0. Because of the opposite
behavior of the dark sector coefficients s4,, as compared
with the baryonic coefficients s,, the dark sector metric
shows instead a stronger deceleration at late times than the
Einstein-de Sitter cosmology. This clearly shows that the
apparent acceleration of the baryonic metric is not due to a
dark-energy component, associated for instance with the
scalar field ¢, as the “Einstein-frame” metrics g; and g, do
not accelerate. It is only due to the time-dependent mapping
(26) between these metrics and the baryonic metric.
Therefore, this provides a “self-accelerated model,” in
the sense that the acceleration is not due to a hidden
cosmological constant (e.g., the nonzero minimum of some
potential or a dark-energy fluid with negligible kinetic
energy).

As we wish to mimic a A-CDM cosmology, with
Qpo~0.7, the deviations from the Einstein-de Sitter
cosmology are of order unity at low z. This implies that
the deviation of the coefficients s, and sy, from their initial
value is also of order unity at low z, while from Eq. (39), we

have @ ~ Mp\/E,
=005, =50~ sy —sO 1, -2 VE (52)
My,

As explained below, after Eq. (70), we cannot take & too
small as this would give rise to a large fifth force. On the
other hand, we wish to keep the scalar-field energy density
subdominant. We choose for all the solutions that we
consider in this paper the same scalar-field energy density,
shown in the upper panel in Fig. 2. It is of order Q,,,0/10 at
z = 0 and decreases at higher z. The u*/? falloff of &(a) is
fast enough to make the scalar field subdominant and
to converge to the Einstein-de Sitter solution (41). It is
also slow enough to enforce ds./dp — 0, as we have
ds*/d(p:(ds*/dlna)/(d(p/dlna)NuH\/6—175. This yields
vierbein coefficients s,(¢) that look somewhat more
natural than functions with a divergent slope at the origin.
We can see in the lower panel that the functions s, (¢) built
by this procedure have simple shapes and do not develop

10°
£
o 1
< 0
o> B
I o
Il -
o \\\
X ‘
o 2 | \~\
& 10 o
G ~N
ur ~\k
~.
~.
~.
S~
108 ‘ -
0o o5 1 15 2 25 3 35 4
zZ
05
.
04 F\
\-
\
= 0.3+ ‘\‘
= :
= AN
02+ .
N
N
0.1} T
0 ‘ E
0o 05 1 15 2 25 3 35 4
y4
1.4
12}
1M
-, S e N X - oo
") .

0 0.1 0.2 0.3 0.4 05
©/Mp

FIG. 2. Background quantities for a symmetric solution of the
form (47). Upper panel: ratio of the scalar-field energy density to
the dark matter energy density. Middle panel: value of the scalar
field in Planck mass units. Lower panel: coefficients s, and s4, as
a function of the scalar field.

fine-tuned features. The model chosen for &(a) gives scalar-
field excursions of about Mp;/2 at z = 0.

2. Nonsymmetric solution

We can also build nonsymmetric solutions, which do not
obey Eq. (47). Instead of splitting the constraint a =
sya; + spa, into the two conditions (47), we can add
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another condition, such as requiring the ratio s,/s; to
follow an arbitrary function of time x(a). Then, the
function «(a) parametrizes this extended family of sol-
utions. The symmetric solution of Sec. III F 1 corresponds

to the particular case k(a) = séo) / s(lo). Because the effective
Newton constant is given by s}+s3, in units of
Gn = 1/8zM3,, as we shall see in Eq. (84) below, we
choose instead to parametrize the solutions by the sum
57 + 52, as a function of redshift. Thus, we solve the system

siay + spar = a, 53+ 53 = Aa), (53)
where A(a) is a new arbitrary function that parametrizes this

extended family of solutions. These two equations now
provide {s;,s,} as a function of {a,a,a,},

aa, + ear\/A(at + a3) — a®
1= 2 2 J
ay +a;

o _ a2 —ea Ma* +a3) —a* (54)
: al+ a3 ’

where ¢ = £1. Then, we can again solve for the two sets
{as(a),wp(a), sqs(a)} from Egs. (32), (33), and (34), the
only difference being that these two sets of variables are
now coupled.

We show in Fig. 3 the evolution of the background
quantities for a solution of the form (53), where s, /s, is no
longer constant and we impose that di/da =0 at z = 0.
Despite this difference, the scale factors and the Hubble
expansion rates are very close to those of Fig. 1. This is
because, at late times after the radiation-to-matter transi-
tion, a > Aeg and for £« 1, the second Friedmann
equation (34) reduces to

da),g
dlna

da)f Qy()
dina a

- ¢ hence < 1. (55)

Since the dark-energy era and the running of the scalar field
occur much later than the radiation-to-matter transition, we
can actually see from the first Friedmann equation (33) that
we must have

0 0
g = 5,Qp0 + $3,24m0 = S,(,ﬂ 'Qyo + Sfﬂ ) Qumo- (56)

Thus, we recover the relationship (50), and we also find that
for the general class of solutions with a common conformal
time the quantities w, are set by the initial conditions and
show a negligible dependence on the late-time evolution of
the coefficients s, and s4, and on the scalar field (as long as
it remains subdominant). This explains why we recover
almost the same evolution for the scale factors a, and
the Hubble expansion rates H,, which are determined by
the definition (32). Then, the deceleration parameters ¢, are
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FIG. 3. Background quantities for a solution of the form (53),

where s,/s; is not constant.

also close to those obtained in Fig. 1. The change to the
factors s, associated with different solutions is almost fully
compensated by the change to the dark coefficients s, that
is implied by the constraint of recovering a A-CDM
expansion rate for the baryonic metric. By the same
mechanism, we also find that in these solutions, despite
the different behaviors of s; and s,, the two gravitational
metrics are mostly equivalent, with again the same expan-
sion rates H; ~ H, up to negligible deviations.
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G. Solutions with different conformal times

We now turn to even more general solutions, which still
follow the A-CDM expansion rate for the baryonic metric,
but where

ag # by, aq # by. (57)
Then, the conformal times 7, of the various metrics are
different. As the metrics are not proportional, already at the
background level, this scenario is different from models
where the baryonic and the dark matter metrics are given by
different conformal rescalings of a single Einstein-frame
metric g, .

Defining the scale-factor ratios

ZQ rd(a):ﬁ’

ap ’ aq

re(a) (58)

the two constraints in the first line of Eq. (26) read as
a:s1r1a1+s2r2a2. (59)

a = syay + Srdy,

These two linear equations provide {s,} as a function of

{a,a,},

a(l=ry)
al(ﬁ—rz)’

a(l —ry)

a2<r2_r1)’ (60)

S = Sy =

when we are given the arbitrary free functions r,(a). As in
the previous cases, {a,,w,,sq} are obtained from
Egs. (32) and (33) and (34), while a4 and b4 are obtained
from the second line of Eq. (26).

We require a, >0, b, >0, s, >0, sq0 > 0, to avoid
singularities. This implies s;s5, > 0, and Eq. (60) leads to

(l—rl)(l—r2)<0, (61)
and we can choose for instance
r<l1<r,. (62)

The recent detections of gravitational waves from a
binary neutron star merger by the LIGO-VIRGO
Collaboration (GW170817) [29], with electromagnetic
counterparts in the gamma-ray burst [17] and in UV,
optical, and near infrared bands [30], place very stringent
limits on the speed of gravitational waves, |c, — 1| <3 x
105 [17]. For the bimetric action (2), we have two
gravitons associated with the two FEinstein-Hilbert terms
R,. We can obtain their equations of motion from the
nonlinear Einstein equations (19), starting at the level of the
vierbeins. In the case of a constant scalar field ¢, we
recover the results obtained from the quadratic action at the
level of the metrics in Refs. [13—15]. This gives for the first
graviton hy;;

2
2 41
Pl

by

- az(ﬁsls2a2 + p¢sdlsd2bdad)(h]ij - hzij) =0, (63)

h//

M lij + (3Hal - Hb]>h/

lij —

b2

1 o2
— Vohy
ap

and the equation of motion of the second graviton h,;; is
given by the permutation 1 <> 2. Here, we note p is the
total pressure of the baryonic sector fluids. In the radiation
and matter eras, this is simply the radiation pressure,
p = p, = p,/3, while during the inflationary era, it is
the pressure p, = —p, of the inflaton y. We can see that the
speed of the two gravitons is given by ¢, = b,/a,, which
differs from the speed of light when r, # 1.

To explain the multimessenger event GW 170817, at least
one of these two gravitons must propagate at the speed of
light (up to an accuracy of 107!%) in the local and recent
Universe, d <40 Mpc and z < 0.01. In principle, a non-
linear screening mechanism might change the laws of
gravity and ensure convergence to General Relativity in
the local environment. However, it is unlikely that it would
apply over 40 Mpc. Moreover, in most parts of the
trajectory, between the host galaxy and the Milky Way,
the local density is below or of the order of the cosmo-
logical background density. Besides, it would require a
fine-tuned cancellation to make the average speed ¢, = 1
over the full trajectory, inside the two galaxies and the low-
density intergalactic medium. Then, at least one of the lapse
factors r, must converge to unity at low z If both
coefficients r, go to unity, we converge to the solutions
studied in Sec. III F. For illustration, we consider in Fig. 4
the case where only one of the coefficients r, goes to unity
at low redshift, for instance rq [with again the same initial

conditions {sgo), sgo)} and scalar-field energy density &(a)
as in Fig. 1]. In this limit, the system effectively reduces
again to a single metric for the baryonic sector. Indeed,
Eq. (60) implies that s, - 0 if r; > 1 (and sy — O if
ry — 1). Then, the baryonic metric g,, becomes propor-
tional to the metric g;,,. However, the dark matter metric
remains sensitive to both gravitational metrics g; and g,, as
S4» remains nonzero, so that the baryon + dark matter
system remains different from the common conformal time
scenarios of Sec. III F. In particular, the baryonic and dark
matter metrics are not proportional, so this scenario remains
different from models where the baryonic and the dark
matter metrics are given by different conformal rescalings
of a single Einstein-frame metric g,,.

We can see that in this scenario the scale factors a,
remain similar to those obtained in Fig. 1 for the symmetric
solution (47). However, we can now distinguish the differ-
ence between the two expansion rates H,, and H,,, at low z.
The main difference with respect to the previous solutions
is the behavior of the lapse functions b,. Thanks to the
additional degrees of freedom r,, the lapses b, can behave
in a significantly different way than the scale factors a,. In
the example shown in Fig. 4, the two lapses even evolve in
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FIG. 4. Background quantities for a solution of the form (62), where the different metrics have different conformal times (i.e., are not

proportional), but r; — 1 at z = 0.

different directions and cross each other at z ~0.1. This
leads to rates that are significantly different with H,,, > H.
As explained in Sec. IIIF 1, because of the lack of a
cosmological constant, the gravitational expansion rates
H,, are typically smaller than the A-CDM expansion rate
‘H. This remains true for the more general solution shown in
Fig. 4. But the lapse functions are not so strongly con-
strained, and it is possible to have one of them growing

faster than a. For the choice (62), this corresponds to b,,
with ‘H,,, > H. This requires a ratio r, that significantly
departs from unity at low z, as seen in the lower left panel.

The coefficients s, and s4, follow similar behaviors to
those obtained in Figs. 1 and 3, with opposite deviations at
low redshift for the baryonic and dark sector coefficients.
Because of the constraint |r; — 1| < 3 x 10715 at z = 0, the
coefficient s, almost goes to zero, with s, < 1071 at z = 0.
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IV. COSMOLOGICAL PERTURBATIONS

We have seen that it is possible to build several families
of solutions that follow a A-CDM expansion history for the
baryonic metric. In the case of metrics that are not
proportional, the multimessenger neutron star merger
GW170817 also implies that at least one of the two
gravitational metrics, g; and g,, becomes proportional to
the baryonic metric (i.e., r, = 1) at low redshift.

We show below that these models are actually severely
constrained by the behavior of perturbations. Here, we
focus on the scalar perturbations in the quasistatic approxi-
mation, which applies to the formation of large-scale
structures. Then, the relevant metric perturbations are set
by the four gravitational potentials {¢,, y,} as in the usual
Newtonian gauge.

A. Scalar-field perturbations

On small scales in the quasistatic approximation, the
Klein-Gordon equation (21) becomes

—2v25¢ = m25¢p + ﬂd—mépdm Af sp.  (64)
ag Pl

with 69 = ¢ — @, 6pam = Pam — Pam,» and Gp = p —p.
Here, we assumed nonrelativistic matter components,

Pam = P =0, and we neglected radiation fluctuations.

As ép, =6p, = bdz‘fl—‘f%if’, we also neglected the linear

fluctuations of the scalar-field density and pressure in the
quasistatic limit. The scalar-field mass around the cosmo-
logical background is

d*sqp b d*sqp a
2 _ (5 ~ d¢ f dz dr
m (/)dm +/)(p>zf: (/}Z dg02 ag
o d s, a3bf _ d*s, a’a,
+p+p —-p — . 65
( y)zf: de? aib yzf: de? alby (65)

Using the relation (35), it is possible to express the dark
sector derivatives d’sq,/d@* and dsy,/de in terms of
d*s,/dg* and ds,/dg. It is then possible to remove the
second derivatives d’s,/d¢? thanks to the symmetry in
¢ =1, 2, using the relations obtained by taking derivatives
with respect to In a of the constraints a = s;b; + s,b, and
a = syja, + s,a,. The couplings to matter are

ds ab dsg, b
PIZ z f m:MmZﬂ_f- (66)
¢

dey by
In Fourier space, this yields

o] 3H? Q 1) Q0 f6
o _ . g . dmOﬁ(Bim dm b03ﬁ (67
Mp, m* + k*/ag aj a

where O4m = 0pam/Pams 6 = p/p.
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FIG. 5. Scalar-field mass and couplings for the symmetric

model of Fig. 1.

It is interesting to consider the scaling in & of the scalar-
field mass and couplings. From Eq. (52), we have the
scalings

ds, ds, 1 d*s, 1
dlna dp MpvVeE dg* My
Then, from Eq. (65), it seems that m? ~ H3/&£. However,

using the relationship (35), one finds that the terms of order
1/& cancel out, and we obtain

(68)

m ~ H3(Q0 + ). (69)
On the other hand, the couplings scale as

1 1
7? ﬂdmNjg'

Therefore, very small values of the scalar-field energy
density ¢ yield a very large fifth force. This implies that
we cannot take & too small, which is why we choose
E~Qumo/10 at z =0 in the models that we consider in
this paper. This feature comes from the fact that we
require effects of order 1 from the scalar field onto the
background at low redshift, ds,/dIna ~ 1, to generate
the apparent acceleration of the baryonic metric. This
implies ds,/dp < 1/ o< 1/+/E.

We show in Fig. 5 the scalar-field mass and couplings for
the symmetric model of Fig. 1. As expected from the
expression (65), the squared mass evolves as p/M3 ~ H,
and it is of order H?. This means that it is negligible on
scales much below the horizon, where the quasistatic
approximation (64) applies, and does not lead to small-
scale instabilities, even when it is negative. The couplings
and S, are of order unity and decrease at high z, because
ds,/de — 0. This is because we choose the high-z decay of
the scalar-field energy density, determined by Eq. (49),
to be slow enough so that ds,/dp — 0O at early times.
The baryonic and dark matter couplings have opposite

P~ (70)
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signs, with > 0> f4,, because we typically have
dsy/dlna >0 and dsq,/dlna <0, as explained in
Sec. Il F and in agreement with Eq. (50).

The other solutions considered in Secs. III F and III G
give results similar to those found in Fig. 5.

B. Einstein equations

1. Gravitational potentials ¢, and y,

We study in details the behavior of linear perturbations in
Sec. V below, and we provide in Appendix A explicit
expressions of the Einstein equations in the case a, = by.
The extra two scalars added to the four Newtonian
potentials that cannot be eliminated by gauge freedom
(because of the loss of the nondiagonal diffeomorphism
invariance) are not dynamical [13], and there is no scalar
instability. In this section, we focus on small subhorizon
scales, k > H, in the quasistatic approximation, where we
only keep the higher-order spatial gradients. Then, as in
General Relativity, only the four gravitational potentials
{¢¢,w,} remain. The perturbed metrics take the usual form

9«00 = _bz(l + 2¢*)1 Gxii = a%(l - 21//*)’ (71)

while the vierbeins are diagonal with

ey = b.(1+¢.), e =a(l-y). (72)

For nonrelativistic matter components, the (0,0) compo-
nent of the Einstein equations (19) gives for the metric g,

2a, dlna

V Q0 Q400 Y —op, 73
3H? W1 = 5182500 + S41824m00dm + i dp @ (73)
with

Q b ds b, ds
T, = (Q+-2)|(1 4-—L 22 T
v < bo + a){( o dina Va4 dina
b del b2 de2
Q 1 =,
+( d‘“°+§)[< +sdlb>dlna+sdlbddlna
(74)

The (i, j) components of the Einstein equations give

b dlna
le[ 9;0;(¢1 = 1)+5ijv2(¢1_W1>]:T¢1d—(7)5(ﬂ7
(75)
with
ds a, ds
T, =711 4 1 22 %%
4 a K + dina ' "''adlna

az dst
76
e agdIn a} (76)

We can use the Klein-Gordon equation (67) satisfied by the
scalar field to eliminate d¢. In Fourier space, this gives

—gafz—z(z)llff = (1 +7)s5,Q008 + (1 + 74n)SarLamoSam
(77)
and
kik; =5,k ; ¢
—ap—" (=) = 1 5,000 + 7 05 4rLamoFam-

Hj

(78)
The coefficients y; arise from the fluctuations of the scalar
field ¢, which generate fluctuations ds, of the vierbein

coefficients s, that relate the matter and gravitational
metrics. They are given by

Horda Sy 2 m —|—k2/a R2

Vin = Hordadsdf v m? + kz/a D2
}/[/)/’ — ﬁ ﬁHO 4) R
Horda FeSy 2 m +k2/a ‘
p ag  PamHj
Vin = n Yy (719)

Hordadrfsdg 2 m? + kz/a[z1

where the factors T, and T, are given in Egs. (74)
and (76). The contribution from the fifth force to the
gravitational potentials w, and ¢, is negligible if the
coefficients y; are much smaller than unity. Then, we
recover Einstein equations for these gravitational potentials
that are close to their standard form,

hr =y,
lril <1t (80)

2, i ~
—3dy 2 Ve~ 50200 + 547£24m00dm-

We show in Fig. 6 the coefficients y; for the symmetric
solution of Fig. 1, at comoving wave number k(z) =
10H(z). At z =0, we expect from Egs. (79) that |y} ~
(Hy/k)? on small scales. Indeed, we can see in the figure
that for k = 101 we have |y:| <1072, Moreover, the
amplitude shows a fast decrease at higher z. Therefore,
on subhorizon scales, the coefficients y; are much smaller
than unity at all redshifts, and we can always use the
approximations (80).

The other solutions considered in Secs. IIIF and NI G
give results similar to those found in Fig. 6.

103516-14



SELF-ACCELERATION IN SCALAR-BIMETRIC THEORIES

PHYS. REV. D 97, 103516 (2018)

FIG. 6. Absolute value of the coefficients y; for the symmetric
model of Fig. 1, at comoving wave number k(z) = 10H(z).

2. Baryonic gravitational potentials ¢ and y

In the following, we assume that the properties (80) are
satisfied. However, this is not sufficient to remove the fifth
force because the dynamics of dark matter and baryons are
set by their own metric potentials ¢4 and ¢. Their relation-
ship with the potentials ¢, involves the scalar field and will
give rise to a fifth force. Indeed, from the vierbeins (72) and
their relations (8), we obtain at linear order

ag = be(seps + 5s¢),
7
ay == as(saps —8s¢). (81)
7

As for the gravitational potentials ¢, and v, the fluctua-
tions of the coefficients s, and s4,, due to the perturbations
of the scalar field ¢, give rise to nonstandard terms. Using
Eq. (80), we obtain

2 K>
—3¢ H b = Q08 + 1l Lm0 Sarm:
2 k2
~3 a— H2 W = 1 Qo8 + e QamoSam. (82)

[ Haz  [2aq pK*  ds
b — d d ¢
s zf: _s"/)rf—i—Horda 3¢ k*+aim*dlna Lﬂ]

2a4 Pank® ds
b _ d_ Pdm ‘
Him Xf: stdfrf“V‘Hordad“ 2+ aZmidina f:|

Z [ 2 Had 26ld ﬁkz de a
~ Se Horga®\| 38 K*+a2m*dina”*

v o_ |2 ad Pam %3
Ham zf:_sfsdf Hordad +azm2dlnaaf]' (83)

We recover the standard Poisson equations if yf = 1.

We can split the coefficients u into two parts. The first
term, of the form s2r,, is similar to a scale-independent
renormalized Newton’s constant and arises from the
coefficients s, that relate the various metric potentials.
The second part, of the form ds,/dIna, arises from the
fluctuations of the scalar field through ds, and corresponds
to a fifth force. It is scale dependent. Thus, we may define
the renormalized Newton’s constants (in units of the natural
Newton’s constant, Gy = 1/8zM3),

_ 2 (/)
g = E Seres E S¢Saeles
2

gv = ZS? Gim = Zsfsdf’ (84)
7 7

which are all positive.

The two baryonic metric potentials ¢ and y are generi-
cally different. First, if r, # 1, the associated effective
Newton’s constants G and G¥ are different. Second, the
fifth-force contributions that enter ¢ and y have the same
amplitude but opposite signs.

We show in Fig. 7 the coefficients ,u* and uY for the
symmetric solution of Fig. 1, at comoving wave number
k(z) = 10H(z), as well as the effective Newton constants.
At early times, when the scalar field has no effect and we
converge to the Einstein-de Sitter cosmology, we recover
General Relativity with i — 1 and G — 1. At late times,
these coefficients show deviations of order unity. In
this regime, the comparison of the two panels shows that
the coefficients uj are dominated by the fifth-force
contributions. This means that the fifth force is greater
than Newtonian gravity. Moreover, the coefficients ,u?m
and u¥ become negative, which would give rise to very
nonstandard behaviors. Thus, the dark matter overdensities
repel the baryonic matter at late times.

3. Dark matter gravitational potentials ¢4 and y4

In a similar fashion, the dark sector gravitational
potentials ¢q and w4 obey Poisson equations of the
form (82),

2,k ,

—34 2 ha = p?i 00 + ﬂdedmofsdm,

2 k2 Ya

—34 H2 Wa = 100 + Uy Lam0dm. (85)

with
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FIG. 7. Upper panel: coefficients u* and p¥ for the symmetric
model of Fig. 1, at comoving wave number k(z) = 10H(z).
Lower panel: effective Newton constants G?. For this model,
gl =gl.
ph=3" 5005 Z Hag 200 K dsae
— | wrry Ho”d 3¢ k> +aim*dlna ‘
ﬂ :Z_sz 2a4 ﬁelmk2 dsqp b,
m | Wy Hordad 3¢ k*+aim*dIna

:Z oo Hal  [2aq4 Pk dsdfa
— " Hyrga® \| 38 K2+ d3m*dIna”

K d
ad ﬁdm 5 Sdr af}. (86)
Hordad kK*+a3m*dIna

The renormalized Newton’s constants are now

Iy
g¢d: E Sd¢Se — > E sdf ,
rq

¢

Gre = sarses im = stf’ (87)

4 4

which are again positive. The comparison with Eq. (84)
shows that the cross-terms are related by

6 —
d
51 f
4l o ===~
qu —e—
3 L
i e
2 L
=
1 L
0
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z
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FIG. 8. Upper panel: coefficients yfd and ¢ for the symmetric
model of Fig. 1, at comoving wave number k(z) = 10H(z).
Lower panel: effective Newton constants Gl and g¥e.
gz)m = rdg¢d’ gl(lilm =gva. (88)

We show in Fig. 8 the coefficients u%¢ and u!* for the
symmetric solution of Fig. 1, at comoving wave number
k(z) = 10H(z), as well as the effective Newton constants.
We obtain behaviors that are similar to those found in Fig. 7
for the baryonic metric potentials. At late times, the fifth
force is again greater than Newtonian gravity and can lead
to repulsive effects between baryons and dark matter.

C. Density and velocity fields

In their Jordan frame, associated with the metric G- the
baryons follow the usual equation of motion V, T = 0.
This gives the standard continuity and Euler equations

0,
Piv. (pv) +3Hp =0,
ot
ov
3 + (v-V)v+Hv =-Vgp. (89)

Using the Poisson equation (82), we obtain the evolution
equation of the linear baryonic matter density contrast,
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05 dinH| 05  3H}
M = Q6
(81na)2+ [ +dlna] dlna 2aH2['u *0
+/’¢?j§mgdm05dm] . (90)

The dark matter also follows its usual equation of
motion, V,,T) =0, where Vy, is now the covariant
derivative associated with the dark sector metric gg,,-
This gives the continuity and Euler equations

ap dm

or
8Vdm )
7—'— (Vam * V)Vam + CH o, = Hp, )Vam = =13V, (91)

+ V- (pamVam) +3Ha,, Pam =0,

where 7 is still the conformal time of the baryonic metric.
Using the Poisson equation, the evolution equation of the
linear dark matter density contrast reads as

Pogn  [2Ha,—Hy,  dINH)| 064  3r3H3
(0lna)? H dlna|dlna  2a4H?
X (1?4086 + ¢ Qamoa). (92)

The baryonic and dark matter linear growing modes are
coupled and given by the system of Egs. (90) and (92). We
show in Fig. 9 their behavior as a function of redshift for the
comoving wave number k = 0.12/Mpc. At high redshift,
they follow the A-CDM reference, but at low redshift, the
dark matter perturbations grow faster than in the A-CDM
cosmology, whereas the baryonic perturbations grow
more slowly. This is more clearly seen in the lower panel,
as the growth rate f, = dIn D} /dIna amplifies the devi-
ations from the A-CDM cosmology because of the time
derivative.

The data points in Fig. 9 are only given to compare the
magnitude of the deviation of the growth factor with
observational error bars but do not provide a meaningful
test. Indeed, the Newton constant obtained in this scenario
is amplified at z = 0, as seen in Fig. 7. This means that to
compare with data we would need to run this model again
by normalizing Newton’s constant to its value at z =0
instead of z — oo, as we have done so far. We do not go
further in this direction in this paper, because this model is
already ruled out by the large time derivative d1nG/dt ~
0.7H at z = 0, as we discuss in the next section.

Nevertheless, it is interesting to note that this model leads
to a slower growth for the baryonic density perturbations than
in the A-CDM cosmology. This is due to the decrease of the
gravitational attraction of dark matter onto baryonic matter,
shown by the coefficient ,u:fm in Fig. 7, which even turns
negative at z < 0.1 (i.e., the fifth force between dark matter
and baryons becomes repulsive). This is a distinctive feature
of this model, as most modified-gravity scenarios amplify the
growth of large-scale structures.
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FIG. 9. Upper panel: linear growing modes D™ (k,a) and

D, (k, a), for the symmetric model of Fig. 1, at comoving wave
number k = 0.14/Mpc. Lower panel: growth factors fog

and fymOams-

We show in Fig. 10 the growth factors obtained for the
case (62) of Fig. 4, where the different metrics have
different conformal times. This actually gives similar
results for the linear growth of large-scale structures.
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FIG. 10. Growth factors fog and fy,04mg, for the model of
Fig. 4 with different conformal times.
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D. Gravitational slip

Because the fifth force enters with opposite signs in the ¢
and y gravitational potentials, see Eq. (83), the lensing
potential ¢y.,s = (¢ + w)/2, which deflects light rays, and
the dynamical potential ¢, which determines the trajectory
of massive bodies, are different. This means that the lensing
mass of clusters of galaxies (deduced from lensing obser-
vations) and the dynamical mass (deduced from the galaxy
velocity dispersion or the pressure profile of the hot gas in
hydrostatic equilibrium) are also different. This is measured
by the ratio 5, which we define as

_ p+w 1 " 1Y Qo8 + pl Reamo G (93)

202 28 + 1 QamoBam]

We show in Fig. 11 the gravitational slip # on subhorizon
scales, for & = 64y, Oqm = O (which corresponds to cases
where p > py.), and 6 = 0 (for pg, > p). In agreement
with Fig. 7, the three curves converge to the General
Relativity value = 1 at high redshift and show deviations
of order unity at low z. Because the couplings to baryons
and dark matter are different, the gravitational slip 7
depends on the relative amount of baryons and dark matter
in the lens. On cosmological scales down to clusters of
galaxies, which are the largest collapsed structures, we
expect 0~ dy,. This gives n > 1 at low z; hence, the
lensing mass would be greater than the dynamical mass.
This ratio can reach a factor 3 at z < 0.1, but in practice,
most cosmological lenses are at redshifts z = 0.5, as the
lensing efficiency goes to zero as the source redshift
vanishes. This gives 1 <7 < 1.7. On the other hand, on
subgalactic scales where baryons dominate, the gravita-
tional slip is smaller than unity so that the lensing mass is
smaller than the dynamical mass by a factor 3 at z = 0.
In the case where dark matter dominates, 7 goes to infinity
at z ~ 0.3 and becomes negative at lower redshift. This is
because ¢ goes through zero and changes sign. This follows

5 ‘ ‘
0=8ym —

4 i
Ogm=0 —>—

3r =0 —8— |

2 L

= 1 (’/(//_g(k =
0 L

0.5 1 1.5 2 25 3 3.5 4

0
z
FIG. 11. Gravitational slip 7 of Eq. (93) for several values of the

baryon to dark matter ratio §/8yy,.

from yﬁm < 0, as seen in Fig. 7. This implies a repulsive fifth
force from dark matter onto baryons, which dominates when
the lens is mostly made of dark matter. This regime should
not be reached in practice, as we have dg4,,, ~ 0 on large scales,
where the separation of baryons from dark matter due to the
fifth force has not yet had time to be efficient, as seen by the
small impact on the linear growing modes in Fig. 9, whereas
we typically have p > p4, on subgalactic scales because
radiative cooling processes make baryons collapse further
and eventually form stars.

V. DYNAMICAL DEGREES OF FREEDOM
AND LINEAR PERTURBATIONS

In this section, we study the behavior of linear pertur-
bations around the cosmological background for the tensor,
vector, and scalar sectors, without using the quasistatic
approximation. This allows us to count the number of
dynamical degrees of freedom, beyond the simple counting
of components described in Sec. II B above. The number of
perturbative degrees of freedom in bigravity theories has
been discussed in Refs. [13-15]. They obtained the
behavior of scalar, vector, and tensor modes by expanding
the action up to quadratic order over the fluctuations. We
present an alternative derivation, starting directly from the
vierbeins as for our derivation of the nonlinear Einstein
equations (19). This also allows us to implement explicitly
the discussion of Sec. IIB and to show how the 32
components of the vierbeins can be reduced to the expected
16 components by successive gauge choices, associated
with the diagonal Lorentz and diffeomorphism invariances
and with the symmetry constraint (9). Then, constraint
equations further reduce the number of dynamical
degrees of freedom. We find that there are no ghosts at
the level of the quadratic action around the cosmological
background.

In Minkowski space-time, i.e., in vacuum, the bimetric
action (2) reduces to two independent copies of General
Relativity. Therefore, it shows 2x2 =4 dynamical
degrees of freedom (associated with the two massless
gravitons of the tensor sector), without ghosts nor dangerous
instabilities. In the following, we focus on perturbations
around the cosmological background, with nonzero mean
density and pressure and with cosmological expansion.

A. Vierbein and metric perturbations, quadratic action

Starting from the vierbeins 56;”, the metric perturbations
09z, are given from the definition (6) by

09 = (56;”6};y + e;ﬂée';y)nah. (94)

For the diagonal background (24), this simplifies to
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0900 = —2b,,ﬂ5ef}0, 090 = 09rio = aﬂs@f}o - bf5e(},w

89si; = as(Sel; + del,). (95)

The perturbations of the matrices X’;y defined in Eq. (11)
also simplify as

0 0 ' '
oesby  deyy _5@’20191 oejg

5X0 _ - s 5Xl - )
20 b% b2 20 azbz ar
oxg, — 0 0y | Seya 00
2 bzaz b2 ’ 2j a% a,
(96)

The permutation 1 <> 2 provides 5X4,.

As in General Relativity, we can split the gravitational
perturbations in scalar, vector, and tensor modes. As in
Ref. [15], we can do so at the level of the vierbeins, and we
can write

8eSg=bspp,  8€Y=as[—0;V,+Cpi,
56;0 = bg [—8in + le],
8¢l = ay[—y, 8+ 00U, + 0V, + 0 Wy +hi).  (97)

where the spatial indices are raised and lowered with 5 and
8;j, so that &' =9; and V. = V. The transversality
conditions are

(9ng,- — 81le - 6,‘/} — aini — 0, alhlf] - O,

and tracelessness corresponds to
i
hy; = 0.

This provides the perturbations of the gravitational
metrics as

8900 = —2b7 ¢,

890i = arbs[0;(Vy = We) + Dyi — Cil,

89z = az[=2w 6, +20;0,Us + 0;(Vyj + Wy))
+0;(Vei + Wei) + heij + hejil. (98)

The baryonic and dark vierbeins and metrics obey the same
decompositions, obtained from the combinations (8).
This gives 32 components for the two gravitational
metrics: ten scalars {¢,, V., Wy, w,, U}, eight vectors
{Ci, D}, Vi, Wy}, and two nonsymmetric tensors Ay, As
explained in Sec. II B, this can be reduced to 16 compo-
nents when we use the invariance under the diagonal
Lorentz transformations and diffeomorphisms and the
symmetry constraints (9). It is convenient to handle the
Lorentz invariance and the symmetry constraints (9)

through the variables 6Z,,, introduced in Eq. (16).This
suppresses the Lorentz degeneracies associated with the
vierbeins by the condition 6Z;,, = 6Z;,,, which implies

Dsi==Cyiy, Vy=Ws, Wp==V,

(99)

heij = hejis

and removes 2 x 6 components. The diagonal diffeomor-
phism invariance still remains.

We study first the dynamics of tensor, vector, and scalar
perturbations, in the early-time regime where the scalar
field is constant and the background follows the simple
solution (41), i.e., all metrics show the same Hubble
expansion rate. Then, dark and baryonic matter can be
unified in the same matter sector as sq, = s,. In all three
cases, the explicit computation of the Einstein equa-
tions (19) at linear order shows that the perturbations
separate in two decoupled sectors, S, and S_. The sector
S, involves the matter perturbations, which act as source
terms in the Einstein equations, and the matter metric
defined from Eq. (8), which gives

My = s5Thi, + 3ho,. (100)
where hy,, are the linear metric perturbations of the two
gravitational metrics, defined by g,,, = a? (M + 2hs).
We find that the Einstein equations of this sector are
identical to General Relativity. Therefore, in this regime,
there is no deviation from General Relativity in the sector
probed by matter and by observations. The hidden sector
S_ has no matter source terms and only involves the hidden

metric components /s_,,, defined by

h_’w - h’lyl/ - hZﬂl/' (101)
Its equations of motion differ from those of General
Relativity by mass terms. [The components s_,, do not
directly define a metric, because if we define the vierbeins
e, = sl_le?ﬂ - sglegﬂ, which would imply (101), we find
that the background vierbeins €2, vanish.]

We can check that the equations of motion of the hidden
sector S_ can be derived from the quadratic action defined
by the standard expression

1 oS
528 = d*x=5 67,
/ 2 (52,,) n

but where again we work at the level of the vierbeins and
use the variables 6Z,, of Eq. (16). For instance, using
Eq. (17), we obtain for the quadratic part that arises from
the first gravitational action S; = [d*x(M3/2)\/=g1R,
the expression

(102)
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2

M :
551 == [ @ty =G X s, + Grex,)

X ©,,0Z 1, (103)
where ©,, = 1 or 1/2 was introduced in (17). We recog-
nize the structure of the left-hand side of the Einstein
equations (19). The contribution 5°S, from the second
gravitational action S, can be obtained from Eq. (103) by
the permutation 1 <> 2. There are also similar contributions
from the matter action. For the matter sector S, this
procedure is more complex because of the coupling to
matter. This involves term linear and quadratic in matter
perturbations, which enforce the coupling between fluid
and metric perturbations and the equations of motion of the
fluid. These terms do not contribute to the hidden sector S_,
as can be seen from a direct computation of the Einstein
equations from Eq. (19).

B. Tensor modes

In the tensor sector, we consider the evolution of metric
perturbations over the background. Because we do not
consider matter sources and there are no tensor gauge
transformations, the computation from the Einstein equa-
tions coincide with the one from the quadratic action (102)
where we do not include matter perturbations. Then, the
quadratic action separates as

58 = 88, + s2536°S_ (104)

with
55, = / dxaMy R — (Vhy)?]  (105)

and
25— / (@MY~ (V) +a* PR} (106)

where the sum is only over the independent components.
Thus, at the quadratic order, the action 65, of the matter
sector is identical to that of General Relativity, while there
exists a second decoupled sector that differs from General
Relativity by a new mass term. This leads to 2 x2 =4
dynamical degrees of freedom in the tensor sector.

We recover the results obtained in Refs. [13-15].
Omitting the indices ij, the two uncoupled gravitons obey
the equations of motion

W'+ 2HI — VPh = 0, (107)
2_

W'+ 2HK. —V?h_ - L—fh_ —0.  (108)
Pl

The massless graviton & of the baryonic and dark matter
metric evolves as in General Relativity. On subhorizon
scales, it propagates with the speed of light. On scales
greater than the horizon, it contains a constant mode and a
decaying mode that evolves as /4’ o« a~2. This physical
mode (in the sense that it is the one seen by the matter
metric) is governed by Eq. (107) throughout all cosmo-
logical eras and does not mix with the hidden graviton A_.

The second hidden graviton h_ has a negative
squared mass in the radiation era, as p = p, > 0, which
becomes negligible in the matter era. In the radiation era,
we have H =1/r and a=./Q,Hyr. The hidden
massive graviton h_ obeys the equation of motion
R +2n —V2h_— T%h_ = 0. It oscillates on subhorizon
scales. On superhorizon scales, it contains both a decaying
mode and a growing mode,

k< H: hz oca V32 pt o aV5-D/2 0 (109)
associated with the tachyonic instability. In the matter era,
we have H = 2/7 and a « 7>. The mass of the second
graviton h_ becomes negligible, and it behaves like the
massless graviton, with a constant mode and a decaying
mode « a=3/2.

Although /_ is not seen by the matter, it should remain
small at all epochs so that the perturbative approach
applies. This implies that the initial tensor fluctuations at
the onset of the radiation era must be sufficiently small.
This is easily satisfied as the squared mass turns positive
during the inflation era and the graviton decays [13].
During the inflationary stage, the tensor evolution equation
is still given by Eq. (108), where p is now the pressure
Py, = —p, of the inflaton y. Because we now have p, <0,
the squared mass becomes positive, and there is no
tachyonic instability, and on superhorizon scales, there
are only two decaying modes:

k<< H: h¢ « a3?cos <?lna>,

h o a=3/?sin (?m a>. (110)
Let us consider a mode k that remains above the horizon
until the end of the radiation era, k < a.qH.q. It crosses the
horizon during the inflationary stage at the time a;, = k/H/,
where H; is the constant Hubble expansion rate of the
inflationary de Sitter era. Then, the amplitude of the tensor
mode /_ at the end of the radiation era reads as

hetaw) =t (22) 7 (1)

111
2 (o (111)

where a is the scale factor at the end of the inflationary era.
For H; ~ 1075 Mp ~ 103 GeV, ap~ 10728, Aeq ~ 1073, we

103516-20



SELF-ACCELERATION IN SCALAR-BIMETRIC THEORIES

PHYS. REV. D 97, 103516 (2018)

find that all modes with k < a. H., remain in the pertur-
bative regime, /_(a,) < 1, provided h_(a;) < 10*. As
we expect h_(ay) ~ H;/Mp ~ 107, if the tensor fluctua-
tions are generated by the quantum fluctuations, all modes
remain far in the perturbative regime until the end of the
radiation era. This is due to their decay during the infla-
tionary stage on superhorizon scales and to their small
initial values associated with quantum fluctuations.

Therefore, the main constraint from the tensor sector is
the measurement of the speed of gravitational waves from
the binary neutron star merger GW170817 [29], which
implies that at least one of the lapse factors r, is unity at
z = 0, as discussed in Sec. III G.

C. Vector modes

In the vector sector, the perturbations of the energy-
momentum tensor are

5T =0, STV = a=2[pv' — 2pCi],

STV = =2a=2p[o'V/ + &/ V1. (112)
As in General Relativity, the equations of motion of matter,
V,T" =0, decouple from the Einstein equations and

read as

9 [(p+ p)U'| +4H[(p + p)U'] = 0,

o (113)

where we introduced the usual gauge invariant velocity,

U'=v'=2C" =0 = 2(s3C} + 53Ch).  (114)
The equations of motion follow from the Einstein equa-
tions (19). One can check that they also follow from a
quadratic action that separates as in (104), with

525, = / @MYV 4 C) - V(Vi 4 Cl. (115)
and

?S_ = /d4x{a2M]2,l[V(V'_j +C_;)-V(V; +C))

35+ p

+a* [TCEjJrﬁ(VV_j)Z} } (116)

Here, for the matter sector S, we focused on the solution
U’ = 0 of the matter conservation equation (114). As for
the tensors, the action 5°S, of the matter metric is identical
to General Relativity, while the second decoupled sector
5*S_ is modified by a new mass term that vanishes in the
Minkowski space-time.

Therefore, as in General Relativity, there are no vector
dynamical degrees of freedom left in 6°S., if we set

U' = 0. One can see that C; is not dynamical. Its “equation
of motion” reads as C; = —V/. Substituting into the action
gives 6°S, = 0, so that V; is arbitrary. This is due to the
diffeomorphism invariance of General Relativity.

In the action 6*S_, C_; is again nondynamical. Its
equation of motion reads in Fourier space

2M3 K Vo

C—i(k) == — V=i
2M3 K>+ a*(3p + p)

(117)

and substituting into the action gives

M3 (3p + p)
2M3k* + a*(3p + p)

&S_ = (2n)? / dkdra4k2{
x VL (k)VL;(-k) + pv_j(k)v_l,-(—k)}. (118)

The vector V_; is now dynamical when 3p+ p # 0.

Therefore, we have two dynamical degrees of freedom

in the vector sector, associated with the hidden vector V_;.
Its equation of motion reads

0 [ a'My(3p+p)
ot [2M3 K> + a*(3p + p)

VLK) | +a*pV_;(k) = 0.
(119)

Thus, the mode V_; shows a gradient instability on
subhorizon scales in the radiation and matter eras, where
p=p,>0, and we recover the results obtained in
Refs. [13-15].

Let us consider in turns the inflationary, radiation, and
matter eras. In the inflationary era, Eq. (119) gives on
subhorizon scales V” +4HV_ +k*V_ =0 (where we
omit the index i), so that the vector mode V_ oscillates
with frequency @ = +k. On superhorizon scales, we obtain
V2 -2V 43 V_ = 0. This is the same evolution equation
as for the tensor modes, and we obtain the same two
decaying solutions as in Eq. (110).

In the radiation era, on subhorizon scales, we obtain
v’ — %2 V_ = 0. This gradient instability leads to the two
exponential modes

k>H: VE o« e*k/V5, (120)

On superhorizon scales, we again recover the same
behavior as for tensors, V" +%V’_ — T% V_ =0, with the
power-law growing and decaying modes (109).

In the matter era, we obtain on subhorizon scales

no 2y _ 8k
V- + T Vo 9H§q‘rz

growing and decaying modes

V_ =0, which gives the power-law
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(121)

11/ 32k
k Vi with lo=—+—,/14+—r.
>H oS with A4 >+3 +9H§q

On superhorizon scales, we have V" + % V. - 4% V_=0.
Long after the radiation-matter equality, 7 > 7.4, this gives
a constant mode and a decaying mode V_ o 773.

Let us estimate the magnitude of the unstable vector
mode V_ at z = 0, for a wave number k that goes beyond
the horizon at a; during the inflationary stage and goes
below the horizon at aj, during the radiation era. Collecting

the results above, we obtain
H,\ 732 (ag,\ (V3+2)/2
kV_ ~ kV_(ak)( ’) (ﬂ>
Heg ar

k (4_\/5)/2 k (L—ﬁlna )
X greafleg V53 T Ted) (122)
aequq

After the horizon exit during the inflationary era, this mode
first decays as @~/ until the end of the inflationary era at

ay. Next, it grows as aV3-D/2 during the radiation era, until
it enters the horizon. Then, its subhorizon behavior deviates
from the one of the tensor mode /_ as it shows the
exponential growth (120) until the matter era starts where it
shows the power-law growth (121). These last two stages
give the exponential factor in Eq. (122), which is actually
dominated by the matter era growth factor. If we assume
that at horizon exit during the inflationary stage, we have
C_~V. ~kV_~H;/Mp, and we obtain for H;~
1075Mp, that kV_ <1 at z=0 for k< 0.3hMpc~".
Therefore, on weakly nonlinear scales and below, the
growth of the hidden vector jeopardizes the perturbativity
of the model, and the gravitational metrics g; and ¢,
become nonlinear in this regime. This implies that the
initial vector seeds at the horizon exit during the infla-
tionary era should be suppressed or that the scenario must
be supplemented by additional mechanisms that damp the
growth of this vector mode on small scales at high redshift.

D. Scalar modes

The same decoupling as for tensors and vectors occurs
for scalars. The matter sector S, is again identical to
General Relativity. The hidden sector S_ does not couple to
matter and differs from General Relativity by mass terms.
Its quadratic action reads as

RS = / d*xa> M2 {p_[-3H2p_ —9H2y_+3HAV2U_

—6Hy —4HV?*V_+2HV2U_ +2V2y_]
+w_[3(H =H?)y_—-22H +H*)V2U_+8HV?V_
—4HV2UL +3y" =2y _+4V2V. -2V2U"]

+(@H>=H")(VV_)?}. (123)

The equations of motion in this scalar sector can be easily
carried out and result in no dynamical degree of freedom.
Indeed, as the scalar U only enters linearly, it iS non-
dynamical, and it provides a constraint equation that allows
us to substitute for y”. The scalar V is also nondynamical,
and its equation of motion allows us to substitute for /.
Then, ¢ only enters linearly; hence, it is also nondynamical
and provides another constraint equation, when y is also
nondynamical. Thus, there are no new dynamical degrees
of freedom in the scalar sector.

E. Dynamical degrees of freedom in
Einstein-de Sitter space-time

To summarize the results from the previous sections, in
Minkowski space-time, we have two copies of General
Relativity and 4 dynamical degrees of freedom, associated
with the two massless gravitons.

Around the cosmological background, chosen to be the
early Universe FEinstein-de Sitter solution (41) of the
equations of motion, the quadratic action separates as a
part 8>S, that describes the metric seen by matter and a part
5S_ that describes a second hidden metric. The first part
5S, remains identical to General Relativity, with 2
dynamical degrees of freedom associated with the massless
graviton. The second part 5°S_ contains new mass terms. It
generates 4 degrees of freedom, associated with a massive
graviton and a transverse vector that shows a gradient
instability. At this level, there are no new scalar dynamical
degrees of freedom and no ghosts.

We study the linear perturbations in the general case in
Appendix A, when we no longer assume s, and s, to be
equal and the various metrics can have different Hubble
expansion rates. As the baryonic and dark matter metrics are
different, the quadratic action no longer separates in a sector
S, which contains all matter and remains identical to General
Relativity, and a hidden sector S_ that differs from General
Relativity by mass terms and is decoupled from matter.
However, from the Einstein equations, we find that linear
perturbations behave in the same fashion as in the simpler case
presented above. In the tensor sector, we have two massive
gravitons, which at high frequency and wave number have a
negligible mass and behave as in General Relativity. In the
vector sector, we can still separate {C;, V;} and {C_;, V_;}.
Again, there are only 2 propagating degrees of freedom,
associated with V_;, and they still show the gradient insta-
bility (120) in the radiation era. In the scalar sector, no new
dynamical degrees of freedom or ghosts appear.

In the next section, we will analyze the existence of
ghosts and the cutoff of the theory by performing a
Stiickelberg analysis.

VI. ANALYSIS OF GHOSTS BY
THE STUCKELBERG METHOD

As shown by the explicit computation of linear pertur-
bations around the FEinstein-de Sitter cosmological
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background, in that case, the system decouples in the two
sectors S, and S_. The sector S, contains the matter metric
perturbations Jg,, and the matter fluid perturbations, such
as 0p, and it coincides with General Relativity. It is the
sector relevant for observations (at this linear order). The
hidden sector S_ contains the other metric components,
09_,» and is not sourced by matter. This shows that around
the cosmological background it is more convenient to
decompose the metric degrees of freedom in these two
metrics, rather than the two gravitational metrics dgy,,. In
particular, it means that the two sets dg,,, are strongly
coupled and that one cannot study the fluctuations of g;,,
while neglecting its coupling to g,

In contrast, in vacuum, we only have two independent
Einstein-Hilbert terms, giving rise to two independent
copies of General Relativity. Therefore, around the
Minkowski background, the relevant decomposition is over
the two gravitational metrics 6gz,,. This shows that the
physics is quite different over these two backgrounds, and
different treatments are appropriate.

A. Explicit quadratic action around
Einstein-de Sitter background

We now check with the Stiickelberg method that there is
no Boulware-Deser ghost at the linear order of perturba-
tions around the cosmological background. In massive
gravity or bigravity theories, a Boulware-Deser ghost [31]
can appear in the scalar sector because of the new degrees
of freedom, associated with the additional metric or the loss
of gauge invariance. In General Relativity, there are no
scalar dynamical degrees of freedom around Minkowski or
Einstein-de Sitter backgrounds because the gauge invari-
ance removes 2 scalar degrees of freedom (among the four
scalar components, two are nondynamical fields or
Lagrange multipliers, and the other two are pure gauges).
In a bimetric theory like the one we consider in this paper,
we have two metrics, but only the diagonal gauge invari-
ance is left. Therefore, as compared to two independent
copies of General Relativity, we have additional degrees of
freedom, as one gauge invariance is missing in order to
remove a few of them. Then, some of these new degrees of
freedom may turn out to be ghosts.

The sector S, being identical to General Relativity, it is
healthy and it makes full use of the diagonal gauge
invariance. We will try to restore full diffeomorphism
invariance by performing a Stiickelberg analysis on the
decoupled sector. Because S_ is decoupled (at linear order),
we can study the quadratic action (123) alone. Around the
cosmological background, a change of coordinates x* —
x* 4 & corresponds at linear order to a change of the metric

ag/‘”g_— %_— %
Ox° ov gan ~ Ine v

59/41/ - 5.9;41/ - (124)

Because we have lost gauge invariance, the action §2S_ is
not invariant when 6g_,, transforms as in (124). Following

the Stiickelberg formalism, we can introduce an additional
field {* to restore the gauge invariance, by writing [32]

09y ., . O o
Ix® g +g—auw+g—;¢o‘W'

89—y = 09y + (125)

Then, the action §*S_(8g_,,.¢*) is invariant under the
combined gauge transformation where 5Ag_w transforms as
in (124), while £ transforms as {# — {# + &*. By choosing
another gauge condition than {# = 0, one can often read
on the Lagrangian terms involving {# the behavior of
dangerous modes. Focusing on the scalar sector, with
{F = "0, x, this gives for the scalar perturbations of the
hidden metric g_,,

¢_ — 527— —Hﬂ',—ﬂ”,
V_=V_+7,

w_=y_+Ha

U_=0U_+nx. (126)
Substituting into the quadratic action (123), one finds that
the Stiickelberg field # does not cancel out because the
action 6*S_ is not gauge invariant. We could expect
quadratic terms with up to four derivatives from (126),
which would be the usual signature of the Boulware-Deser
ghost. However, the explicit computation from Eq. (123)
shows that all third and fourth-order time derivatives cancel
out and the action can be written in terms of first-order time
derivatives. This means that there is no Ostrogradsky ghost,
associated with higher derivative terms in the Lagrangian,
at linear order around the cosmological background.

For completeness, the explicit expression of the action is
given by 625_ = 5?80 + 625U 4 6252), where 5°S) is
given by Eq. (123) where we add a hat to the metric
variables, §2S() is the linear part over 7, and reads as

8*sW) = / d*xa®M3{p_3H[HV?z — (H* +2H') 7|
+W_[(H*+2H') (32" —2V?x)
+3(H? +4HH +2H") 7]
—22H2+H)(VV ) — (V2U_)[(H? +2H )"
+ (H? +4HH +2H")7']}, (127)

which only involves first-order time derivatives if we

integrate z” by parts, and 5°S® is the quadratic part over
7 and reads as

22402
5*8?) = / d4xaTMPl {-3(H* +2H')H'z"
+ (TH*H' + 2H"? + 2H(H> + H"))(Vr)?},
(128)

which only contains first-order time derivatives.
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As was the case for the original action (123), we can
check from the action 52S_ = 625 4 §S1) + 525®) that
there are no propagating modes and z is not dynamical.
This is not apparent from the quadratic part (128), but 7 is
coupled to the other metric components through (127).
Then, for instance, U_ again enters linearly into the action
and provides a constraint that removes another degree of
freedom. After successive simplifications, one finds that
there are no physical dynamical modes left.

We obtain the same result in Appendix A for the more
general case where the different metrics follow different
Hubble expansion rates.

B. Goldstone bosons

We now study how ghosts may appear beyond the linear
perturbation theory investigated in the previous section and
beyond the Einstein-de Sitter case, when the baryonic and
dark matter metrics are different. We again follow the
Stiickelberg formalism, and we first show that we do not
need to explicitly compute the action to recover the
previous results at linear order, in the regime of short time
and length scales as compared to the horizon and the age of
the Universe. Next, we discuss the nonlinear terms. Notice
that our analysis remains perturbative around Friedmann-
Lemaitre-Robertson-Walker (FLRW) backgrounds
throughout and that a full investigation of the presence
of ghosts should be carried out non-perturbatively.

As noticed above, in the absence of matter, our bimetric
theory reduces to two copies of General Relativity, and it is
therefore ghost free. This corresponds to the Minkowski
background, and one would like to extend this result to the
case of FLRW spaces, where the coupling of the two
metrics is present through the matter actions and might
reintroduce a Boulware-Deser ghost. As in (125), this can
be investigated by introducing four Goldstone fields {# of
which the role is to restore the full diffeomorphism
invariance of the theory, which is broken by the presence
of the matter actions. The order parameter of the breaking
of the two copies of diffeomorphism invariance to the
diagonal subgroup is the Hubble parameter of the Universe.
We will see that it plays the same role as the mass term for
gravitons in massive bigravity [10].

In the following, we consider the case where a, = b,
(i.e., all metrics have a common conformal time), so that
the background vierbeins are diagonal with

ey, = as0,, (129)
and we focus on short times compared to the age of the
Universe and short distances compared to the horizon,

dlnh,, >H. (130)
Here, h,, stands for the metric perturbations, and H stands
for the conformal Hubble expansion rates, which we take to

be of the same order for the different metrics. In contrast
with Sec. VI A, we do not restrict to the early-time regime
(41). Hence, the baryonic and dark matters follow different
metrics g,, and g4, with different expansion rates, and 54,
are different from s,.

The matter actions break the two copies of diffeomor-
phism invariance associated with the two Einstein-Hilbert
actions. However, in the approximation (130), we can
reintroduce the broken symmetry invariance by introducing
Stiickelberg fields ¢, and defining the composite object

A
9w = Yap Ot W

(131)

The metric g, is now invariant under the combined
transformations

. Ox* OxP oPs

9eww = A0 A 94
K oxe xv 7o Ox#

. ox'® 8¢§
Ox* Ox'*”

(132)

We recover the initial action by the gauge choice ¢, = x*.
This is the nonlinear extension of (125), with ¢* = x* + (¥,
where we neglect derivatives of the cosmological back-
ground 07, thanks to the approximation (130). The
definition (131) can also be written at the level of the
vierbeins as

a __ 5a a¢;

€l =8l g

(133)

It is convenient to separate the diffeomorphisms into the
diagonal ones, which are not broken by the presence of
matter, and the broken ones in the complementary directions
which belong to the group quotient (diff, x diff,)/diff g,

Pp=x'+& +yen.  p#FEr.  (134)
Here, & is the diagonal diffeomorphism, while z* is an
arbitrary complementary direction, set by the constant
coefficients y,. Then, the vierbeins (133) read

. (O on"
e‘;ﬂ = e;ﬂ + e% <w +7y 8x”) .

(135)

The total action becomes S (eﬁﬂ) - S(ég;ﬂ, & ), which is
independent of & as the diagonal diffeomorphism invariance
is not broken. The field ## cannot be gauged away, as if
annulled in g,,, by a diagonal change of coordinates it would
reappear in the g;,, metric and vice versa. Hence, the 7* fields
parametrize orthogonal directions to diagonal gauge
transformations.

To investigate the Boulware-Deser ghosts, we can focus
on the fields ##, which are the Goldstone bosons of the
broken symmetry, and consider the scalar mode
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at = O,

(136)

for a scalar z. Because of the approximation (130), it does
not matter whether 0" is defined with respect to #** or any
of the metrics ;.

From the definition (8), the baryonic matter and dark
matter vierbeins read as

a A Ad Ad sd 12
€%y = 5,181, + 5,285, + (527187, + $,21285,)0” 0,7,

(137)

where the subscript * stands for b or d (i.e., baryonic or
dark matter). The field z could only be removed from the
matter action by a change of coordinate if y; =y,,
associated with a diagonal diffeomorphism. On the other
hand, if we choose y; = 1/s52, andy, = —1/52,, the field =
disappears from Eq. (137) at the linear level. This corre-
sponds to the choice used in Sec. VI A, where the scalar 7z
in (126) lived in the sector S_ and was not coupled to
matter. Indeed, we can check that with this choice of
coefficients y,, # contributes to the sector S_ as defined by
Eq. (101) and does not contribute to the sector S, defined
by Eq. (100). This is only possible in the early-Universe
regime, where the baryonic and dark matter metrics are
identical, with s, = s4,. In this section, we go beyond this
regime, and we do not assume s, = sg,. Then, it is not
possible to find coefficients y, that remove the field 7 from
both the baryonic and dark matter actions.

Let us now focus on the scalar z alone, setting the
other metric modes to zero, that is, é‘;” = é?,r The matter

vierbeins (137) contain second derivatives 9”z. Therefore,
the equations of motion for # coming from the matter
actions may contain up to four derivatives and may lead to
the propagation of extra ghostlike modes [32]. Specifically,
the Euler-Lagrange terms in the equations of motion for z
coming from the matter action take the form

E. x (ﬁ a ) % 80, (Gl ens).  (138)

a lv
561”

where we used the approximation (130) to neglect back-
ground derivatives. Using the equation of motion of the
matter, V,, T, = 0, which gives

v v A
aﬂ(\/ _g*Tﬁ ) - TV _g*r*lel:‘ ’ (139)
and the property
8Me*ui = e*avriiﬂ - e*bﬂwfaw (140)

where a);“” is the spin connection defined by

= 3 (0, — D,eh,) 3 ¢BH(0,e8, — 0,8,
S (Dyres = Do)y (141)
we can write Eq. (138) as
E,i o 0 (/=g TV €rps®y)- (142)

(137) take the form e5, =
esy + szabaﬂn, for a given matrix A%, and substituting
into the definition (141), we find w? =0, within the
approximation (130). As a result, well inside the horizon
and on timescales much shorter than the age of the
Universe, we find that the contributions to the equations
of motion for z coming from the matter terms do not
involve higher-order derivatives and therefore do not give
rise to ghosts. This is similar to what happens in massive
bigravity [10].

This result can be understood in a simpler way that also
applies to the two Einstein-Hilbert terms. Within the
approximation (130), the matter vierbeins (137) take the
form

The matter vierbeins

ed, = &9, + 2,00, (3*17101 + S.0272a0 ”)7 (143)

a,

where we used Eq. (129) for the background vierbeins.
This corresponds to a diffeomorphism x* — x*+
H((s,171a1 + S.ay2a2)7/a,], so that the matter action
reads as /=0, L. (9um) = /=9« Lx(Ju)- The gravita-
tional vierbeins e;M also take the form (143), where the
fraction is replaced by a simple factor y,. Again, the
invariance of the Ricci scalar under changes of coordinates
implies that the FEinstein-Hilbert terms read as
V=9:R(97) = /=97R(G¢u). Therefore, the scalar z
only appears in the two Einstein-Hilbert actions and the
two matter actions through the determinants ,/—g. This
gives factors of the form

V/—g = a*det @f”) (144)

with ¢* = x* +A8”7r. Thus, the action is a sum of four
terms of the form

sy a¢ﬂ1 a¢ﬂ2 aqﬁllz 8¢ﬂ4
Ox¥r Ox*2 Ox¥s Ox¥4

S
Soc/d“xmeﬂmmme (145)

for coefficients S related to the Ricci scalars of the two
metrics and the matter contents in baryons and CDM,
which vanish thanks to the antisymmetry of the Levi-Civita
tensor [33].
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Thus, we have found that, at leading order in the
approximation (130), and setting the other metric modes
hg,, to zero, the action does not contain higher-order
derivatives such as (9°r)?. This agrees with the explicit
expression (128) for the quadratic action, obtained without
the approximation (130). There, we can see that the leading
terms M3,H*(0?z)? cancel out and the action only includes
the subleading contributions M3 H*(Ox)?, with an extra
factor H? and two fewer derivatives on 7. Thus, there is no
Boulware-Deser ghost around the cosmological back-
ground, at all orders over z but in the small-scale and
short-time approximation (130) when we neglect the other
metric modes Ay, .

We analyze the terms 20”7 in Appendix B. We find that,
even when the baryonic and dark matter metrics are
different, the Stiickelberg field z only couples to the metric
combination /_ as defined in Eq. (101), as in the case s4, =
s, that was explicitly considered in Sec. VI A. Besides,
such terms h9?x can be written in terms of first-order time
derivatives, after integrating by parts over z”; hence, they
do not give rise to ghosts.

C. Cutoff scale

We now investigate at which scale the terms we have
neglected above may introduce a ghost. As can be seen
from the explicit action (128) and the terms in M3 H*(0x)?,
the canonically normalized Stiickelberg field 7 is given by

#=NAr with Ay = (MpH?)'3, (146)
up to a numerical factor of order unity. Introducing the
canonically normalized gravitons ﬁ”y = Mph,,, the terms
that we have neglected above correspond to couplings
between 7 and & and derivatives of the background. They
take the form

RTHPPOPR™ R"OPR™
M3 H? = —, (147)
Pl MglAgm Antp+m 4
and they are suppressed by a scale A with
Ax\ 2n+2m=p=2)/(n+m+p—4)
A = A, <H3> . (148)

We have n>0, 2m—p >0, and A3 > H. Therefore,
A > Aj, except in the case n =0 and 2m — p = 1. This
corresponds to the combination HO>"~'#", where one
partial derivative on 7 is replaced by a background
derivative H. We have already found that there is no ghost
in the quadratic action; therefore, such a term can only give
rise to ghosts if m > 3. This yields for the lowest cutoff
scale

H

1/4
Acut = A3 (A_';> = (MP1H3)1/4a

(149)
which corresponds to Ay ~ 1 AU ~ 107 pc. Therefore, at
energies below A, there is no ghost in the model, but the
theory cannot be trusted on scales smaller than 1 AU, and
new contributions must be added to the action to ensure that
there are no ghosts. On the other hand, it can be used as an
effective theory on all larger scales, which are relevant for
cosmology. The cutoff scale that we have deduced may be
modified by nonperturbative effects which are not inves-
tigated here.

The fact that the cutoff scale is of order 1 AU prevents
our analysis from being applicable in most parts of the
Solar System. However, close to compact objects, or in the
Solar System, on scales greater than 1 AU and in the weak
gravitational field regime, we can use the quadratic theory
described in Se. VI A if we can neglect the dark matter. We
can then separate the action in the sectors S, and S_, with
the dangerous mode z living in the sector S_ at this order.
Therefore, the field # does not couple to matter and never
enters the nonlinear regime due to matter overdensities. At
the classical level, # = 0 is a solution of the equations of
motion (with all 4_,, = 0), even when there are baryonic
matter fluctuations. Then, there is no need for a Vainshtein
mechanism, down to the scale AZ).

VII. LINKS WITH DOUBLY COUPLED
BIGRAVITY

The models that we have constructed have similarities
with doubly coupled bigravity [13—15]. In doubly coupled
bigravity, there is no scalar field, and hence the Jordan-
frame vierbein couplings s, are constant, such as

S =S =5y (150)

with a universal coupling to all types of matter, i.e.,
baryons, cold dark matter, and radiation. In both the matter
and radiation eras, the scale factors are in the symmetric
case

Ay = bf, Hf - H, (151)

implying that the two metrics are proportional. The late-
time acceleration of the expansion of the Universe is
obtained by adding a potential term,

— A4 4 ijk€ pvpo a ,b ,c ,d
Sy =A /d xE mik e oe e e el eg,,  (152)
ikt

comprising one scale and a completely symmetric tensor
m'/¥ which, up to rescaling, is associated to four coupling
constants. This term is responsible for the late-time accel-
eration where A* plays the role of the vacuum energy.
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Moreover, the potential term gives rise to a mass matrix for
the gravitons of which the order of magnitude corresponds
to A*/M} ~ Hj, i.e., very light gravitons.

At the background level, and as long as the scalar field is
negligible, the bimetric models considered here coincide
with the bigravity theories. They differ when it comes to the
phase of acceleration. In bigravity, this is simply realized as
A* plays the role of dark energy. In scalar-bimetric models,
there is no vacuum energy, and the acceleration is simply
due to the rapid variation of the scalar factors s, (¢), which
imply that the baryonic and dark matter metrics do not
mimic the ones of the Einstein-de Sitter space-time. In the
acceleration phase in doubly coupled bigravity,

ry ?é ry; (153)
that is, the two gravitational metrics do not have the same
conformal time. For scalar-bimetric models, we have seen
that natural models obey r; = r, = 1 even at late times. In
a similar fashion, in bigravity, the consistency of the
Friedmann equations gives a constraint equation that
admits two branches of solutions [13—15], the interesting
one for cosmology being H, /ry = H,,/r, as noticed in
Eq. (36). In our case, the scalar field provides an additional
degree of freedom, and there is no such constraint. As in
General Relativity, the Friedmann equations and the
equations of motion of the various fluids are automatically
consistent. This follows from the fact that Eq. (35) is no
longer a constraint equation, because of the scalar-field
dynamics. As we checked in Sec. IIIC, the equation of
motion of the scalar field is not independent of the
Friedmann equations and of the equations of motion of
the other fluids, as it can be derived from the latter.

When it comes to the scalar perturbations, bigravity in
the doubly coupled case and scalar-bimetric models differ
more drastically as the cosmological perturbations of the
scalar field imply the existence of a scale, related to its
effective mass, such that for large enough wave numbers
gravity is modified. This leads to a fifth force that is of
order of the Newtonian force on cosmological scales at
z = 0. Moreover, as the scalar field evolves in the late-time
Universe, the effective Newton constants (they are not
unique anymore but depend on the species) drift with time.
This has also an effect on cosmological perturbations.

Vector and tensor perturbations in the radiation era have
similar behaviors in doubly coupled bigravity and scalar-
bimetric models, with both tensor and vector instabilities.
In the matter era, the nontrivial mass matrix for the two
gravitons in doubly coupled bigravity implies that the two
gravitons oscillate, leading to birefringence [34]. Moreover,
in doubly coupled bigravity, the speed of the gravitational
waves differs from unity in the late-time Universe as the
ratio between the two lapse functions of the two metrics is
not equal to 1 anymore. This is severely constrained by the
LIGO/VIRGO observations. In contrast, in scalar-bimetric

models, we have shown that symmetric solutions where
ay, = b, can be obtained even during the acceleration
phase. In this case, the speed of the gravitational waves
is always unity. Moreover, at the linear level, there is no
mixing between the tensor and vector instabilities that
affects the hidden modes and the matter metrics.

Finally, let us note another analogy between the bimetric
models presented here and doubly coupled bigravity.
The breaking of the full diffeomorphism invariance to
the diagonal subgroup is parametrized by the mass of the
gravity m in the latter and the Hubble expansion rate H in
the former. In both cases, the strong coupling scale is given
by As = (v*Mp,)'/3, where v = H, m is the order param-
eter of each case. At energies larger than this scale, ghosts
are present, and a completion of the models is required.
Notice that in the scalar-bimetric models ghosts may
actually appear at the lower scale (H>Mp)'/*. In both
theories, around compact objects in the weak gravitational
regime for distances larger than their respective cutoff
scales, the scalar Goldstone mode decouples without the
need for the Vainshtein mechanism.

On the other hand, as we are now going to analyze, the
time variation of the scalar field in scalar-bimetric models
poses new problems which are late-time issues, i.e., not
only restricted to the radiation era, contrary to what
happens in bigravity [15].

VIII. RECOVERING GENERAL RELATIVITY
ON SMALL SCALES?

As shown in Fig. 7, the scenarios obtained so far are not
consistent with small-scale tests of General Relativity.
First, the fifth force is too large, being about twice
stronger than Newtonian gravity at z =0, as measured
by the ratio u?/G? — 1. Second, the time derivative of the
effective Newton constant is too high at z =0, with
dInG/dt ~0.7H, whereas the Lunar Laser Ranging
(LLR) experiment gives the upper bound 0.02H,
(dInG/dt < 1.3 x 10712 yr=1) [19]. Strictly speaking, this
constraint lies beyond the realm of validity of the models as
coming from scales below 1 AU. On the other hand, less
stringent constraints on the planetary orbits exist [35] at the
107! level and should be fulfilled. Hence, we will use the
LLR bound as a template for any UV completion of scalar-
bimetric models. Third, the change of the Newton constant
from its large-redshift value to its current value is too large.
Indeed, we obtain an increase of G of about 50% from its
high-z asymptote to its value at z = 0. Here, we normalize
the Planck mass at z = oo to its measured value in the Solar
System today and define the cosmological parameters in
terms of the same Planck mass in Eq. (30). Instead, we
should normalize both the Newton constant at z = 0 and
the cosmological parameters (i.e., the matter densities) to
the measured value of Gyy. However, we would face the
same problem. Because we have no dark energy, to recover
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the A-CDM expansion at high z with the same background
densities, we need the effective Newton constant at high z
to be the same as in the A-CDM scenario, which is also the
measured value today. Thus, we need Gy at z =0 to be
equal to Gy at z > 1, unless we modify the dark matter and
radiation densities by a similar amount (with respect to the
A-CDM reference). However, it is not possible to change
the background densities by 50% while keeping a good
agreement with the cosmic microwave background and big
bang nucleosynthesis constraints.

These three problems are not necessarily connected. In
modified-gravity models, the fifth force is assumed to be
damped in the local environment by nonlinear screening
mechanisms (which use the fact that the Solar System
length scale is much smaller than cosmological distances
and/or the local density is much higher than the cosmo-
logical background densities). However, it is usually
assumed that the time dependence of the Newton constant,
and often its value, remain set by the cosmological back-
ground, which acts as a boundary condition. In particular,
derivative screening such as the Vainshtein screening,
where the nonlinear terms are invariant under ¢ — ¢ +
at with arbitrary @, does not seem to prevent a slow drift of
Newton constant. Then, unless the local Newton constant
can be significantly decoupled from the cosmological
background solution (e.g., through a more efficient screening
that remains to be devised), we need to modify the back-
ground solution itself to decrease both dInG/dt(z =0)
and AG = G(z =0) — G(z = o).

A. Reducing d In G/dt

1. Constant G?

The most elegant way to reduce dInG/dr below the
Hubble timescale would be to keep it (almost) constant, so
that one would not need any tuning to decrease the time
derivative precisely at z = 0. Moreover, this would ensure
that G would be about the same at z =0 and z > 1.

Scenarios with common conformal time.—Let us first
consider the case of the scenarios with r, = 1, described
in Sec. I F. Then, from Eq. (84), a constant G corresponds
to a constant A in Eq. (53). Unfortunately, the solution (54)
does not exist for any A(a), as the argument of the square
root needs to remain positive. Numerically, we found that it
is not possible to keep a constant A(a) = 1, at all times.
This can be understood from the behavior of the scales
factors a,. As noticed in Fig. 3 and explained below
Eq. (56), the behavior of the scale factors a, and Hubble
expansion rates H, is almost independent of the evolution
of the coefficients s,, because we impose a A-CDM-like
expansion for the baryonic metric. This implies that the
ratios a,/a decrease with time, as the gravitational metrics
9ew follow an expansion close to the Einstein-de Sitter
prediction (because we do not put any cosmological

constant or dark-energy component that would play the
same role). Then, to keep the square root real in Eq. (54),
A(a) must typically increase with time. In any case, its value
at z =0 must be greater than unity. From the values of
ay/a read in Fig. 3, we find A(z = 0) = 1.5. This means
that Newton’s constant G at z = 0 must be about 50%
greater than its value at high redshift.

We show in Fig. 12 the Newton constants for the
baryonic and dark sectors obtained in this manner, with
the function 4 used for Fig. 3 such that di/da = 0 at z = 0.
This allows us to reduce d In G /Hdt at all redshifts below
0.3 and make it smaller than the Lunar Laser Ranging upper
bound at z = 0. On the other hand, for the dark sector, we
still have the generic feature d In ggfgn /Hdt of order unity at
z = 0. Making A(a) almost constant at low z is not so
artificial, in the sense that it is a simple constraint on the
coefficients s,, which are likely to be correlated in any case.
Moreover, the plateau for G? can be reached at z > 1 and
does not need to be tuned at z = O precisely. However, a
few numerical tests suggest that it is difficult, or impossible,
to make the transition for G occur at much higher redshifts,

1.6

14 f

12
o

1 L
0.8 1
0.6 :
0 0.5 1 15 2 2.5 3 3.5 4
z

0.4

0.2 r
T ot
= -
&
£ -02
S

-0.4 g¢ N

- Gatn =~
_0-6 L L
0 0.5 1 1.5 2 2.5 3 3.5 4
z
FIG. 12.  Upper panel: baryonic sector and dark sector Newton

constants, normalized to Gy. Middel panel: time derivatives
dInG/dt normalized to H. Lower panel: growth factors fog

and fymOams-

103516-28



SELF-ACCELERATION IN SCALAR-BIMETRIC THEORIES

PHYS. REV. D 97, 103516 (2018)

such as z = 10. This tends to make s, negative at
intermediate redshifts, amplifying the dip already seen in
Fig. 3, and we prefer to keep the coefficients s, positive
(but this requirement may be unnecessary).

From the arguments discussed above, if the sum s7 + 53
reaches a constant value at late times, or satisfies a finite
upper bound, the decrease of the ratios a,/a must even-
tually stop in the future (a simple case is where each
coefficient s, eventually becomes constant). Then, as the
gravitational metrics, the baryonic metric must recover an
Einstein-de Sitter expansion, unless the energy density and
pressure of the scalar field become dominant. Therefore, in
this framework where the acceleration of the expansion
is not due to an additional dark-energy fluid, the self-
acceleration is only a transient phenomenon. An alternative
would be that the Newton constant resumes its growth
in the future, but this would introduce an additional
tuning as the slow down of dInG?/Hdt would be a
transient phenomenon that must be set to occur precisely
around z ~ 0.

It is interesting to note that the nonsymmetric solutions,
such as (53), give rise to behaviors beyond those obtained
in models where the baryonic and dark matter metrics
are simply given by different conformal rescalings
of a single Einstein-frame metric. There, we only have
two free functions, A(¢) and A4(e), with g,, = A?G,, and
Gduw :Aﬁgﬂb. This would correspond for instance to s; = A
and s, = 0; that is, there is no second gravitational metric.
As there is only one coupling A, both the baryonic scale
factor a and the baryonic Newton constant G depend on
A(p) and run at the same rate. This means that it is not
possible to have a self-accelerated expansion, driven by
A(p), while keeping G constant. In the bimetric scenario,
even in the common conformal time case, we can take
advantage of the two free functions s, (¢) and s, (¢) to keep
a constant Newton strength G? while having self-accel-
eration. However, as explained above, this can only happen
for a finite time (if we require s, > 0), and we cannot
reduce the gap AG = G(z =0)—G(z = o). Therefore,
this scenario is not sufficient to make the model agree
with observational constraints. Presumably, increasing the
number of metrics, hence of degrees of freedom and free
functions of the model, would make it increasingly easy to
reconcile a constant Newton strength with self-acceleration.

Scenarios with different conformal times.—In the case of
the scenario (62), with r, # 1, we explicitly checked that
we can build solutions such that G# remains constant at all
times, by tuning the factors r,. More precisely, from
Eq. (84), a constant g corresponds to

dg{/) ds,f drf
=0: Y 25,1, ———+ 52 =
dina Zf: sfr'“ﬂdlna—’—sfdlna

0. (154)

Using the expressions (60), we can write {ds,/dIna} in
terms of {dr,/dIna}. This determines for instance the
derivative dr,/dIna while keeping r; free, so that this
family of solution is still parametrized by a free function
ri(a). However, this usually gives G¥ # G?, see Eq. (84),
with a relative deviation of order unity. To be consistent
with Solar System data, in particular with the Shapiro time
delay that measures the travel time of light rays in
gravitational potentials, we must have |y/¢—1|<
5x 107 [36]. On the other hand, as explained in
Sec. III G, we need r; =1 (or r, = 1) at z = 0 to comply
with the multimessenger gravitational waves event
GW170817. This would give both s, =0 and G¥ = G¢
at z = 0. However, when we try to combine Eq. (154) with
ri — 1 at z = 0 in a few numerical tests, we find singular
behaviors with b, becoming negative before z =0 and
a, —» 0 at z=0. This is somewhat reminiscent of the
impossibility to achieve a constant G? in the simpler case
ry = r, = 1 shown in Fig. 12. Because the scenarios r, #
1 already require some tuning, with |r; — 1] < 3 x 1071 at
z = 0, we do not investigate further this family of solutions.

2. Constant s, at late times

A natural solution to obtain a small d1n G/dr at low z is
to consider models where the coefficients s, reach a
constant at late times. This also removes any fifth force
on baryons, as # =0 from Eq. (66). However, this also
makes the baryonic metric expansion rate converge again to
an Einstein-de Sitter behavior, in agreement with the simple
solution of Sec. III D. The deviation of s? + s3 from unity
in this late-time asymptote again corresponds to a different
value for the associated Newton’s constant, as compared
with the one obtained at high redshift.

We show in Fig. 13 our results for the symmetric solution
of Fig. 1, which is modified at late times so that the
baryonic coefficients are constant for a > 0.9. In terms of
these coefficients, this model is rather simple as the
accelerated expansion of the Universe is a transient
phenomenon, due to the transition of the coefficients s;
between two constant asymptotes. By requiring the Hubble
expansion rate to follow the A-CDM history until z = 0.1,
we make the transition to the final Einstein-de Sitter
behavior occur in a very small redshift interval. This leads
to a sharp decrease for the baryonic expansion rate H(z),
which suddenly drops to the expansion rate H, = H,, of
the gravitational metrics. This also leads to a sudden
increase in the growth rate of large-scale structures, which
resumes the faster growth associated with Einstein-de Sitter
cosmologies.

Even though the change of the coefficients s, is very
small, as compared with the solution of Fig. 1, this leads to
a change for the Hubble expansion rate of order unity.
Indeed, by making the coefficients s; constant at late times,
we change their time derivative ds;/dr from a quantity of
order 1/H, to zero over a small time Az. This yields a
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divergent second derivative d*s,/dz* « 1/(At). However,
from Eq. (26), we can see that dInH/dIna, being a
second derivative of the scale factor, contains a term
such as d?s,/dr* and also grows as 1/(At). Then, even
if we let the transition time Az go to zero, the change of H
remains finite and of order unity, in agreement with
Fig. 13. The drop of H(z) at low z to about 60%
of the A-CDM extrapolation H, implies a deviation of
the distance modulus, u = 5log;o(d; /10 pc), of Au =
—510g;((0.6) ~ 1.1. However, the dispersion of the dis-
tance modulus of observed type la supernovae in the range
0.01 < z < 1 s of order 0.3, before binning [37], and does
not show such a steep step. Therefore, the Hubble diagram
shown in Fig. 13 is ruled out by low-redshift supernovae.

In addition, we still have a total increase of G of about
50% between the high-z and low-z values of the effective
Newton constant. Therefore, this scenario would not solve
this third problem in any case.

B. Need for screening beyond quasistatic
chameleon mechanisms

We have seen in the previous section that the coefficients
s, are unlikely to have reached constant values by z = 0, to

be consistent with the low-z Hubble diagram. This yields a
fifth force that is of the same order as the Newtonian force
on cosmological scales. All scenarios also imply a decrease
of order 50% of the effective Newton constant at higher
redshifts, which makes it impossible to recover the refer-
ence A-CDM expansion rate unless the matter and radiation
densities are also modified. This means that such scalar-
bimetric models can only satisfy observational constraints
if gravity in the Solar System is decoupled from its
behavior on cosmological scales.

Within modified-gravity scenarios, the recovery of
General Relativity on small scales is often achieved by
introducing nonlinear screening mechanisms that damp the
effect of the fifth force. For instance, chameleon screening
makes the scalar field short ranged in high-density envi-
ronments, because its effective potential and its mass
depend on the matter density. In a similar fashion, dilaton
and symmetron scenarios damp the fifth force by making
its coupling vanish in high-density environments, following
the Damour-Polyakov screening.

It is interesting to note that these screening mechanisms
cannot appear in the models considered in this paper,
because the scalar field always remains in the linear regime.
A first way to see this is from Eq. (67), which yields
8¢/ Mp ~ v* for a structure of virial velocity v> ~ GM/r,
mass M, and radius . Then, in nonrelativistic environments,
from clusters of galaxies to the Solar System, where v? < 1,
we have ¢ < @ as we found in Fig. 1 that ¢ ~ Mp,. This
also implies that ds, < §,. Thus, from clusters of galaxies to
the Solar System, the fluctuations of the scalar field remain
small and are not sufficient to significantly modify the
coefficients s,. This means that the effective Poisson
equation (i.e., the coefficients u}) keeps the same deviation
from General Relativity on all these scales.

This configuration can be compared with the usual
chameleon or Damour-Polyakov screenings, shown by
f(R) or Dilaton and Symmetron models. There, the
Jordan-frame metric is typically related to the Einstein-
frame metric by a conformal coupling, g,, = A*(¢)3,,
The fifth force ¢>V InA again arises from the fluctuations
of this metric coefficient A, through the fluctuations of the
scalar field. However, in these models which typically
include a cosmological constant, either explicitly or as the
nonzero minimum of some potential, the conformal cou-
pling always remains very close to unity, |A — 1| <107,
This ensures that one follows the A-CDM background
while having effects on cosmological structures that can be
of order unity, with 0A ~ ¢. The very small variation of the
background value of A also means that it is easy to
introduce a screening mechanism, because the spatial
perturbations of dp and SA can be of the same order as
those of the cosmological background over 6z ~ 1, so that
the nonlinear regime is easily reached (this may be more
easily understood from a tomographic point of view). In the
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model considered in this paper, the difficulty arises from the
fact that we require background variations of order unity for
the coefficients s,, which play a role similar to A(¢) in the
conformal coupling models, whereas spatial variations
should remain of order 107> of the same order as the standard
Newtonian potential. This implies that spatial fluctuations of
the scalar-field value are not sufficient to reach the nonlinear
regime. This analysis agrees with the “no-go” theorem of
Ref. [5], which concludes from the same arguments that
usual chameleon models cannot provide a self-acceleration
of the Universe, and must rely on a form of dark energy
(typically a hidden cosmological constant, written as the
nonzero minimum of some potential).

A way out of this difficulty is to introduce screening
mechanisms that do not rely on the scalar-field value but on
its derivatives. Then, even though d¢ remains small, its
spatial derivatives 0"8¢ can be large on small enough
scales. This corresponds to K-mouflage and Vainshtein
mechanisms. This can be achieved by adding terms in
(09)*/M* or Oep(d¢p)?/M>. In this case, these nonlinear
terms dominate over the simple kinetic terms at short
distance depending on the value of M. As a result, the
coupling of the scalar field to the baryons (and incidentally
the one to dark matter) is reduced, and local tests of gravity
are satisfied. However, this only solves the fifth-force
problem, and it does not solve the problems associated
with the value of Newton constant and its time drift. (In
these screening scenarios, they are usually assumed to be
set by the cosmological background, which acts as a
boundary condition.)

The analysis above implicitly assume the quasistatic
approximation, where the scalar field relaxes to its envi-
ronment-dependent equilibrium and screening appears
through the spatial variations of its mass, coupling, or
inertia. If the quasistatic approximation is violated, the
configuration may be more complex. In fact, from the
analysis of Sec. VIII A, we can see that we need a local
value of Newton constant that is decoupled from the one on
cosmological scales. More precisely, we need its local value
to remain equal to its background value at high z, before the
dark-energy era. This calls for a new screening mechanism,
or a more efficient implementation of K-mouflage or
Vainshtein screening, that goes beyond the quasistatic
approximation and decouples the small-scale Newton con-
stant from its current large-scale cosmological value. For
instance, the local Newton constant should remain equal to
the one at the formation of the solar system. All this requires
altering the models and imposing stringent restrictions on
the possible UV completions of the models that must be
introduced in the Solar System below 1 AU.

IX. CONCLUSION

We have seen in this paper that the scalar-bimetric model
allows one to recover an accelerated expansion without

introducing a cosmological constant or an almost constant
dark-energy density. This relies on the time-dependent
mapping between the gravitational metrics g; and g, and
the baryonic and dark matter metrics g and g4. Because at late
times the deviation between the A-CDM and Einstein-de
Sitter backgrounds is of order unity, the coefficients s, that
define this mapping must show variations of order unity.

When all metrics have the same conformal time, the
expansion rates of the gravitational and dark matter metrics
are almost independent of the details of the model [e.g., the
shape of the functions s,(¢)], once we require a A-CDM
expansion for the baryonic metric. Then, the gravitational
metrics remain close to an Einstein-de Sitter expansion
(because there is no dark energy), while the dark matter
metric behaves in a way opposite to the baryonic metric,
with a stronger deceleration than in the Einstein-de Sitter
case. When the conformal times are different, the scale
factors a, can show slightly different behaviors, and even
more so the lapse factors b,. This scenario is very strongly
constrained by the multimessenger event GW170817,
which requires that at least one of the two gravitons
propagates at the speed of light at z < 0.01. This implies
that at least one of the ratios b,/a, must be unity at low z.
This also implies that the baryonic metric becomes inde-
pendent at low z of the gravitational metric where ¢, # 1,
but the dark matter metric still remains sensitive to both
gravitational metrics.

As the coefficients s, must show variations of order
unity to provide a self-acceleration, we generically have
deviations of order unity for the effective Newton constants
and for the contribution from the fifth force to the
dynamical potential seen by particles. The dynamics of
baryonic and dark matter perturbation show distinctive
features, due to the fact that they couple to different metrics
and that their mappings evolve in opposite fashions. While
the total force (Newtonian gravity and fifth force) from
baryons onto baryons, and from dark matter onto dark
matter, is typically amplified at low redshift, the cross-force
between baryons and dark matter is damped and even turns
negative. This means that dark matter and baryons would
tend to segregate (although this does not have the time to
happen by z = 0 on large scales). Then, the growth of dark
matter density fluctuations is amplified (because of the
stronger self-gravity) while the growth of baryonic density
fluctuations is decreased on cosmological scales (because
of the lower cross-gravity, as dark matter is dominant on
large scales). This could provide interesting features; for
instance, most modified-gravity models predict instead an
amplification of baryonic density perturbations.

However, before a detailed comparison with cosmologi-
cal observations, these models present major difficulties
with small-scale tests of gravity. First, the fifth force is of
the same order as Newtonian gravity. Second, the baryonic
effective Newton constant generically evolves on Hubble
time scales. Third, it is greater than its high-z value by
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about 50%. These features are related to the self-accel-
eration, which implies modifications of order unity on
Hubble timescales.

Thanks to the two couplings associated with the two
gravitational metrics, it is possible to keep the baryonic
effective Newton strength almost constant at low z (by
keeping the sum s? + s3 constant while the two coefficients
vary). This is beyond the reach of simpler models where the
baryonic metric would be given by a conformal rescaling of
a single Einstein-frame metric [which provides a single
coupling A(¢)]. However, this can only work for a finite
time. Either the baryonic and dark matter metrics even-
tually recover an Einstein-de Sitter expansion in the future
or the Newton coupling resumes its growth in the future. In
this framework, it is more natural to make the self-
acceleration only a transient phenomenon, associated with
the running of the couplings s,(¢) between two constant
asymptotes (where the fifth force and the running of
Newton constants disappear). [The alternative scenario,
where the coefficients s,(¢) have already reached their
constant asymptote at low z, is rejected by measurements of
the Hubble expansion rate, from low-z supernoave or local
standard candles such as cepheids.] However, this cannot
reduce the gap between the high-z and low-z values of
Newton’s constant.

On small scales, Solar System tests of gravity imply that
we must recover General Relativity. In modified-gravity
scenarios, this is often achieved by introducing nonlinear
screening mechanisms that damp the effect of the fifth
force. As in the case of single-metric and single-field
models, we explain that a chameleon mechanism cannot
work. It cannot efficiently screen the fifth force in a self-
accelerated model. This leaves derivative screening mech-
anisms, such as K-mouflage and Vainshtein screenings.
Therefore, the scalar-field Lagrangian must be supple-
mented by higher-order derivative terms, that become
dominant on small scales and provide the convergence
to General Relativity. on small scales by damping the fifth
force. However, we need to go beyond usual implementa-
tions, as we also require the local Newton constant to be
decoupled from its cosmological value and to remain equal
to its high-redshift value. Then, the sum s7 + 53 is no
longer required to be almost constant at low z, and this
extends the family of realistic models to all solutions with
common conformal time. As the cutoff scale of the model is
of order 1 AU, the compliance with Solar System tests for
the bimetric models would have to be analyzed thoroughly
once UV completions have been constructed. In particular,
they would have to avoid all the local issues that we have
detailed here. This is beyond the present work.

This paper only provides a first study of such bimetric
models with self-acceleration. We have shown that basic
requirements already strongly constrain these scenarios. We
leave for future works a detailed study to determine whether
such scenarios can be consistent with cosmological data at

the perturbative level. However, the main challenge is to
devise adequate screening mechanisms within appropriate
UV completions, if they exist. This would also have a great
impact on other modified-gravity models, by providing an
explicit scenario where gravity on cosmological scales could
be decoupled from Solar System tests. Finally, another issue
concerns the stability of the hidden vector modes, as one
would like to go beyond the linear regime and guarantee that
they do not mix with the matter metrics. This is beyond the
scope of the present work.

APPENDIX A: LINEAR PERTURBATIONS
IN THE GENERAL CASE s,, # s,

We provide in this Appendix the Einstein equations for
linear perturbations in the general case, where we no longer
assume sq, and s, to be identical. This allows us to go
beyond the early-time FEinstein-de Sitter phase (41). In
particular, we no longer have s? + s3 = 1 nor a, = s,a and
‘H, = H. However, we restrict to the case a, = by, to
ensure that the graviton speeds remain equal to the speed
of light.

Because the two types of matter (baryons and dark
matter) now follow different metrics, the quadratic action
can no longer be neatly split in a sector S, which contains
all matter variables and remains identical to General
Relativity, and a sector S_, which is completely decoupled
from matter and deviates from General Relativity (and can
include new degrees of freedom due to the loss of one
diffeomorphism invariance). Then, in this Appendix, we
directly work at the level of the Einstein equations. The
vierbein and metric perturbations are again defined as in
Egs. (97) and (98).

1. Tensor modes

For tensors, the Einstein equations (19) give

2_
aZZ*S*ls*Za*p*

Y+ 2H R
+ ! GIM%)]

1ij lij — Vthij = (hyij = haij)

(A1)

and a symmetric equation with respect to 1 <> 2. Here,
x = b, d stands for the baryonic and dark matters, and we
sum over both matter sectors. In the early-time regime (41),
these two equations can be diagonalized as in (107) and
(108). At high frequencies, @w > H, and high wave
numbers, k> H, we recover the Minkowski limit of
General Relativity, with two massless gravitons that propa-
gate as in Minkowski vacuum, hf;; — V?hy;; = 0. This is
not surprising, as the bimetric theory (1) reduces to two
copies of General Relativity in vacuum. In particular, we
recover 2 x 2 dynamical degrees of freedom.
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2. Vector modes

For vectors, the Einstein equations (19) and the con-
tinuity equations give

_ aZZ*s*lS*ZaE(:;ﬁ* + [_7*)

VA(V), 4+ Cyy) = o
x (Cy; = Cy), (A2)
and
VI 4 Cl,+2H, (V] + Cy;) = %
X (Vi = Vo) (A3)

and the symmetric equations with respect to 1 <> 2. Again,
the left-hand side corresponds to General Relativity, and
the right-hand side is a new mass coupling term between
the two gravitational metrics that is proportional to the
background matter content (p,, p., hence to H?) and to the
products s.;s,,. It vanishes in vacuum or when one
coupling s., is zero. In the early-time regime (41), this
system can be diagonalized as in (115) and (116). By
combining Eq. (A2), multiplied by a3, with its symmetric,
we obtain

(Vi +Cu) + a3 (Vi, + Ci) =0. (A4)
This automatically implies that the same combination
obtained from Eq. (A3) is also satisfied. This “loss” of
one equation is related to the diagonal vector gauge
freedom. Here, C,; = a?C,; + a3C,;, which generalizes
Eq. (100) beyond the early-time regime. Defining again

C—i = Cli — C2i and V—i = Vli — VZis we find that
Eq. (117) generalizes to
C . — —2(11(12M]23]k2V/_l~

- 2alaZ]WI%'lk2 + (a% + a%)Z*s*ls*Zaz(:sp* + ]_7*) '

(A5)

and at high frequencies and wave numbers, we obtain the
equation of motion

V//- — Z*s*ls*Za%p*
B E*s*ls*2a$(3ﬁ* + I_?*)

which generalizes Eq. (119). In particular, we recover the
same gradient instability (120) as in the Einstein-de Sitter
phase, whatever the values of the coefficients s,,.

In contrast with the case of tensors, the high frequency
and high wave number limit is not so straightforward and
does not coincide with a naive Minkowski limit where we
putp, = p, = 0and H, = 0in Egs. (A2) and (A3). This is
because the loss of the nondiagonal gauge invariance leads

22V_,,  (A6)

to a new vector degree of freedom (here, V_;) that cannot be
“forgotten” and implies a different limit than the naive
expectation of two Minkowski copies.

3. Scalar modes

For scalars, the Einstein equations (19) give

— 6H3¢) — 6H W, + 297y, — 4K, V2V, + 2K, VU,

}: 3 }: 25
_ *5*10*5& a2« Sx15:205% P«
- 2 2

a; My, a Mg,

- V2(U, - U,)],

By =)

(A7)

2Z*s*la2(ﬁ* +]_7*)1)*

—4H =4 +8(H —H)V, =

alM%I
_aZE*s*ls*Za%(ﬁ*_F:Sp*)(V -V ) (AS)
alMlz)l 1 2)s
Ulll — 2V/1 + 2H](U/1 — 2V1) + W — Qb]
a #5515 (l%[_)*
= B ED gy ), (A9)
alMPl

*S* 6125 *
22H; + M)+ 20+ A 2y = P
1P

2_
aZZ*s*ls*Za*p*
2
alMPl

[—(1—2) +2(w1 —v)] (A10)

and the symmetric equations with respect to 1 <> 2. Again,
the left-hand side and the matter source terms on the right-
hand side are identical to General Relativity. There are new
mass coupling terms on the right-hand side that are propor-
tional to (p,, p,,i.e., H?)and s, s,,. Here, we did not include
the perturbations of the scalar field ¢, which corresponds to
yi = 0 in the quasistatic equations (77) and (78).

4. Nonpropagation of the Goldstone mode

In the FEinstein-de Sitter phase, where the quadratic
action can be split over the two sectors S, and S_, we
could see from the explicit action (123) or from the
Stiickelberg analysis in Sec. VI A that the scalar mode
associated with the breaking of the nondiagonal diffeo-
morphism does not propagate. Here, we provide an alter-
native check that such a mode cannot sustain decoupled
propagation at high frequencies and wave numbers, even
beyond the Einstein-de Sitter phase.

As in Eq. (126), we introduce the Stiickelberg scalar =
associated with the nondiagonal diffeomorphism by writing

br=¢s—Heyen' —y,n", we=yr+Heyer',  (All)

Vo=V, 4y, Uy,=U;+y,m, (A12)
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where y, # y, are constant. The case y; =y, would be
associated with the diagonal diffeomorphism. Substituting
into Egs. (A7)—(A10) and only keeping the z terms, we
obtain

2_
6H, (] — 1)y = 221D gy
alMPI
- 3(H171 - H27’2)”/]v (AB)
aZZ*S*ls*Zcﬁ(p* + 3]_?*)
4(HT =M )nw = M, (ri —72)7,
(Al14)
azz*s*lsﬂa%p*
0=—=—"——(r1—12)7, (A15)
alM%,I ! 2
2>, 8418003 D,
2(7'{/1/ - H? - HlHi)hﬂ/ = al—Iw]%l
X [(r1 = r2)7" + 3(Hyy1 — Haya) 7). (A16)

They take the expected form involving H?0°7w =

%%azn (where some derivatives 0 can be replaced
Pl

by factors H), as these terms must disappear in the naive
Minkowski limit H — 0 and p, — O.

In the limit of high frequencies and wave numbers, @ >
‘H and k> H, the last relation (A16) gives 7/ =0 if
p. =0or " ~Hx' if a2p, ~ My H>. Therefore, the scalar
z cannot develop decoupled high frequency modes and
does not propagate.

APPENDIX B: COUPLING OF THE GOLDSTONE
MODE TO THE METRICS

1. General case

In this Appendix, we explore the role played by the
Goldstone boson # in the modification of gravity. More
precisely, we derive the coupling h9?x that was neglected
in Sec. VI B, and we check that it agrees with the explicit
expression (127) in the early-time regime where sy, = s,.
As in Sec. VI B, we go beyond this early-time regime, and
we allow the baryonic and dark matter metrics to be
different, but we focus on short lengths and timescales
as compared with the Hubble parameter, using the approxi-
mation (130).

The Stiickelberg fields ¢/, are introduced as in Eq. (133),

Y 845” sd 7
4 8¢, = as (8% +ht,).

e?u = EKVW’ (Bl)
where fz‘}ﬂ parametrize the deviations from the FLRW
background. We again separate the diffeomorphisms into
the diagonal ones, which are not broken by the presence of

matter, and the broken ones in the complementary directions
which belong to the group quotient (diff; x diff;)/diffgq,.
We choose in the following the particular combination

=3 +E+E (B2)

with

1
o
a, & =- .
$2842

“o_
=
S184d1

(B3)

This corresponds to the choice y; = 1/sysq; and y, =
—1/5,54 in the main text (134). As in Secs. VIA and
VI B, we focus on the scalar mode that would be associated
with a Boulware-Deser ghost, and we write
7t = otn = n"o,m. (B4)
To simplify expressions, we always define 9"z by the metric
7 in the following.
The total action does not depend on the diagonal
diffeomorphism &, which we set to zero in the following.

We now derive the terms 79> that arise from the Einstein-
Hilbert Lagrangians, which we write as

LEH (eLa”y) = \/_—ng(gf/w)'

Because of the invariance of the Ricci scalar under change
of coordinates, we have from Eq. (B1)

(BS)

LEH(e?ﬂ) = det(aﬂ(p;)LEH(é;y)' (B6)
To obtain the terms 7%z, we only need to work at linear

order over i and 7 separately. At linear order over 7, we
have from Eq. (B2)

det(aﬂqﬁ;) =1+0,&. (B7)
On the other hand, at linear order over fz, we have
Len(8f,) = Leu(22,) = vV=09,G4 694
= ]:EH — —Qf(_;’;”nﬂﬂZa%il’;ﬂ. (BS)

In the second line, we used the fact that the background
Einstein tensors are diagonal, and we sum over pu.
Substituting into Eq. (B6), we find that the term ho*n
that arises from the Einstein-Hilbert Lagrangians is

LEH(e%l) D~y _gféléﬂrlmtza%ill;ﬂaaél}' (B9)
Along the diagonal, the background Einstein equations (19)
read (no summation over y)

M3/=5,G ap = sp/=gT"a + sao/=0aT'ag.  (B10)
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Then, using Eq. (B3), the term /9% arising from the two
Einstein-Hilbert actions is

MZ

2 [LEH<e1,u) + LEH(62;¢)] D - A Tﬂﬂﬂ/m

<Sdl hﬂ” - —hg”) (80.8077.') - —nggﬂi’]mlad

Sa2

(@it 2 Yo,

We now turn to the matter actions. The matter vierbeins
are given by

(B11)

eau = Sa1€f, + 5,265, (B12)

where * stands for b (baryons) or d (dark matter). They can
be written as

es, = e, g(ﬁ: +6es,, (B13)
where we introduced
ed, =a, (8¢ +h,). (B14)
a*ﬁlfﬂ = S*lali/\lcllﬂ + 5*202/23,4, (B15)
Py =+ &, a8 = saa 18] + 5008,  (B16)
and

5@‘:” = _a*iliuaygi + s*lalil?yauélf + S*ZaQilgyayfg'
(B17)

As compared with Eq. (B1), there is an additional term ée5,

of the form h9¢ because the matter vierbeins are defined by
the composite expression (B12). Defining the matter
Lagrangians as

L*(e(:ﬂ) = V_g*‘cﬁ(g*m/)’ (BIS)
we now have
a v VT Ix —Ox o
L*(e*ﬂ) - (e*zz ;4¢ ) ) T, 59*#1/’ (B19)

where 6., is the metric perturbation associated with 5é5,
in Eq. (B13). On the other hand, as for the Einstein-Hilbert
terms (B9), the term L, (&4,0,¢%) gives rise to the factor

(e*ua ¢1/) o _g*Tlmrlyﬂ 2h":/46 go’ (Bzo)

Collecting all terms, this gives

L*(e(:y) ) \% _g*Tl‘l‘r]}ma* [Cl ill:llao'go- - a*],:l}:o‘aygz

+ s*lalhlo' /451 + s*2a2h20‘ ll§2] (le)

Using Eq. (B3),
Lagrangian

this yields for the baryonic matter

a ~ ~
( )D\/ Tﬂﬂﬂlm |:<——s—dzz> (Slalh/fﬂ+52azhgﬂ)

Sd1

x(0,0°7) +ala2(slsd1 +52542) (R~ )(0,0°m)
Sd15d2

(B22)

and for the dark matter Lagrangian

— = a; da
Ly(ed,) D V=3aT K— s

TH TH
B >(sd1a1h1;4 + Spaxh,)
1

ayay(sy5q4; + $254)
S182

X (0,0°m) +
x (i, — fz’;,,xaﬂa%)} . (B23)

Collecting (B11), (B22), and (B23), we find that the terms
h&?x that arise in the total action are

Lt mater 2 [ay/=gT" a* + agy/=gq T ajln,,
x (I ,0,0°m — " ,0,0°m), (B24)
where we have
_ @14 $1841 + $25a
a? Sd1Sd2 ’
g = 6161:%12 slsdlsj;stst ’ (B25)
and we introduced the metric combination
he, = i, — 1S, (B26)

which agrees with Eq. (101).

Thus, we find that in all cases, even when the baryonic
and dark matter couplings s, are different, the Stiickelberg
field 7 only couples to the same metric combination h_.

The /_92z terms in the last set of parentheses in Eq. (B24)
are the same as in Eqgs. (B27) and (B29) below, and they
coincide with the result (127) in the main text, where we
only keep the dominant terms with 9 > H. In particular, by
integrating by parts the terms in z”, we can again check that
this contribution to the action can be written in terms of
first-order time derivatives only. Therefore, it does not give
rise to Boulware-Deser ghosts.

In the case where the couplings s4, and s, are identical,
we can separate the quadratic action in two sectors S, and
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S_, as explicitly shown in Sec. V. When the baryonic and
dark matter metrics are different, we cannot simultaneously
decouple both matter metrics from %_, as we only have
two fundamental metrics h; and h,, so that hy must be a
combination of & and h_. This may give rise to a
modification of gravity on Hubble scales, although this
is the regime where the derivation presented in this
Appendix is no longer valid. On small scales, we have
seen in Appendix A 4 that # does not propagate and does
not generate a modification of gravity. In the main text, we
have described the modification of gravity that is seen by
the large-scale structures, which is entirely due to the
fluctuations of the scalar field ¢ of which the effect is to
generate a fifth force as described in Sec. IV.

2. Identical couplings

In the early-time regime, where sy, = s, and a, = s,a,
we have @ = oy = 1, and Eq. (B24) simplifies as

LEH+matter O _g(]_"ﬂﬂ + Tﬁ”)azﬂw

x (h*,0,0°m — I ,0,0°x). (B27)
Thus, we recover the result of Secs. VA and VI A, obtained
from the explicit derivation of the quadratic action, that the
Goldstone boson does not couple to matter at the quadratic
order in the Lagrangian and at the linear level in the

equations of motion. It belongs to the sector S_ of the

action, and it is only coupled to the graviton h_, which is
also decoupled from matter. Explicitly, this metric coupling
reads

Ljg, = —a*pr(h’,0,2' = h°\V2x) +a* pr

x (=h' o0’ + 1" ;0,0,x+h' (2" = V?r)), (B28)
where pr and py are the total pressure and energy
densities.  Now, using 1290 :(;5_, fz(l,» =-0, V_,
ili_():ai‘,\/_, ]’/\ll_/:_l/’\/_(s;‘i‘alaji\]_, and dz/_)T:3M12)1H2,
a*pr = —M3,(H? + 2H'), this gives

Lo - N
PPE = 32 Vx4 22K + H)(VV) - (Va)
a“My,

+ (H2 4+ 2H) 3y _n” = 2p_Vr — (V2U_)n").
(B29)

This coincides with the result (127) in the main text, when
the subdominant terms have been dropped. In particular,
integrating by parts the terms in z”, we recover the fact that
the quadratic action can be written in terms of first-order
time derivatives only, without third- and fourth-order time
derivatives left.
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